JP7110876B2 - Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery - Google Patents

Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP7110876B2
JP7110876B2 JP2018181824A JP2018181824A JP7110876B2 JP 7110876 B2 JP7110876 B2 JP 7110876B2 JP 2018181824 A JP2018181824 A JP 2018181824A JP 2018181824 A JP2018181824 A JP 2018181824A JP 7110876 B2 JP7110876 B2 JP 7110876B2
Authority
JP
Japan
Prior art keywords
raw material
reaction temperature
substitution element
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018181824A
Other languages
Japanese (ja)
Other versions
JP2020053275A (en
Inventor
明彦 野家
心 高橋
久人 所
秀一 高野
智幸 佐藤
和彦 竝木
達哉 遠山
章 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018181824A priority Critical patent/JP7110876B2/en
Publication of JP2020053275A publication Critical patent/JP2020053275A/en
Application granted granted Critical
Publication of JP7110876B2 publication Critical patent/JP7110876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用正極活物質の置換元素選択方法、リチウムイオン二次電池用正極活物質の製造方法に関する。
The present invention relates to a method for selecting a replacement element for a positive electrode active material for lithium ion secondary batteries, and a method for producing a positive electrode active material for lithium ion secondary batteries.

高エネルギ密度の二次電池として、リチウムイオン二次電池の市場が拡大している。リチウムイオン二次電池は、従来の二次電池であるニッケル・水素電池やニッケル・カドミウム電池と比べてエネルギ密度が高い。そのため、民生用として携帯端末や小型電動機器用の電源、産業用としては電力貯蔵装置、負荷平準化装置等の定置用電源、および船舶、鉄道、自動車等の移動体用電源として幅広く活用されている。 As a high energy density secondary battery, the market for lithium ion secondary batteries is expanding. Lithium-ion secondary batteries have higher energy density than conventional secondary batteries such as nickel-hydrogen batteries and nickel-cadmium batteries. For this reason, it is widely used as a power source for portable terminals and small electric devices for consumer use, as a stationary power source for industrial power storage devices and load leveling devices, and as a power source for mobile bodies such as ships, railways, and automobiles. there is

このように広い利用分野を持つリチウムイオン二次電池には更なる高容量化が求められており、正極活物質には高容量化に適したNiの割合を増やし、Li以外の金属元素中のNiの割合が80原子%より多い組成(以下、Ni比80%以上の組成と言う)が検討されている。しかしながら、電池を高容量化するため正極活物質中のNiの割合を高くしていくと、結晶構造が不安定となり、充放電サイクルにおける電池容量の低下が大きくなる。この課題を解決するため従来は、Co量を増やすことで結晶の安定性を維持し、充放電サイクル時の容量維持率を確保してきた(特許文献1、特許文献2)。 Lithium ion secondary batteries, which have such a wide range of applications, are required to have even higher capacities. A composition with a Ni ratio of more than 80 atomic percent (hereinafter referred to as a composition with a Ni ratio of 80% or more) is being studied. However, when the proportion of Ni in the positive electrode active material is increased in order to increase the capacity of the battery, the crystal structure becomes unstable, resulting in a large decrease in battery capacity during charge-discharge cycles. In order to solve this problem, conventionally, by increasing the amount of Co, the stability of the crystal is maintained and the capacity retention rate during charge-discharge cycles is ensured (Patent Documents 1 and 2).

しかし、高価なCoは増やしたくない。Co量を増やさず、これに代わる置換元素として、特許文献3ではTiを用いている。 However, I do not want to increase expensive Co. In Patent Document 3, Ti is used as a substitute element instead of Co without increasing the amount of Co.

国際公開第2011/108598号公報International Publication No. 2011/108598 特開2016-122546号公報JP 2016-122546 A 国際公開第2017/082268号公報International Publication No. 2017/082268

特許文献3によれば、リチウム遷移金属複合酸化物中にTiを添加し、二次粒子の外表面にTiの濃化層を形成している。Ti濃化層は、空間群R-3mに帰属する層状構造の遷移金属サイトにTi置換されている形態をとることで、層状構造以外の結晶が生成されず容量が低下しない。そして、Ti濃化層の働きにより、充放電サイクル後のNiO様の異相の生成を抑制することができ、抵抗上昇率が低く抑えられてサイクル特性(容量維持率)が向上することが述べられている。
しかしながら、昨今ではTiと同等或いはそれ以上の特性を持ちながら、より資源量が豊富で入手しやすい元素への転換が望まれている。
According to Patent Document 3, Ti is added to a lithium-transition metal composite oxide to form a Ti-enriched layer on the outer surface of secondary particles. In the Ti-enriched layer, the transition metal sites of the layered structure belonging to the space group R-3m are replaced with Ti, so that crystals other than the layered structure are not generated and the capacity is not lowered. It is also stated that the function of the Ti-enriched layer can suppress the formation of a NiO-like heterogeneous phase after charge-discharge cycles, suppressing the resistance increase rate to a low level and improving the cycle characteristics (capacity retention rate). ing.
However, these days, it is desired to convert to an element that is more abundant in resources and easier to obtain while having properties equal to or better than those of Ti.

そこで、本発明は、Ni比80%以上の組成でありながら異相が実質的に生成せず、Tiの場合と同等の特性が期待できる添加元素(以下、本発明では置換元素という。)を見出す選択方法、また、リチウムイオン二次電池用正極活物質の製造方法を提供することを課題とする。
Therefore, the present invention finds an additive element (hereinafter referred to as a substitution element in the present invention) that does not substantially generate a heterogeneous phase while having a composition with a Ni ratio of 80% or more and can be expected to have the same characteristics as Ti. An object of the present invention is to provide a selection method and a method for producing a positive electrode active material for a lithium ion secondary battery.

本発明は、 Li1+aNi2+α ・・・(1)
[組成式(1)において、Mは、Li、Ni以外の置換元素を表し、a、b、e及びαは、それぞれ、-0.04≦a≦0.04、0.80≦b<1.0、0<e≦0.05、b+e=1、-0.2≦α≦0.2を満たす数である。]で表されるリチウムイオン二次電池用正極活物質の置換元素の選択方法であって、Li素原料とLi、Ni以外の置換元素M´の素原料との反応温度Tを測定し、前記Li素原料とNi素原料との反応温度Tを測定し、前記反応温度Tと、前記反応温度Tを比較し、前記反応温度Tよりも反応温度Tが高い置換元素M´を選択するステップ1と、ステップ1で選択した置換元素M´の素原料と、Li、Niの素原料を用いて、前記組成式(1)を満足する焼成粉と、前記組成式(1)においてe=0(置換元素M無し)の場合の焼成粉をそれぞれ得て、前記各焼成粉をX線回析分析し、e=0の回析結果と異なる回折ピークが現われない置換元素Mを選択するステップ2と、を有するリチウムイオン二次電池用正極活物質の置換元素の選択方法である。
The present invention provides Li 1+a Ni b Me O 2+α (1)
[In the composition formula (1), M represents a substitution element other than Li and Ni, and a, b, e and α are respectively -0.04 ≤ a ≤ 0.04, 0.80 ≤ b < 1 .0, 0<e≦0.05, b+e=1, −0.2≦α≦0.2. ] A method for selecting a substitution element for a positive electrode active material for a lithium ion secondary battery represented by The reaction temperature TN between the Li element raw material and the Ni element raw material is measured, the reaction temperature T is compared with the reaction temperature TN , and a substitution element M' having a reaction temperature T higher than the reaction temperature TN is selected. step 1, and the raw material of the substitution element M' selected in step 1, and the raw material of Li and Ni, the fired powder satisfying the composition formula (1), and the composition formula (1) e = 0 (no substitution element M) is obtained, each calcination powder is subjected to X-ray diffraction analysis, and a substitution element M that does not show a diffraction peak different from the diffraction result of e = 0 is selected. A method for selecting a substitution element for a positive electrode active material for a lithium ion secondary battery, comprising step 2.

また、本発明のリチウムイオン二次電池用正極活物質の置換元素の選択方法は、 Li1+aNiCoMn2+α ・・・(2)
[組成式(2)において、Mは、Li、Ni、Co、Mn以外の置換元素を表し、a、b、c、d、e及びαは、それぞれ、-0.04≦a≦0.04、0.80≦b<1.0、0<c、0<d、0<e≦0.05、b+c+d+e=1、-0.2≦α≦0.2を満たす数である。]で表されるリチウムイオン二次電池用正極活物質の置換元素の選択方法であって、Li素原料とLi、Ni、Co、Mn以外の置換元素M´の素原料との反応温度Tを測定し、前記Li素原料とNi素原料との反応温度T、前記Li素原料とCo素原料との反応温度T及び前記Li素原料とMn素原料との反応温度Tをそれぞれ測定し、前記反応温度Tと、前記反応温度T、T、Tをそれぞれ比較し、前記反応温度T、T、Tのそれぞれよりも反応温度Tが高い置換元素M´を選択するステップ1と、ステップ1で選択した置換元素M´の素原料と、Li、Ni、Co、Mnの素原料を用いて、前記組成式(2)を満足する焼成粉と、前記組成式(2)においてe=0(置換元素M無し)の場合の焼成粉をそれぞれ得て、前記各焼成粉をX線回析分析し、e=0の回析結果と異なる回折ピークが現われない置換元素Mを選択するステップ2と、を有するものである。
In addition, the method for selecting a substitution element for the positive electrode active material for a lithium ion secondary battery of the present invention is Li 1+a Nib Coc Mnd Me O 2+α (2)
[In composition formula (2), M represents a substitution element other than Li, Ni, Co, and Mn, and a, b, c, d, e, and α are respectively -0.04 ≤ a ≤ 0.04 , 0.80≦b<1.0, 0<c, 0<d, 0<e≦0.05, b+c+d+e=1, −0.2≦α≦0.2. ], wherein the reaction temperature T between the Li raw material and the raw material of the substituted element M' other than Li, Ni, Co, and Mn is Then, the reaction temperature T N between the Li element raw material and the Ni element raw material, the reaction temperature T C between the Li element raw material and the Co element raw material, and the reaction temperature T M between the Li element raw material and the Mn element raw material are measured. Then, the reaction temperature T is compared with the reaction temperatures TN , TC , and TM , respectively, and a substitution element M ' having a higher reaction temperature T than each of the reaction temperatures TN , TC , and TM is selected. step 1, and the raw materials of the substitution element M' and the raw materials of Li, Ni, Co, and Mn selected in step 1 are used to prepare a sintered powder satisfying the composition formula (2) and the composition formula ( In 2), sintered powders in the case of e = 0 (no substitution element M) are obtained, and each of the sintered powders is subjected to X-ray diffraction analysis, and a diffraction peak different from the diffraction result of e = 0 does not appear. and a step 2 of selecting M.

本発明は、上記に記載の置換元素の選択方法により置換元素Mを選択する選択工程と、前記組成式(2)に基づいてLi、Ni、Co、Mn、Mの各素原料を準備する素原料準備工程と、前記各素原料粉末を粉砕し混合する粉砕混合工程と、前記混合粉末を同時に焼成する焼成工程と、を含むリチウムイオン二次電池用正極活物質の製造方法である。 The present invention comprises a selection step of selecting a substitution element M by the method of selecting a substitution element described above, and an element of preparing each raw material of Li, Ni, Co, Mn, and M based on the composition formula (2). A method for producing a positive electrode active material for a lithium ion secondary battery, comprising a raw material preparation step, a pulverizing and mixing step of pulverizing and mixing the raw material powders, and a firing step of firing the mixed powder at the same time.

本発明によれば、高容量で、且つサイクル特性に優れた特性を得ることが期待できるリチウムイオン二次電池用正極活物質の置換元素の選択方法を提供できる。また、選択された置換元素を用いて実質的に異相が無いリチウムイオン二次電池用正極活物質の製造方法を提供できる。











ADVANTAGE OF THE INVENTION According to this invention, the selection method of the substitution element of the positive electrode active material for lithium ion secondary batteries which can be expected to obtain the characteristic excellent in a high capacity|capacitance and cycling characteristics can be provided. In addition, it is possible to provide a method for producing a positive electrode active material for a lithium ion secondary battery that has substantially no heterogeneous phase by using selected substitution elements.











本発明の実施例及び比較例1に係る置換元素を用いたTG分析を示すグラフである。4 is a graph showing TG analysis using substitution elements according to Examples of the present invention and Comparative Example 1. FIG. 本発明の実施例に係る置換元素を用いた焼成粉のXRD分析のパターンを示すグラフである。FIG. 5 is a graph showing XRD analysis patterns of fired powders using substitution elements according to examples of the present invention. FIG. 比較例2に係る置換元素を用いた焼成粉のXRD分析のパターンを示すグラフである。7 is a graph showing XRD analysis patterns of fired powder using a substitution element according to Comparative Example 2. FIG.

以下、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の置換元素の選択方法、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極活物質について説明する。以下、「リチウムイオン二次電池用」は削除し、単に、置換元素の選択方法、正極活物質、その製造方法などと記載する。 Hereinafter, a method for selecting a substitution element for a positive electrode active material for a lithium ion secondary battery, a method for producing a positive electrode active material for a lithium ion secondary battery, and a positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention will be described. do. Hereinafter, "for lithium ion secondary batteries" will be deleted, and simply referred to as a method for selecting a substitution element, a positive electrode active material, a method for producing the same, and the like.

本実施形態に係る置換元素の選択方法は、下記組成式のようにNi比80%以上の正極活物質であっても、異相が実質的に生成しない置換元素であれば、層状構造を維持して従来と同等の容量維持率を発揮できると言う考えのもと、置換元素の候補を以下のようにして見出すものである。 In the method of selecting a substitution element according to the present embodiment, even if the positive electrode active material has a Ni ratio of 80% or more as shown in the following composition formula, if the substitution element does not substantially generate a heterogeneous phase, the layered structure can be maintained. Based on the idea that it is possible to exhibit a capacity retention ratio equivalent to that of the conventional one, candidates for substitution elements are found in the following manner.

<正極活物質>
本実施形態に係る置換元素の選択方法は、下記組成式(1)
Li1+aNi2+α ・・・(1)
[組成式(1)において、Mは、Li、Ni以外の置換元素を表し、a、b、e及びαは、それぞれ、-0.04≦a≦0.04、0.80≦b<1.0、0<e≦0.05、b+e=1、-0.2≦α≦0.2を満たす数である。]で表されるリチウム遷移金属複合酸化物に用いることができる。
<Positive electrode active material>
The method for selecting a substitution element according to this embodiment is the following composition formula (1)
Li1 + aNibMeO2 (1)
[In the composition formula (1), M represents a substitution element other than Li and Ni, and a, b, e and α are respectively -0.04 ≤ a ≤ 0.04, 0.80 ≤ b < 1 .0, 0<e≦0.05, b+e=1, −0.2≦α≦0.2. ] can be used for the lithium-transition metal composite oxide represented by

また、本実施形態に係る置換元素の選択方法は、下記組成式(2)
Li1+aNiCoMn2+α ・・・(2)
[組成式(2)において、Mは、Li、Ni、Co、Mn以外の置換元素を表し、a、b、c、d、e及びαは、それぞれ、-0.04≦a≦0.04、0.80≦b<1.0、0<c、0<d、0<e≦0.05、b+c+d+e=1、-0.2≦α≦0.2を満たす数である。]で表されるリチウム遷移金属複合酸化物に用いることが好ましい。
Further, the method for selecting the substitution element according to the present embodiment is the following composition formula (2)
Li1 + aNibCocMndMeO2 + α ( 2)
[In composition formula (2), M represents a substitution element other than Li, Ni, Co, and Mn, and a, b, c, d, e, and α are respectively -0.04 ≤ a ≤ 0.04 , 0.80≦b<1.0, 0<c, 0<d, 0<e≦0.05, b+c+d+e=1, −0.2≦α≦0.2. ] is preferably used for the lithium-transition metal composite oxide represented by

組成式(1)(2)で表される正極活物質は、リチウムイオンの挿入及び脱離が可能な層状構造を呈するα-NaFeO型の結晶構造を有し、LiとNi及びNi以外の遷移金属とを含んで組成される。この正極活物質は、例えばリチウム遷移金属複合酸化物の一次粒子や二次粒子を主成分として構成されており、二次粒子は一次粒子が複数個凝集し焼結結合された状態にある。そして、このリチウム遷移金属複合酸化物は、Liを除いた金属当たりのNiの割合は80原子%以上であり、Niの含有率が高いため、高い充放電容量を実現することができる。 The positive electrode active material represented by the composition formulas (1) and (2) has an α-NaFeO 2 type crystal structure exhibiting a layered structure capable of intercalating and deintercalating lithium ions, and contains Li, Ni, and other than Ni. and a transition metal. This positive electrode active material is mainly composed of, for example, primary particles and secondary particles of a lithium-transition metal composite oxide, and the secondary particles are in a state in which a plurality of primary particles are aggregated and sintered together. In this lithium-transition metal composite oxide, the proportion of Ni per metal excluding Li is 80 atomic % or more, and since the Ni content is high, high charge/discharge capacity can be achieved.

その反面、ニッケルの含有率が高いことで、充放電時に結晶構造が不安定になり易い。結晶中でニッケルはNiOの層を形成しており、放電時には層間にリチウムイオンが挿入され、充電時にはリチウムイオンの脱離が起こる。充放電に伴うリチウムイオンの挿入と脱離によって格子歪や結晶構造に変化が生じ、これが充放電サイクルにおける容量維持率の低下に繋がっているものと考えられる。これに対して、前記一次粒子や二次粒子の外表面にTiのようにNiO様の異相の形成を抑制し得る置換元素Mが濃化した層を形成すれば、結晶構造を安定化させることが期待できる。このような置換元素Mを本発明の選択方法により選択する。この選択方法は、組成式(1)でも(2)でも適用できるが、Co、Mnによる安定化に加えた相乗効果が望める組成式(2)に用いることが好ましいと考える。以下では組成式(2)による場合を主に説明する。 On the other hand, the high nickel content tends to make the crystal structure unstable during charging and discharging. In the crystal, nickel forms layers of NiO 2 , and lithium ions are inserted between the layers during discharge, and desorption of lithium ions occurs during charge. Intercalation and deintercalation of lithium ions during charge/discharge causes changes in lattice strain and crystal structure, which is thought to lead to a decrease in capacity retention rate during charge/discharge cycles. On the other hand, the crystal structure can be stabilized by forming a layer enriched with a substitution element M such as Ti that can suppress the formation of a NiO-like heterogeneous phase on the outer surfaces of the primary particles and secondary particles. can be expected. Such a substitution element M is selected by the selection method of the present invention. Although this selection method can be applied to both composition formulas (1) and (2), it is preferable to use composition formula (2) where a synergistic effect in addition to the stabilization by Co and Mn can be expected. In the following, the case based on the compositional formula (2) will be mainly described.

<置換元素の選択>
本実施形態に係る置換元素の選択方法は、以下のステップ1、ステップ2を行って選択する。
<Selection of substitution element>
In the method of selecting a substitution element according to this embodiment, the following steps 1 and 2 are performed for selection.

まず、ステップ1は、Li素原料粉末(Li源)と、Li、Ni以外で候補となる置換元素M´(M、M、M…)の素原料粉末との混合粉末について、反応温度を測定する。ここで反応温度の測定は、熱重量分析(TG分析)することが好ましい。TG分析により、温度上昇による重量減少変化を測定し、反応による重量減少割合が温度900℃での値の1/2に相当する温度を反応温度T、T、T…として求めた。一方で、Li素原料粉末とNi、Co、Mnの各素原料粉末との混合粉について、同様のTG分析を行い、それぞれの反応による重量減少割合が温度900℃での値の1/2に相当する反応温度を求め、Niの反応温度をT、Coの反応温度をT、Mnの反応温度をTとした。 First, in step 1, a mixed powder of a Li raw material powder (Li source) and a raw raw material powder of a candidate substitution element M′ (M 1 , M 2 , M 3 . . . ) other than Li and Ni is reacted. Measure the temperature. Here, the reaction temperature is preferably measured by thermogravimetric analysis (TG analysis). By TG analysis, the change in weight loss due to temperature rise was measured, and the temperatures at which the rate of weight loss due to reaction was 1/2 of the value at 900° C. were determined as reaction temperatures T 1 , T 2 , T 3 . On the other hand, the same TG analysis was performed on the mixed powder of the Li raw material powder and the Ni, Co, and Mn raw material powders, and the weight reduction rate due to each reaction was 1/2 of the value at a temperature of 900 ° C. Corresponding reaction temperatures were obtained, and the reaction temperature of Ni was T N , the reaction temperature of Co was T C , and the reaction temperature of Mn was T M .

また、本発明において反応温度を「反応による重量減少割合が温度900℃での値の1/2に相当する温度」とした理由について以下に述べる。まず、本発明ではNi比が80%以上と多いため、焼成温度が900℃を超えると、NiがLi層に混入するカチオンミキシングの増加や層状構造の崩壊を生じ易くなる。このような正極活物質では容量低下を招くことから900℃を上限に設定した。次に、900℃までの「Li源と各置換元素M´との反応性」を序列評価する指標が重要となるが、Li源と各置換元素M´は、Li-M´-O酸化物を徐々に形成していき、CO2ガスを放出して重量減少していくと考えられる。この反応過程は各置換元素で異なり複雑であるため、反応が進行する中間過程である「反応による重量減少割合が温度900℃での値の1/2に相当する反応温度」を実験的に測定し、この温度の高低で各置換元素の序列評価を行うようにしたものである。尚、TG分析以外では、例えば示差走査熱量測定(DSC)や発生気体分析(EGA)を用いることが出来る。 The reason why the reaction temperature in the present invention is defined as "the temperature at which the rate of weight loss due to the reaction corresponds to 1/2 of the value at a temperature of 900° C." will be described below. First, in the present invention, since the Ni ratio is as high as 80% or more, if the firing temperature exceeds 900° C., cation mixing in which Ni is mixed into the Li layer increases and the layered structure tends to collapse. Since such a positive electrode active material causes a decrease in capacity, 900° C. is set as the upper limit. Next, an index for ranking the "reactivity between the Li source and each substitution element M'" up to 900 ° C. is important. is gradually formed, CO 2 gas is released, and the weight decreases. Since this reaction process differs for each substituting element and is complicated, the intermediate process in which the reaction progresses, "the reaction temperature at which the rate of weight loss due to the reaction is equivalent to 1/2 of the value at a temperature of 900°C" is experimentally measured. Then, the ranking of each substituting element is evaluated depending on the temperature. Besides the TG analysis, for example, differential scanning calorimetry (DSC) or evolved gas analysis (EGA) can be used.

次に、それぞれの置換元素M´の反応温度T、T、T…と、Ni、Co、Mnの反応温度T、T、Tとをそれぞれ比較し、前記反応温度T、T、Tのそれぞれよりも反応温度が高い置換元素を選択する。例えば、T、TはT、T、Tよりも大きいことを満足するが、Tは1つでも満足しない場合は、TとTの元素は置換元素Mの候補となるが、Tの元素は、ここで除外することになる。尚、組成式(1)では、同様に測定したNiの反応温度Tと、前記反応温度Tとを比較し、反応温度Tよりも反応温度Tが高い置換元素を選択することになる。 Next , the reaction temperatures T 1 , T 2 , T 3 , . , T C , and T M are selected. For example, if T 1 and T 2 are larger than T N , T C , and T M , but even one of T 3 is not satisfied, the elements T 1 and T 2 are candidates for the replacement element M. However , the elements of T3 will be excluded here. In composition formula (1), the reaction temperature TN of Ni measured in the same manner is compared with the reaction temperature T, and a substitution element having a reaction temperature T higher than the reaction temperature TN is selected.

ステップ1によれば、選択され得る置換元素M´(例えばM、M)は、Ni、Co、MnよりLi源との反応温度が高いため、Li源とNi、Co及びMnとの反応が進んでおり、三元系の層状構造が形成され易くなる。これにより、正極活物質に必要な層状構造以外の結晶が生成する可能性が低減される。そして、これらの置換元素M´は、Li源との反応進行が遅いので効果的に活物質粒子の外表面に置換元素M´が濃化することが期待できる。 According to step 1, the substitution element M′ (e.g., M 1 , M 2 ) that can be selected has a higher reaction temperature with the Li source than Ni, Co, and Mn, so the reaction between the Li source and Ni, Co, and Mn is progressing, facilitating the formation of a ternary layered structure. This reduces the possibility of forming crystals other than the layered structure required for the positive electrode active material. Since these substitution elements M' progress slowly in the reaction with the Li source, it can be expected that the substitution elements M' are effectively concentrated on the outer surface of the active material particles.

次に、ステップ2では、ステップ1で選択した各置換元素M´(例えばM、M)について、他の素原料と同時焼成した場合にリチウム遷移金属複合酸化物に適した結晶構造が得られるか否かを判断する。ステップ1で選択した各置換元素M´(例えばM、M)の素原料粉末と、Li、Ni、Co、Mnの素原料粉末を用いて、上記組成式(2)を満足する正極活物質の焼成粉を得る。また一方で、組成式(2)においてe=0、すなわち置換元素M´を含まない焼成粉を同様にして得る。そして、これら各焼成粉をX線回析分析(XRD分析)する。このときe=0の回析結果を標準とし、e=0の回析結果と各焼成粉の回析結果とを対比する。その結果、e=0の回析結果と異なる回折ピークが生じていない、すなわち異相ピークが現われない元素を置換元素Mとして選択する。ここで、異なる回折ピーク(異相ピーク)が現われないとは、本発明ではXRD分析の強度がバックグラウンド以下となっていることを指し、実質的にノイズに相当し無視できる程度のものをいう。このような場合に実質的に異相の生成がないものとする。 Next, in step 2, for each of the substituting elements M′ (e.g., M 1 and M 2 ) selected in step 1, a crystal structure suitable for the lithium-transition metal composite oxide is obtained when co-fired with other raw materials. determine whether or not A positive electrode active material satisfying the above composition formula (2) is obtained by using raw material powder of each substitution element M′ (for example, M 1 and M 2 ) selected in step 1 and raw material powder of Li, Ni, Co, and Mn. A calcined powder of the substance is obtained. On the other hand, e=0 in the composition formula (2), that is, a sintered powder containing no substitution element M′ is similarly obtained. Then, each of these fired powders is subjected to X-ray diffraction analysis (XRD analysis). At this time, the diffraction result of e=0 is used as a standard, and the diffraction result of e=0 and the diffraction result of each fired powder are compared. As a result, an element is selected as the substitution element M that does not produce a diffraction peak different from the diffraction result of e=0, that is, does not show a heterophasic peak. Here, in the present invention, the fact that different diffraction peaks (heterogeneous peaks) do not appear means that the intensity of the XRD analysis is below the background, which substantially corresponds to noise and can be ignored. It is assumed that there is substantially no formation of foreign phases in such cases.

ステップ2によれば、ステップ1でリチウム遷移金属複合酸化物の層状構造を崩さずに添加できるという観点で選択した置換元素を、他の素原料と共に焼成し、焼成体としての結晶性をXRDで確認し、異相が生じない置換元素であるかの適性を見極めて選択するものである。リチウム遷移金属複合酸化物の焼成時に層状構造以外の結晶(異相)が生成される場合は、異相は電池の正極材として作用しないため、充放電時の容量が低下する他、異相の形態によっては抵抗が上昇し電池性能の低下に繋がる。このステップを設けることで、異相生成のない良好な性能の正極活物質を得ることが出来ることになる。 According to step 2, the substitution element selected in step 1 from the viewpoint that it can be added without breaking the layered structure of the lithium transition metal composite oxide is fired together with other raw materials, and the crystallinity of the fired body is measured by XRD. It is selected by confirming the suitability of the substitution element that does not cause heterogeneous phases. If a crystal (heterogeneous phase) other than a layered structure is formed during firing of the lithium-transition metal composite oxide, the heterogeneous phase does not act as a positive electrode material for the battery. Resistance rises, leading to deterioration of battery performance. By providing this step, it is possible to obtain a positive electrode active material with good performance without generation of heterogeneous phases.

XRD分析の手順としては、置換元素を含まないLi、Ni、Co、Mnのみの、e=0の組成のXRDパターンを標準とし、これに対して置換元素M´を添加した組成(0<e)でのXRDパターンを比較して、標準では検出されなかった回折ピークを異相と判定する。ステップ1で選択した置換元素を添加した場合の正極の容量低下や抵抗上昇が起こり得る可能性の有無を判断するものである。
以上により、ステップ1、ステップ2を満足する置換元素Mを選択することができれば、以降は選択した置換元素Mを用いて以下の本発明の製造方法を実施すればよい。
As a procedure for XRD analysis, the XRD pattern of a composition of e = 0 of Li, Ni, Co, and Mn that does not contain a substitution element is used as a standard, and a composition (0 < e ), and diffraction peaks not detected in the standard are determined to be heterophases. This is to determine whether or not there is a possibility that the addition of the substitution element selected in step 1 may cause a decrease in capacity or an increase in resistance of the positive electrode.
If the replacement element M that satisfies step 1 and step 2 can be selected as described above, then the selected replacement element M can be used to carry out the following manufacturing method of the present invention.

<正極活物質の製造方法>
本実施形態に係る正極活物質の製造方法は、上記置換元素Mを選択する選択工程の後に、以下の工程1~工程3の手順で行うものである。
<Method for producing positive electrode active material>
In the method for producing a positive electrode active material according to this embodiment, after the selection step of selecting the substitution element M, the following steps 1 to 3 are performed.

工程1は、前記の組成式(1)や(2)に基づいてLiの素原料粉末と、Ni、Co、Mnおよび置換元素Mとの素原料粉末を準備する工程である(素原料準備工程)。
工程1では、例えば組成式(2)に基づいてLi、Ni、Co、Mnおよび置換元素Mを含んだ素原料粉末を秤量する。素原料として用いる化合物の形態としては、例えばリチウムでは、炭酸リチウム、酢酸リチウム、硝酸リチウム、硫酸リチウム、塩化リチウム、水酸化リチウム等がある。リチウム以外のNi、Co、Mnなどの金属の化合物としては、炭酸塩、水酸化物、オキシ水酸化物、酢酸塩、クエン酸塩、酸化物等が用いられる。化合物中に含まれる素原料の元素の純度から、必要な化合物量を求める。素原料の組成がずれていると後段で行う原料粉の焼成において、同一温度でも焼成状態が変わってしまい所定の結晶構造を有する焼成粉が得られなくなる。そのため、化合物中の素原料の純度や焼成前の全素原料混合粉の組成にズレがないか分析する。
Step 1 is a step of preparing a raw material powder of Li, a raw material powder of Ni, Co, Mn and a substitution element M based on the composition formulas (1) and (2) (raw material preparation step ).
In step 1, a raw material powder containing Li, Ni, Co, Mn and a substitution element M is weighed based on, for example, the compositional formula (2). Examples of forms of compounds used as raw materials include lithium carbonate, lithium acetate, lithium nitrate, lithium sulfate, lithium chloride, and lithium hydroxide. Carbonates, hydroxides, oxyhydroxides, acetates, citrates, oxides, and the like are used as compounds of metals other than lithium such as Ni, Co, and Mn. The necessary amount of the compound is determined from the purity of the elements of the raw materials contained in the compound. If the composition of the raw material is deviated, the sintering state will change even if the temperature is the same in the subsequent sintering of the raw material powder, making it impossible to obtain a sintered powder having a predetermined crystal structure. Therefore, the purity of the raw materials in the compound and the composition of the mixed powder of all raw materials before firing are analyzed for deviations.

工程2は、工程1で準備した全素原料化合物の粉末を、粉砕および混合する工程である(粉砕混合工程)。
工程2では、全素原料化合物の粉末を、次の工程3で行う焼成に適した混合状態とするため、粉砕および混合を行う。素原料の粒径は均一ではなく、原料/化合物の種類、購入先などによりばらついている。素原料化合物の粒径は混合状態に影響を与えるため、粒径が所定の範囲内に収まっているほうが好ましい。そこで、全素原料を粉砕し粒径を調整する。また、素原料粉末の混合が不十分で素原料の分布が不均一な場合、焼成後の焼成粉の結晶構造が、目的とする層状構造まで成長しない、あるいは層状構造以外の結晶が生成される可能性があるため、均一状態とすべく粉砕し混合するほうが好ましい。原料の粉砕手段としては、ボールミル、ビーズミル、ジェットミル等を用いることができる。素原料粉は粉砕用のメデイアやライナーとの衝突、摩擦により所定の粒径まで粉砕される。
Step 2 is a step of pulverizing and mixing the powder of the all-element compound prepared in step 1 (pulverizing and mixing step).
In step 2, pulverization and mixing are performed in order to make the powder of the all-element raw material compound into a mixed state suitable for firing in the next step 3. The particle size of the raw material is not uniform, and varies depending on the type of raw material/compound, purchaser, and the like. Since the particle size of the raw material compound affects the mixing state, it is preferable that the particle size is within a predetermined range. Therefore, the all-element raw material is pulverized to adjust the particle size. In addition, if the raw material powder is not sufficiently mixed and the distribution of the raw material is uneven, the crystal structure of the fired powder after firing does not grow to the desired layered structure, or crystals other than the layered structure are generated. Because of this possibility, it is preferable to grind and mix for uniformity. A ball mill, a bead mill, a jet mill, or the like can be used as means for pulverizing the raw material. The raw material powder is pulverized to a predetermined particle size by collision and friction with media and liners for pulverization.

粉砕混合工程の後に、造粒工程を行うのが好ましい。粉砕混合工程で得られた混合物を造粒して粒子同士が凝集した二次粒子(造粒体)を得る。混合物の造粒は、乾式造粒及び湿式造粒のいずれを利用して行ってもよい。混合物を造粒する造粒法としては、噴霧造粒法が特に好ましい。噴霧造粒機としては、2流体ノズル式、4流体ノズル式、ディスク式等の各種の方式を用いることができる。噴霧造粒法であれば、湿式粉砕によって精密混合粉砕した混合物のスラリーを、乾燥しながら造粒させることができる。また、スラリーの濃度、噴霧圧、ディスク回転数等の調整によって、二次粒子の粒径を所定範囲に精密に制御することが可能であり、真球に近く、化学組成が均一な造粒体を効率的に得ることができる。 A granulation step is preferably performed after the pulverization and mixing step. The mixture obtained in the pulverization and mixing step is granulated to obtain secondary particles (granules) in which particles are aggregated. Granulation of the mixture may be performed using either dry granulation or wet granulation. A spray granulation method is particularly preferable as the granulation method for granulating the mixture. Various systems such as a two-fluid nozzle system, a four-fluid nozzle system, and a disk system can be used as the spray granulator. In the case of the spray granulation method, slurry of a mixture obtained by precision mixing and pulverization by wet pulverization can be granulated while being dried. In addition, by adjusting the slurry concentration, spray pressure, disk rotation speed, etc., it is possible to precisely control the particle size of the secondary particles within a predetermined range. can be efficiently obtained.

工程3は、工程2で粉砕・混合した全素原料混合粉末を同時に焼成する工程である(焼成工程)。
工程3では、全素原料を混合した粉末を同時に焼成することによりNi、Co、Mnおよび置換元素Mから成る層状構造の結晶が生成される。このとき、反応開始温度が一番高い置換元素Mは、既に層状構造が形成された二次粒子に対し最後に反応が起こるため、粒子の外表面に置換元素Mが濃化した層を形成し易くなる。このように粒子の外表面に濃化層を配置しやすい置換元素Mの選択手段が本発明の特徴である。また、このとき選択した置換元素Mを含む全素原料粉末を同時に熱処理し、固相反応により焼成することが本発明の製造方法の特徴でもある。尚、原料粉の焼成手段としては、ロータリーキルン、ローラハースキルン等の焼成炉を用いることができる。
Step 3 is a step of simultaneously firing the all-element mixed powder pulverized and mixed in step 2 (firing step).
In step 3, a layered structure crystal composed of Ni, Co, Mn and the substitution element M is produced by simultaneously firing the mixed powder of all elemental raw materials. At this time, the substituting element M, which has the highest reaction initiation temperature, reacts last with the secondary particles that have already formed a layered structure, so that a layer in which the substituting element M is concentrated is formed on the outer surface of the particle. becomes easier. A feature of the present invention is the means for selecting the substitution element M that facilitates the formation of the concentrated layer on the outer surface of the particle. Further, it is also a feature of the manufacturing method of the present invention that the all-element raw material powder containing the selected substitution element M is heat-treated at the same time and sintered by a solid-phase reaction. As a means for sintering the raw material powder, a sintering furnace such as a rotary kiln or a roller hearth kiln can be used.

ここで全素原料の混合粉の焼成において層状構造の結晶を得るには、組成に応じて焼成温度を1段あるいは段階的に上昇させ多段で焼成するのが好ましい。 Here, in order to obtain a layered structure crystal in the firing of the mixed powder of all elemental raw materials, it is preferable to increase the firing temperature by one step or step by step and perform multi-step firing according to the composition.

例えば、固相法による多段焼成で素原料の化合物形態がLi、Co、Mnが炭酸塩、Niが水酸化物、置換元素Mが酸化物である場合には、低温度(約500℃以上700℃以下)の焼成で、炭酸塩からCOが除々に放出されて酸化物に、水酸化物も除々に熱分解し酸化物への反応が進み、また、素原料同士の粒子表面における固相拡散が進む。中温度(約700℃以上800℃以下)での焼成では、Liが溶融して液相拡散が進むと共に、他の素原料(酸化物)とLiとの反応が進む。 For example, when the compound form of the raw materials is Li, Co, and Mn in the form of carbonates, Ni in hydroxides, and the substitution element M in oxides in multistage sintering by a solid-phase method, low temperatures (approximately 500° C. to 700° C. ℃ or less), CO2 is gradually released from the carbonate to form an oxide, and the hydroxide is also gradually thermally decomposed to proceed with the reaction to form an oxide. Diffusion progresses. In firing at medium temperature (approximately 700° C. or higher and 800° C. or lower), Li is melted and liquid phase diffusion progresses, and reaction between other raw materials (oxides) and Li progresses.

続く高温度(約800℃以上900℃以下)での焼成は、Liと他の素原料および他素原料同士の拡散反応が更に進み層状構造のリチウム遷移金属複合酸化物が生成される。以上のように全素原料の同時焼成を、多段焼成をすることによりLi、Ni、Co、Mn及び置換元素Mを全て含んだ層状構造の正極活物質が得られやすいため好ましい。 In the subsequent high-temperature firing (approximately 800° C. or higher and 900° C. or lower), the diffusion reaction between Li and other raw materials and between other raw materials proceeds further to produce a lithium-transition metal composite oxide having a layered structure. As described above, simultaneous sintering of all elemental raw materials by multi-stage sintering facilitates obtaining a positive electrode active material having a layered structure containing all of Li, Ni, Co, Mn and the substituting element M, which is preferable.

また、本実施形態に係るリチウム遷移金属複合酸化物は、主成分であるリチウム遷移金属複合酸化物の他、原料や製造過程に由来する不純物、リチウム遷移金属複合酸化物の粒子を被覆する他成分(ホウ素、リン、硫黄、フッ素、有機物等)、リチウム遷移金属複合酸化物の粒子と共に混合される成分を含んでもよい。
ステップ2で得られた置換元素MをLi、Ni、Co、Mnの素原料と一緒に前述の1段あるいは多段の熱処理することで、上記の課題が解決でき、電池の容量や性能が低下しない正極活物質を得ることが可能となる。
In addition, the lithium-transition metal composite oxide according to the present embodiment includes, in addition to the lithium-transition metal composite oxide as the main component, impurities derived from raw materials and manufacturing processes, and other components that coat the particles of the lithium-transition metal composite oxide. (boron, phosphorus, sulfur, fluorine, organic matter, etc.), which are mixed with the particles of the lithium-transition metal composite oxide.
By subjecting the substituting element M obtained in step 2 to the above-described single-stage or multi-stage heat treatment together with the raw materials of Li, Ni, Co, and Mn, the above problems can be solved, and the capacity and performance of the battery do not decrease. It becomes possible to obtain a positive electrode active material.

以下、置換元素Mの選択に係る一実施例を説明する。
置換元素M´について、まずはステップ1に基づいてLi素原料粉末との反応性を把握するため、反応温度をTG分析で測定した。置換元素M´の候補としては、Al、Ga、Mg、Zr、Znを挙げ、Tiを参照元素として挙げた。また、Ni、Co、Mn及び置換元素M´は酸化物とし、Liは炭酸塩を用いている。Li素原料と置換元素M´の素原料、Li素原料とNi素原料、Li素原料とCo素原料及びLi素原料とMn素原料と、それぞれ両者のモル比は1:1で秤量した。TG分析の結果を図1に示す。図の横軸は温度、縦軸は初期試料重量に対する試料重量の減少割合とした。試験条件は昇温速度が10℃/minで、室温から900℃まで加熱した。
An example of selection of the substitution element M will be described below.
Regarding the substituting element M', first, based on Step 1, the reaction temperature was measured by TG analysis in order to grasp the reactivity with the Li element raw material powder. Al, Ga, Mg, Zr, and Zn were listed as candidates for the replacement element M', and Ti was listed as a reference element. Ni, Co, Mn and the substitution element M' are oxides, and Li is a carbonate. The Li element raw material and the raw material of the substituting element M', the Li element raw material and the Ni element raw material, the Li element raw material and the Co element raw material, and the Li element raw material and the Mn element raw material were weighed at a molar ratio of 1:1. The results of TG analysis are shown in FIG. In the figure, the horizontal axis is the temperature, and the vertical axis is the reduction rate of the sample weight relative to the initial sample weight. The test conditions were a heating rate of 10°C/min and heating from room temperature to 900°C.

TG分析結果から反応温度を求めた。ここで、反応温度とは、反応による重量減少割合が温度900℃での値の1/2に相当する温度とした。これは、上述したように温度上昇割合に対する重量減少割合が元素により異なるためである。
図1より、Niの反応温度Tは約610℃、Coの反応温度Tは約590℃、Mnの反応温度Tは約410℃であった。よって、置換元素の合否を判定する反応温度Tは、本実施例では610℃とする。
The reaction temperature was determined from the TG analysis results. Here, the reaction temperature is defined as the temperature at which the rate of weight loss due to the reaction corresponds to 1/2 of the value at a temperature of 900°C. This is because the weight reduction rate with respect to the temperature rise rate differs depending on the element, as described above.
From FIG. 1, the reaction temperature TN of Ni was approximately 610°C, the reaction temperature TC of Co was approximately 590° C , and the reaction temperature TM of Mn was approximately 410°C. Therefore, the reaction temperature T for judging whether the substitution element is acceptable is 610° C. in this embodiment.

これに対して、Al、Ga、Mg、Zr、Zn及びTiの各酸化物の反応温度は、Alが約760℃、Gaが約610℃、Mgが約850℃、Zrが約680℃、Znが約900℃及びTiが約620℃であった。よって、Al、Ga、Mg、Zr、Znの何れも反応温度は、Ni、Mn、Coのそれよりも高く、合否判定温度以上であった。また、Tiと比べても同等或いはそれ以上であった。 On the other hand, the reaction temperature of each oxide of Al, Ga, Mg, Zr, Zn and Ti is about 760° C. for Al, about 610° C. for Ga, about 850° C. for Mg, about 680° C. for Zr, and about 680° C. for Zn. was about 900°C and Ti was about 620°C. Therefore, the reaction temperature of each of Al, Ga, Mg, Zr and Zn was higher than that of Ni, Mn and Co and was equal to or higher than the pass/fail judgment temperature. Moreover, it was equal to or higher than that of Ti.

以上のステップ1により、前述の5つの置換元素が、正極活物質を構成するNi、Co、Mnより、Liとの反応温度が高く、置換元素(添加元素)として用いた場合、層状構造を崩さず異相を生成し得ないものであることを確認した。 As a result of the above step 1, the above-described five substitution elements have higher reaction temperatures with Li than Ni, Co, and Mn constituting the positive electrode active material, and when used as substitution elements (additional elements), the layered structure is broken. It was confirmed that no heterogeneous phase could be generated.

(比較例1)
比較例としてB(ホウ素)とLaを用いた。B、La共に酸化物を用いており、上述の実施例と同様にしてTG分析を行った。その結果を図1中に示す。
図1より、Bの反応温度は約190℃、Laの反応温度は約730℃であった。LaはNi、Mn、Coよりも反応温度が高くステップ1をクリアした。一方、Bは反応温度が低く、さらに半金属であるため置換元素Mとしては不適と判断される。
(Comparative example 1)
B (boron) and La were used as comparative examples. Both B and La are oxides, and TG analysis was performed in the same manner as in the above-described example. The results are shown in FIG.
From FIG. 1, the reaction temperature of B was about 190°C, and the reaction temperature of La was about 730°C. La has a higher reaction temperature than Ni, Mn, and Co, and step 1 is cleared. On the other hand, since B has a low reaction temperature and is a semimetal, it is judged to be unsuitable as the substitution element M.

続いて、ステップ2に基づいて、組成Li1.02Ni0.90Mn0.05Co0.030.02の焼成粉を作製しXRD分析した。試料はLiCO、Ni(OH)、MnCO、CoCOおよび置換元素酸化物の素原料粉末を、ボールミルに純水と共に充填し、所定時間粉砕した後、粉砕スラリーを真空乾燥させ混合粉末とした。混合粉末の平均粒径は0.5~0.6μmである。混合粉末の焼成は、低温度(650℃×10hr)の仮焼成、中温度(755℃×10hr)の中間焼成、高温度の本焼成(840℃×4hr)の3段階で実施した。
ステップ1で選択した置換元素の候補であるAl、Ga、Mg、Zr、Zn及びTiを添加した夫々の組成の焼成粉についてXRD分析した。その結果を図2に示す。尚、XRD分析は下記の条件で行った。
Subsequently, based on Step 2, a sintered powder having a composition of Li 1.02 Ni 0.90 Mn 0.05 Co 0.03 M 0.02 was produced and subjected to XRD analysis. The samples were obtained by filling Li 2 CO 3 , Ni(OH) 2 , MnCO 3 , CoCO 3 and substituting element oxide raw material powders together with pure water in a ball mill, pulverizing them for a predetermined time, and then vacuum-drying and mixing the pulverized slurry. Powdered. The mixed powder has an average particle size of 0.5 to 0.6 μm. Firing of the mixed powder was carried out in three stages: low-temperature (650° C.×10 hr) temporary calcination, medium-temperature (755° C.×10 hr) intermediate calcination, and high-temperature main calcination (840° C.×4 hr).
XRD analysis was performed on the sintered powder of each composition to which Al, Ga, Mg, Zr, Zn and Ti, which are candidates for substitution elements selected in step 1, were added. The results are shown in FIG. XRD analysis was performed under the following conditions.

<粉末X線回折測定>
以下に結晶構造の確認方法としてXRD(X線回折)の測定方法について説明する。粉末X線回折装置は「RINT(Rigaku製)」を用いた。
焼成粉をアルミ製のサンプルフォルダー内に充填した。その後、線源:CuKα、管電圧:40kV、管電流:100mA、走査角度:15~80°、走査速度:1.0°/min、サンプリング間隔:0.02°/stepの条件で測定した。
<Powder X-ray diffraction measurement>
An XRD (X-ray diffraction) measurement method will be described below as a method for confirming the crystal structure. A powder X-ray diffractometer "RINT (manufactured by Rigaku)" was used.
The fired powder was filled in an aluminum sample holder. After that, measurement was performed under the following conditions: radiation source: CuKα, tube voltage: 40 kV, tube current: 100 mA, scanning angle: 15 to 80°, scanning speed: 1.0°/min, sampling interval: 0.02°/step.

図2では、置換元素を添加しない標準組成(e=0)の場合を合わせて示す。
図2より、標準組成の回折パターンに対して、Al、Ga、Mg、Zr、Zn及びTiを添加した場合の回折パターンは同一で、バックグラウンドより大きい異相ピークは検出されなかった。各元素共に本焼成では異相が生成されていないことを確認できた。
FIG. 2 also shows the case of the standard composition (e=0) in which no substitution element is added.
From FIG. 2, the diffraction pattern when Al, Ga, Mg, Zr, Zn and Ti are added is the same as the diffraction pattern of the standard composition, and no heterogeneous peak larger than the background was detected. It was confirmed that no heterogeneous phase was generated in the main firing for each element.

(比較例2)
比較例としてステップ1で反応温度がNi、Mn、Coより高かった置換元素Laを用いて同じ組成比で本焼成し、同様にXRD分析した結果を図3に示す。標準組成に対して図中に○印で示した位置に異相のピークが確認された。Laでは標準組成と異なる結晶(異相)が生成されていると判断できる。よって、Laはステップ2をクリアすることができず、置換元素Mとしては不適と判断される。
(Comparative example 2)
As a comparative example, the replacement element La, whose reaction temperature was higher than that of Ni, Mn, and Co in step 1, was sintered at the same composition ratio, and the results of the XRD analysis are shown in FIG. A different-phase peak was confirmed at the position indicated by the circle in the figure with respect to the standard composition. In La, it can be determined that a crystal (heterogeneous phase) different from the standard composition is generated. Therefore, La cannot clear Step 2 and is judged to be unsuitable as the replacement element M.

以上により、リチウム遷移金属複合酸化物を用いた正極活物質に置換元素を添加する際に、上述したステップ1、ステップ2を実施して置換元素Mを選択することにより、焼成したリチウム遷移金属複合酸化物に層状構造以外の異相が含まれることが無くなり、抵抗上昇を抑えて容量維持率の低下や充放電容量の低下を抑制できることが期待される正極を得ることが可能となる。
As described above, when adding the replacement element to the positive electrode active material using the lithium-transition metal composite oxide, by performing the above-described steps 1 and 2 to select the replacement element M, the fired lithium-transition metal composite The oxide does not contain a heterogeneous phase other than a layered structure, and it is possible to obtain a positive electrode that is expected to suppress an increase in resistance, thereby suppressing a decrease in capacity retention rate and a decrease in charge/discharge capacity.

Claims (3)

Li1+aNi2+α ・・・(1)
[組成式(1)において、Mは、Li、Ni以外の置換元素を表し、a、b、e及びαは、それぞれ、-0.04≦a≦0.04、0.80≦b<1.0、0<e≦0.05、b+e=1、-0.2≦α≦0.2を満たす数である。]で表されるリチウムイオン二次電池用正極活物質の置換元素の選択方法であって、
Li素原料とLi、Ni以外の置換元素M´の素原料との反応温度Tを測定し、
前記Li素原料とNi素原料との反応温度Tを測定し、
前記反応温度Tと、前記反応温度Tを比較し、前記反応温度Tよりも反応温度Tが高い置換元素M´を選択するステップ1と、
ステップ1で選択した置換元素M´の素原料と、Li、Niの素原料を用いて、前記組成式(1)を満足する焼成粉と、前記組成式(1)においてe=0の場合の焼成粉をそれぞれ得て、
前記各焼成粉をX線回析分析し、e=0の回析結果と異なる回折ピークが現われない置換元素Mを選択するステップ2と、
を有することを特徴とするリチウムイオン二次電池用正極活物質の置換元素の選択方法。
Li1 + aNibMeO2 (1)
[In the composition formula (1), M represents a substitution element other than Li and Ni, and a, b, e and α are respectively -0.04 ≤ a ≤ 0.04, 0.80 ≤ b < 1 .0, 0<e≦0.05, b+e=1, −0.2≦α≦0.2. ] A method for selecting a substitution element for a positive electrode active material for a lithium ion secondary battery represented by
measuring the reaction temperature T between the Li raw material and the raw material of the substitution element M' other than Li and Ni,
Measuring the reaction temperature TN between the Li element raw material and the Ni element raw material,
a step 1 of comparing the reaction temperature T and the reaction temperature TN and selecting a substitution element M' having a higher reaction temperature T than the reaction temperature TN ;
Using the raw materials of the substitution element M' selected in step 1 and the raw materials of Li and Ni, the fired powder satisfying the composition formula (1) and the composition formula (1) in the case of e = 0 Obtain each baked powder,
Step 2 of performing X-ray diffraction analysis of each of the fired powders and selecting a substitution element M that does not show a diffraction peak different from the diffraction result of e = 0;
A method for selecting a substitution element for a positive electrode active material for a lithium ion secondary battery, comprising:
Li1+aNiCoMn2+α ・・・(2)
[組成式(2)において、Mは、Li、Ni、Co、Mn以外の置換元素を表し、a、b、c、d、e及びαは、それぞれ、-0.04≦a≦0.04、0.80≦b<1.0、0<c、0<d、0<e≦0.05、b+c+d+e=1、-0.2≦α≦0.2を満たす数である。]で表されるリチウムイオン二次電池用正極活物質の置換元素の選択方法であって、
Li素原料とLi、Ni、Co、Mn以外の置換元素M´の素原料との反応温度Tを測定し、
前記Li素原料とNi素原料との反応温度T、前記Li素原料とCo素原料との反応温度T及び前記Li素原料とMn素原料との反応温度Tをそれぞれ測定し、
前記反応温度Tと、前記反応温度T、T、Tをそれぞれ比較し、前記反応温度T、T、Tのそれぞれよりも反応温度Tが高い置換元素M´を選択するステップ1と、
ステップ1で選択した置換元素M´の素原料と、Li、Ni、Co、Mnの素原料を用いて、前記組成式(2)を満足する焼成粉と、前記組成式(2)においてe=0の場合の焼成粉をそれぞれ得て、
前記各焼成粉をX線回析分析し、e=0の回析結果と異なる回折ピークが現われない置換元素Mを選択するステップ2と、
を有することを特徴とするリチウムイオン二次電池用正極活物質の置換元素の選択方法。
Li1 + aNibCocMndMeO2 + α ( 2)
[In composition formula (2), M represents a substitution element other than Li, Ni, Co, and Mn, and a, b, c, d, e, and α are respectively -0.04 ≤ a ≤ 0.04 , 0.80≦b<1.0, 0<c, 0<d, 0<e≦0.05, b+c+d+e=1, −0.2≦α≦0.2. ] A method for selecting a substitution element for a positive electrode active material for a lithium ion secondary battery represented by
measuring the reaction temperature T between the Li raw material and the raw material of the substitution element M' other than Li, Ni, Co, and Mn,
Measuring the reaction temperature T N between the Li element raw material and the Ni element raw material, the reaction temperature T C between the Li element raw material and the Co element raw material, and the reaction temperature T M between the Li element raw material and the Mn element raw material,
A step of comparing the reaction temperature T with the reaction temperatures TN , TC , and TM , respectively, and selecting a substitution element M ' having a higher reaction temperature T than each of the reaction temperatures TN , TC , and TM. 1 and
Using the raw material of the substitution element M' selected in step 1 and the raw material of Li, Ni, Co, and Mn, the sintered powder satisfying the composition formula (2) and e = in the composition formula (2) Obtaining each fired powder in the case of 0,
Step 2 of performing X-ray diffraction analysis of each of the fired powders and selecting a substitution element M that does not show a diffraction peak different from the diffraction result of e = 0;
A method for selecting a substitution element for a positive electrode active material for a lithium ion secondary battery, comprising:
請求項2に記載の置換元素の選択方法により置換元素Mを選択する選択工程と、
前記組成式(2)に基づいてLi、Ni、Co、Mn、Mの各素原料を準備する素原料準備工程と、
前記各素原料粉末を粉砕し混合する粉砕混合工程と、
前記混合粉末を同時に焼成する焼成工程と、
を含むことを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
A selection step of selecting a substitution element M by the substitution element selection method according to claim 2;
a raw material preparation step of preparing raw materials of Li, Ni, Co, Mn, and M based on the composition formula (2);
A pulverizing and mixing step of pulverizing and mixing the raw material powders;
A sintering step of simultaneously sintering the mixed powder;
A method for producing a positive electrode active material for a lithium ion secondary battery, comprising:
JP2018181824A 2018-09-27 2018-09-27 Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery Active JP7110876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018181824A JP7110876B2 (en) 2018-09-27 2018-09-27 Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018181824A JP7110876B2 (en) 2018-09-27 2018-09-27 Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2020053275A JP2020053275A (en) 2020-04-02
JP7110876B2 true JP7110876B2 (en) 2022-08-02

Family

ID=69997598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181824A Active JP7110876B2 (en) 2018-09-27 2018-09-27 Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7110876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385865B2 (en) * 2019-12-27 2023-11-24 住友金属鉱山株式会社 Search method for substituting elements in positive electrode active material for lithium ion secondary batteries

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133249A (en) 1998-10-26 2000-05-12 Showa Denko Kk Manufacture of positive active material of lithium secondary battery
JP2001307729A (en) 2000-04-26 2001-11-02 Nippon Chem Ind Co Ltd Lithium cobaltate and its preparation method, positive active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2006147500A (en) 2004-11-24 2006-06-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
WO2012086273A1 (en) 2010-12-20 2012-06-28 日立マクセルエナジー株式会社 Non-aqueous secondary battery
JP2012230898A (en) 2011-04-14 2012-11-22 Toda Kogyo Corp Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2014061653A1 (en) 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
US20170194643A1 (en) 2015-12-31 2017-07-06 Samsung Electronics Co., Ltd. Positive active material, positive electrode, and lithium battery containing the positive active material
WO2017208894A1 (en) 2016-05-30 2017-12-07 日立金属株式会社 Positive-electrode active material for lithium ion secondary cell, and lithium ion secondary cell using same
WO2018043669A1 (en) 2016-08-31 2018-03-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2096264A1 (en) * 1993-05-14 1994-11-15 Jeffrey Raymond Dahn Novel method for preparing solid solution materials for secondary non-aqueous batteries

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133249A (en) 1998-10-26 2000-05-12 Showa Denko Kk Manufacture of positive active material of lithium secondary battery
JP2001307729A (en) 2000-04-26 2001-11-02 Nippon Chem Ind Co Ltd Lithium cobaltate and its preparation method, positive active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2006147500A (en) 2004-11-24 2006-06-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
WO2012086273A1 (en) 2010-12-20 2012-06-28 日立マクセルエナジー株式会社 Non-aqueous secondary battery
JP2012230898A (en) 2011-04-14 2012-11-22 Toda Kogyo Corp Li-Ni COMPLEX OXIDE PARTICLE POWDER, METHOD FOR MANUFACTURING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2014061653A1 (en) 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
US20170194643A1 (en) 2015-12-31 2017-07-06 Samsung Electronics Co., Ltd. Positive active material, positive electrode, and lithium battery containing the positive active material
WO2017208894A1 (en) 2016-05-30 2017-12-07 日立金属株式会社 Positive-electrode active material for lithium ion secondary cell, and lithium ion secondary cell using same
WO2018043669A1 (en) 2016-08-31 2018-03-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2020053275A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP7349109B2 (en) Method for producing lithium nickel-containing composite oxide
EP3341991B1 (en) High tap density lithium positive electrode active material, intermediate and process of preparation
JP6433438B2 (en) Doped sodium manganese oxide cathode material for sodium ion batteries
JP7236459B2 (en) O3/P2 Mixed Phase Sodium Containing Doped Layered Oxide Materials
TWI485920B (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
JP3571671B2 (en) Lithium oxide material and method for producing the same
KR102129689B1 (en) Lithium-rich nickel-manganese-cobalt cathode powder for lithium ion batteries
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
JP3033899B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
KR102636863B1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries
KR20200128673A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2008137837A (en) Lithium-nickel-manganese complex oxide, its manufacturing process and its application
KR20180011049A (en) A positive electrode material, a lithium secondary battery using the same as a positive electrode
KR102168640B1 (en) Positive active material comprising spinel complex-oxide, method for preparing same, and rechargeable lithium battery comprising same
JP7110876B2 (en) Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery
KR20220022462A (en) Cathode with disordered rocksalt material and method of forming the cathode
KR100874539B1 (en) Spinel-type composite solid oxide, a manufacturing method thereof, and a lithium secondary battery comprising the same as an anode
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
JP5539946B2 (en) Method for producing spinel-type lithium-manganese composite oxide
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
CA3165262A1 (en) Cathode material and process
JP2000154022A (en) Lithium manganese double oxide, its production and its use
JP5467244B2 (en) Method for producing lithium iron nitride, negative electrode active material for lithium secondary battery, and lithium secondary battery
WO2018181967A1 (en) Manganese oxide, production method therefor, and lithium secondary battery
JP7318842B1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7110876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350