JP2020053275A - Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery and positive electrode active material for lithium ion secondary battery - Google Patents

Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery and positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP2020053275A
JP2020053275A JP2018181824A JP2018181824A JP2020053275A JP 2020053275 A JP2020053275 A JP 2020053275A JP 2018181824 A JP2018181824 A JP 2018181824A JP 2018181824 A JP2018181824 A JP 2018181824A JP 2020053275 A JP2020053275 A JP 2020053275A
Authority
JP
Japan
Prior art keywords
reaction temperature
positive electrode
substitution element
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018181824A
Other languages
Japanese (ja)
Other versions
JP7110876B2 (en
Inventor
野家 明彦
Akihiko Noie
明彦 野家
心 高橋
Shin Takahashi
高橋  心
所 久人
Hisato Tokoro
久人 所
秀一 高野
Shuichi Takano
秀一 高野
智幸 佐藤
Tomoyuki Sato
智幸 佐藤
和彦 竝木
Kazuhiko Namiki
和彦 竝木
達哉 遠山
Tatsuya Toyama
達哉 遠山
章 軍司
Akira Gunji
章 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018181824A priority Critical patent/JP7110876B2/en
Publication of JP2020053275A publication Critical patent/JP2020053275A/en
Application granted granted Critical
Publication of JP7110876B2 publication Critical patent/JP7110876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a selection method for finding a substitution element suitable for a positive electrode active material for a lithium ion secondary battery having a Ni ratio of 80% or more.SOLUTION: A method of selecting a substitution element for a positive electrode active material for a lithium ion secondary battery includes a step 1 of measuring a reaction temperature T between a Li element raw material and a raw element of a substitution element M' other than Li and Ni, measuring a reaction temperature Tbetween the Li element raw material and a Ni element raw material, comparing the reaction temperature T with the reaction temperature T, and selecting the substitution element M' with which the reaction temperature T is higher than the reaction temperature T, and a step 2 for using the element raw material of the substitution element M' selected in step 1 and the element raw materials of Li and Ni to obtain each of burned powder satisfying a composition formula of 80% or more in Ni ratio, and standard burned powder in the case of e=0 (no substitution element M), performing X-ray diffraction analysis on each burned powder, and selecting a substitution element M with which a diffraction peak different from a diffraction result in the case of e=0 does not appear.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用正極活物質の置換元素選択方法、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極活物質に関する。   The present invention relates to a method for selecting a substitution element of a positive electrode active material for a lithium ion secondary battery, a method for producing a positive electrode active material for a lithium ion secondary battery, and a positive electrode active material for a lithium ion secondary battery.

高エネルギ密度の二次電池として、リチウムイオン二次電池の市場が拡大している。リチウムイオン二次電池は、従来の二次電池であるニッケル・水素電池やニッケル・カドミウム電池と比べてエネルギ密度が高い。そのため、民生用として携帯端末や小型電動機器用の電源、産業用としては電力貯蔵装置、負荷平準化装置等の定置用電源、および船舶、鉄道、自動車等の移動体用電源として幅広く活用されている。   As a high energy density secondary battery, the market for lithium ion secondary batteries is expanding. Lithium ion secondary batteries have higher energy density than conventional secondary batteries such as nickel-metal hydride batteries and nickel-cadmium batteries. Therefore, it is widely used as a power supply for portable terminals and small electric devices for consumer use, a stationary power supply for power storage devices and load leveling devices for industrial use, and a power supply for mobile bodies such as ships, railways and automobiles. I have.

このように広い利用分野を持つリチウムイオン二次電池には更なる高容量化が求められており、正極活物質には高容量化に適したNiの割合を増やし、Li以外の金属元素中のNiの割合が80原子%より多い組成(以下、Ni比80%以上の組成と言う)が検討されている。しかしながら、電池を高容量化するため正極活物質中のNiの割合を高くしていくと、結晶構造が不安定となり、充放電サイクルにおける電池容量の低下が大きくなる。この課題を解決するため従来は、Co量を増やすことで結晶の安定性を維持し、充放電サイクル時の容量維持率を確保してきた(特許文献1、特許文献2)。   Such lithium ion secondary batteries having a wide range of applications are required to have higher capacities, and the proportion of Ni suitable for higher capacities in the positive electrode active material has been increased, and metal elements other than Li A composition in which the proportion of Ni is greater than 80 atomic% (hereinafter referred to as a composition having a Ni ratio of 80% or more) is being studied. However, when the proportion of Ni in the positive electrode active material is increased in order to increase the capacity of the battery, the crystal structure becomes unstable, and the decrease in battery capacity in the charge / discharge cycle is increased. In order to solve this problem, conventionally, the stability of the crystal has been maintained by increasing the amount of Co, and the capacity retention rate during the charge / discharge cycle has been secured (Patent Documents 1 and 2).

しかし、高価なCoは増やしたくない。Co量を増やさず、これに代わる置換元素として、特許文献3ではTiを用いている。   However, I do not want to increase expensive Co. Patent Literature 3 uses Ti as a substitute element without increasing the amount of Co.

国際公開第2011/108598号公報International Publication No. 2011/108598 特開2016−122546号公報JP-A-2006-122546 国際公開第2017/082268号公報WO 2017/082268 A

特許文献3によれば、リチウム遷移金属複合酸化物中にTiを添加し、二次粒子の外表面にTiの濃化層を形成している。Ti濃化層は、空間群R−3mに帰属する層状構造の遷移金属サイトにTi置換されている形態をとることで、層状構造以外の結晶が生成されず容量が低下しない。そして、Ti濃化層の働きにより、充放電サイクル後のNiO様の異相の生成を抑制することができ、抵抗上昇率が低く抑えられてサイクル特性(容量維持率)が向上することが述べられている。
しかしながら、昨今ではTiと同等或いはそれ以上の特性を持ちながら、より資源量が豊富で入手しやすい元素への転換が望まれている。
According to Patent Literature 3, Ti is added to a lithium transition metal composite oxide to form a concentrated layer of Ti on the outer surface of the secondary particles. Since the Ti-enriched layer takes a form in which the transition metal site of the layered structure belonging to the space group R-3m is substituted with Ti, crystals other than the layered structure are not generated and the capacity does not decrease. Further, it is described that by the function of the Ti-concentrated layer, the generation of a NiO-like heterophase after the charge / discharge cycle can be suppressed, the rate of increase in resistance is suppressed low, and the cycle characteristics (capacity retention rate) are improved. ing.
However, in recent years, it has been desired to convert to an element that has properties equal to or higher than that of Ti, but is more abundant in resources and easily available.

そこで、本発明は、Ni比80%以上の組成でありながら異相が実質的に生成せず、Tiの場合と同等の特性が期待できる添加元素(以下、本発明では置換元素という。)を見出す選択方法、また、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極活物質を提供することを課題とする。   Thus, the present invention finds an additive element (hereinafter, referred to as a substitution element in the present invention) that has substantially the same composition as that of Ti without substantially forming a heterogeneous phase despite having a composition with a Ni ratio of 80% or more. It is an object to provide a selection method, a method for producing a positive electrode active material for a lithium ion secondary battery, and a positive electrode active material for a lithium ion secondary battery.

本発明は、 Li1+aNi2+α ・・・(1)
[組成式(1)において、Mは、Li、Ni以外の置換元素を表し、a、b、e及びαは、それぞれ、−0.04≦a≦0.04、0.80≦b<1.0、0<e≦0.05、b+e=1、−0.2≦α≦0.2を満たす数である。]で表されるリチウムイオン二次電池用正極活物質の置換元素の選択方法であって、Li素原料とLi、Ni以外の置換元素M´の素原料との反応温度Tを測定し、前記Li素原料とNi素原料との反応温度Tを測定し、前記反応温度Tと、前記反応温度Tを比較し、前記反応温度Tよりも反応温度Tが高い置換元素M´を選択するステップ1と、ステップ1で選択した置換元素M´の素原料と、Li、Niの素原料を用いて、前記組成式(1)を満足する焼成粉と、前記組成式(1)においてe=0(置換元素M無し)の場合の焼成粉をそれぞれ得て、前記各焼成粉をX線回析分析し、e=0の回析結果と異なる回折ピークが現われない置換元素Mを選択するステップ2と、を有するリチウムイオン二次電池用正極活物質の置換元素の選択方法である。
The present invention provides Li 1 + a Ni b Me O 2 + α (1)
[In the composition formula (1), M represents a substitution element other than Li and Ni, and a, b, e, and α are -0.04 ≦ a ≦ 0.04 and 0.80 ≦ b <1, respectively. 0.0, 0 <e ≦ 0.05, b + e = 1, and −0.2 ≦ α ≦ 0.2. A method for selecting a substitution element of a positive electrode active material for a lithium ion secondary battery, wherein a reaction temperature T between a raw material of Li and a raw material of a replacement element M ′ other than Li and Ni is measured. measuring the reaction temperature T N and Li-containing material and Ni containing material, the selection and reaction temperature T, and compares the reaction temperature T N, the reaction temperature T is higher substitution element M'than the reaction temperature T N Step 1, a raw material of the replacement element M ′ selected in Step 1, and a calcined powder satisfying the composition formula (1) using the raw materials of Li and Ni, and e in the composition formula (1). = 0 (no substitution element M), respectively, and obtain a fired powder, perform X-ray diffraction analysis of each fired powder, and select a substitution element M that does not show a diffraction peak different from the diffraction result of e = 0. Substituting element for positive electrode active material for lithium ion secondary battery having step 2 A selection method.

また、本発明のリチウムイオン二次電池用正極活物質の置換元素の選択方法は、 Li1+aNiCoMn2+α ・・・(2)
[組成式(2)において、Mは、Li、Ni、Co、Mn以外の置換元素を表し、a、b、c、d、e及びαは、それぞれ、−0.04≦a≦0.04、0.80≦b<1.0、0<c、0<d、0<e≦0.05、b+c+d+e=1、−0.2≦α≦0.2を満たす数である。]で表されるリチウムイオン二次電池用正極活物質の置換元素の選択方法であって、Li素原料とLi、Ni、Co、Mn以外の置換元素M´の素原料との反応温度Tを測定し、前記Li素原料とNi素原料との反応温度T、前記Li素原料とCo素原料との反応温度T及び前記Li素原料とMn素原料との反応温度Tをそれぞれ測定し、前記反応温度Tと、前記反応温度T、T、Tをそれぞれ比較し、前記反応温度T、T、Tのそれぞれよりも反応温度Tが高い置換元素M´を選択するステップ1と、ステップ1で選択した置換元素M´の素原料と、Li、Ni、Co、Mnの素原料を用いて、前記組成式(2)を満足する焼成粉と、前記組成式(2)においてe=0(置換元素M無し)の場合の焼成粉をそれぞれ得て、前記各焼成粉をX線回析分析し、e=0の回析結果と異なる回折ピークが現われない置換元素Mを選択するステップ2と、を有するものである。
Further, the method of selecting a substitution element of the positive electrode active material for a lithium ion secondary battery of the present invention, Li 1 + a Ni b Co c Mn d M e O 2 + α ··· (2)
[In the composition formula (2), M represents a substitution element other than Li, Ni, Co, and Mn, and a, b, c, d, e, and α are -0.04 ≦ a ≦ 0.04, respectively. , 0.80 ≦ b <1.0, 0 <c, 0 <d, 0 <e ≦ 0.05, b + c + d + e = 1, and −0.2 ≦ α ≦ 0.2. The method of selecting a substitution element for a positive electrode active material for a lithium ion secondary battery represented by the formula: wherein the reaction temperature T between the Li element and the element of the substitution element M ′ other than Li, Ni, Co, and Mn is determined. measured, measuring the reaction temperature T N of the Li-containing material and Ni containing material, the reaction temperature T M of the reaction temperature T C and the Li-containing material and Mn raw material of the Li-containing material and Co-containing raw material, respectively and, selection and said reaction temperature T, the reaction temperature T N, T C, compared to T M respectively, the reaction temperature T N, T C, the reaction temperature T is higher substitution element M'than each of T M Step 1, using the raw material of the replacement element M ′ selected in Step 1 and the raw materials of Li, Ni, Co, and Mn, and a calcined powder satisfying the composition formula (2); In 2), the fired powder in the case of e = 0 (no substitution element M) is used. It is obtained, each of said fired powder X-ray diffraction analysis, and step 2 for selecting the substituting element M that diffraction peaks different from the diffraction results of e = 0 does not appear, and has a.

本発明は、上記に記載の置換元素の選択方法により置換元素Mを選択する選択工程と、前記組成式(2)に基づいてLi、Ni、Co、Mn、Mの各素原料を準備する素原料準備工程と、前記各素原料粉末を粉砕し混合する粉砕混合工程と、前記混合粉末を同時に焼成する焼成工程と、を含むリチウムイオン二次電池用正極活物質の製造方法である。   The present invention provides a selection step of selecting a replacement element M by the above-described method for selecting a replacement element, and a method of preparing each raw material of Li, Ni, Co, Mn, and M based on the composition formula (2). A method for producing a positive electrode active material for a lithium ion secondary battery, comprising a raw material preparing step, a pulverizing and mixing step of pulverizing and mixing the raw material powders, and a firing step of simultaneously firing the mixed powders.

本発明は、上記に記載の置換元素の選択方法により選択された置換元素Mを含むリチウムイオン二次電池用正極活物質であって、
Li1+aNiCoMn2+α ・・・(2)
[組成式(2)において、Mは、Li、Ni、Co、Mn以外の置換元素を表し、a、b、c、d、e及びαは、それぞれ、−0.04≦a≦0.04、0.80≦b<1.0、0<c、0<d、0<e≦0.05、b+c+d+e=1、−0.2≦α≦0.2を満たす数である。]で表され、前記置換元素MがAl、Ga、Mg、Zr、Znからなる群から選択される一つ以上の元素であるリチウムイオン二次電池用正極活物質である。
The present invention is a positive electrode active material for a lithium ion secondary battery including the substitution element M selected by the method for selecting a substitution element described above,
Li 1 + a Ni b Co c M n d Me O 2 + α (2)
[In the composition formula (2), M represents a substitution element other than Li, Ni, Co, and Mn, and a, b, c, d, e, and α are -0.04 ≦ a ≦ 0.04, respectively. , 0.80 ≦ b <1.0, 0 <c, 0 <d, 0 <e ≦ 0.05, b + c + d + e = 1, and −0.2 ≦ α ≦ 0.2. And wherein the substitution element M is at least one element selected from the group consisting of Al, Ga, Mg, Zr, and Zn, and is a positive electrode active material for a lithium ion secondary battery.

本発明によれば、高容量で、且つサイクル特性に優れた特性を得ることが期待できるリチウムイオン二次電池用正極活物質の置換元素の選択方法を提供できる。また、選択された置換元素を用いて実質的に異相が無いリチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極活物質を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the selection method of the substitution element of the positive electrode active material for lithium ion secondary batteries which can be expected to obtain the high capacity and the characteristic excellent in the cycle characteristic can be provided. In addition, it is possible to provide a method for producing a positive electrode active material for a lithium ion secondary battery and a positive electrode active material for a lithium ion secondary battery, which have substantially no foreign phase using the selected substitution element.

本発明の実施例及び比較例1に係る置換元素を用いたTG分析を示すグラフである。4 is a graph showing TG analysis using a substitution element according to an example of the present invention and Comparative Example 1. 本発明の実施例に係る置換元素を用いた焼成粉のXRD分析のパターンを示すグラフである。It is a graph which shows the pattern of XRD analysis of the baked powder using the substitution element concerning the example of the present invention. 比較例2に係る置換元素を用いた焼成粉のXRD分析のパターンを示すグラフである。9 is a graph showing an XRD analysis pattern of a fired powder using a substitution element according to Comparative Example 2.

以下、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の置換元素の選択方法、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極活物質について説明する。以下、「リチウムイオン二次電池用」は削除し、単に、置換元素の選択方法、正極活物質、その製造方法などと記載する。   Hereinafter, a method for selecting a substitution element of a positive electrode active material for a lithium ion secondary battery, a method for producing a positive electrode active material for a lithium ion secondary battery, and a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention will be described. I do. Hereinafter, “for lithium ion secondary batteries” will be deleted, and simply described as a method for selecting a replacement element, a positive electrode active material, a method for producing the same, and the like.

本実施形態に係る置換元素の選択方法は、下記組成式のようにNi比80%以上の正極活物質であっても、異相が実質的に生成しない置換元素であれば、層状構造を維持して従来と同等の容量維持率を発揮できると言う考えのもと、置換元素の候補を以下のようにして見出すものである。   The method for selecting a replacement element according to the present embodiment is such that a layered structure is maintained even in a cathode active material having a Ni ratio of 80% or more as long as the replacement element does not substantially generate a heterogeneous phase as in the following composition formula. Thus, based on the idea that a capacity retention ratio equivalent to that of a conventional one can be exhibited, a candidate for a substitution element is found as follows.

<正極活物質>
本実施形態に係る置換元素の選択方法は、下記組成式(1)
Li1+aNi2+α ・・・(1)
[組成式(1)において、Mは、Li、Ni以外の置換元素を表し、a、b、e及びαは、それぞれ、−0.04≦a≦0.04、0.80≦b<1.0、0<e≦0.05、b+e=1、−0.2≦α≦0.2を満たす数である。]で表されるリチウム遷移金属複合酸化物に用いることができる。
<Positive electrode active material>
The method for selecting a substitution element according to the present embodiment is based on the following composition formula (1):
Li 1 + a Ni b Me O 2 + α (1)
[In the composition formula (1), M represents a substitution element other than Li and Ni, and a, b, e, and α are -0.04 ≦ a ≦ 0.04 and 0.80 ≦ b <1, respectively. 0.0, 0 <e ≦ 0.05, b + e = 1, and −0.2 ≦ α ≦ 0.2. ] The lithium transition metal composite oxide represented by the formula:

また、本実施形態に係る置換元素の選択方法は、下記組成式(2)
Li1+aNiCoMn2+α ・・・(2)
[組成式(2)において、Mは、Li、Ni、Co、Mn以外の置換元素を表し、a、b、c、d、e及びαは、それぞれ、−0.04≦a≦0.04、0.80≦b<1.0、0<c、0<d、0<e≦0.05、b+c+d+e=1、−0.2≦α≦0.2を満たす数である。]で表されるリチウム遷移金属複合酸化物に用いることが好ましい。
In addition, the method for selecting a substitution element according to the present embodiment is based on the following composition formula (2):
Li 1 + a Ni b Co c M n d Me O 2 + α (2)
[In the composition formula (2), M represents a substitution element other than Li, Ni, Co, and Mn, and a, b, c, d, e, and α are -0.04 ≦ a ≦ 0.04, respectively. , 0.80 ≦ b <1.0, 0 <c, 0 <d, 0 <e ≦ 0.05, b + c + d + e = 1, and −0.2 ≦ α ≦ 0.2. ] Is preferably used for the lithium transition metal composite oxide represented by the formula:

組成式(1)(2)で表される正極活物質は、リチウムイオンの挿入及び脱離が可能な層状構造を呈するα−NaFeO型の結晶構造を有し、LiとNi及びNi以外の遷移金属とを含んで組成される。この正極活物質は、例えばリチウム遷移金属複合酸化物の一次粒子や二次粒子を主成分として構成されており、二次粒子は一次粒子が複数個凝集し焼結結合された状態にある。そして、このリチウム遷移金属複合酸化物は、Liを除いた金属当たりのNiの割合は80原子%以上であり、Niの含有率が高いため、高い充放電容量を実現することができる。 The positive electrode active material represented by the composition formulas (1) and (2) has an α-NaFeO 2 type crystal structure having a layered structure capable of inserting and removing lithium ions, and includes Li, Ni, and other than Ni. And a transition metal. The positive electrode active material is mainly composed of, for example, primary particles and secondary particles of a lithium transition metal composite oxide, and the secondary particles are in a state in which a plurality of primary particles are aggregated and sintered. The lithium transition metal composite oxide has a Ni content of 80 atomic% or more per metal excluding Li, and has a high Ni content, so that a high charge / discharge capacity can be realized.

その反面、ニッケルの含有率が高いことで、充放電時に結晶構造が不安定になり易い。結晶中でニッケルはNiOの層を形成しており、放電時には層間にリチウムイオンが挿入され、充電時にはリチウムイオンの脱離が起こる。充放電に伴うリチウムイオンの挿入と脱離によって格子歪や結晶構造に変化が生じ、これが充放電サイクルにおける容量維持率の低下に繋がっているものと考えられる。これに対して、前記一次粒子や二次粒子の外表面にTiのようにNiO様の異相の形成を抑制し得る置換元素Mが濃化した層を形成すれば、結晶構造を安定化させることが期待できる。このような置換元素Mを本発明の選択方法により選択する。この選択方法は、組成式(1)でも(2)でも適用できるが、Co、Mnによる安定化に加えた相乗効果が望める組成式(2)に用いることが好ましいと考える。以下では組成式(2)による場合を主に説明する。 On the other hand, the high nickel content tends to make the crystal structure unstable during charge and discharge. Nickel forms a NiO 2 layer in the crystal, and lithium ions are inserted between the layers during discharging, and the lithium ions are desorbed during charging. It is considered that lattice distortion and a change in crystal structure occur due to insertion and desorption of lithium ions during charge / discharge, which leads to a reduction in capacity retention rate in charge / discharge cycles. On the other hand, if a layer in which the substitution element M capable of suppressing the formation of a NiO-like hetero phase such as Ti is concentrated is formed on the outer surfaces of the primary particles and the secondary particles, the crystal structure can be stabilized. Can be expected. Such a substitution element M is selected by the selection method of the present invention. This selection method can be applied to either the composition formulas (1) or (2), but it is considered to be preferable to use the composition formula (2), which can expect a synergistic effect in addition to stabilization by Co and Mn. Hereinafter, the case according to the composition formula (2) will be mainly described.

<置換元素の選択>
本実施形態に係る置換元素の選択方法は、以下のステップ1、ステップ2を行って選択する。
<Selection of substitution element>
The method for selecting a replacement element according to the present embodiment is performed by performing the following steps 1 and 2.

まず、ステップ1は、Li素原料粉末(Li源)と、Li、Ni以外で候補となる置換元素M´(M、M、M…)の素原料粉末との混合粉末について、反応温度を測定する。ここで反応温度の測定は、熱重量分析(TG分析)することが好ましい。TG分析により、温度上昇による重量減少変化を測定し、反応による重量減少割合が温度900℃での値の1/2に相当する温度を反応温度T、T、T…として求めた。一方で、Li素原料粉末とNi、Co、Mnの各素原料粉末との混合粉について、同様のTG分析を行い、それぞれの反応による重量減少割合が温度900℃での値の1/2に相当する反応温度を求め、Niの反応温度をT、Coの反応温度をT、Mnの反応温度をTとした。 First, step 1 is to react a mixed powder of a Li raw material powder (Li source) and a raw material powder of a substitution element M ′ (M 1 , M 2 , M 3 ...) Which is a candidate other than Li and Ni. Measure the temperature. Here, the reaction temperature is preferably measured by thermogravimetric analysis (TG analysis). The change in weight loss due to temperature rise was measured by TG analysis, and the temperature at which the weight loss ratio due to the reaction was 1 / of the value at 900 ° C. was determined as reaction temperatures T 1 , T 2 , T 3 . On the other hand, the same TG analysis was performed on the mixed powder of the Li raw material powder and the Ni, Co, and Mn raw material powders, and the weight reduction ratio due to each reaction was reduced to half the value at a temperature of 900 ° C. The corresponding reaction temperature was determined, and the reaction temperature of Ni was T N , the reaction temperature of Co was T C , and the reaction temperature of Mn was T M.

また、本発明において反応温度を「反応による重量減少割合が温度900℃での値の1/2に相当する温度」とした理由について以下に述べる。まず、本発明ではNi比が80%以上と多いため、焼成温度が900℃を超えると、NiがLi層に混入するカチオンミキシングの増加や層状構造の崩壊を生じ易くなる。このような正極活物質では容量低下を招くことから900℃を上限に設定した。次に、900℃までの「Li源と各置換元素M´との反応性」を序列評価する指標が重要となるが、Li源と各置換元素M´は、Li−M´−O酸化物を徐々に形成していき、CO2ガスを放出して重量減少していくと考えられる。この反応過程は各置換元素で異なり複雑であるため、反応が進行する中間過程である「反応による重量減少割合が温度900℃での値の1/2に相当する反応温度」を実験的に測定し、この温度の高低で各置換元素の序列評価を行うようにしたものである。尚、TG分析以外では、例えば示差走査熱量測定(DSC)や発生気体分析(EGA)を用いることが出来る。 The reason why the reaction temperature in the present invention is set to "the temperature at which the weight loss ratio due to the reaction is 1/2 of the value at a temperature of 900 ° C" will be described below. First, since the Ni ratio is as high as 80% or more in the present invention, if the firing temperature exceeds 900 ° C., cation mixing in which Ni is mixed in the Li layer and collapse of the layered structure are likely to occur. Since the capacity of such a positive electrode active material decreases, 900 ° C. is set as the upper limit. Next, an index that ranks and evaluates the “reactivity between the Li source and each of the substitution elements M ′” up to 900 ° C. is important, and the Li source and each of the substitution elements M ′ are composed of a Li—M′—O oxide Is gradually formed, and the CO 2 gas is released to reduce the weight. Since this reaction process is different and complicated for each substitution element, the intermediate process in which the reaction proceeds, "reaction temperature at which the weight loss ratio due to the reaction corresponds to 1/2 of the value at a temperature of 900 ° C" is experimentally measured. Then, the order of each substitution element is evaluated at the high and low temperatures. In addition to the TG analysis, for example, differential scanning calorimetry (DSC) or generated gas analysis (EGA) can be used.

次に、それぞれの置換元素M´の反応温度T、T、T…と、Ni、Co、Mnの反応温度T、T、Tとをそれぞれ比較し、前記反応温度T、T、Tのそれぞれよりも反応温度が高い置換元素を選択する。例えば、T、TはT、T、Tよりも大きいことを満足するが、Tは1つでも満足しない場合は、TとTの元素は置換元素Mの候補となるが、Tの元素は、ここで除外することになる。尚、組成式(1)では、同様に測定したNiの反応温度Tと、前記反応温度Tとを比較し、反応温度Tよりも反応温度Tが高い置換元素を選択することになる。 The reaction temperature of each of the substituting element M'T 1, T 2, T 3 ... and, Ni, Co, reaction temperature T N of Mn, T C, and T M respectively compared, the reaction temperature T N , T C , and T M are selected. For example, T 1, T 2 are T N, T C, but satisfies the greater than T M, T 3 if do not satisfy even one element T 1 and T 2 are the candidates for substitution elements M made, but the element of T 3 will be excluded here. In the composition formula (1), the reaction temperature T N of Ni measured in the same manner is compared with the reaction temperature T, and a substitution element having a higher reaction temperature T than the reaction temperature T N is selected.

ステップ1によれば、選択され得る置換元素M´(例えばM、M)は、Ni、Co、MnよりLi源との反応温度が高いため、Li源とNi、Co及びMnとの反応が進んでおり、三元系の層状構造が形成され易くなる。これにより、正極活物質に必要な層状構造以外の結晶が生成する可能性が低減される。そして、これらの置換元素M´は、Li源との反応進行が遅いので効果的に活物質粒子の外表面に置換元素M´が濃化することが期待できる。 According to step 1, the selectable substitution element M ′ (eg, M 1 , M 2 ) has a higher reaction temperature with the Li source than Ni, Co, and Mn, and thus the reaction between the Li source and Ni, Co, and Mn. And a ternary layered structure is easily formed. Thereby, the possibility that crystals other than the layered structure required for the positive electrode active material are generated is reduced. And since these substitution elements M 'react slowly with the Li source, it can be expected that the substitution elements M' are effectively concentrated on the outer surfaces of the active material particles.

次に、ステップ2では、ステップ1で選択した各置換元素M´(例えばM、M)について、他の素原料と同時焼成した場合にリチウム遷移金属複合酸化物に適した結晶構造が得られるか否かを判断する。ステップ1で選択した各置換元素M´(例えばM、M)の素原料粉末と、Li、Ni、Co、Mnの素原料粉末を用いて、上記組成式(2)を満足する正極活物質の焼成粉を得る。また一方で、組成式(2)においてe=0、すなわち置換元素M´を含まない焼成粉を同様にして得る。そして、これら各焼成粉をX線回析分析(XRD分析)する。このときe=0の回析結果を標準とし、e=0の回析結果と各焼成粉の回析結果とを対比する。その結果、e=0の回析結果と異なる回折ピークが生じていない、すなわち異相ピークが現われない元素を置換元素Mとして選択する。ここで、異なる回折ピーク(異相ピーク)が現われないとは、本発明ではXRD分析の強度がバックグラウンド以下となっていることを指し、実質的にノイズに相当し無視できる程度のものをいう。このような場合に実質的に異相の生成がないものとする。 Next, in Step 2, a crystal structure suitable for a lithium transition metal composite oxide is obtained when each of the substitution elements M ′ (for example, M 1 and M 2 ) selected in Step 1 is co-fired with another raw material. It is determined whether it can be performed. Using the raw material powder of each of the substitution elements M ′ (for example, M 1 and M 2 ) selected in Step 1 and the raw material powders of Li, Ni, Co, and Mn, the positive electrode active material satisfying the above composition formula (2). Obtain a calcined powder of the substance. On the other hand, in the composition formula (2), e = 0, that is, a calcined powder containing no substitution element M ′ is obtained in the same manner. Then, these calcined powders are subjected to X-ray diffraction analysis (XRD analysis). At this time, the diffraction result of e = 0 is set as a standard, and the diffraction result of e = 0 is compared with the diffraction result of each fired powder. As a result, an element in which a diffraction peak different from the diffraction result of e = 0 is not generated, that is, an element in which a heterophase peak does not appear is selected as the substitution element M. Here, the expression that no different diffraction peaks (heterophase peaks) appear in the present invention means that the intensity of the XRD analysis is lower than the background, which is substantially equivalent to noise and negligible. In such a case, it is assumed that substantially no foreign phase is generated.

ステップ2によれば、ステップ1でリチウム遷移金属複合酸化物の層状構造を崩さずに添加できるという観点で選択した置換元素を、他の素原料と共に焼成し、焼成体としての結晶性をXRDで確認し、異相が生じない置換元素であるかの適性を見極めて選択するものである。リチウム遷移金属複合酸化物の焼成時に層状構造以外の結晶(異相)が生成される場合は、異相は電池の正極材として作用しないため、充放電時の容量が低下する他、異相の形態によっては抵抗が上昇し電池性能の低下に繋がる。このステップを設けることで、異相生成のない良好な性能の正極活物質を得ることが出来ることになる。   According to step 2, the replacement element selected from the viewpoint that it can be added without breaking the layered structure of the lithium transition metal composite oxide in step 1 is fired together with other raw materials, and the crystallinity of the fired body is determined by XRD. After confirming, the appropriateness of the substitution element that does not cause a different phase is determined. If crystals (heterophase) other than the layered structure are generated during firing of the lithium transition metal composite oxide, the heterophase does not act as a positive electrode material of the battery, so that the capacity at the time of charge / discharge decreases and, depending on the form of the heterophase, The resistance increases, leading to a decrease in battery performance. By providing this step, it is possible to obtain a positive electrode active material having good performance without generation of a different phase.

XRD分析の手順としては、置換元素を含まないLi、Ni、Co、Mnのみの、e=0の組成のXRDパターンを標準とし、これに対して置換元素M´を添加した組成(0<e)でのXRDパターンを比較して、標準では検出されなかった回折ピークを異相と判定する。ステップ1で選択した置換元素を添加した場合の正極の容量低下や抵抗上昇が起こり得る可能性の有無を判断するものである。
以上により、ステップ1、ステップ2を満足する置換元素Mを選択することができれば、以降は選択した置換元素Mを用いて以下の本発明の製造方法を実施すればよい。
As a procedure of the XRD analysis, an XRD pattern of a composition of e = 0 only of Li, Ni, Co, and Mn containing no substitution element was used as a standard, and a composition obtained by adding a substitution element M ′ thereto (0 <e). The diffraction peaks not detected by the standard are judged to be different phases by comparing the XRD patterns in the above (2). This is to judge whether there is a possibility that the capacity of the positive electrode may decrease or the resistance may increase when the substitution element selected in step 1 is added.
As described above, if it is possible to select the replacement element M that satisfies Steps 1 and 2, the following manufacturing method of the present invention may be performed using the selected replacement element M.

<正極活物質の製造方法>
本実施形態に係る正極活物質の製造方法は、上記置換元素Mを選択する選択工程の後に、以下の工程1〜工程3の手順で行うものである。
<Production method of positive electrode active material>
The method for producing a positive electrode active material according to the present embodiment is performed in the following steps 1 to 3 after the selection step of selecting the replacement element M.

工程1は、前記の組成式(1)や(2)に基づいてLiの素原料粉末と、Ni、Co、Mnおよび置換元素Mとの素原料粉末を準備する工程である(素原料準備工程)。
工程1では、例えば組成式(2)に基づいてLi、Ni、Co、Mnおよび置換元素Mを含んだ素原料粉末を秤量する。素原料として用いる化合物の形態としては、例えばリチウムでは、炭酸リチウム、酢酸リチウム、硝酸リチウム、硫酸リチウム、塩化リチウム、水酸化リチウム等がある。リチウム以外のNi、Co、Mnなどの金属の化合物としては、炭酸塩、水酸化物、オキシ水酸化物、酢酸塩、クエン酸塩、酸化物等が用いられる。化合物中に含まれる素原料の元素の純度から、必要な化合物量を求める。素原料の組成がずれていると後段で行う原料粉の焼成において、同一温度でも焼成状態が変わってしまい所定の結晶構造を有する焼成粉が得られなくなる。そのため、化合物中の素原料の純度や焼成前の全素原料混合粉の組成にズレがないか分析する。
Step 1 is a step of preparing a raw material powder of Li and a raw material powder of Ni, Co, Mn, and a substitution element M based on the composition formulas (1) and (2) (raw material preparation step). ).
In step 1, a raw material powder containing Li, Ni, Co, Mn and a substitution element M is weighed, for example, based on the composition formula (2). Examples of the form of the compound used as the raw material include lithium carbonate such as lithium carbonate, lithium acetate, lithium nitrate, lithium sulfate, lithium chloride, and lithium hydroxide. As compounds of metals other than lithium, such as Ni, Co, and Mn, carbonates, hydroxides, oxyhydroxides, acetates, citrates, oxides, and the like are used. The required amount of the compound is determined from the purity of the element of the raw material contained in the compound. If the composition of the raw materials is deviated, in the subsequent stage of firing the raw material powder, the firing state changes even at the same temperature, and a fired powder having a predetermined crystal structure cannot be obtained. Therefore, the purity of the raw material in the compound and the composition of the whole raw material mixed powder before firing are analyzed for deviation.

工程2は、工程1で準備した全素原料化合物の粉末を、粉砕および混合する工程である(粉砕混合工程)。
工程2では、全素原料化合物の粉末を、次の工程3で行う焼成に適した混合状態とするため、粉砕および混合を行う。素原料の粒径は均一ではなく、原料/化合物の種類、購入先などによりばらついている。素原料化合物の粒径は混合状態に影響を与えるため、粒径が所定の範囲内に収まっているほうが好ましい。そこで、全素原料を粉砕し粒径を調整する。また、素原料粉末の混合が不十分で素原料の分布が不均一な場合、焼成後の焼成粉の結晶構造が、目的とする層状構造まで成長しない、あるいは層状構造以外の結晶が生成される可能性があるため、均一状態とすべく粉砕し混合するほうが好ましい。原料の粉砕手段としては、ボールミル、ビーズミル、ジェットミル等を用いることができる。素原料粉は粉砕用のメデイアやライナーとの衝突、摩擦により所定の粒径まで粉砕される。
Step 2 is a step of pulverizing and mixing the powder of all the raw material compounds prepared in step 1 (pulverizing and mixing step).
In step 2, pulverization and mixing are performed to bring the powder of all the raw material compounds into a mixed state suitable for the calcination performed in step 3 below. The particle size of the raw material is not uniform and varies depending on the type of raw material / compound, the place of purchase, and the like. Since the particle size of the raw material compound affects the mixing state, it is preferable that the particle size falls within a predetermined range. Therefore, all the raw materials are pulverized to adjust the particle size. In addition, when the raw material powder is not sufficiently mixed and the distribution of the raw material is uneven, the crystal structure of the fired powder after firing does not grow to the intended layered structure, or crystals other than the layered structure are generated. Because of the possibility, it is preferable to grind and mix the mixture to obtain a uniform state. As a means for pulverizing the raw material, a ball mill, a bead mill, a jet mill or the like can be used. The raw material powder is pulverized to a predetermined particle size by collision or friction with a pulverizing medium or liner.

粉砕混合工程の後に、造粒工程を行うのが好ましい。粉砕混合工程で得られた混合物を造粒して粒子同士が凝集した二次粒子(造粒体)を得る。混合物の造粒は、乾式造粒及び湿式造粒のいずれを利用して行ってもよい。混合物を造粒する造粒法としては、噴霧造粒法が特に好ましい。噴霧造粒機としては、2流体ノズル式、4流体ノズル式、ディスク式等の各種の方式を用いることができる。噴霧造粒法であれば、湿式粉砕によって精密混合粉砕した混合物のスラリーを、乾燥しながら造粒させることができる。また、スラリーの濃度、噴霧圧、ディスク回転数等の調整によって、二次粒子の粒径を所定範囲に精密に制御することが可能であり、真球に近く、化学組成が均一な造粒体を効率的に得ることができる。   After the pulverizing and mixing step, a granulation step is preferably performed. The mixture obtained in the pulverizing and mixing step is granulated to obtain secondary particles (granules) in which the particles are aggregated. Granulation of the mixture may be performed using either dry granulation or wet granulation. As the granulation method for granulating the mixture, spray granulation is particularly preferred. As the spray granulator, various systems such as a two-fluid nozzle system, a four-fluid nozzle system, and a disk system can be used. In the case of the spray granulation method, the slurry of the mixture that has been precisely mixed and pulverized by wet pulverization can be granulated while drying. In addition, it is possible to precisely control the particle diameter of the secondary particles within a predetermined range by adjusting the concentration of the slurry, the spray pressure, the number of rotations of the disk, etc. Can be obtained efficiently.

工程3は、工程2で粉砕・混合した全素原料混合粉末を同時に焼成する工程である(焼成工程)。
工程3では、全素原料を混合した粉末を同時に焼成することによりNi、Co、Mnおよび置換元素Mから成る層状構造の結晶が生成される。このとき、反応開始温度が一番高い置換元素Mは、既に層状構造が形成された二次粒子に対し最後に反応が起こるため、粒子の外表面に置換元素Mが濃化した層を形成し易くなる。このように粒子の外表面に濃化層を配置しやすい置換元素Mの選択手段が本発明の特徴である。また、このとき選択した置換元素Mを含む全素原料粉末を同時に熱処理し、固相反応により焼成することが本発明の製造方法の特徴でもある。尚、原料粉の焼成手段としては、ロータリーキルン、ローラハースキルン等の焼成炉を用いることができる。
Step 3 is a step of simultaneously firing all raw material mixed powders ground and mixed in step 2 (firing step).
In step 3, a powder having a layered structure composed of Ni, Co, Mn, and the substituting element M is generated by simultaneously firing powders in which all the raw materials are mixed. At this time, since the substitution element M having the highest reaction initiation temperature causes a reaction at the end with respect to the secondary particles already having the layered structure, a layer in which the substitution element M is concentrated is formed on the outer surface of the particles. It will be easier. The feature of the present invention is a means for selecting the substitution element M that facilitates disposing the concentrated layer on the outer surface of the particle. It is also a feature of the production method of the present invention that all the raw material powders containing the selected substitution element M are heat-treated at the same time and fired by a solid-phase reaction. As a means for firing the raw material powder, a firing furnace such as a rotary kiln or a roller hearth kiln can be used.

ここで全素原料の混合粉の焼成において層状構造の結晶を得るには、組成に応じて焼成温度を1段あるいは段階的に上昇させ多段で焼成するのが好ましい。   Here, in order to obtain a crystal having a layered structure in the firing of the mixed powder of all the raw materials, it is preferable to raise the firing temperature in one step or stepwise according to the composition and fire in multiple steps.

例えば、固相法による多段焼成で素原料の化合物形態がLi、Co、Mnが炭酸塩、Niが水酸化物、置換元素Mが酸化物である場合には、低温度(約500℃以上700℃以下)の焼成で、炭酸塩からCOが除々に放出されて酸化物に、水酸化物も除々に熱分解し酸化物への反応が進み、また、素原料同士の粒子表面における固相拡散が進む。中温度(約700℃以上800℃以下)での焼成では、Liが溶融して液相拡散が進むと共に、他の素原料(酸化物)とLiとの反応が進む。 For example, when the compound form of the raw material is Li, Co, Mn as carbonate, Ni as hydroxide, and substitution element M as oxide by multi-stage sintering by the solid-phase method, low temperature (about 500 ° C. to 700 ° C.) (° C. or lower), CO 2 is gradually released from the carbonate, and the hydroxide and the hydroxide are also gradually thermally decomposed and the reaction to the oxide proceeds, and the solid phase on the particle surface between the raw materials is also increased. Diffusion proceeds. In baking at a medium temperature (about 700 ° C. or more and 800 ° C. or less), Li melts and liquid phase diffusion advances, and the reaction between another elementary material (oxide) and Li advances.

続く高温度(約800℃以上900℃以下)での焼成は、Liと他の素原料および他素原料同士の拡散反応が更に進み層状構造のリチウム遷移金属複合酸化物が生成される。以上のように全素原料の同時焼成を、多段焼成をすることによりLi、Ni、Co、Mn及び置換元素Mを全て含んだ層状構造の正極活物質が得られやすいため好ましい。   In the subsequent firing at a high temperature (about 800 ° C. or more and 900 ° C. or less), the diffusion reaction between Li and other raw materials and the other raw materials further proceeds, and a layered lithium-transition metal composite oxide is produced. As described above, simultaneous firing of all the raw materials is preferably performed by performing multi-stage firing because a positive electrode active material having a layered structure containing all of Li, Ni, Co, Mn, and the substitution element M is easily obtained.

また、本実施形態に係るリチウム遷移金属複合酸化物は、主成分であるリチウム遷移金属複合酸化物の他、原料や製造過程に由来する不純物、リチウム遷移金属複合酸化物の粒子を被覆する他成分(ホウ素、リン、硫黄、フッ素、有機物等)、リチウム遷移金属複合酸化物の粒子と共に混合される成分を含んでもよい。
ステップ2で得られた置換元素MをLi、Ni、Co、Mnの素原料と一緒に前述の1段あるいは多段の熱処理することで、上記の課題が解決でき、電池の容量や性能が低下しない正極活物質を得ることが可能となる。
In addition, the lithium transition metal composite oxide according to the present embodiment includes, in addition to the lithium transition metal composite oxide as a main component, impurities derived from raw materials and manufacturing processes, and other components that coat particles of the lithium transition metal composite oxide. (Boron, phosphorus, sulfur, fluorine, organic matter, etc.), and a component mixed with particles of the lithium transition metal composite oxide.
By subjecting the replacement element M obtained in Step 2 to the above-described one-stage or multi-stage heat treatment together with the raw materials of Li, Ni, Co, and Mn, the above-described problem can be solved, and the capacity and performance of the battery do not decrease. A positive electrode active material can be obtained.

以下、置換元素Mの選択に係る一実施例を説明する。
置換元素M´について、まずはステップ1に基づいてLi素原料粉末との反応性を把握するため、反応温度をTG分析で測定した。置換元素M´の候補としては、Al、Ga、Mg、Zr、Znを挙げ、Tiを参照元素として挙げた。また、Ni、Co、Mn及び置換元素M´は酸化物とし、Liは炭酸塩を用いている。Li素原料と置換元素M´の素原料、Li素原料とNi素原料、Li素原料とCo素原料及びLi素原料とMn素原料と、それぞれ両者のモル比は1:1で秤量した。TG分析の結果を図1に示す。図の横軸は温度、縦軸は初期試料重量に対する試料重量の減少割合とした。試験条件は昇温速度が10℃/minで、室温から900℃まで加熱した。
In the following, an example according to the selection of the substitution element M will be described.
First, the reaction temperature of the substitution element M ′ was measured by TG analysis in order to ascertain the reactivity with the Li raw material powder based on Step 1. As candidates for the substitution element M ′, Al, Ga, Mg, Zr, and Zn were mentioned, and Ti was mentioned as a reference element. Ni, Co, Mn and the substitution element M ′ are oxides, and Li is a carbonate. The Li raw material and the raw material of the substitution element M ', the Li raw material and the Ni raw material, the Li raw material and the Co raw material, and the Li raw material and the Mn raw material were weighed at a molar ratio of 1: 1. FIG. 1 shows the results of the TG analysis. The horizontal axis of the figure is the temperature, and the vertical axis is the reduction ratio of the sample weight to the initial sample weight. The test conditions were as follows: the temperature was raised from room temperature to 900 ° C. at a heating rate of 10 ° C./min.

TG分析結果から反応温度を求めた。ここで、反応温度とは、反応による重量減少割合が温度900℃での値の1/2に相当する温度とした。これは、上述したように温度上昇割合に対する重量減少割合が元素により異なるためである。
図1より、Niの反応温度Tは約610℃、Coの反応温度Tは約590℃、Mnの反応温度Tは約410℃であった。よって、置換元素の合否を判定する反応温度Tは、本実施例では610℃とする。
The reaction temperature was determined from the TG analysis results. Here, the reaction temperature is a temperature at which the weight loss ratio due to the reaction is half the value at 900 ° C. This is because the weight reduction ratio with respect to the temperature rise ratio differs depending on the element as described above.
Than 1, the reaction temperature T N of Ni is about 610 ° C., the reaction temperature T C of Co is about 590 ° C., the reaction temperature T M of Mn was about 410 ° C.. Therefore, the reaction temperature T for determining whether or not the substitution element is acceptable is 610 ° C. in this embodiment.

これに対して、Al、Ga、Mg、Zr、Zn及びTiの各酸化物の反応温度は、Alが約760℃、Gaが約610℃、Mgが約850℃、Zrが約680℃、Znが約900℃及びTiが約620℃であった。よって、Al、Ga、Mg、Zr、Znの何れも反応温度は、Ni、Mn、Coのそれよりも高く、合否判定温度以上であった。また、Tiと比べても同等或いはそれ以上であった。   On the other hand, the reaction temperature of each oxide of Al, Ga, Mg, Zr, Zn and Ti is as follows: Al is about 760 ° C., Ga is about 610 ° C., Mg is about 850 ° C., Zr is about 680 ° C., Zn Was about 900 ° C. and Ti was about 620 ° C. Therefore, the reaction temperature of each of Al, Ga, Mg, Zr, and Zn was higher than that of Ni, Mn, and Co, and was higher than the pass / fail judgment temperature. Moreover, it was equal to or more than that of Ti.

以上のステップ1により、前述の5つの置換元素が、正極活物質を構成するNi、Co、Mnより、Liとの反応温度が高く、置換元素(添加元素)として用いた場合、層状構造を崩さず異相を生成し得ないものであることを確認した。   By the above Step 1, the above five substitution elements have a higher reaction temperature with Li than Ni, Co, and Mn constituting the positive electrode active material, and when used as a substitution element (addition element), the layered structure is broken. It was confirmed that no heterophase could be formed.

(比較例1)
比較例としてB(ホウ素)とLaを用いた。B、La共に酸化物を用いており、上述の実施例と同様にしてTG分析を行った。その結果を図1中に示す。
図1より、Bの反応温度は約190℃、Laの反応温度は約730℃であった。LaはNi、Mn、Coよりも反応温度が高くステップ1をクリアした。一方、Bは反応温度が低く、さらに半金属であるため置換元素Mとしては不適と判断される。
(Comparative Example 1)
B (boron) and La were used as comparative examples. Both B and La used an oxide, and TG analysis was performed in the same manner as in the above-described example. The result is shown in FIG.
From FIG. 1, the reaction temperature of B was about 190 ° C., and the reaction temperature of La was about 730 ° C. La had a higher reaction temperature than Ni, Mn, and Co, and completed Step 1. On the other hand, B has a low reaction temperature and is a semimetal, so it is judged to be unsuitable as the substitution element M.

続いて、ステップ2に基づいて、組成Li1.02Ni0.90Mn0.05Co0.030.02の焼成粉を作製しXRD分析した。試料はLiCO、Ni(OH)、MnCO、CoCOおよび置換元素酸化物の素原料粉末を、ボールミルに純水と共に充填し、所定時間粉砕した後、粉砕スラリーを真空乾燥させ混合粉末とした。混合粉末の平均粒径は0.5〜0.6μmである。混合粉末の焼成は、低温度(650℃×10hr)の仮焼成、中温度(755℃×10hr)の中間焼成、高温度の本焼成(840℃×4hr)の3段階で実施した。
ステップ1で選択した置換元素の候補であるAl、Ga、Mg、Zr、Zn及びTiを添加した夫々の組成の焼成粉についてXRD分析した。その結果を図2に示す。尚、XRD分析は下記の条件で行った。
Subsequently, based on Step 2, a calcined powder having a composition of Li 1.02 Ni 0.90 Mn 0.05 Co 0.03 M 0.02 was prepared and subjected to XRD analysis. A sample is prepared by filling a ball mill with elemental powders of Li 2 CO 3 , Ni (OH) 2 , MnCO 3 , CoCO 3 and a substitution element oxide together with pure water, pulverizing for a predetermined time, drying the pulverized slurry under vacuum, and mixing Powder. The average particle size of the mixed powder is 0.5 to 0.6 μm. The firing of the mixed powder was performed in three stages: temporary firing at a low temperature (650 ° C. × 10 hr), intermediate firing at a medium temperature (755 ° C. × 10 hr), and main firing at a high temperature (840 ° C. × 4 hr).
XRD analysis was performed on the fired powders of the respective compositions to which Al, Ga, Mg, Zr, Zn, and Ti, which are candidate replacement elements selected in Step 1, were added. The result is shown in FIG. The XRD analysis was performed under the following conditions.

<粉末X線回折測定>
以下に結晶構造の確認方法としてXRD(X線回折)の測定方法について説明する。粉末X線回折装置は「RINT(Rigaku製)」を用いた。
焼成粉をアルミ製のサンプルフォルダー内に充填した。その後、線源:CuKα、管電圧:40kV、管電流:100mA、走査角度:15〜80°、走査速度:1.0°/min、サンプリング間隔:0.02°/stepの条件で測定した。
<Powder X-ray diffraction measurement>
Hereinafter, a method for measuring XRD (X-ray diffraction) will be described as a method for confirming the crystal structure. As a powder X-ray diffractometer, "RINT (manufactured by Rigaku)" was used.
The calcined powder was filled in an aluminum sample folder. Thereafter, measurement was performed under the following conditions: source: CuKα, tube voltage: 40 kV, tube current: 100 mA, scanning angle: 15 to 80 °, scanning speed: 1.0 ° / min, and sampling interval: 0.02 ° / step.

図2では、置換元素を添加しない標準組成(e=0)の場合を合わせて示す。
図2より、標準組成の回折パターンに対して、Al、Ga、Mg、Zr、Zn及びTiを添加した場合の回折パターンは同一で、バックグラウンドより大きい異相ピークは検出されなかった。各元素共に本焼成では異相が生成されていないことを確認できた。
FIG. 2 also shows the case of the standard composition (e = 0) to which the substitution element is not added.
2, the diffraction pattern when Al, Ga, Mg, Zr, Zn, and Ti were added was the same as the diffraction pattern of the standard composition, and no heterophase peak larger than the background was detected. It was confirmed that no heterophase was generated in the main firing for each element.

(比較例2)
比較例としてステップ1で反応温度がNi、Mn、Coより高かった置換元素Laを用いて同じ組成比で本焼成し、同様にXRD分析した結果を図3に示す。標準組成に対して図中に○印で示した位置に異相のピークが確認された。Laでは標準組成と異なる結晶(異相)が生成されていると判断できる。よって、Laはステップ2をクリアすることができず、置換元素Mとしては不適と判断される。
(Comparative Example 2)
As a comparative example, FIG. 3 shows the result of the same firing using the substitution element La having a higher reaction temperature than Ni, Mn, and Co in step 1 at the same composition ratio, and similarly subjected to XRD analysis. Heterophase peaks were confirmed at the positions indicated by the circles in the figure with respect to the standard composition. In La, it can be determined that a crystal (heterophase) different from the standard composition is generated. Therefore, La cannot clear Step 2, and is determined to be unsuitable as the replacement element M.

以上により、リチウム遷移金属複合酸化物を用いた正極活物質に置換元素を添加する際に、上述したステップ1、ステップ2を実施して置換元素Mを選択することにより、焼成したリチウム遷移金属複合酸化物に層状構造以外の異相が含まれることが無くなり、抵抗上昇を抑えて容量維持率の低下や充放電容量の低下を抑制できることが期待される正極を得ることが可能となる。
As described above, when the substitution element is added to the positive electrode active material using the lithium transition metal composite oxide, by performing the above steps 1 and 2 to select the substitution element M, the calcined lithium transition metal composite The oxide does not contain a different phase other than the layered structure, so that it is possible to obtain a positive electrode which is expected to suppress a rise in resistance and to suppress a decrease in capacity retention ratio and a decrease in charge / discharge capacity.

Claims (4)

Li1+aNi2+α ・・・(1)
[組成式(1)において、Mは、Li、Ni以外の置換元素を表し、a、b、e及びαは、それぞれ、−0.04≦a≦0.04、0.80≦b<1.0、0<e≦0.05、b+e=1、−0.2≦α≦0.2を満たす数である。]で表されるリチウムイオン二次電池用正極活物質の置換元素の選択方法であって、
Li素原料とLi、Ni以外の置換元素M´の素原料との反応温度Tを測定し、
前記Li素原料とNi素原料との反応温度Tを測定し、
前記反応温度Tと、前記反応温度Tを比較し、前記反応温度Tよりも反応温度Tが高い置換元素M´を選択するステップ1と、
ステップ1で選択した置換元素M´の素原料と、Li、Niの素原料を用いて、前記組成式(1)を満足する焼成粉と、前記組成式(1)においてe=0の場合の焼成粉をそれぞれ得て、
前記各焼成粉をX線回析分析し、e=0の回析結果と異なる回折ピークが現われない置換元素Mを選択するステップ2と、
を有することを特徴とするリチウムイオン二次電池用正極活物質の置換元素の選択方法。
Li 1 + a Ni b Me O 2 + α (1)
[In the composition formula (1), M represents a substitution element other than Li and Ni, and a, b, e, and α are -0.04 ≦ a ≦ 0.04 and 0.80 ≦ b <1, respectively. 0.0, 0 <e ≦ 0.05, b + e = 1, and −0.2 ≦ α ≦ 0.2. ] The method for selecting a substitution element of the positive electrode active material for a lithium ion secondary battery represented by
The reaction temperature T between the Li raw material and the raw material of the substitution element M ′ other than Li and Ni was measured,
Measuring the reaction temperature TN between the Li base material and the Ni base material,
Wherein the reaction temperature T, and step 1 for comparing the reaction temperature T N, selects a replacement element M'high reaction temperature T than the reaction temperature T N,
Using the raw material of the replacement element M ′ selected in step 1 and the raw materials of Li and Ni, a calcined powder satisfying the composition formula (1), and a case where e = 0 in the composition formula (1) Obtain each baked powder,
X-ray diffraction analysis of each of the calcined powders, and selecting a substitution element M that does not show a diffraction peak different from the diffraction result of e = 0;
A method for selecting a substitution element of a positive electrode active material for a lithium ion secondary battery, comprising:
Li1+aNiCoMn2+α ・・・(2)
[組成式(2)において、Mは、Li、Ni、Co、Mn以外の置換元素を表し、a、b、c、d、e及びαは、それぞれ、−0.04≦a≦0.04、0.80≦b<1.0、0<c、0<d、0<e≦0.05、b+c+d+e=1、−0.2≦α≦0.2を満たす数である。]で表されるリチウムイオン二次電池用正極活物質の置換元素の選択方法であって、
Li素原料とLi、Ni、Co、Mn以外の置換元素M´の素原料との反応温度Tを測定し、
前記Li素原料とNi素原料との反応温度T、前記Li素原料とCo素原料との反応温度T及び前記Li素原料とMn素原料との反応温度Tをそれぞれ測定し、
前記反応温度Tと、前記反応温度T、T、Tをそれぞれ比較し、前記反応温度T、T、Tのそれぞれよりも反応温度Tが高い置換元素M´を選択するステップ1と、
ステップ1で選択した置換元素M´の素原料と、Li、Ni、Co、Mnの素原料を用いて、前記組成式(2)を満足する焼成粉と、前記組成式(2)においてe=0の場合の焼成粉をそれぞれ得て、
前記各焼成粉をX線回析分析し、e=0の回析結果と異なる回折ピークが現われない置換元素Mを選択するステップ2と、
を有することを特徴とするリチウムイオン二次電池用正極活物質の置換元素の選択方法。
Li 1 + a Ni b Co c M n d Me O 2 + α (2)
[In the composition formula (2), M represents a substitution element other than Li, Ni, Co, and Mn, and a, b, c, d, e, and α are -0.04 ≦ a ≦ 0.04, respectively. , 0.80 ≦ b <1.0, 0 <c, 0 <d, 0 <e ≦ 0.05, b + c + d + e = 1, and −0.2 ≦ α ≦ 0.2. ] The method for selecting a substitution element of the positive electrode active material for a lithium ion secondary battery represented by
The reaction temperature T between the Li raw material and the raw material of the substitution element M ′ other than Li, Ni, Co, and Mn was measured,
The Li-containing starting material and the reaction temperature of the Ni-containing material T N, the reaction temperature T M of the reaction temperature T C and the Li-containing material and Mn raw material of the Li-containing material and Co-containing raw material were measured,
Selecting the said reaction temperature T, the reaction temperature T N, T C, compared to T M respectively, the reaction temperature T N, T C, the reaction temperature T is higher substitution element M'than each of T M 1 and
Using the raw material of the replacement element M ′ selected in Step 1 and the raw materials of Li, Ni, Co, and Mn, a calcined powder satisfying the composition formula (2), and e = Obtain the baked powder in the case of 0, respectively,
X-ray diffraction analysis of each of the calcined powders, and selecting a substitution element M that does not show a diffraction peak different from the diffraction result of e = 0;
A method for selecting a substitution element of a positive electrode active material for a lithium ion secondary battery, comprising:
請求項2に記載の置換元素の選択方法により置換元素Mを選択する選択工程と、
前記組成式(2)に基づいてLi、Ni、Co、Mn、Mの各素原料を準備する素原料準備工程と、
前記各素原料粉末を粉砕し混合する粉砕混合工程と、
前記混合粉末を同時に焼成する焼成工程と、
を含むことを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
A selection step of selecting a replacement element M by the method for selecting a replacement element according to claim 2;
A raw material preparation step of preparing each raw material of Li, Ni, Co, Mn, and M based on the composition formula (2);
Grinding and mixing step of grinding and mixing each of the raw material powders,
A firing step of simultaneously firing the mixed powder,
A method for producing a positive electrode active material for a lithium ion secondary battery, comprising:
請求項2に記載の置換元素の選択方法により選択された置換元素Mを含むリチウムイオン二次電池用正極活物質であって、
Li1+aNiCoMn2+α ・・・(3)
[組成式(3)において、Mは、Li、Ni、Co、Mn以外の置換元素を表し、a、b、c、d、e及びαは、それぞれ、−0.04≦a≦0.04、0.80≦b<1.0、0<c、0<d、0<e≦0.05、b+c+d+e=1、−0.2≦α≦0.2を満たす数である。]で表され、
前記置換元素MがAl、Ga、Mg、Zr、Znからなる群から選択される一つ以上の元素であることを特徴とするリチウムイオン二次電池用正極活物質。


A positive electrode active material for a lithium ion secondary battery, comprising the substitution element M selected by the method for selecting a substitution element according to claim 2,
Li 1 + a Ni b Co c M n d Me O 2 + α (3)
[In the composition formula (3), M represents a substitution element other than Li, Ni, Co, and Mn, and a, b, c, d, e, and α are -0.04 ≦ a ≦ 0.04, respectively. , 0.80 ≦ b <1.0, 0 <c, 0 <d, 0 <e ≦ 0.05, b + c + d + e = 1, and −0.2 ≦ α ≦ 0.2. ],
The positive electrode active material for a lithium ion secondary battery, wherein the substitution element M is one or more elements selected from the group consisting of Al, Ga, Mg, Zr, and Zn.


JP2018181824A 2018-09-27 2018-09-27 Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery Active JP7110876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018181824A JP7110876B2 (en) 2018-09-27 2018-09-27 Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018181824A JP7110876B2 (en) 2018-09-27 2018-09-27 Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2020053275A true JP2020053275A (en) 2020-04-02
JP7110876B2 JP7110876B2 (en) 2022-08-02

Family

ID=69997598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181824A Active JP7110876B2 (en) 2018-09-27 2018-09-27 Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7110876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021108253A (en) * 2019-12-27 2021-07-29 住友金属鉱山株式会社 Search method of substitution element for positive electrode active material for lithium-ion secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349494A (en) * 1993-05-14 1994-12-22 Moli Energy 1990 Ltd New manufacture of solid solution material for nonaqueous secondary battery
JP2000133249A (en) * 1998-10-26 2000-05-12 Showa Denko Kk Manufacture of positive active material of lithium secondary battery
JP2001307729A (en) * 2000-04-26 2001-11-02 Nippon Chem Ind Co Ltd Lithium cobaltate and its preparation method, positive active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2006147500A (en) * 2004-11-24 2006-06-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
WO2012086273A1 (en) * 2010-12-20 2012-06-28 日立マクセルエナジー株式会社 Non-aqueous secondary battery
JP2012230898A (en) * 2011-04-14 2012-11-22 Toda Kogyo Corp Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2014061653A1 (en) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
US20170194643A1 (en) * 2015-12-31 2017-07-06 Samsung Electronics Co., Ltd. Positive active material, positive electrode, and lithium battery containing the positive active material
WO2017208894A1 (en) * 2016-05-30 2017-12-07 日立金属株式会社 Positive-electrode active material for lithium ion secondary cell, and lithium ion secondary cell using same
WO2018043669A1 (en) * 2016-08-31 2018-03-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349494A (en) * 1993-05-14 1994-12-22 Moli Energy 1990 Ltd New manufacture of solid solution material for nonaqueous secondary battery
JP2000133249A (en) * 1998-10-26 2000-05-12 Showa Denko Kk Manufacture of positive active material of lithium secondary battery
JP2001307729A (en) * 2000-04-26 2001-11-02 Nippon Chem Ind Co Ltd Lithium cobaltate and its preparation method, positive active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2006147500A (en) * 2004-11-24 2006-06-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
WO2012086273A1 (en) * 2010-12-20 2012-06-28 日立マクセルエナジー株式会社 Non-aqueous secondary battery
JP2012230898A (en) * 2011-04-14 2012-11-22 Toda Kogyo Corp Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2014061653A1 (en) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
US20170194643A1 (en) * 2015-12-31 2017-07-06 Samsung Electronics Co., Ltd. Positive active material, positive electrode, and lithium battery containing the positive active material
WO2017208894A1 (en) * 2016-05-30 2017-12-07 日立金属株式会社 Positive-electrode active material for lithium ion secondary cell, and lithium ion secondary cell using same
WO2018043669A1 (en) * 2016-08-31 2018-03-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021108253A (en) * 2019-12-27 2021-07-29 住友金属鉱山株式会社 Search method of substitution element for positive electrode active material for lithium-ion secondary battery
JP7385865B2 (en) 2019-12-27 2023-11-24 住友金属鉱山株式会社 Search method for substituting elements in positive electrode active material for lithium ion secondary batteries

Also Published As

Publication number Publication date
JP7110876B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
JP5263761B2 (en) Monoclinic lithium manganese composite oxide having cation ordered structure and method for producing the same
JP4996117B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5458886B2 (en) Compound powder, its production method and its use in lithium secondary battery
JP2022113734A (en) Manufacturing method of lithium nickel containing composite oxide
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2009179501A (en) Monoclinic lithium manganese complex oxide having regular structure and method for producing the same
JP2011238416A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using positive electrode active material
KR102168640B1 (en) Positive active material comprising spinel complex-oxide, method for preparing same, and rechargeable lithium battery comprising same
JP2005332713A (en) Lithium secondary battery and positive electrode active material for secondary battery
KR20220022462A (en) Cathode with disordered rocksalt material and method of forming the cathode
KR100874539B1 (en) Spinel-type composite solid oxide, a manufacturing method thereof, and a lithium secondary battery comprising the same as an anode
JP7110876B2 (en) Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery
WO2018066633A1 (en) Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
JP2000154022A (en) Lithium manganese double oxide, its production and its use
JP2012031064A (en) Spinel type lithium manganese composite oxide, method for producing the same, and application of the same
WO2019235573A1 (en) Lithium-manganese-based composite oxide and method for producing same
WO2018181967A1 (en) Manganese oxide, production method therefor, and lithium secondary battery
JP7318842B1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR102390956B1 (en) Spinel complex-oxide, method for preparing the same, positive active material, and rechargeable lithium battery comprising the same
KR102649779B1 (en) Electrode Active Material for Secondary Battery
JP2000154021A (en) New lithium manganese oxide, its production and its use
KR102557304B1 (en) Multicomponent Precursor For Lithium Ion Battery Using An Organic Acid, Cathode Active Material Using The Same, And Method For Producing The Same.
KR102618005B1 (en) Method for manufacturing positive electrode active material
JP7257847B2 (en) Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode material additive, lithium ion secondary battery, and method for producing lithium ion secondary battery positive electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7110876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350