JP2020053572A - Manufacturing method of thermoelectric module, thermoelectric element, and thermoelectric module - Google Patents

Manufacturing method of thermoelectric module, thermoelectric element, and thermoelectric module Download PDF

Info

Publication number
JP2020053572A
JP2020053572A JP2018182048A JP2018182048A JP2020053572A JP 2020053572 A JP2020053572 A JP 2020053572A JP 2018182048 A JP2018182048 A JP 2018182048A JP 2018182048 A JP2018182048 A JP 2018182048A JP 2020053572 A JP2020053572 A JP 2020053572A
Authority
JP
Japan
Prior art keywords
thermoelectric
electrode
thermoelectric element
type element
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018182048A
Other languages
Japanese (ja)
Other versions
JP6839690B2 (en
Inventor
仁志 吉見
Hitoshi Yoshimi
仁志 吉見
秋浩 西山
Akihiro Nishiyama
秋浩 西山
近藤 清人
Kiyoto Kondo
清人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2018182048A priority Critical patent/JP6839690B2/en
Priority to PCT/JP2019/037122 priority patent/WO2020066948A1/en
Publication of JP2020053572A publication Critical patent/JP2020053572A/en
Application granted granted Critical
Publication of JP6839690B2 publication Critical patent/JP6839690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a manufacturing method of a thermoelectric module that can easily arrange thermoelectric elements on an electrode and can reduce the number of steps.SOLUTION: After an upper substrate 11 on which an upper electrode 13 is formed is placed in a three-dimensional molding machine, and a P-type element 20p is formed on the upper electrode 13 to generate a first intermediate 23, a lower substrate 12 on which a lower electrode 14 is formed is placed in the three-dimensional molding machine, and an N-type element 20n is formed on the lower electrode 14 to generate a second intermediate 26. Thereafter, the first intermediate 23 and the second intermediate 26 face each other, the P-type element 20p of the first intermediate 23 is joined to the lower electrode 14 of the second intermediate 26, and the N-type element 20n of the second intermediate 26 is bonded to the upper electrode 13 of the first intermediate 23.SELECTED DRAWING: Figure 4

Description

本発明は、熱電モジュールの製造方法、熱電素子及び熱電モジュールに関する。   The present invention relates to a method for manufacturing a thermoelectric module, a thermoelectric element, and a thermoelectric module.

いわゆるゼーベック効果又はペルチェ効果を利用した熱電モジュール(熱電変換モジュールとも称される)として、例えば、特許文献1に開示されたものが知られている。この種の熱電モジュールは、電極パターンが形成された一対の基板間に、複数の熱電素子(熱電変換素子とも称される)を配列するようにして構成される。上記熱電モジュールでは、熱電素子としてP型素子及びN型素子が用いられ、これら極性の異なる熱電素子が各基板の電極パターンを通じて電気的に直列接続されるように、各基板の電極パターン及び各熱電素子の配列パターンが定められている。   As a thermoelectric module (also referred to as a thermoelectric conversion module) utilizing the so-called Seebeck effect or Peltier effect, for example, a thermoelectric module disclosed in Patent Document 1 is known. This type of thermoelectric module is configured such that a plurality of thermoelectric elements (also referred to as thermoelectric conversion elements) are arranged between a pair of substrates on which electrode patterns are formed. In the thermoelectric module, a P-type element and an N-type element are used as the thermoelectric elements, and the electrode patterns of each substrate and each thermoelectric element are connected such that the thermoelectric elements having different polarities are electrically connected in series through the electrode patterns of each substrate. The arrangement pattern of the elements is determined.

ここで、上記熱電モジュールの従来の製造方法について説明する。先ず、粉末状の熱電材料を焼結してインゴットを作成し、これを所定の厚さ寸法にカットしてプレートを作成する。その後、そのプレートをダイサー等によってダイシングし、所定形状(例えば角柱状)を有する複数の熱電素子を作成する。これらの工程をP型の熱電素子及びN型の熱電素子のそれぞれについて行う。   Here, a conventional method for manufacturing the thermoelectric module will be described. First, an ingot is prepared by sintering a powdery thermoelectric material, and this is cut into a predetermined thickness to prepare a plate. Thereafter, the plate is diced with a dicer or the like to form a plurality of thermoelectric elements having a predetermined shape (for example, prismatic shape). These steps are performed for each of the P-type thermoelectric element and the N-type thermoelectric element.

上記のようにしてP型及びN型の各熱電素子を作成した後、一方の基板に形成された電極パターン上に接合材としてのはんだクリーム等を塗布し、電極パターン上に複数の熱電素子を配置していく。この際、P型素子とN型素子とが直列接続となるように、各熱電素子を所定の配列パターンで配列していく。その後、熱電素子が配列された一方の基板の上方から、電極パターン上に接合材が塗布された他方の基板を電極形成面が素子側となるようにして被せる。最後に、それをリフロー炉等の加熱炉に導入してはんだ付け処理を行い、各熱電素子と各基板の電極パターンとを接合する。   After forming each of the P-type and N-type thermoelectric elements as described above, a solder cream or the like as a bonding material is applied on the electrode pattern formed on one substrate, and a plurality of thermoelectric elements are formed on the electrode pattern. Place them. At this time, the thermoelectric elements are arranged in a predetermined arrangement pattern so that the P-type element and the N-type element are connected in series. Thereafter, the other substrate having the bonding material applied on the electrode pattern is covered from above the one substrate on which the thermoelectric elements are arranged, such that the electrode forming surface is on the element side. Finally, it is introduced into a heating furnace such as a reflow furnace to perform a soldering process, thereby joining each thermoelectric element and the electrode pattern of each substrate.

特開2016−178147号公報JP-A-2006-147147

従来の製造方法では、各熱電素子が所定の配列パターンで配列されるように、電極パターン上に熱電素子を1つ1つ配置していく必要がある。しかしながら、このような作業は手間がかかるし、例えば素子サイズが小さくなるほど、熱電素子を摘まんだり、各熱電素子を配列パターン通りに正確に配置したりすること自体が困難となる。   In the conventional manufacturing method, it is necessary to arrange the thermoelectric elements one by one on the electrode pattern so that the thermoelectric elements are arranged in a predetermined arrangement pattern. However, such an operation is troublesome. For example, as the element size becomes smaller, it becomes more difficult to pinch the thermoelectric elements or to accurately arrange the thermoelectric elements according to the arrangement pattern.

また、従来の製造方法では、各熱電素子の作成からモジュール化までの工程数が多くなり、製造コストの増大や生産性の低下を招くという懸念がある。   Further, in the conventional manufacturing method, the number of steps from the preparation of each thermoelectric element to the modularization increases, and there is a concern that the manufacturing cost increases and the productivity decreases.

本発明は、上記事情に鑑みてなされたものであり、電極上への各熱電素子の配列を簡単に行うことができるとともに、工程数を削減することが可能な熱電モジュールの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method for manufacturing a thermoelectric module that can easily arrange thermoelectric elements on electrodes and reduce the number of steps. The purpose is to:

また、そのような製造方法によって形成することができる熱電素子及び熱電モジュールを提供することを目的とする。   Another object is to provide a thermoelectric element and a thermoelectric module that can be formed by such a manufacturing method.

上記課題を解決すべく、第1の発明では、熱電モジュールの製造方法であって、3次元造型機の内部に第1電極を設置する第1設置工程と、前記第1電極上にP型とN型とのうちの一方である熱電特性を有する第1熱電素子を、前記3次元造型機により形成して、第1中間体を生成する第1形成工程と、3次元造型機の内部に第2電極を設置する第2設置工程と、前記第2電極上にP型とN型とのうちの他方である熱電特性を有する第2熱電素子を、前記3次元造型機により形成して、第2中間体を生成する第2形成工程と、前記第1中間体の前記第1熱電素子を前記第2中間体の第2電極に接合し、前記第2中間体の前記第2熱電素子を前記第1中間体の前記第1電極に接合する接合工程と、を備えることを特徴とする。   In order to solve the above problems, a first invention is a method for manufacturing a thermoelectric module, comprising: a first installation step of installing a first electrode inside a three-dimensional molding machine; A first forming step of forming a first thermoelectric element having one of the N-type and thermoelectric properties by the three-dimensional molding machine to generate a first intermediate; and forming a first thermoelectric element inside the three-dimensional molding machine. A second installation step of installing two electrodes, and forming, on the second electrode, a second thermoelectric element having the thermoelectric property of the other of the P-type and the N-type using the three-dimensional molding machine; (2) a second forming step of generating an intermediate; and joining the first thermoelectric element of the first intermediate to a second electrode of the second intermediate, and attaching the second thermoelectric element of the second intermediate to the second electrode. And a joining step of joining the first intermediate to the first electrode.

第1の発明によれば、第1熱電素子を第1電極に位置決めした状態で形成することができるとともに、第2熱電素子を第2電極に位置決めした状態で形成することができる。よって、従来のように各熱電素子を形成した後、それらを1つ1つ電極上に配置していく必要がなく、各熱電素子の配列を簡単に行うことが可能になる。   According to the first aspect, the first thermoelectric element can be formed in a state where it is positioned on the first electrode, and the second thermoelectric element can be formed in a state where it is positioned on the second electrode. Therefore, it is not necessary to arrange each thermoelectric element on the electrode one by one after forming each thermoelectric element as in the related art, and it is possible to easily arrange the thermoelectric elements.

加えて、各熱電素子の形成と、各電極に対する各熱電素子の配置とが同時に行われるため、従来、素子形成とは別に行っていた素子配列の工程を省略可能となる。そればかりか、3次元造型機では、熱電材料の粉末から直接、熱電素子を形成できるため、インゴットやプレートを作成したり、プレートをダイシングしたりする工程を省略することもできる。よって、各熱電素子の作成からモジュール化までの全体工程数を削減することができ、製造コストの低減や生産性の向上を図ることが可能になる。   In addition, since the formation of each thermoelectric element and the arrangement of each thermoelectric element with respect to each electrode are performed at the same time, it is possible to omit the element arrangement step conventionally performed separately from the element formation. In addition, in the three-dimensional molding machine, since the thermoelectric element can be formed directly from the powder of the thermoelectric material, a step of forming an ingot or a plate or dicing the plate can be omitted. Therefore, it is possible to reduce the total number of processes from creation of each thermoelectric element to modularization, and it is possible to reduce manufacturing costs and improve productivity.

第2の発明では、前記第1形成工程において、前記第1電極の表面を融点近くまで加温することにより軟化させた後に、前記第1熱電素子が形成される、または、前記第2形成工程において、前記第2電極の表面を融点近くまで加温することにより軟化させた後に、前記第2熱電素子が形成されることを特徴とする。   In the second aspect, in the first forming step, the first thermoelectric element is formed after the surface of the first electrode is softened by heating to near a melting point, or the second forming step is performed. Wherein the second thermoelectric element is formed after the surface of the second electrode is softened by heating to near the melting point.

第2の発明によれば、第1形成工程又は第2形成工程において熱電素子及び電極を接合することができ、電極に固定された状態の熱電素子を形成することが可能になる。これにより、第1中間体又は第2中間体の取り扱い時において熱電素子の姿勢や位置が変動することが抑制され、素子配列を安定させた状態で熱電モジュールを製造することが可能になる。   According to the second aspect, the thermoelectric element and the electrode can be joined in the first forming step or the second forming step, and the thermoelectric element fixed to the electrode can be formed. This suppresses a change in the posture and the position of the thermoelectric element when handling the first intermediate or the second intermediate, and makes it possible to manufacture the thermoelectric module in a state where the element arrangement is stabilized.

第3の発明では、上記第1の発明において、前記第1設置工程の前に、前記第1電極の表面に接合材を付しておく、または、前記第2設置工程の前に、前記第2電極の表面に接合材を付しておくことを特徴とする。   In a third aspect, in the first aspect, a bonding material is attached to a surface of the first electrode before the first installation step, or the bonding material is attached to the surface of the first electrode before the second installation step. It is characterized in that a bonding material is attached to the surface of the two electrodes.

第3の発明によれば、第1又は第2形成工程において、電極との間に接合材が介在した状態で熱電素子が形成される。これにより、第1熱電素子と第1電極とを接合し、第2熱電素子と第2電極とを接合することができる。   According to the third aspect, in the first or second forming step, the thermoelectric element is formed with the bonding material interposed between the electrode and the electrode. Thereby, the first thermoelectric element and the first electrode can be joined, and the second thermoelectric element and the second electrode can be joined.

第4の発明では、上記第1の発明〜第3の発明のいずれかにおいて、前記第1形成工程において、前記第1熱電素子は、前記第1電極側の接合面の面積が前記第2電極側の接合面の面積よりも大きく形成される、または、前記第2形成工程において、前記第2熱電素子は、前記第1電極側の接合面の面積が前記第2電極側の接合面の面積よりも大きく形成されることを特徴とする。   In a fourth aspect, in any one of the first to third aspects, in the first forming step, the first thermoelectric element may be configured such that an area of a bonding surface on the first electrode side is the second electrode. Or in the second forming step, the second thermoelectric element is configured such that the area of the bonding surface on the first electrode side is the area of the bonding surface on the second electrode side. It is characterized in that it is formed larger.

第4の発明によれば、熱電素子において第1電極側の端部と第2電極側の端部との温度差を大きくすることができる。これにより、熱電素子の発電量を増大させることができ、熱電効率に優れた熱電モジュールを製造することが可能になる。   According to the fourth aspect, in the thermoelectric element, the temperature difference between the end on the first electrode side and the end on the second electrode side can be increased. As a result, the amount of power generated by the thermoelectric element can be increased, and a thermoelectric module having excellent thermoelectric efficiency can be manufactured.

第5の発明では、長さ方向を起電力発生方向とし、前記起電力発生方向の両端が電極に接合される接合面とされている熱電素子であって、前記両接合面のうち一方の接合面の面積が他方の接合面の面積より大きく形成されていることを特徴とする。   According to a fifth aspect of the present invention, there is provided a thermoelectric element in which a length direction is an electromotive force generation direction, and both ends of the electromotive force generation direction are bonding surfaces that are bonded to electrodes, wherein one of the two bonding surfaces is a bonding surface. The area of the surface is formed to be larger than the area of the other joining surface.

第5の発明によれば、長さ方向(起電力発生方向)の一端部と他端部との温度差を大きくすることができ、発電量を増大させることが可能になる。   According to the fifth aspect, the temperature difference between one end and the other end in the length direction (electromotive force generation direction) can be increased, and the amount of power generation can be increased.

第6の発明では、上記第5の発明において、円錐台形状又は角錐台形状である錐台形状に形成されていることを特徴とする。   A sixth invention is characterized in that, in the fifth invention, it is formed in a truncated cone shape that is a truncated cone shape or a truncated pyramid shape.

第6の発明では、長さ方向(高さ方向)の両端面を上記第5の発明に係る両接合面とすることで、上記第5の発明に係る熱電素子を好適に実現できる。さらに、例えば長さ方向に直交する断面の面積が一定である柱状の熱電素子に比べて、側面部の表面積が大きくなり、側面部での放熱領域を拡大することもできる。   In the sixth aspect, the thermoelectric element according to the fifth aspect can be suitably realized by forming both end faces in the length direction (height direction) as the two joining surfaces according to the fifth aspect. Further, for example, the surface area of the side surface portion is larger than that of a columnar thermoelectric element having a constant cross-sectional area perpendicular to the length direction, and the heat radiation region on the side surface portion can be enlarged.

第7の発明では、熱電モジュールであって、上記第5の発明又は第6の発明に記載の熱電素子を、面積の小さい側を高温側、面積の大きい側を低温側となるように配置し、複数の熱電素子をモジュール化して構成したことを特徴とする。   According to a seventh aspect of the present invention, in the thermoelectric module, the thermoelectric element according to the fifth or sixth aspect is arranged such that a small-area side is a high-temperature side and a large-area side is a low-temperature side. , Characterized in that a plurality of thermoelectric elements are modularized.

第7の発明によれば、各熱電素子において低温側の接合面の面積が高温側の接合面の面積よりも大きいことで、高温側での入熱量よりも低温側での放熱量を大きくすることができる。このため、高温側の端部が昇温しても、低温側の端部は低温に維持されやすくなり、これら両端部間の温度差を好適に拡大することができる。これにより、各熱電素子の発電量を増大させることができ、熱電効率に優れた熱電モジュールを実現可能となる。   According to the seventh aspect, in each thermoelectric element, since the area of the bonding surface on the low temperature side is larger than the area of the bonding surface on the high temperature side, the amount of heat radiation on the low temperature side is larger than the amount of heat input on the high temperature side. be able to. For this reason, even if the temperature on the high-temperature end rises, the low-temperature end is easily maintained at a low temperature, and the temperature difference between these two ends can be suitably enlarged. As a result, the amount of power generated by each thermoelectric element can be increased, and a thermoelectric module having excellent thermoelectric efficiency can be realized.

本発明の一実施の形態に係る熱電モジュールの正面図。The front view of the thermoelectric module concerning one embodiment of the present invention. 上電極が形成された上基板の電極側から見た平面図。FIG. 4 is a plan view of the upper substrate on which the upper electrode is formed, as viewed from the electrode side. 下電極が形成された下基板の電極側から見た平面図。FIG. 4 is a plan view of the lower substrate on which the lower electrode is formed, as viewed from the electrode side. 熱電モジュールの製造方法を説明するための説明図。Explanatory drawing for explaining the manufacturing method of a thermoelectric module. 熱電モジュールの製造方法を説明するための説明図。Explanatory drawing for explaining the manufacturing method of a thermoelectric module. 熱電素子の変形例を示す図。The figure which shows the modification of a thermoelectric element.

以下、本発明を具体化した一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

<熱電モジュールの構成>
本発明に係る熱電モジュール10の構成について図1〜図3を参照しながら説明する。
<Configuration of thermoelectric module>
The configuration of the thermoelectric module 10 according to the present invention will be described with reference to FIGS.

図1に示すように、熱電モジュール10は、対向配置された一対の上基板11及び下基板12と、これら基板11,12間に配置された複数の熱電素子20とを備えている。   As shown in FIG. 1, the thermoelectric module 10 includes a pair of upper and lower substrates 11 and 12 that are disposed to face each other, and a plurality of thermoelectric elements 20 that are disposed between the substrates 11 and 12.

上基板11は、絶縁基板となっており、例えばガラスエポキシ基板等によって構成されている。図2に示すように、上基板11は平面視で矩形状をなしており、その表面には、第1電極としての上電極13が複数形成されている。各上電極13は、例えば銅やモリブデン又はこれらの合金等の導電材料によって形成されており、2個の熱電素子20を配置可能な薄板状をなしている。   The upper substrate 11 is an insulating substrate, for example, a glass epoxy substrate or the like. As shown in FIG. 2, the upper substrate 11 has a rectangular shape in plan view, and a plurality of upper electrodes 13 as first electrodes are formed on the surface thereof. Each upper electrode 13 is formed of a conductive material such as copper, molybdenum, or an alloy thereof, and has a thin plate shape on which two thermoelectric elements 20 can be arranged.

下基板12も上基板11と同様に絶縁基板となっており、図3に示すように、その表面には、第2電極としての下電極14が複数形成されている。各下電極14は、上基板11の各上電極13と同様の形状及び大きさを有しているが、その配置位置は、各上電極13に対して半ピッチ分(素子1個分)ずれたものとなっている。   The lower substrate 12 is also an insulating substrate similarly to the upper substrate 11, and has a plurality of lower electrodes 14 as second electrodes formed on the surface thereof as shown in FIG. Each lower electrode 14 has the same shape and size as each upper electrode 13 of the upper substrate 11, but its arrangement position is shifted by a half pitch (one element) with respect to each upper electrode 13. It has become.

そして、図1に示すように、上基板11に形成された上電極13に各熱電素子20の上端部20aが接合されているとともに、下基板12に形成された下電極14に各熱電素子20の下端部20bが接合されている。すなわち、本実施の形態において熱電素子20は、長さ方向(各電極13,14の対向方向)を起電力発生方向として使用されるものとなっており、詳しくは、上端部20aと下端部20bとの温度差によって起電力を発生させるように構成されている。熱電素子20は、例えばシリコン−ゲルマニウム系、マグネシウム−シリサイド系、マンガン−シリサイド系等の熱電材料によって形成されている。   Then, as shown in FIG. 1, the upper end 20 a of each thermoelectric element 20 is joined to the upper electrode 13 formed on the upper substrate 11, and each thermoelectric element 20 is connected to the lower electrode 14 formed on the lower substrate 12. Are joined at the lower end portion 20b. That is, in the present embodiment, the thermoelectric element 20 uses the length direction (the direction in which the electrodes 13 and 14 face each other) as the electromotive force generation direction, and more specifically, the upper end portion 20a and the lower end portion 20b. It is configured to generate an electromotive force by a temperature difference from the above. The thermoelectric element 20 is formed of a thermoelectric material such as a silicon-germanium-based, magnesium-silicide-based, or manganese-silicide-based.

熱電モジュール10では、熱電素子20としてP型の熱電素子(P型素子)20pとN型の熱電素子(N型素子)20nとを有しており、これらP型素子20p及びN型素子20nが熱電素子20の配列方向において交互に配置されている。そして、1つのP型素子20pと、それに隣り合う1つのN型素子20nとが一対とされ、これら両素子20p,20nの上端部が1つの上電極13と接合されている。その際、上電極13と下電極14との配置位置が半ピッチ分ずれていることで、下基板12側では、隣り合う上電極13a,13bの一方に接合されたN型素子20nと、他方に接合されたP型素子20pとの各下端部が1つの下電極14に接合されるようになっている。   The thermoelectric module 10 has a P-type thermoelectric element (P-type element) 20p and an N-type thermoelectric element (N-type element) 20n as the thermoelectric elements 20, and these P-type element 20p and N-type element 20n The thermoelectric elements 20 are alternately arranged in the arrangement direction. One P-type element 20p and one adjacent N-type element 20n are paired, and the upper ends of both elements 20p and 20n are joined to one upper electrode 13. At this time, since the arrangement positions of the upper electrode 13 and the lower electrode 14 are shifted by a half pitch, on the lower substrate 12 side, the N-type element 20n joined to one of the adjacent upper electrodes 13a and 13b and the other Each lower end of the P-type element 20p joined to the lower electrode 14 is joined to one lower electrode 14.

なお、図2では、上電極13に対するP型素子20p及びN型素子20nの各接合面をそれぞれ符号21p,21nで示し、図3では、下電極14に対するP型素子20p及びN型素子20nの各接合面を符号22p,22nで示している。また、これらの図では、P型素子20pの接合面21p,22pと、N型素子20nの接合面21n,22nとの区別を容易化するため、両者に異なるハッチングを付している。   Note that, in FIG. 2, respective joining surfaces of the P-type element 20p and the N-type element 20n with respect to the upper electrode 13 are denoted by reference numerals 21p and 21n, respectively, and in FIG. Each joining surface is indicated by reference numerals 22p and 22n. In these figures, different hatchings are attached to the junction surfaces 21p and 22p of the P-type element 20p and the junction surfaces 21n and 22n of the N-type element 20n in order to facilitate the distinction.

そして、P型素子20p及びN型素子20nが上電極13及び下電極14に対して上記のように接合されることで、それら両素子20p,20nが電気的に直列接続された状態となり、直列経路が構成される。この直列経路の両端となる下電極14a,14bからはリード線15が引き出されており、このリード線15を介して、熱電モジュール10で発生した電力を取り出すことが可能となっている。   By joining the P-type element 20p and the N-type element 20n to the upper electrode 13 and the lower electrode 14 as described above, the two elements 20p and 20n are electrically connected in series, and A route is configured. Lead wires 15 are drawn out from the lower electrodes 14a and 14b which are both ends of the series path, and it is possible to take out electric power generated in the thermoelectric module 10 via the lead wires 15.

上記熱電モジュール10の使用に際しては、加熱ダクト等の熱源と冷却ダクト等の冷却装置との間に上記熱電モジュール10が配置される。これにより、熱電モジュール10に温度差が付与され、各熱電素子20が発電する。その際、本実施の形態では、上基板11が冷却装置側で下基板12が熱源側となるように、熱電モジュール10の向きが設定される。すなわち、上基板11側が低温となり、下基板12側が高温となるように温度差が付与される。なお、必ずしも熱源及び冷却装置の両方を用いる必要はなく、いずれか一方のみの使用であってもよい。   When using the thermoelectric module 10, the thermoelectric module 10 is arranged between a heat source such as a heating duct and a cooling device such as a cooling duct. Thereby, a temperature difference is given to the thermoelectric module 10, and each thermoelectric element 20 generates electric power. At this time, in the present embodiment, the orientation of the thermoelectric module 10 is set such that the upper substrate 11 is on the cooling device side and the lower substrate 12 is on the heat source side. That is, a temperature difference is provided so that the upper substrate 11 side has a low temperature and the lower substrate 12 side has a high temperature. It is not always necessary to use both the heat source and the cooling device, and only one of them may be used.

ここで、本実施の形態では、発電量を高めるべく、熱電素子20の形状が工夫されている。以下、かかる構成について説明する。   Here, in the present embodiment, the shape of the thermoelectric element 20 is devised to increase the amount of power generation. Hereinafter, such a configuration will be described.

図2及び図3に示すように、本実施の形態に係る熱電素子20は、上電極13に対する接合面21の面積が下電極14に対する接合面22の面積よりも大きくなるように形成されている。詳しくは、図1に示すように、熱電素子20が角錐台形状をなしており、長さ方向(高さ方向)の両端面が上記両接合面21,22となるように構成されている。   As shown in FIGS. 2 and 3, thermoelectric element 20 according to the present embodiment is formed such that the area of bonding surface 21 to upper electrode 13 is larger than the area of bonding surface 22 to lower electrode 14. . More specifically, as shown in FIG. 1, the thermoelectric element 20 has a truncated pyramid shape, and is configured such that both end surfaces in the length direction (height direction) are the two bonding surfaces 21 and 22.

このような構成において、下基板12を高温側基板とし、上基板11を低温側基板とした場合、各熱電素子20では、低温側に位置する接合面21の面積が大きいことで、上端部20a側の放熱量も大きくなる。この場合、下基板12からの熱で下端部20b側が昇温しても、上端部20a側は低温に維持されやすくなり、上端部20aと下端部20bとの温度差を大きくすることができる。これにより、各熱電素子20での発電量が増大され、熱電モジュール10の熱電効率を向上させることが可能になる。   In such a configuration, when the lower substrate 12 is a high-temperature substrate and the upper substrate 11 is a low-temperature substrate, the upper surface 20a of each thermoelectric element 20 has a large area of the bonding surface 21 located on the low-temperature side. The amount of heat dissipation on the side also increases. In this case, even if the lower end portion 20b side is heated by the heat from the lower substrate 12, the upper end portion 20a side is easily maintained at a low temperature, and the temperature difference between the upper end portion 20a and the lower end portion 20b can be increased. Accordingly, the amount of power generated by each thermoelectric element 20 is increased, and the thermoelectric efficiency of the thermoelectric module 10 can be improved.

さらに、各熱電素子20が角錐台形状であることで、例えば角柱状である場合に比べ、側面部20cの表面積が大きくなり、側面部20cでも放熱領域が拡大される。これにより、下基板12からの熱が熱電素子20の上端部20aに伝わることが抑制され、上端部20aと下端部20bとの温度差を一層大きくすることができる。   Further, since each of the thermoelectric elements 20 has a truncated pyramid shape, the surface area of the side surface portion 20c is larger than in the case of, for example, a prismatic shape, and the heat radiation region is also enlarged in the side surface portion 20c. This suppresses transmission of heat from the lower substrate 12 to the upper end portion 20a of the thermoelectric element 20, and can further increase the temperature difference between the upper end portion 20a and the lower end portion 20b.

<熱電モジュール10の製造方法>
本実施の形態では、3次元造型機を用いて上記熱電モジュール10を製造するものとなっている。以下、その具体的方法について図4〜図6を参照しながら詳細に説明する。
<Method of Manufacturing Thermoelectric Module 10>
In the present embodiment, the thermoelectric module 10 is manufactured using a three-dimensional molding machine. Hereinafter, a specific method thereof will be described in detail with reference to FIGS.

熱電モジュール10の製造にあたっては先ず、図4(a)に示すように、上電極13が形成された上基板11を3次元造型機内の設置台31に設置する(第1設置工程)。この際、上電極13の形成面を上側とした状態で、設置台31上の所定の設置位置に上基板11を位置決めする。   In manufacturing the thermoelectric module 10, first, as shown in FIG. 4A, the upper substrate 11 on which the upper electrode 13 is formed is set on a setting table 31 in a three-dimensional molding machine (first setting step). At this time, the upper substrate 11 is positioned at a predetermined installation position on the installation table 31 with the formation surface of the upper electrode 13 facing upward.

次に、図4(b)に示すように、設置台31に設置された上基板11の各電極13上に、3次元造型機によって各P型素子20pを形成し、第1中間体23を生成する(第1形成工程)。この工程では、先ず、P型素子20pを構成する熱電材料の粉末を、上電極13が形成された上基板11の表面全体に敷き詰めて熱電材料層(粉末床)24を形成する。その後、この熱電材料層24のうちP型素子20pを造型する領域25にレーザ光を照射し、領域25の熱電材料層24を溶融・焼結させる。これをP型素子20pの高さ寸法分だけ繰り返し、焼結部分を積層していく。その際、上層のレーザ照射時に下層の焼結部分との接合(積層方向の接合)も行われるため、一体化された状態のP型素子20pが形成される。   Next, as shown in FIG. 4B, each P-type element 20p is formed on each electrode 13 of the upper substrate 11 placed on the placement table 31 by a three-dimensional molding machine, and the first intermediate body 23 is formed. Generated (first forming step). In this step, first, a thermoelectric material powder constituting the P-type element 20p is spread over the entire surface of the upper substrate 11 on which the upper electrode 13 is formed to form a thermoelectric material layer (powder bed) 24. Thereafter, a laser beam is applied to a region 25 of the thermoelectric material layer 24 where the P-type element 20p is to be formed, and the thermoelectric material layer 24 in the region 25 is melted and sintered. This is repeated by the height of the P-type element 20p, and the sintered portions are stacked. At that time, since the upper layer is also bonded to the lower sintered portion (lamination in the laminating direction) at the time of laser irradiation, the integrated P-type element 20p is formed.

3次元造型機には、各P型素子20pの形状、各種サイズ及び配列パターン(座標位置)を示す3次元データが入力又は記憶されており、この3次元データに基づいて上記レーザ光の照射処理が行われる。このため、第1形成工程では、上基板11上に配置される全てのP型素子20pが並行して形成されていくだけでなく、各P型素子20pが配列パターンに対応する位置に位置決めされた状態で形成されていく。つまり、各P型素子20pの形成と配列とが同時に行われる。   In the three-dimensional molding machine, three-dimensional data indicating the shape, various sizes, and arrangement patterns (coordinate positions) of each P-type element 20p is input or stored, and the laser beam irradiation processing is performed based on the three-dimensional data. Is performed. Therefore, in the first forming step, not only are all the P-type elements 20p arranged on the upper substrate 11 formed in parallel, but also each P-type element 20p is positioned at a position corresponding to the array pattern. It is formed in a state. That is, formation and arrangement of each P-type element 20p are performed simultaneously.

また、各P型素子20pの形成に際しては、上基板11上に1層分の熱電材料層24を形成する都度、当該材料層24に焼結用のレーザ光を照射する。この場合、初層の形成時に行うレーザ照射に際しては、レーザ光の一部が熱電材料層24を透過したり、熱電材料層24の熱が上電極13に伝わったりすることで、上電極13の表面温度が上昇する。   When forming each P-type element 20p, each time one thermoelectric material layer 24 is formed on the upper substrate 11, the material layer 24 is irradiated with a laser beam for sintering. In this case, at the time of laser irradiation performed at the time of forming the first layer, a part of the laser light is transmitted through the thermoelectric material layer 24 or the heat of the thermoelectric material layer 24 is transmitted to the upper electrode 13 so that the upper electrode 13 Surface temperature rises.

その際、レーザ光の出力や照射時間を調整することで、上電極13の表面を融点近くまで加温し、軟化させる。これにより、レーザ光が照射される領域25において、軟化状態の上電極13と溶融状態の熱電材料層24とが馴染み、その後、両者が固化することで接合される。つまり、本実施の形態では、P型素子20pの形成及び配列に留まらず、上電極13とP型素子20pとの接合も第1形成工程において行われる。   At that time, the surface of the upper electrode 13 is heated to near the melting point and softened by adjusting the output and irradiation time of the laser beam. Thereby, in the region 25 irradiated with the laser beam, the upper electrode 13 in the softened state and the thermoelectric material layer 24 in the molten state are adapted to each other, and thereafter, the two are solidified and joined. That is, in the present embodiment, the joining between the upper electrode 13 and the P-type element 20p is also performed in the first forming step, not limited to the formation and arrangement of the P-type element 20p.

例えば、前述した従来の製造方法のように、電極上に熱電素子を配置した段階で両者が接合されていない場合には、リフロー炉等への運搬時において素子配列が乱れやすくなる。このため、慎重な運搬作業が求められたり、素子配置のやり直しや修正を強いられたりするおそれがある。また、リフロー炉等による加熱工程においても、素子両端のはんだを溶融させた際に素子が傾いたり、動いたりする懸念もある。   For example, if the thermoelectric elements are not joined at the stage of disposing the thermoelectric elements on the electrodes as in the above-described conventional manufacturing method, the element arrangement is likely to be disturbed when transported to a reflow furnace or the like. For this reason, there is a possibility that a careful transport operation is required, and the element arrangement needs to be redone or corrected. Also, in a heating step using a reflow furnace or the like, there is a concern that the element may tilt or move when the solder at both ends of the element is melted.

この点、本実施の形態では、各P型素子20pの形成と併せて上電極13との接合が行われるため、P型素子20pの姿勢や位置を固定することができ、その後の工程で素子配列が乱れることを抑制できる。これにより、運搬が容易となるばかりか、素子配置のやり直し等の発生を抑制することもでき、生産性を向上させることが可能になる。   In this regard, in the present embodiment, since the bonding with the upper electrode 13 is performed together with the formation of each P-type element 20p, the posture and position of the P-type element 20p can be fixed, and the element is formed in a subsequent step. Arrangement can be suppressed. As a result, not only the transportation becomes easy, but also the occurrence of redoing of the element arrangement can be suppressed, and the productivity can be improved.

なお、熱電材料の粉末粒径は、特に限定されるものではないが、1μm以上で且つ100μm以下とすることが好ましく、10μm以上で且つ80μm以下とすることがさらに好ましい。粉末粒径を1μm以上とすることで、熱電材料層24における1層分の厚み寸法が小さくなり過ぎず、P型素子20pの造型時間が過度に長くなることを抑制できる。また、粉末粒径を100μm以下とすることで、上記厚み寸法が過大となることが回避され、滑らかな側面形状のP型素子20pを造型しやすくなるほか、レーザ照射に際して上電極13を加温しやすくなり、接合処理の容易化を図ることもできる。   The particle size of the powder of the thermoelectric material is not particularly limited, but is preferably 1 μm or more and 100 μm or less, more preferably 10 μm or more and 80 μm or less. By setting the particle diameter of the powder to 1 μm or more, the thickness dimension of one layer in the thermoelectric material layer 24 does not become too small, and the molding time of the P-type element 20p can be prevented from becoming excessively long. By setting the particle diameter of the powder to 100 μm or less, the thickness is prevented from being excessively large, the P-type element 20p having a smooth side surface can be easily formed, and the upper electrode 13 is heated during laser irradiation. This facilitates the joining process.

上記のようにして第1中間体23を形成した後は、これを3次元造型機内から取り出し、その後、図4(c)に示すように、下電極14が形成された下基板12を設置台31に設置する(第2設置工程)。この際、下電極14の形成面を上側とした状態で、設置台31上の所定の設置位置に下基板12を位置決めする。   After the first intermediate body 23 is formed as described above, the first intermediate body 23 is taken out from the three-dimensional molding machine, and then, as shown in FIG. 31 (second installation step). At this time, the lower substrate 12 is positioned at a predetermined installation position on the installation table 31 with the formation surface of the lower electrode 14 facing upward.

次に、図4(d)に示すように、設置台31に設置された下基板12の各電極14上に、3次元造型機によって各N型素子20nを形成し、第2中間体26を生成する(第2形成工程)。この第2形成工程は、N型素子20nを構成する熱電材料の粉末を用い、上記第1形成工程と同様の方法で行う。第2形成工程の終了後は、第2中間体26を3次元造型機から取り出す。   Next, as shown in FIG. 4D, each N-type element 20n is formed on each electrode 14 of the lower substrate 12 set on the setting table 31 by a three-dimensional molding machine, and the second intermediate body 26 is formed. Generated (second forming step). This second forming step is performed in the same manner as in the first forming step, using a powder of a thermoelectric material constituting the N-type element 20n. After the completion of the second forming step, the second intermediate body 26 is removed from the three-dimensional molding machine.

その後、第1中間体23の上電極13及び第2中間体26の下電極14のそれぞれに、はんだクリーム等の接合材27(図5参照)を塗布する。接合材27は、上電極13及び下電極14の各表面のうちP型素子20p、N型素子20nが形成されていない部分に塗布する。   Thereafter, a bonding material 27 (see FIG. 5) such as solder cream is applied to each of the upper electrode 13 of the first intermediate body 23 and the lower electrode 14 of the second intermediate body 26. The bonding material 27 is applied to portions of the surfaces of the upper electrode 13 and the lower electrode 14 where the P-type element 20p and the N-type element 20n are not formed.

続いて、図5に示すように、接合材27が塗布された第1中間体23の上下を反転させ、接合材27が塗布された第2中間体26と対向させる。そして、第1中間体23と第2中間体26との位置合わせを行った上で、第1中間体23を第2中間体26に向けて移動させる。その後、第1中間体23に形成されたP型素子20pが第2中間体26の下電極14(接合材27)に当接し、且つ、第2中間体26に形成されたN型素子20nが第1中間体23の上電極13(接合材27)に当接するまで両中間体23,26を接近させ、第3中間体を生成する。なお、この作業は、手作業により行ってもよいし、昇降装置等を用いて機械的に行ってもよい。   Subsequently, as shown in FIG. 5, the first intermediate body 23 on which the bonding material 27 is applied is turned upside down to be opposed to the second intermediate body 26 on which the bonding material 27 is applied. Then, after the first intermediate body 23 and the second intermediate body 26 are aligned, the first intermediate body 23 is moved toward the second intermediate body 26. Thereafter, the P-type element 20p formed on the first intermediate body 23 contacts the lower electrode 14 (bonding material 27) of the second intermediate body 26, and the N-type element 20n formed on the second intermediate body 26 The two intermediates 23 and 26 are brought close to each other until they come into contact with the upper electrode 13 (joining material 27) of the first intermediate 23, thereby generating a third intermediate. This operation may be performed manually, or may be performed mechanically using a lifting device or the like.

最後に、上記第3中間体をリフロー炉等の加熱炉に導入し、加熱処理を行う。これにより、第1中間体23のP型素子20pを第2中間体26の下電極14に接合し、第2中間体26のN型素子20nを第1中間体23の上電極13に接合する(接合工程)。なお、接合材27としてはんだクリームを用いた場合、接合工程は、はんだ付け工程となり、加熱処理は、はんだ付け処理となる。   Finally, the third intermediate is introduced into a heating furnace such as a reflow furnace and subjected to heat treatment. Thereby, the P-type element 20p of the first intermediate body 23 is joined to the lower electrode 14 of the second intermediate body 26, and the N-type element 20n of the second intermediate body 26 is joined to the upper electrode 13 of the first intermediate body 23. (Joining step). When a solder cream is used as the joining material 27, the joining process is a soldering process, and the heating process is a soldering process.

以上、詳述した本実施の形態によれば、以下の優れた効果を奏する。   According to the present embodiment described in detail above, the following excellent effects can be obtained.

・上電極13が形成された上基板11を3次元造型機の内部に設置し、上電極13上にP型素子20pを造型して第1中間体23を生成した後、下電極14が形成された下基板12を3次元造型機の内部に設置し、下電極14上にN型素子20nを造型して第2中間体26を生成した。その後、第1中間体23及び第2中間体26を対向させ、第1中間体23のP型素子20pを第2中間体26の下電極14に接合し、第2中間体26のN型素子20nを第1中間体23の上電極13に接合するようにした。   -The upper substrate 11 on which the upper electrode 13 is formed is placed inside a three-dimensional molding machine, and the P-type element 20p is formed on the upper electrode 13 to generate the first intermediate 23, and then the lower electrode 14 is formed. The completed lower substrate 12 was placed inside a three-dimensional molding machine, and an N-type element 20 n was molded on the lower electrode 14 to produce a second intermediate 26. Thereafter, the first intermediate body 23 and the second intermediate body 26 are opposed to each other, the P-type element 20p of the first intermediate body 23 is joined to the lower electrode 14 of the second intermediate body 26, and the N-type element of the second intermediate body 26 is formed. 20n was bonded to the upper electrode 13 of the first intermediate body 23.

上記構成によれば、P型素子20pを上電極13に位置決めした状態で形成することができるとともに、N型素子20nを下電極14に位置決めした状態で形成することができる。よって、従来のように各熱電素子を形成した後、それらを1つ1つ電極上に配置していく必要がなく、各熱電素子の配列を簡単に行うことが可能になる。   According to the above configuration, the P-type element 20p can be formed with the upper electrode 13 positioned, and the N-type element 20n can be formed with the lower electrode 14 positioned. Therefore, it is not necessary to arrange each thermoelectric element on the electrode one by one after forming each thermoelectric element as in the related art, and it is possible to easily arrange the thermoelectric elements.

加えて、各熱電素子20の形成と、各電極13,14に対する各熱電素子20の配置とが同時に行われるため、従来、素子形成とは別に行っていた素子配列の工程を省略可能となる。そればかりか、熱電材料の粉末から直接、熱電素子20を形成できることから、インゴットやプレートを作成したり、プレートをダイシングしたりする工程を省略することもできる。よって、各熱電素子の作成からモジュール化までの全体工程数を削減することができ、製造コストの低減や生産性の向上を図ることが可能になる。   In addition, since the formation of each thermoelectric element 20 and the arrangement of each thermoelectric element 20 with respect to each of the electrodes 13 and 14 are performed at the same time, it is possible to omit the element arrangement step conventionally performed separately from element formation. In addition, since the thermoelectric element 20 can be formed directly from the powder of the thermoelectric material, the steps of creating an ingot or a plate or dicing the plate can be omitted. Therefore, it is possible to reduce the total number of processes from creation of each thermoelectric element to modularization, and it is possible to reduce manufacturing costs and improve productivity.

・上電極13の表面を融点近くまで加温することにより軟化させた後に、P型素子20pを形成するようにした。この場合、第1形成工程においてP型素子20pと上電極13とを接合することができ、上電極13に固定された状態のP型素子20pを形成することが可能になる。これにより、第1中間体23の取り出し時や運搬時等においてP型素子20pの姿勢や位置が変動することが抑制され、第1中間体23の取り扱いが容易になる。さらに、接合工程において下電極14上の接合材27を溶融させた場合にも、P型素子20pが傾いたり、動いたりすることがない。   -After the surface of the upper electrode 13 was softened by heating to near the melting point, the P-type element 20p was formed. In this case, the P-type element 20p and the upper electrode 13 can be joined in the first forming step, and the P-type element 20p fixed to the upper electrode 13 can be formed. This suppresses a change in the posture or position of the P-type element 20p when the first intermediate body 23 is taken out or carried, and the handling of the first intermediate body 23 is facilitated. Further, even when the bonding material 27 on the lower electrode 14 is melted in the bonding step, the P-type element 20p does not tilt or move.

また、第2形成工程においても、下電極14の表面を融点近くまで加温することにより軟化させた後に、N型素子20nを形成するため、第2中間体26においても上記と同様の効果を得ることが可能になる。なお、上記実施の形態では、第1及び第2形成工程の両方で電極表面を軟化させた後に熱電素子を形成する構成としたが、いずれか一方の工程でのみ行う構成としてもよい。   Also, in the second forming step, since the surface of the lower electrode 14 is softened by heating to near the melting point and then the N-type element 20n is formed, the same effect as described above can be obtained in the second intermediate body 26. It is possible to obtain. In the above embodiment, the thermoelectric element is formed after the electrode surface is softened in both the first and second forming steps. However, the thermoelectric element may be formed only in one of the steps.

・上電極13に対する接合面21の面積が下電極14に対する接合面22の面積よりも大きくなるように、熱電素子20を構成した。この場合、熱電素子20において高温側の入熱量と低温側の放熱量との差異を大きくすることができ、上端部20aと下端部20bとの温度差を大きくすることが可能になる。特に、下基板12を高温側基板とし、上基板11を低温側基板とした場合には、下基板12からの熱で下端部20b側が昇温しても、上端部20a側は低温に維持されやすくなり、これら両端部20a,20b間の温度差を好適に拡大することが可能になる。   The thermoelectric element 20 was configured so that the area of the bonding surface 21 with respect to the upper electrode 13 was larger than the area of the bonding surface 22 with respect to the lower electrode 14. In this case, the difference between the amount of heat input on the high-temperature side and the amount of heat radiation on the low-temperature side of the thermoelectric element 20 can be increased, and the temperature difference between the upper end portion 20a and the lower end portion 20b can be increased. In particular, in the case where the lower substrate 12 is a high-temperature substrate and the upper substrate 11 is a low-temperature substrate, even if the lower end portion 20b is heated by the heat from the lower substrate 12, the upper end portion 20a is maintained at a low temperature. The temperature difference between the two end portions 20a and 20b can be suitably enlarged.

<その他の実施の形態>
本発明は上記実施の形態に限らず、例えば次のように実施されてもよい。
<Other embodiments>
The present invention is not limited to the above embodiment, and may be implemented, for example, as follows.

(1)上記実施の形態では、熱電モジュール10に温度差を付与して発電する構成としたが、各熱電素子20をペルチェ素子として用い、各熱電素子20に電流を流して温度差を発生させる調温装置(例えば冷却装置)を構成するものでもよい。   (1) In the above-described embodiment, the thermoelectric module 10 is configured to generate power by giving a temperature difference. However, each thermoelectric element 20 is used as a Peltier element, and a current is caused to flow through each thermoelectric element 20 to generate a temperature difference. It may constitute a temperature control device (for example, a cooling device).

(2)上記実施の形態では、3次元造型機において粉末焼結方式により各熱電素子20を形成したが、例えば、シート積層方式や指向性エネルギー堆積方式等の他の3次元造型方式により各熱電素子20を形成してもよい。   (2) In the above embodiment, each thermoelectric element 20 is formed by a powder sintering method in a three-dimensional molding machine. However, for example, each thermoelectric element 20 is formed by another three-dimensional molding method such as a sheet lamination method or a directional energy deposition method. The element 20 may be formed.

(3)上記実施の形態では、電極が形成された基板を3次元造型機の内部に設置する構成としたが、基板上に形成されていない電極を設置する構成としてもよい。但し、この場合、個々の電極が分離状態にあるため、3次元造型機内への設置等に手間がかかる懸念があり、このような観点では上記実施の形態のように構成することが好ましい。   (3) In the above embodiment, the substrate on which the electrodes are formed is installed inside the three-dimensional molding machine. However, the configuration may be such that the electrodes not formed on the substrate are installed. However, in this case, since the individual electrodes are in a separated state, there is a concern that installation in a three-dimensional molding machine or the like takes time, and from such a viewpoint, it is preferable to configure as in the above embodiment.

(4)上記実施の形態では、上電極13の表面を軟化させてP型素子20pとの接合を図る構成としたが、上電極13の構成材料とP型素子20pの構成材料との組み合わせによっては、両者の接合が困難な場合がある。このような場合には、第1設置工程の前に上電極13上にはんだクリーム等の接合材を付しておき、第1設置工程において、接合材が付された上基板11を3次元造型機内に設置するようにしてもよい。この場合、第1形成工程において接合材上に熱電素子20が形成されるものとなり、接合材によって上電極13とP型素子20pとを接合することができる。   (4) In the above embodiment, the surface of the upper electrode 13 is softened to join the P-type element 20p. However, depending on the combination of the constituent material of the upper electrode 13 and the constituent material of the P-type element 20p. May be difficult to join the two. In such a case, a bonding material such as solder cream is applied on the upper electrode 13 before the first installation step, and the upper substrate 11 to which the bonding material is applied is three-dimensionally formed in the first installation step. You may make it install in a plane. In this case, the thermoelectric element 20 is formed on the bonding material in the first forming step, and the upper electrode 13 and the P-type element 20p can be bonded by the bonding material.

なお、上記接合材を、下電極14及びP型素子20pの接合に用いる接合材と同じものとすることで、後の接合工程において、上電極13及びP型素子20pの接合と、下電極14及びP型素子20pの接合とをまとめて行うことができ、製造工程を簡略化することが可能になる。また、電極上に接合材が付された基板の設置は、第2設置工程においても行うことができる。但し、必ずしも第1設置工程及び第2設置工程の両方で行う必要はなく、いずれか一方のみで行ってもよい。   In addition, by using the same bonding material as the bonding material used for bonding the lower electrode 14 and the P-type element 20p, the bonding between the upper electrode 13 and the P-type element 20p and the lower electrode 14 And the joining of the P-type element 20p can be performed together, and the manufacturing process can be simplified. The installation of the substrate with the bonding material on the electrodes can also be performed in the second installation step. However, it is not always necessary to perform both in the first installation step and the second installation step, and it may be performed in only one of them.

(5)上記実施の形態において、第1形成工程の後に、上電極13とP型素子20pとの接合部の周囲に、はんだクリーム等の接合材を付してもよい。例えば、軟化接合によるP型素子20pの保持力が不十分な場合に、接合材の粘性等によってそれをサポートすることができる。また、接合部の周囲に付した接合材は、後の接合工程において固化した場合、上電極13とP型素子20pとの接合に寄与するため、完成品である熱電モジュール10における各P型素子20pの接合力を強化することもできる。なお、接合材は、必ずしも接合部の周囲全体に付す必要はなく、少なくとも一部に付せばよい。また、上記構成は下電極14とN型素子20nとの関係においても適用することができるが、その際、P型素子20p又はN型素子20nのいずれかのみで行ってもよい。   (5) In the above embodiment, after the first forming step, a bonding material such as a solder cream may be applied around a bonding portion between the upper electrode 13 and the P-type element 20p. For example, when the holding force of the P-type element 20p by the softening bonding is insufficient, it can be supported by the viscosity of the bonding material. Further, when the bonding material applied to the periphery of the bonding portion is solidified in a subsequent bonding step, it contributes to bonding between the upper electrode 13 and the P-type element 20p. It is also possible to enhance the bonding strength of 20p. The joining material does not necessarily need to be applied to the entire periphery of the joint, but may be applied to at least a part. In addition, the above configuration can be applied to the relationship between the lower electrode 14 and the N-type element 20n, but in that case, it may be performed only with either the P-type element 20p or the N-type element 20n.

(6)上記実施の形態において、第1設置工程に先立ち、レーザ光(熱電材料に合わせて波長設定されたレーザ光)に対する反射率についての熱電材料層24との差分が、上電極13よりも小さい導電材料層を上電極13の表面に形成してもよい。すなわち、上電極13が、第2導電層と、第2導電層上に設けられ、熱電材料層24との反射率の差分が第2導電層よりも小さい第1導電層とを備えており、第1導電層上にP型素子20pが形成される構成としてもよい。レーザ光に対する熱電材料層24の反射率と上電極13の反射率とが大きく異なる場合、レーザ照射による両者の接合が困難となるおそれがあるが、上記のように、反射率を近づけてレーザ照射を行うことで、接合が容易となることを期待できる。   (6) In the above embodiment, prior to the first installation step, the difference between the thermoelectric material layer 24 and the thermoelectric material layer 24 in reflectance with respect to laser light (laser light whose wavelength is set according to the thermoelectric material) is larger than that of the upper electrode 13. A small conductive material layer may be formed on the surface of the upper electrode 13. That is, the upper electrode 13 includes a second conductive layer and a first conductive layer provided on the second conductive layer and having a difference in reflectance from the thermoelectric material layer 24 smaller than the second conductive layer, The P-type element 20p may be formed on the first conductive layer. When the reflectivity of the thermoelectric material layer 24 and the reflectivity of the upper electrode 13 for laser light are significantly different, it may be difficult to join the two by laser irradiation. By performing the above, it can be expected that the joining is facilitated.

なお、上電極13(第2導電層)の構成材料を銅とした場合、第1導電層は、例えば、当該電極13上にニッケルメッキ処理を行うことで形成するとよい。また、上記構成は、下電極14についても適用することができるが、その際、上電極13又は下電極14のいずれかのみで行ってもよい。   When the upper electrode 13 (second conductive layer) is made of copper, the first conductive layer may be formed by, for example, performing nickel plating on the electrode 13. In addition, the above configuration can be applied to the lower electrode 14, but in that case, it may be performed with only the upper electrode 13 or the lower electrode 14.

(7)上記実施の形態では、第1中間体23の上電極13と第2中間体26の下電極14とのそれぞれに接合材を塗布したが、第1中間体23の上電極13と、第1中間体23におけるP型素子20pの接合面22pとに接合材を塗布し、第2中間体26側には塗布しないようにしてもよい。この場合、一方の中間体にのみ塗布作業を行えば済むため、工程を簡略化することができる。なお、上記とは逆に、第2中間体26に対して塗布作業を行ってもよい。   (7) In the above embodiment, the bonding material is applied to each of the upper electrode 13 of the first intermediate body 23 and the lower electrode 14 of the second intermediate body 26. A bonding material may be applied to the bonding surface 22p of the P-type element 20p in the first intermediate body 23 and not to the second intermediate body 26 side. In this case, since the coating operation only needs to be performed on one of the intermediates, the process can be simplified. In addition, contrary to the above, the application operation may be performed on the second intermediate body 26.

(8)上記実施の形態では、熱電素子20を角錐台形状としたが、円錐台形状としてもよい。また、図6(a)に示すように、熱電素子20の側面部20cに溝部33を形成して凹凸を設けたり、側面部20cを曲面で構成したりしてもよい。これにより、側面部20cの表面積を拡大して放熱効果を高めることができ、両端部20a,20b間の温度差を一層大きくすることが可能になる。   (8) In the above embodiment, the thermoelectric element 20 has a truncated pyramid shape, but may have a truncated cone shape. Further, as shown in FIG. 6A, a groove 33 may be formed on the side surface portion 20c of the thermoelectric element 20 to provide unevenness, or the side surface portion 20c may be formed as a curved surface. Thereby, the heat dissipation effect can be enhanced by increasing the surface area of the side surface portion 20c, and the temperature difference between the both end portions 20a, 20b can be further increased.

なお、凹凸や曲面は、択一的なものではなく、両方を組み合わせて用いてもよい。また、これらは必ずしも側面部20cの全体に形成する必要はなく、一部に形成してもよい。さらに、溝部33は螺旋溝に限らず、縦溝等の他の溝形状であってもよい。ちなみに、凹凸や曲面を採用した上記変形例は、本発明の「錐台形状」に含まれるものである。すなわち、本発明の「錐台形状」は、完全な錐台形状に限定されるものではなく、全体として概ね錐台形状であるものを含む概念である。   Note that the unevenness and the curved surface are not alternatives, and may be used in combination. Also, these need not necessarily be formed on the entire side surface portion 20c, but may be formed on a part thereof. Further, the groove 33 is not limited to a spiral groove, and may have another groove shape such as a vertical groove. Incidentally, the above-mentioned modified example employing the irregularities and the curved surface is included in the “frustum shape” of the present invention. That is, the “frustum shape” of the present invention is not limited to a perfect frustum shape, but is a concept that includes a generally frustum shape as a whole.

また、図6(b)に示すように、熱電素子20の内部に空洞部34を設け、素子内側に放熱面(放熱部)を確保する構成としてもよい。   Further, as shown in FIG. 6B, a configuration may be adopted in which a hollow portion 34 is provided inside the thermoelectric element 20 and a heat radiation surface (heat radiation portion) is secured inside the element.

10…熱電モジュール、13…上電極、14…下電極、20…熱電素子、20p…P型素子、20n…N型素子、21…接合面、22…接合面、23…第1中間体、26…第2中間体。   DESCRIPTION OF SYMBOLS 10 ... thermoelectric module, 13 ... upper electrode, 14 ... lower electrode, 20 ... thermoelectric element, 20p ... P-type element, 20n ... N-type element, 21 ... joint surface, 22 ... joint surface, 23 ... 1st intermediate body, 26 ... Second intermediate.

Claims (7)

3次元造型機の内部に第1電極を設置する第1設置工程と、
前記第1電極上にP型とN型とのうちの一方である熱電特性を有する第1熱電素子を、前記3次元造型機により形成して、第1中間体を生成する第1形成工程と、
3次元造型機の内部に第2電極を設置する第2設置工程と、
前記第2電極上にP型とN型とのうちの他方である熱電特性を有する第2熱電素子を、前記3次元造型機により形成して、第2中間体を生成する第2形成工程と、
前記第1中間体の前記第1熱電素子を前記第2中間体の第2電極に接合し、前記第2中間体の前記第2熱電素子を前記第1中間体の前記第1電極に接合する接合工程と、
を備える、熱電モジュールの製造方法。
A first installation step of installing a first electrode inside the three-dimensional molding machine;
A first forming step of forming a first thermoelectric element having one of P-type and N-type thermoelectric characteristics on the first electrode by the three-dimensional molding machine to generate a first intermediate; ,
A second installation step of installing a second electrode inside the three-dimensional molding machine;
A second forming step of forming a second thermoelectric element having the thermoelectric property of the other of the P type and the N type on the second electrode by the three-dimensional molding machine to generate a second intermediate; and ,
The first thermoelectric element of the first intermediate is joined to the second electrode of the second intermediate, and the second thermoelectric element of the second intermediate is joined to the first electrode of the first intermediate. Joining process,
A method for manufacturing a thermoelectric module, comprising:
前記第1形成工程において、前記第1電極の表面を融点近くまで加温することにより軟化させた後に、前記第1熱電素子が形成される、
または、前記第2形成工程において、前記第2電極の表面を融点近くまで加温することにより軟化させた後に、前記第2熱電素子が形成される、
請求項1に記載の熱電モジュールの製造方法。
In the first forming step, the first thermoelectric element is formed after the surface of the first electrode is softened by heating to near a melting point.
Alternatively, in the second forming step, the second thermoelectric element is formed after the surface of the second electrode is softened by heating to near a melting point.
A method for manufacturing the thermoelectric module according to claim 1.
前記第1設置工程の前に、前記第1電極の表面に接合材を付しておく、
または、前記第2設置工程の前に、前記第2電極の表面に接合材を付しておく、
請求項1に記載の熱電モジュールの製造方法。
Before the first installation step, a bonding material is attached to a surface of the first electrode,
Alternatively, a bonding material is attached to the surface of the second electrode before the second installation step.
A method for manufacturing the thermoelectric module according to claim 1.
前記第1形成工程において、前記第1熱電素子は、前記第1電極側の接合面の面積が前記第2電極側の接合面の面積よりも大きく形成される、
または、前記第2形成工程において、前記第2熱電素子は、前記第1電極側の接合面の面積が前記第2電極側の接合面の面積よりも大きく形成される、
請求項1〜3のいずれか1項に記載の熱電モジュールの製造方法。
In the first forming step, the first thermoelectric element is formed such that an area of a bonding surface on the first electrode side is larger than an area of a bonding surface on the second electrode side.
Alternatively, in the second forming step, the second thermoelectric element is formed such that an area of a bonding surface on the first electrode side is larger than an area of a bonding surface on the second electrode side.
A method for manufacturing the thermoelectric module according to claim 1.
長さ方向を起電力発生方向とし、前記起電力発生方向の両端が電極に接合される接合面とされている熱電素子であって、
前記両接合面のうち一方の接合面の面積が他方の接合面の面積より大きく形成されていることを特徴とする熱電素子。
A thermoelectric element in which a length direction is an electromotive force generation direction, and both ends of the electromotive force generation direction are bonding surfaces that are bonded to electrodes.
A thermoelectric element, wherein an area of one of the two bonding surfaces is larger than an area of the other bonding surface.
円錐台形状又は角錐台形状である錐台形状に形成されている、請求項5に記載の熱電素子。   The thermoelectric element according to claim 5, wherein the thermoelectric element is formed in a truncated cone shape that is a truncated cone shape or a truncated pyramid shape. 請求項5又は6に記載の熱電素子を、面積の大きい側を低温側、面積の小さい側を高温側となるように配置し、複数の熱電素子をモジュール化して構成したことを特徴とする熱電モジュール。   7. The thermoelectric element according to claim 5, wherein the thermoelectric element according to claim 5 or 6 is arranged such that a large-area side is a low-temperature side and a small-area side is a high-temperature side, and a plurality of thermoelectric elements are modularized. module.
JP2018182048A 2018-09-27 2018-09-27 How to manufacture a thermoelectric module Active JP6839690B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018182048A JP6839690B2 (en) 2018-09-27 2018-09-27 How to manufacture a thermoelectric module
PCT/JP2019/037122 WO2020066948A1 (en) 2018-09-27 2019-09-20 Method of manufacturing thermoelectric module, thermoelectric element, and thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018182048A JP6839690B2 (en) 2018-09-27 2018-09-27 How to manufacture a thermoelectric module

Publications (2)

Publication Number Publication Date
JP2020053572A true JP2020053572A (en) 2020-04-02
JP6839690B2 JP6839690B2 (en) 2021-03-10

Family

ID=68136501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018182048A Active JP6839690B2 (en) 2018-09-27 2018-09-27 How to manufacture a thermoelectric module

Country Status (2)

Country Link
JP (1) JP6839690B2 (en)
WO (1) WO2020066948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444232B2 (en) * 2020-09-29 2022-09-13 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for manufacturing a thermoelectric device by additive manufacturing of combs to be set in contact with one another

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3140994A1 (en) * 2022-10-14 2024-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR METALIZING A THERMOELECTRIC ELEMENT
FR3140993A1 (en) * 2022-10-14 2024-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR MANUFACTURING A THERMOELECTRIC STRUCTURE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155376A (en) * 1989-11-09 1991-07-03 Japan Atom Power Co Ltd:The Thermoelectric generating element
JP2006253343A (en) * 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Thermoelectric element integrating electrode, and its manufacturing process
JP2010165847A (en) * 2009-01-15 2010-07-29 Sumitomo Chemical Co Ltd Method of manufacturing thermoelectric conversion module
US20120025343A1 (en) * 2009-04-15 2012-02-02 Kuekes Philip J Thermoelectric device having a variable cross-section connecting structure
US20170069817A1 (en) * 2015-06-12 2017-03-09 Xilico, LLC Thermoelectric Devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012105743A1 (en) * 2012-06-29 2014-01-02 Elringklinger Ag Heat shielding device with thermoelectric energy use
JP2016178147A (en) 2015-03-19 2016-10-06 日立化成株式会社 Thermoelectric power generation device
CN106384780B (en) * 2016-03-06 2019-03-19 武汉理工大学 A method of quickly preparing thermo-electric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155376A (en) * 1989-11-09 1991-07-03 Japan Atom Power Co Ltd:The Thermoelectric generating element
JP2006253343A (en) * 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Thermoelectric element integrating electrode, and its manufacturing process
JP2010165847A (en) * 2009-01-15 2010-07-29 Sumitomo Chemical Co Ltd Method of manufacturing thermoelectric conversion module
US20120025343A1 (en) * 2009-04-15 2012-02-02 Kuekes Philip J Thermoelectric device having a variable cross-section connecting structure
US20170069817A1 (en) * 2015-06-12 2017-03-09 Xilico, LLC Thermoelectric Devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444232B2 (en) * 2020-09-29 2022-09-13 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for manufacturing a thermoelectric device by additive manufacturing of combs to be set in contact with one another

Also Published As

Publication number Publication date
WO2020066948A1 (en) 2020-04-02
JP6839690B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
US10847504B2 (en) Micro-LED module and method for fabricating the same
TWI301333B (en) Thermoelectric device and method of manufacturing the same
JP6498272B2 (en) Method for mounting electrical device using lid, and lid suitable for use in the method
JP6839690B2 (en) How to manufacture a thermoelectric module
JP5515721B2 (en) Method for manufacturing thermoelectric conversion module
JP6390546B2 (en) Thermoelectric conversion module and manufacturing method thereof
WO2011058941A1 (en) Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JP2024060023A (en) Thermal lens electrodes in thermoelectric generators for improved performance
WO2018100933A1 (en) Thermoelectric module
US10236430B2 (en) Thermoelectric module
KR101207300B1 (en) Method for manufacturing thermoelectric element
CN102903645B (en) Planar semiconductor element and manufacturing method thereof
TWI435456B (en) Electrode soldering structure, back contact solar module, and method of manufacturing solar module
KR20110056653A (en) Method for manufacturing a solar cell module
TWI748342B (en) Semi-finished product of power device and manufacturing method thereof and manufacturing method of power device
JP5013681B2 (en) Semiconductor packaging body, semiconductor packaging body semi-finished product, and manufacturing method thereof
RU111354U1 (en) THERMOELECTRIC MODULE, THERMOELECTRIC ELEMENT AND PREPARATION FOR THE PRODUCTION OF THERMOELECTRIC ELEMENTS
US20230045136A1 (en) Structured assembly and interconnect for photovoltaic systems
JP2008103382A (en) Semiconductor device and manufacturing method thereof
KR20170059838A (en) Method of making thermoelectric modules
JP2003017766A (en) Method of fabricating thermo-electric element
KR101454639B1 (en) Thermoelectric device having anti-diffusion layer and method of manufacturing the same
JP5532147B1 (en) Semiconductor device and manufacturing method thereof
JP2013207037A (en) Method for manufacturing thermoelectric conversion module and thermoelectric conversion method
JP2002111082A (en) Method for producing thermoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6839690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250