JP2020060864A - 検知装置、移動体システム、及び検知方法 - Google Patents

検知装置、移動体システム、及び検知方法 Download PDF

Info

Publication number
JP2020060864A
JP2020060864A JP2018190260A JP2018190260A JP2020060864A JP 2020060864 A JP2020060864 A JP 2020060864A JP 2018190260 A JP2018190260 A JP 2018190260A JP 2018190260 A JP2018190260 A JP 2018190260A JP 2020060864 A JP2020060864 A JP 2020060864A
Authority
JP
Japan
Prior art keywords
blind spot
moving body
control unit
detection
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018190260A
Other languages
English (en)
Other versions
JP7067400B2 (ja
Inventor
直毅 吉武
Naoki Yoshitake
直毅 吉武
圭記 松浦
Keiki Matsuura
圭記 松浦
宜崇 鶴亀
Yoshitaka Tsurukame
宜崇 鶴亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2018190260A priority Critical patent/JP7067400B2/ja
Priority to US17/274,289 priority patent/US20210350706A1/en
Priority to EP19868850.9A priority patent/EP3836120B1/en
Priority to PCT/JP2019/009942 priority patent/WO2020070909A1/ja
Priority to CN201980056183.XA priority patent/CN112639914B/zh
Publication of JP2020060864A publication Critical patent/JP2020060864A/ja
Application granted granted Critical
Publication of JP7067400B2 publication Critical patent/JP7067400B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9315Monitoring blind spots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】移動体から周辺環境における死角の中に存在する物体を検知することができる検知装置、検知方法、及び移動体システムを提供する。【解決手段】検知装置(1)は、移動体(2)の周辺環境における死角に存在する物体を検知する検知装置である。検知装置は、検出部(11)と、測距部(12)と、制御部(13)とを備える。検出部は、移動体から周辺環境に、物理信号(Sa)を放射し、放射した物理信号の反射信号(Sb)を検出する。測距部は、移動体から周辺環境までの距離を示す距離情報を検出する。制御部は、検出部の検出結果を解析する。制御部は、距離情報に基づいて、周辺環境における死角を示す死角領域(R1)と、移動体の前方を死角領域に向かって進行する他の移動体(5)とを検知し、検出部の検出結果において、他の移動体で反射した反射信号に基づいて、死角領域の中の物体(4)を検知する。【選択図】図1

Description

本開示は、移動体から周辺の物体を検知する検知装置、検知装置を備えた移動体システム、及び検知方法に関する。
自動車又はAGV(自動搬送車)などの移動体に搭載され、移動体の周辺を監視する技術が提案されている(例えば特許文献1,2)。
特許文献1は、自車両前方の障害物を認識する障害物認識装置を開示している。特許文献1の障害物認識装置は、カメラ及びレーダを含み、自車両に対する死角領域を検出し、検出された死角領域の広さに基づいて、死角領域に存在する可能性のある障害物の属性を推定している。障害物認識装置は、死角領域に存在する可能性のある障害物の属性が歩行者であると推定されたときに当該死角領域をカメラに探索させ、同障害物の属性が他車両であると推定されたときには当該死角領域をレーダに探索させている。
特許文献2は、自車両周辺の走行環境を的確に推定することを目的とした車両環境推定装置を開示している。特許文献2の車両環境推定装置は、自車両の周辺の他車両の挙動を検出し、当該車両の挙動に基づいて、自車両からの死角領域を走行する別の車両の存在を推定している。このように、自車両では認識できないが周辺の他車両によって認識できる車両走行環境の推定が行われている。
特開2011−242860号公報 特開2010−267211号公報
特許文献1は、検出された死角領域に存在する可能性のある障害物が歩行者及び車両の何れであるかを、死角領域の広さに対応付けて予め設定された各々の存在確率に基づき、推定している。特許文献1,2等の従来技術によると、移動体から周辺環境において、死角の中に存在する物体を検知することは、困難であった。
本開示の目的は、移動体から周辺環境における死角の中に存在する物体を検知することができる検知装置、検知方法、及び移動体システムを提供することにある。
本開示の一態様に係る検知装置は、移動体の周辺環境における死角に存在する物体を検知する検知装置である。検知装置は、検出部と、測距部と、制御部とを備える。検出部は、移動体から周辺環境に、物理信号を放射し、放射した物理信号の反射信号を検出する。測距部は、移動体から周辺環境までの距離を示す距離情報を検出する。制御部は、検出部の検出結果を解析する。制御部は、距離情報に基づいて、周辺環境における死角を示す死角領域と、移動体の前方を死角領域に向かって進行する他の移動体とを検知し、検出部の検出結果において、他の移動体で反射した反射信号に基づいて、死角領域の中の物体を検知する。
本開示の一態様に係る移動体システムは、上記の検知装置と、検知装置の検知結果に基づいて移動体を制御する制御装置とを備える。
本開示の一態様に係る検知方法は、移動体の周辺環境における死角に存在する物体を検知する検知方法である。本方法は、測距部が、移動体から周辺環境までの距離を示す距離情報を検出するステップと、制御部が、距離情報に基づいて、周辺環境における死角を示す死角領域を検知するステップとを含む。本方法は、制御部が、移動体の前方を死角領域に向かって進行する他の移動体を検知するステップを含む。本方法は、検出部が、移動体から周辺環境に物理信号を放射し、放射した物理信号の反射信号を検出するステップを含む。本方法は、制御部が、検出部の検出結果において、他の移動体で反射した反射信号に基づいて、死角領域中の物体を検知するステップを含む。
本開示に係る検知装置、移動体システム、及び検知方法によると、移動体の周辺環境における死角の中に存在する物体を検知することができる。
本開示に係る検知装置の適用例を説明するための図 本開示の実施形態1に係る移動体システムの構成を例示するブロック図 実施形態1に係る検知装置の動作を説明するためのフローチャート 検知装置における距離情報の一例を説明するための図 実施形態1に係る検知装置の動作を説明するための図 検知装置における距離情報の変形例を説明するための図 死角物体の検知処理の実験を説明するための図 図7の実験において死角物体がある場合を例示する図 検知装置による死角物体の検知処理を例示するフローチャート 検知装置による危険度の判定処理を例示するフローチャート 検知装置による危険度の判定処理を説明するための図 実施形態2に係る検知装置の動作を説明するためのフローチャート 検知装置による死角物体の検知処理を説明するための図 検知装置による死角物体の検知処理を説明するための図 実施形態3に係る検知装置の動作を説明するためのフローチャート 実施形態3に係る検知装置の動作を説明するための図 検知装置の動作の変形例を説明するための図
以下、添付の図面を参照して本開示に係る検知装置及び方法、並びに移動体システムの実施の形態を説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
(適用例)
本開示に係る検知装置及び方法、並びに移動体システムが適用可能な一例について、図1を用いて説明する。図1は、本開示に係る検知装置1の適用例を説明するための図である。
本開示に係る検知装置1は、例えば車載用途に適用可能であり、自動車等の移動体において移動体システムを構成する。図1では、検知装置1が搭載された車両2の走行状態を例示している。本適用例に係る移動体システムは、例えば、検知装置1を用いて走行中の自車両2の周りで移り変わる周辺環境を監視する。周辺環境は、例えば自車両2周辺に存在する建物及び電柱などの構造物、並びに歩行者及び他車両などの動体といった各種物体を含む。
図1の例では、交差点3近傍における構造物の壁31によって、自車両2から監視可能な範囲が遮られ、死角が生じている。死角は、自車両2等の移動体から、周辺環境に応じて幾何学的に直接視できない場所を示す。本例において、自車両2から死角となる領域である死角領域R1には、自車両2の進行先の地点に向かって移動している通行人4が存在する。
上記のような場合、死角からの通行人4と自車両2とが、出会い頭に衝突するような事態が懸念される。ここで、従来のカメラ或いはレーダ等を用いた周辺監視技術では、自車両2からの死角は検出されたとしても、死角領域R1の中で自車両2に接近中の通行人4等は、検知することが困難であった。
これに対して、検知装置1は、レーダ等で物理的に使用する信号Saを放射し、信号Saの反射波を示す信号Sbを検出することによって、通行人4のように死角領域R1に内在する物体(以下「死角物体」という場合がある)の検知を実行する。
さらに、検知装置1は、自車両2の前方を死角領域R1に向かって進行する他車両5の検知を実行する。他車両5を検知すると、検知装置1は、物理信号Saを他車両5に照射する。物理信号Saは、他車両5のボディで反射し、死角物体4に到達し、死角物体4で更に反射する。この反射波は他車両5のボディに到達し、更に反射する。検知装置1は、他車両5で反射した多重反射波Sbを受信し、多重反射波Sbに基づいて死角領域R1の中の死角物体4を検知する。
検知装置1によると、死角物体4の検知結果に基づき交差点3等の危険度を判定し、自車両2における運転支援或いは運転制御などの各種制御に判定結果を反映させることで、出会い頭の衝突等を回避することが可能となる。
(構成例)
以下、検知装置1を備えた移動体システムの構成例としての実施形態を説明する。
(実施形態1)
実施形態1に係る移動体システムの構成および動作について、以下説明する。
1.構成
実施形態1に係る移動体システムの構成を、図2を用いて説明する。図2は、本システムの構成を例示するブロック図である。
本システムは、図2に例示するように、検知装置1と、車両制御装置20とを備える。実施形態1の検知装置1は、レーダ11と、カメラ12と、制御部13とを備える。また、例えば検知装置1は、記憶部14と、ナビゲーション機器15と、車載センサ16とを備える。車両制御装置20は、自車両2に搭載された各種の車載機器を含み、例えば運転支援又は自動運転に用いられる。
検知装置1において、レーダ11は、例えば、送信機11aと、受信機11bと、レーダ制御回路11cとを備える。レーダ11は、実施形態1における検出部の一例である。レーダ11は、例えば自車両2の走行方向における前方(図1参照)に向けて信号の送受信を行うように、自車両2のフロントグリル又はフロントガラス等に設置される。
送信機11aは、例えば可変指向性を有するアンテナ(フェイズドアレイアンテナ等)、及び当該アンテナに物理信号Saを外部送信させる送信回路などを含む。物理信号Saは、例えばミリ波、マイクロ波、ラジオ波、及びテラヘルツ波のうちの少なくとも1つを含む。
受信機11bは、例えば可変指向性を有するアンテナ、及び当該アンテナにより外部から波動信号Sbを受信する受信回路などを含む。波動信号Sbは、物理信号Saの反射波を含むように、物理信号Saと同様の波長帯に設定される。なお、送信機11aと受信機11bとは、例えば共用のアンテナを用いてもよく、一体的に構成されてもよい。
レーダ制御回路11cは、送信機11a及び受信機11bによる信号の送受信を制御する。レーダ制御回路11cは、例えば制御部13からの制御信号により、レーダ11による信号の送受信を開始したり、送信機11aから物理信号Saを放射する方向を制御したりする。また、レーダ制御回路11cは、送信機11aから周辺環境に物理信号Saを放射させ、受信機11bの受信結果において、物理信号Saの反射波を示す波動信号Sbを検出する。
レーダ11は、例えばCW(連続波)方式又はパルス方式などの変調方式に従って動作し、外部の物体の距離、方位および速度等の計測を行う。CW方式は、2波CW方式、FM−CW方式及びスペクトル拡散方式などを含む。パルス方式は、パルスドップラー方式であってもよいし、チャープ信号のパルス圧縮或いはPN系列のパルス圧縮を用いてもよい。レーダ11は、例えばコヒーレントな位相情報制御を用いる。レーダ11は、インコヒーレントな方式を用いてもよい。
カメラ12は、例えば自車両2においてレーダ11から物理信号Saを放射可能な範囲と重畳する範囲を撮像可能な位置に設置される。例えば、カメラ12は、自車両2前方(図1参照)に向けて、自車両2フロントガラス等に設置される。検知装置1における死角は、カメラ12の設置位置を幾何学的な基準としてもよいし、レーダ11の設置位置を基準としてもよい。
カメラ12は、設置位置から外部の画像を撮像して、撮像画像を生成する。カメラ12は、撮像画像を示す画像データを制御部13に出力する。カメラ12は、例えばRGB−Dカメラ、ステレオカメラ、又は距離画像センサである。カメラ12は、実施形態1における測距部の一例である。
制御部13は、CPU、RAM及びROM等を含み、情報処理に応じて各構成要素の制御を行う。制御部13は、例えば、ECU(電子制御ユニット)により構成される。制御部13は、記憶部14に格納されたプログラムをRAMに展開し、RAMに展開されたプログラムをCPUにより解釈及び実行する。このように実現されるソフトウェアモジュールとして、例えば、制御部13は、死角推定部131、死角物体計測部132および危険度判定部133を実現する。各部131〜133については後述する。
記憶部14は、制御部13で実行されるプログラム、及び各種のデータ等を記憶する。例えば、記憶部14は、後述する構造情報D1を記憶する。記憶部14は、例えば、ハードディスクドライブ又はソリッドステートドライブを含む。また、RAM及びROMは、記憶部14に含まれてもよい。
上記のプログラム等は、可搬性を有する記憶媒体に格納されてもよい。記憶媒体は、コンピュータその他装置、機械等が記録されたプログラム等の情報を読み取り可能なように、当該プログラム等の情報を、電気的、磁気的、光学的、機械的又は化学的作用によって蓄積する媒体である。検知装置1は、当該記憶媒体からプログラム等を取得してもよい。
ナビゲーション機器15は、例えば地図情報を格納するメモリ、及びGPS受信機を含む測距部の一例である。車載センサ16は、自車両2に搭載された各種センサであり、例えば車速センサ、加速度センサ、及びジャイロセンサなどを含む。車載センサ16は、自車両2の速度、加速度および角速度などを検出する。
以上のような構成は一例であり、検知装置1は上記の構成に限られない。例えば、検知装置1は、ナビゲーション機器15及び車載センサ16を備えなくてもよい。また、検知装置1の制御部13は、上記各部131〜133を別体で実行する複数のハードウェア資源で構成されてもよい。制御部13は、CPU、MPU、GPU、マイコン、DSP、FPGA、ASIC等の種々の半導体集積回路で構成されてもよい。
車両制御装置20は、実施形態1における移動体システムの制御装置の一例である。車両制御装置20は、例えば、車両駆動部21、及び報知器22を含む。車両駆動部21は、例えばECUで構成され、自車両2の各部を駆動制御する。例えば、車両駆動部21は、自車両2のブレーキを制御し、自動ブレーキを実現する。
報知器22は、画像又は音などにより、ユーザに各種情報を報知する。報知器22は、例えば自車両2に搭載された液晶パネル又は有機ELパネルなどの表示装置である。報知器22は、警報等を音声出力する音声出力装置であってもよい。
2.動作
2−1.概要
以上のように構成される移動体システム及び検知装置1の動作について、以下説明する。
実施形態1に係る移動体システムは、例えば自車両2の運転中に、周辺環境を監視するように、検知装置1を動作させる。本システムの車両制御装置20は、検知装置1による検知結果に基づき、自車両2の運転支援又は自動運転等のための各種制御を行う。
実施形態1の検知装置1は、例えばカメラ12において自車両2周辺の画像を撮像して、自車両2の周辺環境を監視する。検知装置1の死角推定部131は、例えば監視結果の各種距離を示す距離情報などに基づき、現在の周辺環境において死角が推定される領域の有無を逐次、検知する。
検知装置1において、死角推定部131により死角が発見されると、死角物体計測部132は、レーダ11を用いて死角領域R1の内部状態を計測する。自車両2のレーダ11から放射される物理信号Saは、波動的な性質を有することから、多重の反射或いは回折等を起こして死角領域R1中の死角物体4に到り、さらに自車両2にまで戻って来るという伝搬を生じ得ると考えられる。実施形態1の検知方法は、上記のように伝搬する波を活用して、死角物体4を検知する。
また、検知装置1によって死角推定部131により死角が発見された場合において、自車両2の前方を死角領域R1に向かって進行する他車両5を検知したときは、死角物体計測部132は、レーダ11を用いて物理信号Saを他車両5に照射する。物理信号Saは、他車両5のボディで反射し、死角物体4に到達し、死角物体4で更に反射する。この反射波は他車両5のボディに到達し、更に反射する。死角物体計測部132は、他車両5で反射した多重反射波Sbを受信し、多重反射波Sbに基づいて死角領域R1の中の死角物体4を検知する。
危険度判定部133は、死角物体計測部132の計測結果に基づいて、死角領域R1に内在し得る死角物体4についての危険度を判定する。危険度は、例えば死角物体4と自車両2とが、衝突等を起こす可能性に関する。
例えば、警告を要すると考えられる危険度が検知装置1において判定されると、本システムは、報知器22によって運転者等に報知したり、車両駆動部21によって自動ブレーキ等の安全性を高めるための車両制御を実行したりすることができる。本システムにおける検知装置1の動作の詳細を、以下説明する。
2−2.検知装置の動作
2−2−1.死角領域及び死角領域に侵入する他車両の存否の検出
実施形態1に係る検知装置1の動作について、図3〜6を用いて説明する。
図3は、実施形態1に係る検知装置1の動作を説明するためのフローチャートである。図3のフローチャートに示す各処理は、検知装置1の制御部13によって実行される。本フローチャートは、例えば自車両2の運転中に、所定の周期で開始される。
まず、制御部13は、カメラ12から1又は複数フレームの撮像画像を取得する(S101)。ステップS101において、制御部13は、撮像画像として距離画像を取得してもよいし、取得した撮像画像に基づき距離画像を生成してもよい。距離画像は、周辺環境を監視するための各種距離を示す距離情報の一例である。
次に、制御部13は、取得した撮像画像に画像解析を行って(S102)、現在の自車両2の周辺環境に関する構造情報D1を生成する。構造情報D1は、周辺環境における種々の物体構造を示す情報であり、例えば、各種構造物までの距離を含む。構造情報D1は、自車両2の前方の他車両5の情報を含む。また、制御部13は、ステップS102において死角推定部131としても動作し、取得した撮像画像において死角を検知するための画像解析も行う。図4に、ステップS102の解析対象の画像を例示する。
図4は、例えば距離画像として自車両2から撮像されており(S101)、交差点3近傍で複数の構造物による壁31,32を映している。本例では、自車両2近傍の壁31の遮蔽により、当該壁31よりも奥側に死角領域R1が存在している。また、死角領域R1よりも奥側の壁32が、自車両2に対向している。以下、壁31を「遮蔽壁」といい、壁32を「対向壁」という。遮蔽壁31と対向壁32との間には、死角領域R1と外部との境界が形成される(図1参照)。
ステップS102において、制御部13は、例えば構造情報D1として距離画像における各種壁31,32の距離値を画素毎に抽出し、記憶部14に保持する。図4の場合の距離値は、方向d1に沿って自車両2側から遮蔽壁31の分、連続的に変化しながら、遮蔽壁31の端部から対向壁32に到ると不連続に変化することとなる。制御部13は、上記のような距離値の変化を解析して、死角領域R1の存在を推定できる。
図3に戻り、死角推定部131としての制御部13は、例えば画像解析による推定結果に従って、現在の自車両2の周辺環境に、死角領域R1が検知されたか否かを判断する(S103)。制御部13は、死角領域R1が検知されなかったと判断すると(S103でNO)、例えば周期的にステップS101〜S103の処理を繰り返す。
ステップS103において死角領域R1が検知されたと判断すると(S103でYES)、制御部13は、例えば画像解析による推定結果に従って、自車両2の前方を自車両2と同じ方向に進行していた車両が、死角領域R1の方向へ進行方向を変更して、死角領域R1に侵入しようとしている状態か否かを判断する(S104)。
2−2−2.死角領域に侵入する前方他車両がない場合
ステップS104において、自車両2の前方を自車両2と同じ方向に進行していた車両が、死角領域R1の方向へ進行方向を変更して、死角領域R1に侵入しようとしている状態でないと判断した場合(ステップS104でNO)、制御部13は、死角物体計測部132としての処理を実行する(S105〜S107)。実施形態1以下、レーダ11の波動信号Sbにおける多重反射波を活用して、死角領域R1中の死角物体4を計測する死角物体計測部132の処理例を説明する。
死角物体計測部132としての制御部13は、まず、死角領域R1に向けて物理信号Saを放射するように、レーダ11を制御する(S105)。図5(a),(b)に、それぞれ死角物体4がない場合とある場合におけるステップS105の物理信号Saの伝搬経路を例示する。
ステップS105において、制御部13は、例えば図4の解析結果に基づいて、レーダ11から死角領域R1の境界近傍の対向壁32に物理信号Saを放射させる。図5(a)の例において、自車両2のレーダ11からの物理信号Saは、横道の死角領域R1を介して対向壁32と反対側の壁35との間で反射を繰り返し、多重反射波として伝搬している。図5(a)の例では、死角物体4がないことに対応して、多重反射波は自車両2に向かって来ない。
一方、図5(b)の例では、死角物体4が存在することから、レーダ11からの物理信号Saは、各々の壁32,33に加えて死角物体4でも反射して、自車両2に向かう多重反射波Sb1となり得る。よって、レーダ11で受信される波動信号Sbには、死角物体4の情報を有する多重反射波Sb1の信号成分が含まれることとなる。
ステップS105において、レーダ11は、物理信号Saを放射すると共に波動信号Sbを受信して、物理信号Saの反射波に基づく各種計測を行う。制御部13は、レーダ11から計測結果を取得する(S106)。
制御部13は、レーダ11の計測結果に基づいて、死角物体の検知処理を行う(S107)。多重反射波Sb1(図5(b))の信号成分は、ドップラーシフト、位相及び伝搬時間により、反射元の死角物体4の速度および伝搬経路の長さに応じた情報を有している。死角物体の検知処理(S107)は、このような信号成分を解析することにより、多重反射波Sb1を反射した死角物体4の速度及び位置等を検知する。ステップS107の処理の詳細については後述する。
次に、制御部13は危険度判定部133として動作し、死角物体4の検知結果(S107)に基づいて危険度の判定処理を行う(S111)。危険度の判定処理は、例えば、検知された位置及び速度等から死角物体4が自車両2に接近することの危険度に応じて、警告の要否を判定する。ステップS107において死角物体4の動き、距離、種類及び形状等の情報が検知される場合、ステップS111ではこれらの情報を用いて危険度が判定されてもよい。ステップS111の処理の詳細については後述する。
次に、制御部13は、危険度の判定結果(S111)に応じて、車両制御装置20に各種の制御信号を出力する(S112)。例えば、ステップS111において警告を要すると判定された場合、制御部13は、報知器22に警告を報知させたり、車両駆動部21を制御したりするための制御信号を生成する。
制御部13は、例えば制御信号を出力する(S112)と、図3のフローチャートに示す処理を終了する。
以上の処理によると、検知装置1は自車両2の周辺監視を行いながら(S101〜S103)、死角が発見されると(S103でYES)、死角物体4の検知を行い(S107)、各種のアクションを行うことができる(S112)。
以上の処理では、周辺監視にカメラ12を用いたが、ナビゲーション機器15を用いてもよい。本変形例を図6に示す。ナビゲーション機器15は、例えば図6に示すように、自車両2の周辺環境の地図情報D2において、自車両2までの各種距離を計算し、自車両2の現在位置を監視する。制御部13は、以上のようなナビゲーション機器15の監視結果を、図3の各種処理に用いることができる。制御部13は、ナビゲーション機器15の監視結果に基づいて、例えば地図情報D2中の構造物30に基づき、構造情報D1を取得したり、死角領域R1を検知したりすることができる(S102)。また、制御部13は、図3の処理において適宜、車載センサ16の検出結果を用いてもよい。
死角物体の検知処理(図3のS107)について、図7〜9を用いて説明する。
図7は、死角物体の検知処理の実験を説明するための図である。図7(a)は、本実験の実験環境の構造情報D1を示す。図7(b)は、死角物体4がない場合のレーダ11の計測結果を示す。図8は、図7の実験において死角物体がある場合を例示する図である。図8(a)は、死角物体4がある場合のレーダ11の計測結果を示す。図8(b)は、死角物体4から推定される多重反射波の伝搬経路を例示する。
本実験は、図7(a)に示すように、交差点を有する通路において行われた。図7(b),7(a)における濃淡は、淡いほどレーダ11で得られた信号強度が強いことを示している。
本実験においては、死角物体4がない状態では、図7(b)に示すように、4m付近に強いピークP1が確認された。ピークP1は、レーダ11に対向する対向壁P1からの反射波を示している。また、図7(b)では、その他各壁32,33からの反射波によるピークP2,P3がそれぞれ確認できる。
一方、死角物体4を置いた状態では、図8(a)に示すように、対向壁32よりも遠い7m付近に、強いピークP4が現れた。同ピークP4の方位は、レーダ11から対向壁32の奥側に見える。以上の距離と方位から、当該ピークP4が、対向壁32による反射を経て死角物体4から反射した成分が主となっていることが分かる(図8(b)参照)。即ち、レーダ11の計測結果におけるピークP4までの距離と方位に基づいて、死角物体4を波源とするピークP4を検知できることが確認された。
以上のような死角物体4の信号成分の解析は、周辺環境の構造情報を用いることにより、死角物体4の有無及び位置等をより精度良く検知できる。以下、実施形態1における死角物体の検知処理の一例を、図9を用いて説明する。
図9は、実施形態1における死角物体の検知処理を例示するフローチャートである。図9のフローチャートによる処理は、図3のステップS107において、死角物体計測部132として動作する制御部13によって実行される。
まず、制御部13は、図3のステップS106において取得したレーダ11の計測結果の信号から、死角物体の解析対象とする信号成分を抽出するために、周辺環境からの反射波を示す環境成分を除去する(S11)。ステップS11の処理は、例えばステップS102で取得された構造情報を用いて行われる。
例えば、図7(b)の例の各ピークP1,P2,P3は、通路の構造情報D1(図7(b))において各々対応する壁31,32,33からの反射波を示す環境成分として、予め推定可能である。制御部13は、構造情報D1を参照して各種構造物での反射波を予測して、レーダ11の計測結果(例えば図8(a))から予測結果の環境成分を差し引く(S11)。これにより、通路等の環境下の構造物による反射波の影響を低減し、死角の物体の信号成分のみを強調し易くできる。
次に、制御部13は、環境成分の除去により得られた信号成分に基づいて、死角物体4を検知するための信号解析を行う(S12)。ステップS12の信号解析は、周波数解析、時間軸上の解析、空間分布および信号強度等の各種の解析を含んでもよい。
制御部13は、信号解析の解析結果に基づいて、例えば死角の対向壁32の向こう側に波源が観測されるか否かを判断し(S13)、これによって、死角物体4の有無を検知する。例えば、図8(a)の例においてピークP4は、対向壁32よりも通路の奥側を波源としており、通路の構造から環境成分として予測されない位置にある。このことから、当該ピークP4は、死角内を波源とする波が、多重反射したことに起因すると推定できる。つまり、制御部13は、検知済みの死角の方位に、対向壁32を超える距離で反射波が観測される場合、死角物体4があると判定できる(ステップS13でYES)。
制御部13は、死角の対向壁32の向こう側に波源が観測されると判断した場合(S13でYES)、多重反射による屈曲が推定される伝搬経路に応じて、死角物体4までの距離および速度といった各種の状態変数を計測する(S14)。例えば、制御部13は、構造情報D1において死角部分の道幅(死角領域R1の幅)を示す情報を用いることによって、例えば図8(b)に示すように、信号成分から分かる死角物体4までの経路長を折り返すように補正して、より実際の位置に近い死角物体4の位置を算出することができる。
制御部13は、死角物体4の測量を行うと(S14)、図3のステップS107の処理を終了する。その後、制御部13は、検知された死角物体4についての危険度の判定処理(図3のS111)を実行する。
また、制御部13は、死角の対向壁32の向こう側に波源が観測されないと判断した場合(S13でNO)、特に測量を行わずに、本処理を終了する。この場合、制御部13は、図3のステップS111以降の処理を省略してもよい。
以上の処理によると、レーダ11の物理信号Saにおける多重反射の性質に基づき死角領域R1内部で生じた信号成分を利用して、死角物体4を検知することができる。
ここで、死角物体4の情報を有する信号成分は微弱であり、死角外の見えている物体からの反射波も存在する中で検出することとなるため、検出及び推定が難しいと考えられる。また、死角物体4までの実際の距離と信号の伝搬経路の長さが異なるため、実際の距離を推定し難いとも考えられる。これに対して、周辺環境の構造情報D1を用いることにより、受信波を解析する前提条件を絞り込んだり(S11)、推定精度を高めたりすることができる(S14)。
例えば、ステップS11において、制御部13は、構造情報D1における死角近傍の交差点までの距離を参照して、交差点との直線距離に対する信号の往復伝搬時間以下で得られる受信波の信号成分を除去する。このような受信波は直接反射波(即ち反射1回の波)であり、死角物体4の情報を含まないことから、解析対象から除外することができる。また、制御部13は、自車両2から見た死角の方位角に基づいて、死角から到来する反射波と他の角度から到来する反射波とを分離することもできる。
ステップS11の処理は、必ずしも周辺環境の構造情報D1を用いなくてもよい。例えば、制御部13は、時間軸に沿って得た信号から、自車両2の位置変化を差し引いて、解析対象を動体に制限してもよい。本処理は、ステップS12の信号解析において行われてもよい。
以上のステップS12において、制御部13は、解析対象の信号成分において、動体に反射したことによるドップラーシフト、或いは人間や自転車など特有の所作の揺らぎといった、特定の物体の所作により現れる特徴があるか否かを解析してもよい。また、制御部13は、空間的に広がりを持った面計測の信号分布が、自動車、自転車、人間などの特有の分布を持っているか、或いは反射強度により自動車大の金属体による反射が含まれるか等を解析してもよい。以上のような解析は、適宜組み合わせて行われてもよいし、個々を明示的に解析する代わりに、機械学習を用いて多次元の特徴量として解析されてもよい。
危険度の判定処理(図3のS111)について、図10〜11を用いて説明する。
図10は、危険度の判定処理を例示するフローチャートである。図11は、危険度の判定処理を説明するための図である。図10のフローチャートによる処理は、図3のステップS111において、危険度判定部133として動作する制御部13によって実行される。
まず、制御部13は、ステップS107における死角物体4の検知結果に基づいて、危険度指数Dを算出する(S21)。危険度指数Dは、検知された死角物体4と自車両2との間の衝突に関する危険度を判定するための指標を示す。例えば図11に示すように、死角物体4が自車両2に近付く速度vが、危険度指数Dに設定できる。
次に、制御部13は、例えば予め設定されたしきい値Vaを用いて、算出した危険度指数Dが、しきい値Vaを超えるか否かを判断する(S22)。しきい値Vaは、例えば死角物体4に関する警告が必要となる危険度指数Dの大きさを考慮して設定される。例えば、D=vの場合に危険度指数Dがしきい値Vaを上回ると、制御部13は、ステップS22で「YES」に進む。
制御部13は、危険度指数Dがしきい値Vaを超えると判断したとき(S22でYES)、危険度の判定結果として、例えば警告フラグを「ON」に設定する(S23)。警告フラグは、死角物体4に関する警告の有無を「ON/OFF」で管理するフラグであり、記憶部14に記憶される。
一方、制御部13は、危険度指数Dがしきい値Vaを超えないと判断したとき(S22でNO)、警告フラグを「OFF」に設定する(S24)。
制御部13は、以上のように警告フラグを設定すると(S23,S24)、危険度の判定処理(図3のS111)を終了して、ステップS112の処理に進む。
以上の処理によると、死角物体4が自車両2或いは交差点3に近付く危険度が、対応する危険度指数Dに応じて判定される。例えば、警告フラグに応じた2値判定が行われる。警告フラグが「ON」のとき、制御部13は、報知器22に警告させたり、車両駆動部21に特定の制御を行わせたりすることができる(図3のS112)。
なお、危険度の判定処理は2値判定に限らず、例えば警告の不要時に注意喚起の有無を判定する3値判定が行われてもよい。例えば、注意喚起用のしきい値Vb(<Va)を用いて、制御部13が、ステップS22で「NO」に進んだときにD>Vbか否かを判断してもよい。
以上の処理において、危険度指数Dは速度vに限らず、死角物体4に関する種々の状態変数により設定可能であり、例えば速度vの代わりに加速度dv/dtに設定されてもよい。
また、危険度指数Dは、自車両2と死角物体4との間の距離Lに設定されてもよい。距離Lは、小さいほど自車両2と死角物体4間の衝突に関する危険度が高いと考えられる。そこで、例えばステップS22において、制御部13は、危険度指数D(=L)がしきい値Vaを下回るときに「YES」に進み、下回らないときには「NO」に進んでもよい。
また、危険度指数Dは、各種の状態変数の組み合わせによって設定されてもよい。このような一例の危険度指数Dを次式(1)に示す。
D=|(L−vΔt)+(L−vΔt)| …(1)
上式(1)において、Lは、基準位置P0から死角物体4までの距離である(図11)。基準位置P0は、例えば交差点の中心など、死角物体4と自車両2との衝突が想定される位置に設定される。Δtは、所定の時間幅であり、例えば自車両2が基準位置P0に到達するまでにかかることが予測される時間幅の近傍に設定される。Lは、基準位置P0から自車両2までの距離である。vは、自車両2の速度であり、車載センサ16等から取得可能である。
上式(1)の危険度指数Dは、時間幅Δtの経過後に推定される、死角物体4と基準位置P0間の距離と、基準位置P0と自車両2間の距離との総和である(図11)。上式(1)によると、危険度指数Dが所定値よりも小さくなると、自車両2と死角物体4とが同時に基準位置P0に到達する可能性が充分に高いといった推定が行える。このような推定に対応する危険度の判定として、上式(1)の場合、制御部13はD=Lの場合と同様に、危険度指数Dがしきい値Vaを下回るときステップS22で「YES」に進み、下回らないとき「NO」に進んでもよい。
また、危険度指数Dは、以下の式(2)又は式(2’)のように設定されてもよい。
D=L−vΔt …(2)
D=|L−vΔt| …(2’)
上記の各式(2),(2’)では、例えばΔt=L/vに設定される。時間幅Δtは、自車両2の速度vの変動或いは基準位置P0の見積誤差などを考慮した許容範囲内で設定されてもよい。
式(2)の危険度指数Dが所定値よりも小さいとき(負値を含む)、自車両2が基準位置P0に到達する前に死角物体4が自車両2前方を横切る可能性が充分に高いと推定できる。また、式(2’)の危険度指数D(式(2)の場合の絶対値)が所定値よりも小さいとき、自車両2と死角物体4とが同時に基準位置P0に存在する可能性が充分に高いと推定できる。以上のような推定に対応して、制御部13は、式(2)又は式(2’)の危険度指数Dを用いて、式(1)の場合と同様に危険度の判定を行うことができる。
以上のような危険度の判定処理において、しきい値Vaは、自車両2及び死角物体4の状態に応じて、動的に変更されてもよい。例えば、上述したLが小さかったり、dv/dt又はdv/dtが大きかったり、或いは死角物体4が人間と推定される場合、危険度の判定をより厳格に行うべきと考えられる。そこで、このような場合が検知されると、制御部13は、例えば上式(1)の危険度指数Dに対して、しきい値Vaを大きくしてもよい。
2−2−3.死角領域に侵入する前方他車両がある場合
図3のステップS104において、自車両2の前方を自車両2と同じ方向に進行していた他車両5が、死角領域R1の方向へ進行方向を変更して、死角領域R1に侵入しようとしている状態(図1に例示した状態)であると判断した場合(ステップS104でYES)、制御部13は、上記の状態に応じた計測処理を実行する(S108〜S110)。
死角物体計測部132としての制御部13は、まず、レーダ11を用いた計測を行う(S108)。レーダ11は、物理信号Saを放射すると共に多重反射波Sbを受信して各種計測を行う。次に、制御部13は、レーダ11から計測結果を取得する(S109)。
制御部13は、レーダ11の計測結果に基づいて、死角物体の検知処理を行う(S110)。多重反射波Sbの信号成分は、ドップラーシフト、位相及び伝搬時間により、反射元の死角物体4の速度および伝搬経路の長さに応じた情報を有している。死角物体の検知処理(S110)は、このような信号成分を解析することにより、多重反射波Sbを反射した死角物体4の速度及び位置等を検知する。
制御部13は、例えば、ステップS11と同様に、レーダ11の計測結果の信号から、死角物体の解析対象とする信号成分を抽出するために、周辺環境からの反射波を示す環境成分を除去する。そして、例えばステップS12と同様に、制御部13は、環境成分の除去により得られた信号成分に基づいて、死角物体4を検知するための信号解析を行う。次に、制御部13は、ステップS13と同様に、信号解析の解析結果に基づいて、例えば死角の対向壁32の向こう側に波源が観測されるか否かを判断し、これによって、死角物体4の有無を検知する。制御部13は、他車両5の方位に、他車両5の自車両2側の側面部を超える距離で反射波が観測される場合、死角物体4があると判定できる。
制御部13は、例えば、ステップS14と同様に、他車両5の自車両2側の側面部の向こう側に波源が観測されると判断した場合、多重反射による屈曲が推定される伝搬経路に応じて、死角物体4までの距離および速度といった各種の状態変数を計測する。
ステップS110を終えると、制御部13は、前述の危険度の判定処理(S111)以降の処理を実行する。
3.まとめ
以上のように、実施形態1に係る検知装置1は、移動体の一例である自車両2の周辺環境における死角に存在する死角物体4を検知する。検知装置1は、検出部としてのレーダ11と、測距部としてのカメラ12と、制御部13とを備える。レーダ11は、自車両2から周辺環境に物理信号Saを放射して、放射した物理信号Saの反射信号Sbを検出する。カメラ12は、自車両2から周辺環境までの距離を示す距離情報を検出する。制御部13は、レーダ11の検出結果を解析する。制御部13は、検出された距離情報に基づいて、周辺環境における死角を示す死角領域R1と、自車両2の前方を死角領域R1に向かって進行する他車両5とを検知し(S102,S103及びS104)、レーダ11の検出結果において、他車両5で反射した反射信号Sbに基づいて、死角領域R1の中の死角物体4を検知する(S110)。
以上の検知装置1によると、レーダ11からの物理信号Saと他車両5で反射した反射信号Sbとを利用して、自車両2から周辺環境における死角の中に存在する物体を検知することができる。
実施形態1の検知装置1において、制御部13は、死角物体4の検知結果(S107,S110)に基づいて、死角領域R1に関する危険度を判定する(S111)。危険度の判定により、例えば自車両2と死角物体4との出会い頭の衝突等を回避し易くすることができる。
実施形態1に係る移動体システムは、検知装置1と、車両制御装置20とを備える。車両制御装置20は、検知装置1の検知結果に基づいて、例えば報知器22及び車両駆動部21など、自車両2において各種の制御を実行する。移動体システムは、検知装置1により、移動体から周辺環境における死角の中に存在する物体を検知することができる。
実施形態1に係る検知方法は、自車両2の周辺環境における死角に存在する死角物体4を検知する検知方法である。本方法は、カメラ12が、自車両2から周辺環境までの距離を示す距離情報を検出するステップS101と、制御部13が、検出された距離情報に基づいて、周辺環境における死角を示す死角領域R1を検知するステップS102,S103とを含む。本方法は、制御部13が、自車両2の前方を死角領域R1に向かって進行する他車両5を検知するステップS104を含む。本方法は、レーダ11が、自車両2から物理信号Saを放射し、放射した物理信号Saの反射信号Sbを検出するステップS109を含む。本方法は、制御部13が、レーダ11の検出結果において、他車両5で反射した反射信号Sbに基づいて、死角領域R1中の死角物体4を検知するステップS107を含む。
実施形態1において、以上の検知方法を制御部13に実行させるためのプログラムが提供される。実施形態1の検知方法によると、自車両2等の移動体から周辺環境における死角の中に存在する物体を検知することができる。
(実施形態2)
図12は、検知装置1による実施形態2に係る検知動作を説明するためのフローチャートである。図12に示す実施形態2のフローチャートは、図3の実施形態1のフローチャートのステップS110の代わりに、他車両5の時間的変化を含む情報に基づいて死角物体を検知するステップS210を含む。
図13及び図14は、他車両5の時間的変化を含む情報に基づいて死角物体を検知するステップS210を説明するための図である。図13は、時刻T1における自車両2、他車両5及び死角物体4の状態を示す図である。図13では、自車両2は、破線矢印で示した進行方向F2の方向に移動している。
なお、進行方向F2は、駆動力を与えたとすれば自車両2が移動すべき方向であり、仮に図13において自車両2が停止していたとしても、自車両2の進行方向はF2で表される。自車両2が後退(バック)走行する場合は、進行方向F2は図13に示したものと逆向きになる。図13の例では、自車両2の進行方向F2は、自車両2の車体の中心を通り、自車両2の長手軸に平行な方向である。
図13では、自車両2の前方に他車両5がある。他車両5は、時刻T1より前は自車両2の前方を自車両2と同じ方向に進行していたものであり、図13の時刻T1においては、死角領域R1の方向へ進行方向を変更して、死角領域R1に侵入しようとしている。破線矢印F5は、他車両5の進行方向を示している。
第1の角度θb(T1)は、時刻T1において、自車両2の進行方向F2と他車両F5の進行方向とがなす角度である。
図13に示すような状態では、死角領域R1が検知され(S103でYES)、かつ、自車両2の前方を自車両2と同じ方向に進行していた他車両5が、死角領域R1の方向へ進行方向を変更して、死角領域R1に侵入しようとしている状態である(S104でYES)ため、制御部13は、ステップS108、S109及びS210の処理を行う。
ステップS210において、制御部13は、他車両5の方位に、他車両5の自車両2側の側面部を超える距離で反射波Sbが観測されるため、死角物体4があると判定できる。レーダ11は、前述のようにパルス状に物理信号Saを放射するため、反射波Sbがいつどの方向に放射した物理信号Saに対応する反射波であるかを把握できる。したがって、制御部13は、死角物体4があると判定した場合、反射波Sbに対応する物理信号Saの放射方向を特定することができる。物理信号Saの放射角度(第1の角度)θa(T1)は、自車両2の進行方向F2と物理信号Saの放射方向とがなす角度である。
図13に示すように、自車両2から第1の角度θa(T1)の方向に放射された物理信号Saは、他車両5の反射点Pで反射され、死角物体4に到達する。時刻T1における自車両2の物理信号Saの放射位置と他車両5の反射点Pとの間の第1の距離A(T1)、及び、自車両2の物理信号Saの放射位置と死角物体4との間の第2の距離C(T1)を用いると、他車両5の反射点Pと死角物体4との間の第3の距離B(T1)は、次の式(3)で表される。
B(T1)=C(T1)−A(T1) …(3)
なお、第1の距離A(T1)は、カメラ12によって取得した撮像画像に画像解析を行うこと(S102)によって算出できる。また、第2の距離C(T1)は、レーダ11による計測結果として取得される(S109)。
また、時刻T1において、自車両2の物理信号Saの放射位置と他車両5の反射点Pとを結ぶ線分と、他車両5の反射点Pと死角物体4とを結ぶ線分と、がなす角度θx(T1)は、次の式(4)で表される。
θx(T1)=180°−2θb(T1)+2θa(T1) …(4)
以上のような幾何学的情報が得られるため、制御部13は、死角物体4の位置を特定することができる。
図14は、時刻T2(>T1)における自車両2、他車両5及び死角物体4の状態を示す図である。他車両5は、時刻T1の状態から更に旋回している。時刻T2においても、上記の式(3)及び式(4)が成り立つ。すなわち、次の式(5)及び式(6)が成り立つ。
B(T2)=C(T2)−A(T2) …(5)
θx(T2)=180°−2θb(T2)+2θa(T2) …(6)
以上のように、自車両2の物理信号Saの放射位置、画像解析(S102)の結果及びレーダ11による計測結果(S109)から、時刻T1及びT2における死角物体4の位置を特定することができる。これにより、制御部13は、例えば、人等の死角物体4が交差点3又は自車両2の進行先の地点に向かって動いているか否かを判断することができる。また、動いている場合、死角物体4の速度を算出することができる。
得られた死角物体4の位置、移動方向、速度等を用いて、実施形態1と同様に、危険度の判定処理が実行される(S111)。
以上のように、実施形態2に係る検知装置1において、制御部13は、距離情報に基づいて、自車両2の進行方向F2と他車両5の進行方向F5とがなす第1の角度θbと、レーダ11と他車両5の反射点Pとの間の第1の距離Aと、を算出する。制御部13は、第1の距離Aと、レーダ11による検出結果に基づいて算出した自車両2と死角物体4との間の第2の距離Cと、に基づいて、他車両5と死角物体との間の第3の距離Bを算出する。
また、制御部13は、レーダ11と他車両5の反射点Pとを結ぶ線分と、他車両5の反射点Pと死角物体4とを結ぶ線分と、がなす角度θxを式(4)又は式(6)に基づいて算出する。ここで、θbは第1の角度であり、θaは自車両2の進行方向F2と物理信号Saの放射方向とがなす第2の角度である。
これにより、制御部13は、死角物体4の位置を詳細に特定することができる。
また、制御部13は、第2の距離C、第2の距離Cの時的変化、第3の距離B及び第3の距離Bの時的変化の少なくとも1つに基づいて、死角領域に関する危険度を判定する。詳細に特定された死角物体4の位置を危険度の判定に用いることにより、危険度を高精度に判定することができ、例えば自車両2と死角物体4との出会い頭の衝突等を回避し易くすることができる。
(実施形態3)
図15は、検知装置1による実施形態3に係る検知動作を説明するためのフローチャートである。図15に示す実施形態3のフローチャートが示す流れは、実施形態2と異なり、死角領域R1が検知され(S103でYES)、かつ、自車両2の前方を自車両2と同じ方向に進行していた他車両5が、死角領域R1の方向へ進行方向を変更して、死角領域R1に侵入しようとしている状態である(S104でYES)場合、制御部は、レーダ11を他車両5に向けて制御する(S308)。
実施形態1及び実施形態2で説明したように、検知装置1は、S104でYESの場合、レーダ11から放射された物理信号Saを他車両5に反射させて死角物体4に到達させるものである。したがって、S104でYESの場合、レーダ11から放射される物理信号Saの放射角θaは、−θe<θa<θd(図16参照)であればよく、これ以外の範囲に物理信号Saを照射する必要はない。
θd及びθeは、カメラ12によって取得した撮像画像に画像解析を行うこと(S102)によって取得した他車両5の位置及び形状に基づいて決定される。
レーダ11を他車両5に向けて制御するステップS308の後のステップS109以降の動作の流れは、実施の形態2において図12で示した動作の流れと同様であるため、説明を省略する。
以上のように、実施形態3に係る検知装置1において、制御部13は、自車両2の前方を死角領域R1に向かって進行する他車両5を検知したとき、検知した他車両5に向けて物理信号Saを放射するように、レーダ11を制御する。これにより、他車両5の方に向いた狭い範囲のみをレーダ11の物理信号Saによって走査すればよい。したがって、制御部13は、例えば高いフレームレートで死角物体4の位置を把握することができる。よって、高精度に死角物体4の位置及び速度を把握することができる。危険度判定を行う場合には、危険度を高精度に判定することができるため、例えば自車両2と死角物体4との出会い頭の衝突等を回避し易くすることができる。
(他の実施形態)
上記の実施形態1では、死角物体4の検知に多重反射波を活用したが、多重反射波に限らず、例えば回折波が活用されてもよい。本変形例について、図17を用いて説明する。
図17では、レーダ11からの物理信号Saが遮蔽壁31において回折し、死角物体4に到達している。また、死角物体4における反射波は、遮蔽壁31において回折し、回折波Sb2として自車両2に戻って来ている。例えば、本実施形態の制御部13は、図3のステップS105において、遮蔽壁31で回り込みを生じるように、レーダ11からの放射する物理信号Saの波長および方位を制御する。
例えば可視光よりも波長が大きい物理信号Saを用いることによって、直進性の高い可視光等では各種の遮蔽物の存在により幾何学的に到達し得ない領域にも、信号を到達させることができる。また、死角物体4となり得る車両や人間などは通常丸みを帯びた形状をしていること等から、当該信号は完全反射的な経路だけではなく、放射された自車両2が存在する方向へも反射する。このような反射波が遮蔽壁31に対して回折現象を起こして伝搬することにより、解析対象の信号成分として回折波Sb2をレーダ11に受信させることができる。
回折波Sb2の信号成分は死角物体4までの伝搬経路の情報と移動速度に応じたドップラー情報を有している。よって、同信号成分を信号解析することにより、実施形態1と同様に、信号成分の伝搬時間、位相及び周波数の情報から死角物体4の位置及び速度を計測可能である。この際、回折波Sb2の伝搬経路も、遮蔽壁31までの距離或いは各種の構造情報D1により、推定可能である。また、多重反射と回折が組み合わされた伝搬経路も適宜、推定でき、このような波の信号成分が解析されてもよい。
上記の各実施形態では、カメラ12によって自車両の周辺環境を撮像し、制御部13によって取得した撮像画像に画像解析を行って、現在の自車両2の周辺環境に関する構造情報を生成する例について説明した。構造情報は、他車両5の形状、特に他車両5の反射点P付近の形状を示す情報を含んでもよい。上記の各実施形態のステップS104において、自車両2の前方を自車両2と同じ方向に進行していた他車両5が、死角領域R1の方向へ進行方向を変更して、死角領域R1に侵入しようとしている状態であると判断した場合(ステップS104でYES)、制御部13は、レーダ11から他車両5に放射された物理信号Saが反射点Pで反射されたことを利用して、死角物体4の位置を特定する。この際、画像解析によって得られた他車両5の形状、特に他車両5の反射点P付近の形状を示す情報を利用すると、例えば物理信号Saが他車両5の反射点Pを経由して確実に死角領域R1の方向へ伝播するように、物理信号Saを照射すべき方向を制御することができる。また、他車両5の形状と、到来角度等の反射信号Sbの情報とを組み合わせることによって、死角物体4の位置を高精度に特定することができる。
また、上記の各実施形態では、検出部の一例をしてレーダ11を説明した。本実施形態の検出部はレーダ11に限らず、例えばLIDARであってもよい。検出部から放射する物理信号Saは、例えば赤外線であってもよい。また、検出部は、ソナーであってもよく、物理信号Saとして超音波を放射してもよい。これらの場合、検出部が受信する波動信号Sbは、対応する物理信号Saと同様に設定される。
また、上記の各実施形態では、レーダ11及びカメラ12が自車両2前方に向けて設置される例を説明したが、レーダ11等の設置位置は特に限定されない。例えば、レーダ11等は、自車両2後方に向けて配置されてもよく、例えば移動体システムは駐車支援に用いられてもよい。
また、上記の各実施形態では、移動体の一例として自動車を例示した。検知装置1が搭載される移動体は、特に自動車に限定されず、例えばAGVであってもよい。例えば、検知装置1は、AGVの自動走行時に周辺監視を行い、死角中の物体を検知してもよい。
(付記)
以上のように、本開示の各種実施形態について説明したが、本開示は上記の内容に限定されるものではなく、技術的思想が実質的に同一の範囲内で種々の変更を行うことができる。以下、本開示に係る各種態様を付記する。
本開示に係る第1の態様は、移動体(2)の周辺環境における死角に存在する物体を検知する検知装置(1)である。前記検知装置は、検出部(11)と、測距部(12)と、制御部(13)とを備える。前記検出部は、前記移動体から前記周辺環境に物理信号(Sa)を放射し、放射した物理信号の反射信号(Sb)を検出する。前記測距部は、前記移動体から周辺環境までの距離を示す距離情報を検出する。前記制御部は、前記検出部の検出結果を解析する。前記制御部は、前記距離情報に基づいて、前記周辺環境における死角を示す死角領域(R1)と、前記移動体の前方を前記死角領域に向かって進行する他の移動体(5)とを検知し(S102,S103,S104)、前記検出部の検出結果において、前記他の移動体で反射した前記反射信号に基づいて、前記死角領域の中の物体(4)を検知する(S110)。
第2の態様では、第1の態様の検知装置において、前記制御部は、前記移動体の前方を前記死角領域に向かって進行する前記他の移動体を検知したとき、検知した前記他の移動体に向けて前記物理信号を放射するように、前記検出部を制御する(S308)。
第3の態様では、第1又は第2の態様の検知装置において、前記距離情報に基づいて、前記移動体の進行方向と前記他の移動体の進行方向とがなす第1の角度(θb)と、前記検出部と前記他の移動体の反射点との間の第1の距離(A)と、を算出し、
前記第1の距離(A)と、前記検出部による検出結果に基づいて算出した前記移動体と前記死角領域の中の物体との間の第2の距離(C)と、に基づいて、前記他の移動体と前記死角領域の中の物体との間の第3の距離(B)を算出する。
第4の態様では、第3の態様の検知装置において、前記制御部は、前記検出部と前記他の移動体の反射点とを結ぶ線分と、前記他の移動体の反射点と前記死角領域の中の物体とを結ぶ線分と、がなす角度θxを次式に基づいて算出する。
θx=180°−2θb+2θa
ここで、θbは前記第1の角度であり、θaは前記移動体の進行方向と前記物理信号の放射方向とがなす第2の角度である。
第5の態様では、第1〜第3のいずれかの態様の検知装置において、前記制御部は、前記死角領域の中の物体の検知結果に基づいて、前記死角領域に関する危険度を判定する。
第6の態様では、第3又は第4の態様の検知装置において、前記制御部は、前記第2の距離(C)、前記第2の距離の時的変化、前記第3の距離(B)及び前記第3の距離の時的変化の少なくとも1つに基づいて、前記死角領域に関する危険度を判定する。
第7の態様は、前記制御部の検知結果に応じて前記移動体を駆動する駆動部(21)を更に備える、第1〜第5のいずれかの態様の検知装置である。
第8の態様は、前記移動体の使用者に対して前記制御部の検知結果に応じた報知を行う報知部(22)を更に備える、第1〜第6のいずれかの態様の検知装置である。
第9の態様は、前記危険度に応じて前記移動体を駆動する駆動部を更に備える、第4又は第5の態様の検知装置である。
第10の態様は、前記移動体の使用者に対して前記危険度に応じた報知を行う報知部(22)を更に備える、第4、第5又は第8の態様の検知装置である。
第11の態様では、第1〜第10のいずれかの態様の検知装置において、前記測距部は、カメラ、レーダ、LIDAR、及びナビゲーション機器のうちの少なくとも一つを含む。
第12の態様では、第1〜第11のいずれかの態様の検知装置において、前記物理信号は、赤外線、テラヘルツ波、ミリ波、マイクロ波、ラジオ波、及び超音波のうちの少なくとも1つを含む。
第13の態様は、第1〜第12のいずれかの態様の検知装置と、制御装置(20)とを備える移動体システムである。前記制御装置は、前記検知装置の検知結果に基づいて、前記移動体を制御する。
第14の態様は、移動体(2)の周辺環境における死角に存在する物体を検知する検知方法である。本方法は、測距部(12)が、前記移動体から周辺環境までの距離を示す距離情報を検出するステップ(S101)と、制御部(13)が、前記距離情報に基づいて、前記周辺環境における死角を示す死角領域(R1)を検知するステップ(S102,S103)と、制御部が、前記移動体の前方を前記死角領域に向かって進行する他の移動体(5)を検知するステップ(S102,S104)とを含む。本方法は、検出部(11)が、前記移動体から前記周辺環境に物理信号(Sa)を放射し、放射した物理信号の反射信号(Sb)を検出するステップ(S108)を含む。本方法は、前記制御部が、前記検出部の検出結果において、前記他の移動体で反射した前記反射信号に基づいて、前記死角領域中の物体(4)を検知するステップ(S110)を含む。
第15の態様は、第14の態様の検知方法を制御部に実行させるためのプログラムである。
1 検知装置
11 レーダ
12 カメラ
13 制御部
14 記憶部
15ナビゲーション機器
2 自車両
20 車両制御装置

Claims (15)

  1. 移動体の周辺環境における死角に存在する物体を検知する検知装置であって、
    前記移動体から前記周辺環境に物理信号を放射し、放射した物理信号の反射信号を検出する検出部と、
    前記移動体から前記周辺環境までの距離を示す距離情報を検出する測距部と、
    前記検出部による検出結果を解析する制御部とを備え、
    前記制御部は、
    前記距離情報に基づいて、前記周辺環境における死角を示す死角領域と、前記移動体の前方を前記死角領域に向かって進行する他の移動体とを検知し、
    前記検出部の検出結果において、前記他の移動体で反射した前記反射信号に基づいて、前記死角領域の中の物体を検知する
    検知装置。
  2. 前記制御部は、前記移動体の前方を前記死角領域に向かって進行する前記他の移動体を検知したとき、検知した前記他の移動体に向けて前記物理信号を放射するように、前記検出部を制御する
    請求項1に記載の検知装置。
  3. 前記制御部は、前記距離情報に基づいて、前記移動体の進行方向と前記他の移動体の進行方向とがなす第1の角度と、前記検出部と前記他の移動体の反射点との間の第1の距離と、を算出し、
    前記第1の距離と、前記検出部による検出結果に基づいて算出した前記移動体と前記死角領域の中の物体との間の第2の距離と、に基づいて、前記他の移動体と前記死角領域の中の物体との間の第3の距離を算出する
    請求項1又は2に記載の検知装置。
  4. 前記制御部は、前記検出部と前記他の移動体の反射点とを結ぶ線分と、前記他の移動体の反射点と前記死角領域の中の物体とを結ぶ線分と、がなす角度θxを式(1)に基づいて算出する、請求項3に記載の検知装置。
    θx=180°−2θb+2θa ・・・(1)
    ここで、θbは前記第1の角度であり、θaは前記移動体の進行方向と前記物理信号の放射方向とがなす第2の角度である。
  5. 前記制御部は、前記死角領域の中の物体の検知結果に基づいて、前記死角領域に関する危険度を判定する
    請求項1〜4のいずれか1項に記載の検知装置。
  6. 前記制御部は、前記第2の距離、前記第2の距離の時的変化、前記第3の距離及び前記第3の距離の時的変化の少なくとも1つに基づいて、前記死角領域に関する危険度を判定する
    請求項3又は4に記載の検知装置。
  7. 前記制御部の検知結果に応じて前記移動体を駆動する駆動部を更に備える請求項1〜6のいずれか1項に記載の検知装置。
  8. 前記移動体の使用者に対して前記制御部の検知結果に応じた報知を行う報知部を更に備える請求項1〜7のいずれか1項に記載の検知装置。
  9. 前記危険度に応じて前記移動体を駆動する駆動部を更に備える請求項5又は6に記載の検知装置。
  10. 前記移動体の使用者に対して前記危険度に応じた報知を行う報知部を更に備える請求項5、6及び9のいずれか1項に記載の検知装置。
  11. 前記測距部は、カメラ、レーダ、LIDAR、及びナビゲーション機器のうちの少なくとも一つを含む
    請求項1〜10のいずれか1項に記載の検知装置。
  12. 前記物理信号は、赤外線、テラヘルツ波、ミリ波、マイクロ波、ラジオ波、及び超音波のうちの少なくとも1つを含む
    請求項1〜11のいずれか1項に記載の検知装置。
  13. 請求項1〜12のいずれか1項に記載の検知装置と、
    前記検知装置の検知結果に基づいて、前記移動体を制御する制御装置と
    を備える移動体システム。
  14. 移動体の周辺環境における死角に存在する物体を検知する検知方法であって、
    測距部が、前記移動体から前記周辺環境までの距離を示す距離情報を検出するステップと、
    制御部が、前記距離情報に基づいて、前記周辺環境における死角を示す死角領域を検知するステップと、
    制御部が、前記移動体の前方を前記死角領域に向かって進行する他の移動体を検知するステップと、
    検出部が、前記移動体から前記周辺環境に物理信号を放射し、放射した物理信号の反射信号を検出するステップと、
    前記制御部が、前記検出部の検出結果において、前記他の移動体で反射した前記反射信号に基づいて、前記死角領域の中の物体を検知するステップと
    を含む検知方法。
  15. 請求項14に記載の検知方法を制御部に実行させるためのプログラム。
JP2018190260A 2018-10-05 2018-10-05 検知装置、移動体システム、及び検知方法 Active JP7067400B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018190260A JP7067400B2 (ja) 2018-10-05 2018-10-05 検知装置、移動体システム、及び検知方法
US17/274,289 US20210350706A1 (en) 2018-10-05 2019-03-12 Sensing device, moving body system and sensing method
EP19868850.9A EP3836120B1 (en) 2018-10-05 2019-03-12 Sensing device, moving body system, and sensing method
PCT/JP2019/009942 WO2020070909A1 (ja) 2018-10-05 2019-03-12 検知装置、移動体システム、及び検知方法
CN201980056183.XA CN112639914B (zh) 2018-10-05 2019-03-12 探测装置、移动体系统、探测方法以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190260A JP7067400B2 (ja) 2018-10-05 2018-10-05 検知装置、移動体システム、及び検知方法

Publications (2)

Publication Number Publication Date
JP2020060864A true JP2020060864A (ja) 2020-04-16
JP7067400B2 JP7067400B2 (ja) 2022-05-16

Family

ID=70055367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190260A Active JP7067400B2 (ja) 2018-10-05 2018-10-05 検知装置、移動体システム、及び検知方法

Country Status (5)

Country Link
US (1) US20210350706A1 (ja)
EP (1) EP3836120B1 (ja)
JP (1) JP7067400B2 (ja)
CN (1) CN112639914B (ja)
WO (1) WO2020070909A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL287819B (en) * 2017-01-12 2022-07-01 Mobileye Vision Technologies Ltd Navigation based on vehicle activity
JP7449206B2 (ja) 2020-09-15 2024-03-13 本田技研工業株式会社 通信制御装置、車両、プログラム、及び通信制御方法
EP4099298B1 (de) * 2021-05-31 2024-05-15 Deutsche Telekom AG Verfahren zur gefahrendetektion und/oder kollisionsvermeidung eines sich bewegenden fahrzeugs, system, computerprogramm und computerlesbares medium
EP4099297B1 (de) * 2021-05-31 2024-02-21 Deutsche Telekom AG Verfahren zur gefahrendetektion und/oder kollisionsvermeidung eines sich bewegenden fahrzeugs, system, computerprogramm und computerlesbares medium
JP7203905B2 (ja) * 2021-06-18 2023-01-13 本田技研工業株式会社 制御装置、移動体、制御方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349456A (ja) * 2005-06-15 2006-12-28 Denso Corp 車載レーダ装置、車両制御システム
WO2012033173A1 (ja) * 2010-09-08 2012-03-15 株式会社豊田中央研究所 移動物予測装置、仮想可動物予測装置、プログラム、移動物予測方法、及び仮想可動物予測方法
JP2013156794A (ja) * 2012-01-30 2013-08-15 Hitachi Consumer Electronics Co Ltd 車両用衝突危険予測装置
JP2015230566A (ja) * 2014-06-04 2015-12-21 トヨタ自動車株式会社 運転支援装置
JP2018101295A (ja) * 2016-12-20 2018-06-28 トヨタ自動車株式会社 物体検知装置
WO2019008716A1 (ja) * 2017-07-06 2019-01-10 マクセル株式会社 可視外計測装置および可視外計測方法
WO2019044185A1 (ja) * 2017-08-28 2019-03-07 株式会社デンソー 映像出力装置、映像生成プログラム、およびコンピュータ読み出し可能持続的有形記録媒体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI314115B (en) * 2007-09-27 2009-09-01 Ind Tech Res Inst Method and apparatus for predicting/alarming the moving of hidden objects
JP4957747B2 (ja) 2009-05-18 2012-06-20 トヨタ自動車株式会社 車両環境推定装置
JP5545022B2 (ja) 2010-05-14 2014-07-09 トヨタ自動車株式会社 障害物認識装置
US20180222387A1 (en) * 2017-02-07 2018-08-09 Shenzhen Xiaofeida Electronic Co., Ltd Blind Zone Monitoring Method, License Plate Frame Device with Blind Zone Monitoring Function and Rearview Mirror
US10453344B2 (en) * 2017-02-16 2019-10-22 Panasonic Intellectual Corporation Of America Information processing apparatus and non-transitory recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349456A (ja) * 2005-06-15 2006-12-28 Denso Corp 車載レーダ装置、車両制御システム
WO2012033173A1 (ja) * 2010-09-08 2012-03-15 株式会社豊田中央研究所 移動物予測装置、仮想可動物予測装置、プログラム、移動物予測方法、及び仮想可動物予測方法
JP2013156794A (ja) * 2012-01-30 2013-08-15 Hitachi Consumer Electronics Co Ltd 車両用衝突危険予測装置
JP2015230566A (ja) * 2014-06-04 2015-12-21 トヨタ自動車株式会社 運転支援装置
JP2018101295A (ja) * 2016-12-20 2018-06-28 トヨタ自動車株式会社 物体検知装置
WO2019008716A1 (ja) * 2017-07-06 2019-01-10 マクセル株式会社 可視外計測装置および可視外計測方法
WO2019044185A1 (ja) * 2017-08-28 2019-03-07 株式会社デンソー 映像出力装置、映像生成プログラム、およびコンピュータ読み出し可能持続的有形記録媒体

Also Published As

Publication number Publication date
CN112639914A (zh) 2021-04-09
WO2020070909A1 (ja) 2020-04-09
JP7067400B2 (ja) 2022-05-16
CN112639914B (zh) 2022-10-28
US20210350706A1 (en) 2021-11-11
EP3836120A1 (en) 2021-06-16
EP3836120A4 (en) 2022-04-06
EP3836120B1 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
JP7067400B2 (ja) 検知装置、移動体システム、及び検知方法
US11027653B2 (en) Apparatus, system and method for preventing collision
JP6531903B2 (ja) 物体検出装置
US8885889B2 (en) Parking assist apparatus and parking assist method and parking assist system using the same
JP6958537B2 (ja) 検知装置、移動体システム、及び検知方法
JP7111181B2 (ja) 検知装置、移動体システム、及び検知方法
US7119734B2 (en) Target determination apparatus, target judgment apparatus, and determination aid apparatus
JP6668472B2 (ja) 物体分類を有する動力車両の周辺領域をキャプチャーする方法、制御装置、運転者支援システム、及び動力車両
JP2007163317A (ja) レーダー装置
JP7028139B2 (ja) 報知装置及び報知方法
JP7063208B2 (ja) 検知装置、移動体システム、及び検知方法
JP7070307B2 (ja) 検知装置、移動体システム、及び検知方法
US11906623B1 (en) Velocity estimation using light detection and ranging (LIDAR) system
Alandi Review on sensor parameter analysis for forward collision detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R150 Certificate of patent or registration of utility model

Ref document number: 7067400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150