WO2018066633A1 - Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same - Google Patents

Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same Download PDF

Info

Publication number
WO2018066633A1
WO2018066633A1 PCT/JP2017/036223 JP2017036223W WO2018066633A1 WO 2018066633 A1 WO2018066633 A1 WO 2018066633A1 JP 2017036223 W JP2017036223 W JP 2017036223W WO 2018066633 A1 WO2018066633 A1 WO 2018066633A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
compound
composite oxide
discharge
charge
Prior art date
Application number
PCT/JP2017/036223
Other languages
French (fr)
Japanese (ja)
Inventor
田渕 光春
京介 堂前
英香 渋谷
田村 宜之
亮太 弓削
直樹 河野
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社田中化学研究所
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社田中化学研究所, 日本電気株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018543956A priority Critical patent/JP7048944B2/en
Publication of WO2018066633A1 publication Critical patent/WO2018066633A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a titanium and / or germanium substituted lithium manganese composite oxide and a method for producing the same.
  • lithium ion secondary batteries are being put into practical use as large batteries for electric vehicles, power load leveling systems, and the like, and their importance is increasing.
  • a lithium-containing transition metal oxide is used as the positive electrode material
  • a carbon material such as graphite is used as the negative electrode material.
  • the amount of lithium ions reversibly desorbed (equivalent to charging) and inserted (equivalent to discharging) in the positive electrode material determines the capacity of the battery, and the voltage at the time of desorption and insertion determines the operating voltage of the battery. Battery capacity and operating voltage are determined by the positive electrode.
  • the cost of the constituent members of the battery is highest for the positive electrode active material, and the selection of the positive electrode material is most important in the development of a lithium ion secondary battery.
  • lithium cobaltate which is usually used as a positive electrode material, contains a large amount of cobalt, which is a rare metal, and is one of the factors that increase the material cost of lithium ion secondary batteries.
  • cobalt resources are currently used in the battery industry, it is considered difficult to meet future demand growth with only the positive electrode material made of LiCoO 2 . For this reason, especially in order to use for large sized lithium ion secondary batteries, such as a use for motor vehicles, the oxide positive electrode material using an element rich in resources is calculated
  • Li 1 + x (Fe 1 ) consisting of lithium manganese oxide (Li 2 MnO 3 ) and lithium ferrite.
  • y Mn 1-y ) 1-x O 2 (0 ⁇ x ⁇ 1/3, 0 ⁇ y ⁇ 1), sometimes referred to as “iron-containing Li 2 MnO 3 ”) Has an average discharge voltage close to 4 V, comparable to that of lithium cobalt oxide (see, for example, Patent Document 1).
  • lithium manganese oxide such as iron and nickel-containing Li 2 MnO 3
  • containing abundant nickel together with iron can remarkably improve cycle deterioration in the 4 V region (for example, see Patent Document 2).
  • lithium manganese oxides such as titanium-containing Li 2 MnO 3 , iron and titanium-containing Li 2 MnO 3
  • titanium-containing Li 2 MnO 3 iron and titanium-containing Li 2 MnO 3
  • a specific chemical composition and transition metal ion distribution are excellent in discharge characteristics under a high current density at room temperature and discharge characteristics at a low temperature (see, for example, Patent Document 3).
  • the lithium manganese composite oxides of Patent Documents 1 and 2 are used, by repeating charge and discharge, the crystal phase of the layered rock salt structure is gradually changed to the crystal phase of the spinel structure or the lithium excess crystal phase. Due to the change, a sudden drop in potential is observed around 3.5V during discharge, and additional capacity appears around 2.2V during discharge. Industrially, it is preferable that the charge / discharge curve shape can be maintained even after 100 cycles or 1000 cycles, but this method shows a decrease in charge / discharge characteristics before that. For this reason, the lithium manganese composite oxides of Patent Documents 1 and 2 change the charge / discharge curve shape remarkably due to these two types of crystal structure transitions, and the similarity of the charge / discharge curve during the charge / discharge cycle cannot be maintained. It is not preferable for practical use.
  • the lithium manganese composite oxide of Patent Document 3 has a low discharge voltage and a large charge / discharge curve hysteresis.
  • the present invention has been made in view of the current state of the prior art described above, and uses a low-cost element with less resource restrictions and has a high capacity when used as a positive electrode material for a lithium ion secondary battery.
  • the main object of the present invention is to provide a novel material that has a high discharge voltage and is excellent in cycle characteristics over a long period of time because the similarity of the charge / discharge curve shape during the charge / discharge cycle can be maintained.
  • the inventors of the present invention have intensively studied to achieve the above-described object.
  • a composite oxide in which a specific amount of titanium and / or germanium is further dissolved in a Li 2 MnO 3 type composite oxide containing a specific amount of iron and / or nickel is less expensive and less expensive.
  • a positive electrode material for lithium ion secondary batteries it has a high capacity, a high discharge voltage, and the similarity of the charge / discharge curve shape during the charge / discharge cycle It was found that long-term cycle characteristics are excellent. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations. Item 1.
  • Item 4. The method for producing a lithium manganese composite oxide according to any one of Items 1 to 3, (1) a step of forming a precipitate by making a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound alkaline, (2) A step of subjecting the precipitate obtained in step 1 to wet oxidation and aging, (3) A production method comprising a step of heating the aged product obtained in step 2 in the order of coexistence of a raw material compound containing a lithium compound.
  • Item 5. Item 5.
  • the present invention when used as a positive electrode material for a lithium ion secondary battery while using an inexpensive element with few resource restrictions, it has a high capacity, a high discharge voltage, and a charge. Since the similarity of the charge / discharge curve shape during the discharge cycle can be maintained, a novel material excellent in long-term cycle characteristics can be provided.
  • the lithium manganese composite oxide of the present invention is chemically stable even when charged to a high potential, and therefore can exhibit excellent charge / discharge characteristics even during long-term cycles.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 1 are shown.
  • 2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Example 1 is a positive electrode material and metal lithium is a negative electrode material.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Comparative Example 1 are shown.
  • 2 shows a charge / discharge curve of a lithium secondary battery using the sample obtained in Comparative Example 1 as a positive electrode material and metallic lithium as a negative electrode material.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 2 are shown.
  • 2 shows a charge / discharge curve of a lithium secondary battery using the sample obtained in Example 2 as a positive electrode material and metallic lithium as a negative electrode material.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Comparative Example 2 are shown.
  • 2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Comparative Example 2 was used as a positive electrode material and metallic lithium was used as a negative electrode material.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 3 are shown.
  • 2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Example 3 was used as a positive electrode material and metal lithium was used as a negative electrode material.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Comparative Example 3 are shown.
  • 2 shows a charge / discharge curve of a lithium secondary battery using the sample obtained in Comparative Example 3 as a positive electrode material and metallic lithium as a negative electrode material.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 4 are shown.
  • 2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Example 4 was used as a positive electrode material and metallic lithium was used as a negative electrode material.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Comparative Example 4 are shown.
  • Example 2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Comparative Example 4 is a positive electrode material and metallic lithium is a negative electrode material.
  • the measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 5 are shown.
  • the charging / discharging curve of the lithium secondary battery which used the sample obtained in Example 5 as a positive electrode material and used metallic lithium as a negative electrode material is shown.
  • Lithium manganese complex oxide The lithium manganese complex oxide of the present invention has the general formula (1): Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O 2 (1) [Wherein M 1 represents Fe and / or Ni. M 2 represents Ti and / or Ge. x, y, and z represent 0 ⁇ x ⁇ 1/3, 0 ⁇ y ⁇ 0.4, and 0 ⁇ z ⁇ 0.3. ] And includes a crystal phase of a monoclinic layered rock salt type structure or a hexagonal layered rock salt type structure based on a rock salt type structure.
  • Monoclinic layered rock salt structure is a space group:
  • Li 2 MnO 3 type monoclinic layered rock salt consisting only crystal phase with a unit cell similar to Li 2 MnO 3 A crystal phase with a mold structure is preferred.
  • hexagonal layered rock-salt structure is a space group:
  • the crystalline phase of LiNiO 2 type hexagonal layered rock-salt structure comprising only crystalline phase with a unit cell similar to LiNiO 2 It is preferable that
  • the lithium manganese composite oxide of the present invention may have only one or both of the crystal phases of the above monoclinic layered rock salt structure and hexagonal layered rock salt structure. Also good.
  • the lithium manganese composite oxide of the present invention has a high capacity, a high discharge voltage, and a charge / discharge cycle when used as a positive electrode material for a lithium ion secondary battery. This material is excellent in cycle characteristics over a long period of time because the similarity of the charge / discharge curve shape can be maintained.
  • the proportion of each crystal phase is not particularly limited, and is usually layered.
  • the total crystal phase of the rock salt type structure is 100% by weight
  • the crystal phase of the monoclinic layered rock salt type structure is 1 to 99% by weight (especially 5 to 95% by weight, and further 10 to 90% by weight)
  • hexagonal layered rock salt The crystal phase of the mold structure is preferably 1 to 99% by weight (particularly 5 to 95% by weight, more preferably 10 to 90% by weight).
  • the lithium manganese composite oxide of the present invention only needs to contain the crystal phase of the above monoclinic layered rock salt structure or hexagonal layered rock salt structure, and other rock salt structures with different cation distributions (for example, a mixed phase including a crystal phase of a cubic rock salt structure or the like may be used. Further, the lithium manganese composite oxide of the present invention may be a material composed only of the crystal phase of the above monoclinic layered rock salt structure and / or hexagonal layered rock salt structure.
  • the resulting lithium manganese composite oxide is likely to form a material consisting only of the crystal phase of the above monoclinic layered rock salt structure and / or hexagonal layered rock salt structure.
  • a crystal phase having a cubic rock salt structure may be included. Since the crystal phase of this cubic rock salt structure is also a crystal structure that exhibits excellent charge / discharge characteristics, it does not matter if it has this crystal structure.
  • having a monoclinic layered rock salt type structure and a hexagonal layered rock salt type crystal phase when used in a positive electrode material for a lithium ion secondary battery, has a high capacity and high Monoclinic layered rock salt structure and hexagonal layered rock salt because it has a discharge voltage and is excellent in long-term cycle characteristics because it can maintain the similarity of the charge / discharge curve shape during the charge / discharge cycle
  • the proportion of the crystal phase of the mold structure is preferably high.
  • the ratio of the layered rock salt type structure to the crystal phase is Usually, the total amount of the lithium manganese composite oxide of the present invention is 100% by weight, the crystal phase of the layered rock salt structure is 1 to 99% by weight (especially 10 to 95% by weight, more preferably 50 to 90% by weight), etc.
  • the crystal phase of the rock salt type structure (such as cubic rock salt type structure) is preferably 1 to 99% by weight (especially 5 to 90% by weight, more preferably 10 to 50% by weight).
  • the lithium manganese based composite oxide of the present invention contains Li, Mn and M 2 as essential elements as represented by the above general formula (1), and further, M 1 is dissolved as required. I am letting.
  • M 1 ion amount to solid solution of the present invention is 40% or less of the total amount of metal ions other than Li ions (0 ⁇ y ⁇ 0.4), preferably 5 to 35% (0.05 ⁇ y ⁇ 0.35), more preferably 10 to 30% (0.1 ⁇ y ⁇ 0.3).
  • the amount of solid solution (y value) of M 1 ions is excessive, the amount of Mn is relatively reduced, so that the lithium content per composition formula is lowered, so that the charge / discharge capacity is significantly lowered.
  • the lower limit of the solid solution amount (y value) of M 1 ions within the above range, the discharge potential can be further increased and the hysteresis can be further reduced.
  • the lithium-manganese-based composite oxide of the present invention may contain M 1, Li, in the form of replacing Mn or the like, when present in the layered rock-salt structure
  • M 1 Li, in the form of replacing Mn or the like, when present in the layered rock-salt structure
  • Fe and Ni may be included, or both Fe and Ni may be included. More specifically, although Fe is cheaper than Ni, Ni has a higher oxidation-reduction potential, so it is easier to increase the discharge voltage, so applications where high potential is required (such as large lithium ion secondary for automotive applications) Suitable for batteries. For this reason, about the usage-amount of Fe and Ni, it is preferable to set suitably according to a use.
  • the total amount of M 1 element is 100% by weight, and Fe is preferably 10 to 90% by weight (particularly 30 to 70% by weight, more preferably 40 to 60% by weight).
  • the amount of Ni used is set so that the total amount with the amount of Fe used is 100% by weight.
  • the amount of M 2 ions (z value; M 2 / (M 1 + M 2 + Mn)) dissolved in the lithium manganese composite oxide of the present invention is 30% or less of the total amount of metal ions other than Li ions ( 0 ⁇ z ⁇ 0.3), preferably 1 to 25% (0.01 ⁇ z ⁇ 0.25).
  • M 2 ion amount is preferably 10 ⁇ 25% (0.10 ⁇ z ⁇ 0.25)
  • M 2 ion amount is 1 ⁇ 10% (0.01 ⁇ z ⁇ 0.10) is preferred.
  • both the Ti and Ge as M 2 is preferably set as appropriate depending on the ratio.
  • M 2 in the lithium manganese composite oxide of the present invention is also considered to be present in the layered rock-salt structure in the form of substituting Li, Mn, etc. like M 1 , but only one of Ti and Ge May be included, and both Ti and Ge may be included. More specifically, although Ti is cheaper than Ge, Ge can exhibit an excellent effect with a small amount of elements, and therefore, when Ge is used, the amount of raw material used can be reduced. For this reason, about the usage-amount of Ti and Ge, it is preferable to set suitably according to a use. For example, when both Ti and Ge are included, the total amount of M 2 elements is 100% by weight, and Ti is preferably 10 to 90% by weight (particularly 30 to 70% by weight, more preferably 40 to 60% by weight). The amount of Ge used is set so that the total amount with the amount of Ti used is 100% by weight.
  • the total amount (y + z) of M 1 and M 2 to be dissolved in the lithium manganese composite oxide of the present invention is preferably 70% or less (0 ⁇ y + z ⁇ 0.7) in the general formula (1), 10 to 60% (0.1 ⁇ y + z ⁇ 0.6) is more preferable, 20 to 50% (0.2 ⁇ y + z ⁇ 0.5) is further preferable, and 25 to 45% (0.25 ⁇ y + z ⁇ 0.45) is particularly preferable. .
  • the capacity is increased, the discharge voltage is increased, and it is easy to maintain the similarity of the charge / discharge curve shape during the charge / discharge cycle.
  • the cycle characteristics of the period can be made more excellent.
  • the amount of Li ions (x) is the average valence of the transition metal as long as the crystal phase of the monoclinic layered rock salt structure or the hexagonal layered rock salt structure can be maintained. It can take values between 0 and 1/3 depending on the number. Usually, 0.100 to 0.300 is preferable, 0.200 to 0.280 is more preferable, and 0.230 to 0.270 is further preferable.
  • the lithium manganese based composite oxide of the present invention includes lithium hydroxide, lithium carbonate, iron compound, nickel compound, titanium compound, germanium compound, manganese compound, and compounds that do not significantly affect the charge / discharge characteristics.
  • impurity phase such as a composite metal compound containing two or more of lithium, iron, nickel, titanium, and germanium.
  • 0 to 10% by weight is preferable in the lithium manganese composite oxide of the present invention, and 0 to 5% by weight is more preferable.
  • the lithium manganese composite oxide of the present invention that satisfies the above conditions can maintain the similarity of the charge / discharge curve shape even during a long charge / discharge cycle, and the spinel from the crystal phase of the layered rock salt structure.
  • the lithium manganese composite oxide of the present invention is extremely useful as a positive electrode material for large-sized lithium ion secondary batteries for in-vehicle use as well as small-sized consumer lithium ion secondary batteries.
  • the lithium manganese composite oxide of the present invention can be synthesized by using an ordinary composite oxide synthesis method. Specifically, it can be synthesized by a coprecipitation-firing method, a coprecipitation-hydrothermal-firing method, a solid phase reaction method, or the like. From the viewpoint of easily producing a complex oxide having particularly excellent charge / discharge characteristics, it is preferable to employ a coprecipitation-firing method.
  • step 1 and step 1 A step of forming a precipitate by making a mixture containing a manganese compound, at least one compound selected from the group consisting of an iron compound and a nickel compound, and a titanium compound as necessary, alkaline (hereinafter referred to as step 1 and step 1) Sometimes)
  • step 2 A step of subjecting the precipitate obtained in step 1 to wet oxidation treatment and aging (hereinafter sometimes referred to as step 2), (3)
  • step 3 Manufacture comprising a step of heating the aged product obtained in step 2 in the presence of a lithium compound and, if necessary, a raw material compound containing a germanium compound (hereinafter also referred to as step 3) in this order.
  • the lithium manganese composite oxide of the present invention can be obtained.
  • step 1 a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound is made alkaline to form a precipitate. Specifically, it is convenient to form a precipitate as alkaline from a solution of a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound.
  • the lithium manganese composite oxide of the present invention when it contains a Ti element, at least one compound selected from the group consisting of a manganese compound and an iron compound and a nickel compound, it is preferable that the mixture containing the titanium compound is made alkaline to form a precipitate. Specifically, it is convenient to form a precipitate by adding a solution of a mixture containing a manganese compound, at least one compound selected from the group consisting of an iron compound and a nickel compound, and a titanium compound to an alkali. .
  • the manganese compound, iron compound, nickel compound and titanium compound a component capable of forming a mixed aqueous solution containing these compounds is preferable. It is preferable to use a water-soluble compound. Specific examples of such water-soluble compounds include water-soluble salts such as manganese, iron, nickel or titanium chlorides, nitrates, sulfates, oxalates and acetates; hydroxides and the like. it can. Moreover, the compound containing several metal seed
  • permanganates such as potassium permanganate can also achieve uniform distribution of metals other than lithium ions, and charge / discharge characteristics can be further improved.
  • These water-soluble compounds can employ both anhydrides and hydrates. Further, even water-insoluble compounds such as manganese, iron, nickel or titanium oxides and metals can be dissolved in an acid such as sulfuric acid and hydrochloric acid and used as an aqueous solution.
  • Each of these raw material compounds can be used individually for each metal source, or can be used in combination of two or more.
  • the mixing ratio of the manganese compound, iron compound, nickel compound and titanium compound can be the same element ratio as the element ratio in the target lithium manganese composite oxide of the present invention.
  • the concentration of each compound in the case of a mixed aqueous solution is not particularly limited, and can be appropriately determined so that a uniform mixed aqueous solution can be formed and a coprecipitate can be smoothly formed.
  • the total concentration of the manganese compound, iron compound, nickel compound and titanium compound is preferably 0.01 to 5 mol / L, particularly preferably 0.1 to 2 mol / L.
  • water can be used alone, or a water-alcohol mixed solvent containing a water-soluble alcohol such as methanol or ethanol can be used.
  • a water-alcohol mixed solvent containing a water-soluble alcohol such as methanol or ethanol
  • the alcohol acts as an antifreeze and precipitates can be formed at temperatures below 0 ° C.
  • prone lithium ferrite during precipitation when containing Fe as M 1 element suppresses more the formation of impurities such as manganese ferrite, i.e. uniform co more transition metal distribution You can get a deposit.
  • the range of raw material selection is further expanded.
  • the amount of alcohol used can be determined appropriately according to the target precipitation temperature, etc., and is usually 50 parts by weight or less (for example, 10 to 50 parts by weight) with respect to 100 parts by weight of water. Is appropriate.
  • a precipitate can be generated by making the mixture (particularly the mixed aqueous solution) alkaline.
  • Conditions for forming a good precipitate cannot be defined unconditionally because they vary depending on the type, concentration, etc. of each compound contained in the mixture (particularly the mixed aqueous solution), but usually a pH of 8 or more (for example, pH 8 to 14) is preferable. More preferably, the pH is 11 or more (for example, pH 11 to 14).
  • the mixture especially the mixed aqueous solution
  • the mixture is added to an aqueous solution containing alkali in order to form a uniform precipitate.
  • a precipitate can also be formed by the method.
  • the precipitate can also be obtained by adding an alkali or an aqueous solution containing an alkali to the mixed aqueous solution.
  • alkali used to make the mixture (in particular, the mixed aqueous solution) alkaline for example, alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, and lithium hydroxide, ammonia, and the like can be used.
  • these alkalis can be used as an aqueous solution, for example, they can be used as an aqueous solution having a concentration of 0.1 to 20 mol / L, particularly 0.3 to 10 mol / L.
  • the alkali can be dissolved in a water-alcohol mixed solvent containing a water-soluble alcohol, similarly to the mixed aqueous solution of the metal compound described above.
  • the temperature of the mixture (particularly the mixed aqueous solution) is usually -50 to 50 ° C, particularly -20 to 30 ° C, so that when M 1 contains Fe, The generation of spinel ferrite due to the generation of sum heat is further suppressed, and fine and homogeneous precipitates (coprecipitates) are easily formed. It becomes easy to synthesize manganese-based composite oxides.
  • the mixture in order to form a precipitate (coprecipitate) satisfactorily in this step, the mixture (particularly the mixed aqueous solution) is required to take at least several hours against alkali in order to further suppress the generation of heat of neutralization. The method of gradually dripping is preferable. In this case, the longer the reaction time, the better. However, in practice, 1 hour to 1 day, particularly 2 to 12 hours are preferable.
  • Step 2 After the precipitate (coprecipitate) is formed in the above step 1, the precipitate (coprecipitate) is aged by wet oxidation. Specifically, in step 2, the precipitate (coprecipitate) obtained in step 1 is subjected to wet oxidation treatment and aged. More specifically, it can be aged by bubbling by bubbling oxygen-containing gas into the alkaline aqueous solution containing the precipitate (coprecipitate) obtained in the above step 1 with a compressor, an oxygen gas generator or the like. it can.
  • the gas to be blown preferably contains a certain amount of oxygen. Specifically, it is preferable to contain 10 to 100% by volume of oxygen of the gas to be blown. Examples of such a gas to be blown include air and oxygen, and oxygen is preferable.
  • the aging temperature is not particularly limited, and a temperature at which wet oxidation treatment of the precipitate (coprecipitate) can be performed is preferable. Usually, 0 to 150 ° C. is preferable, and 10 to 100 ° C. is more preferable.
  • the aging time is not particularly limited, and a time during which the wet oxidation treatment of the precipitate (coprecipitate) can be performed is preferable. The longer the aging time is, the better. In practice, however, 0.5 to 7 days is preferable, and 2 to 4 days is more preferable.
  • step 3 the aged product obtained in step 2 is heated in the presence of a raw material compound containing a lithium compound.
  • the aged product obtained in step 2 and an aqueous solution containing a raw material compound containing a lithium compound may be heated (particularly calcined) after forming a slurry and drying and grinding as required. preferable.
  • the content of the aged product obtained in the above step 2 is usually preferably 100 to 3000 g, more preferably 500 to 2000 g per 1 L of water.
  • lithium compound examples include water-soluble lithium salts such as lithium chloride, lithium iodide, lithium nitrate, lithium acetate, and lithium hydroxide; lithium carbonate and the like. These lithium compounds can be used alone or in combination of two or more. Moreover, as a lithium compound, both an anhydride and a hydrate can be employ
  • the concentration of the lithium compound in the aqueous solution is usually preferably 0.1 to 10 mol / L, more preferably 1 to 8 mol / L.
  • the lithium manganese composite oxide of the present invention contains Ge, it is preferable to use a germanium compound as a raw material compound.
  • germanium compounds include water-soluble germanium compounds such as germanium chloride and germanium iodide; water-insoluble germanium compounds such as germanium oxide and metal germanium.
  • water-soluble germanium compounds such as germanium chloride and germanium iodide
  • germanium oxide such as germanium oxide
  • metal germanium examples of germanium compounds
  • the germanium compound is dissolved with an acid or alkali as described above to improve the reactivity with the aged product obtained in step 2. It is preferable.
  • lithium hydroxide as a lithium compound, it is possible to dissolve a water-insoluble germanium compound without using an acid or an alkali separately.
  • the amount of germanium that is washed away is large, and therefore the amount of germanium compound added (the amount charged) is preferably greater than the content in the composite oxide to be obtained.
  • the concentration of the germanium compound in the aqueous solution is usually preferably from 0.05 to 1.0 mol / L, more preferably from 0.1 to 0.7 mol / L.
  • the mixing method of the aged product obtained in step 2, the lithium compound and, if necessary, the zirconium compound is not particularly limited.
  • an aqueous solution of a water-soluble lithium compound and stirring and dispersing it an aqueous solution of a water-soluble germanium compound or an alkali solution of a water-insoluble germanium compound that is separately prepared is added. After stirring well, it is preferable to dry and pulverize as necessary.
  • Stirring can be carried out by a usual method, for example, it is preferable to stir with a known mixer such as a mixer, a V-type mixer, a W-type mixer, or a ribbon mixer.
  • a known mixer such as a mixer, a V-type mixer, a W-type mixer, or a ribbon mixer.
  • the drying conditions are not particularly limited.
  • the drying temperature is preferably 20 to 100 ° C., more preferably 30 to 80 ° C.
  • the drying time is preferably, for example, 1 hour to 5 days, and more preferably 12 hours to 3 days.
  • pulverization can be performed by a vibration mill, a ball mill, a jet mill or the like. Further, the grinding can be repeated twice or more.
  • the heat treatment can be performed by gradually increasing the heating temperature.
  • the heat treatment is usually preferably performed in a closed container (such as an electric furnace).
  • the heating conditions are not particularly limited, but the final heating temperature is preferably 750 ° C. or higher in order to further stabilize the charge / discharge cycle characteristics.
  • the heating temperature is preferably 1000 ° C. or lower so that lithium is less likely to volatilize.
  • the final heating temperature is particularly preferably 800 to 950 ° C.
  • the heating atmosphere is not particularly limited.
  • the final heating atmosphere is an inert atmosphere such as nitrogen or argon or a reducing atmosphere
  • heat it beforehand in the air at a low temperature of 500 to 750 ° C (especially 550 to 700 ° C)
  • two-stage heating (especially firing) can be performed in order to more precisely control the Li content, powder characteristics, and the like.
  • the final heating atmosphere is a reducing atmosphere, for example, by baking in an inert atmosphere in the presence of organic matter, carbon powder, etc., heat treatment (particularly baking) in a reducing atmosphere is possible. is there.
  • the organic substance is not particularly limited, and a carbon-containing compound that can be decomposed into a reducing atmosphere at the heating temperature (particularly the firing temperature) is preferable.
  • a water-soluble organic substance when used, it is advantageous because it can be dispersed and mixed with the lithium manganese composite oxide powder in an aqueous solution state.
  • organic substances include sucrose, glucose, starch, acetic acid, citric acid, oxalic acid, benzoic acid, aminoacetic acid and the like.
  • carbon powder for example, carbon powder obtained by thermal decomposition of an organic substance, for example, graphite, acetylene black, or the like can be used.
  • organic substances and carbon powder can be used alone or in combination of two or more.
  • the amount of at least one component selected from the group consisting of organic matter and carbon powder is preferably 0.001 to 5 times mol, and 0.01 to 1 times mol in terms of the molar amount of carbon with respect to the lithium manganese composite oxide. More preferred.
  • concentration of the organic substance or the like can be appropriately determined so as to be within the above-mentioned range of use amount.
  • the heating time is not particularly limited. More specifically, the holding time at the final heating temperature is preferably 10 minutes to 24 hours, more preferably 30 minutes to 12 hours. In addition, when performing two-stage heat treatment, the holding time at the first stage heating temperature is preferably 10 minutes to 24 hours (particularly 30 minutes to 12 hours), and the holding time at the second stage final heating temperature is 10 minutes. ⁇ 24 hours (especially 30 minutes to 12 hours) is preferred.
  • the obtained fired product may be subjected to a water washing treatment, a solvent washing treatment, etc., in order to remove an excess lithium compound, if necessary. it can. Thereafter, filtration is performed, and for example, heat drying can be performed at 80 ° C. or higher, preferably 100 ° C. or higher.
  • the heat-dried material is pulverized, and a lithium compound and an organic material are added and heated (particularly calcined), washed, and dried to repeatedly perform a series of operations, whereby the lithium manganese composite oxide It is also possible to further improve the excellent characteristics.
  • Lithium Ion Secondary Battery A lithium ion secondary battery using the lithium manganese composite oxide of the present invention can be produced by a known method.
  • the lithium manganese composite oxide of the present invention is used as a positive electrode material, and known metal lithium, carbon-based materials (activated carbon, graphite, etc.), silicon, silicon oxide, Si—SiO based materials, lithium as negative electrode materials
  • a solution in which lithium salt such as lithium perchlorate or LiPF 6 is dissolved in a solvent composed of one or more of known ethylene carbonate, dimethyl carbonate, diethyl carbonate, etc.
  • the “lithium ion secondary battery” is a concept including a “lithium secondary battery” using metallic lithium as a negative electrode material.
  • the term “lithium ion secondary battery” refers to both a “nonaqueous lithium ion secondary battery” using a nonaqueous electrolyte and an “all solid lithium ion secondary battery” using a solid electrolyte. It is a concept to include.
  • Example 1 Sample synthesis, structure and composition evaluation 10.10 g of iron (III) nitrate nonahydrate, 7.27 g of nickel (II) nitrate hexahydrate, 40.00 g of 30% titanium sulfate (IV) aqueous solution, manganese (II) chloride 4 water 29.69 g of Japanese product (total amount 0.25 mol, Fe: Ni: Ti: Mn molar ratio 1: 1: 2: 6) was added to 500 mL of distilled water and completely dissolved. In another beaker, 50 g of sodium hydroxide was weighed, 500 mL of distilled water was added and dissolved while stirring to prepare an aqueous sodium hydroxide solution.
  • This aqueous sodium hydroxide solution was placed in a titanium beaker and allowed to stand in a thermostat kept at 20 ° C. Next, the metal salt aqueous solution was gradually dropped into the sodium hydroxide solution over about 3 hours to form an Fe—Ni—Ti—Mn precipitate (coprecipitate). After confirming that the reaction solution was completely alkaline, oxygen was blown into the reaction solution containing the coprecipitate with stirring at room temperature for 2 days to ripen the precipitate.
  • the obtained precipitate was washed with distilled water, filtered, and mixed with 18.47 g of 0.25 mol lithium carbonate dispersed in distilled water to form a uniform slurry.
  • the slurry was transferred to a tetrafluoroethylene petri dish, dried at 50 ° C. for 2 days, and then pulverized to prepare a firing raw material.
  • the obtained powder was heated to 650 ° C. over 1 hour, held at that temperature for 5 hours, and then cooled in the furnace to near room temperature. After pulverization, the temperature was raised again to 850 ° C. over 1 hour in a nitrogen stream using an electric furnace, held at that temperature for 5 hours, and then cooled to near room temperature in the furnace.
  • the sample was prepared by firing in air in the first stage and in a nitrogen atmosphere in the second stage. In order to remove the fired product from the electric furnace and remove the excess lithium salt, the fired product is washed with distilled water, filtered, and dried to powder the target iron, nickel and titanium substituted Li 2 MnO 3 Obtained as a product.
  • Example 1 has a higher degree of hexagonal network alignment than the sample of Comparative Example 1 that does not contain Ti described later.
  • the Fe, Ni, and Ti contents with respect to the total amount of metals other than lithium are 10 mol%, 10 mol% (y value equivalent to 0.20), and 20 mol% (z value equivalent to 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is 1.68 (x value conversion 0.254), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1 It is clear that a lithium manganese composite oxide having -x O 2 was obtained.
  • a lithium secondary battery using the obtained sample as the positive electrode material and metallic lithium as the negative electrode material was prepared, and an activation treatment and a cycle test were performed. It was.
  • Example 1 not only shows a charge / discharge capacity of approximately 240 mAh / g after activation, but also contains a M 2 element described later, and is a comparative example obtained under the same production conditions.
  • the sample No. 1 not only the charge / discharge characteristics at the first cycle after the activation treatment are almost the same, but also the charge / discharge curves similar to those at the 20th cycle after the activation treatment up to 50 cycles after the activation treatment. Show.
  • the Fe and Ni contents with respect to the total amount of metals other than lithium are maintained at 10 mol% and 10 mol% (y value equivalent to 0.20), respectively, and the Li / (M 1 + Mn) ratio was 1.71 (x value conversion 0.262), and a lithium manganese composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.
  • the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done.
  • the evaluation results of the charge / discharge characteristics are shown in FIG. 4 and Table 3, the sample of Comparative Example 1 shows a charge / discharge capacity of approximately 250 mAh / g after activation, but 3.7 times due to the structural transition from the layered rock salt structure to the spinel phase during 50 cycles of discharge after the activation treatment.
  • Example 2 A sample was prepared in the same manner as in Example 1 except that the final firing atmosphere was air. In other words, the sample was prepared by firing twice in the air.
  • FIG. 5 shows the measured (+) and calculated (solid line) X-ray diffraction patterns of this final product. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
  • the sample of Example 2 has a smaller amount of transition metal in the Li-Mn layer than the sample of Comparative Example 2 that does not contain Ti described later. It can be seen that the amount of transition metal in the single layer is large, and that transition metal ions tend to be irregularly arranged by introducing Ti. In addition, it can be seen that the sample of Example 2 has a higher degree of hexagonal network alignment than the sample of Comparative Example 2 that does not contain Ti described later.
  • the Fe, Ni, and Ti contents with respect to the total amount of metals other than lithium were maintained at 10 mol%, 10 mol% (y value equivalent to 0.20), and 20 mol% (z value equivalent to 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is also 1.72 (x value conversion 0.265), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is clear that a lithium manganese composite oxide having 2 was obtained.
  • the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done.
  • the evaluation results of the charge / discharge characteristics are shown in FIG. 6 and Table 3, the sample of Example 2 not only shows a charge / discharge capacity close to 240 mAh / g after activation, but also does not contain the M 2 element described later, and the sample of Comparative Example 2 obtained under the same production conditions.
  • the sample of Comparative Example 2 obtained under the same production conditions.
  • the charge / discharge characteristics at the first cycle after the activation treatment are almost equivalent, but also a charge / discharge curve similar to that at the 20th cycle after the activation treatment is shown up to 50 cycles after the activation treatment.
  • FIG. 7 shows the measured (+) and calculated (solid line) X-ray diffraction patterns of this final product. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
  • the Fe and Ni contents with respect to the total amount of metals other than lithium are maintained at 10 mol% and 10 mol% (y value equivalent to 0.20), respectively, and the Li / (M 1 + Mn) ratio 1.73 (x value conversion 0.267), a lithium manganese composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.
  • the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done.
  • the evaluation results of the charge / discharge characteristics are shown in FIG. 8 and Table 3, the sample of Comparative Example 2 shows a charge / discharge capacity of approximately 250 mAh / g after activation, but 3.7 cycles accompanying the structural transition from the layered rock-salt structure to the spinel phase during 50 cycles of discharge after activation.
  • Example 3 A sample was prepared in the same manner as in Example 1 except that the final firing conditions were 900 ° C. and 5 hours in the air. In other words, the sample was prepared by firing twice in the air. The actual measurement (+) and calculation (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
  • the sample of Example 3 has a smaller amount of transition metal in the Li-Mn layer than the sample of Comparative Example 3 not containing Ti described later, and Li It can be seen that the amount of transition metal in the single layer is large, and that transition metal ions tend to be irregularly arranged by introducing Ti. In addition, it can be seen that the sample of Example 3 has a higher degree of hexagonal network alignment than the sample of Comparative Example 3 that does not contain Ti described later.
  • the Fe, Ni, and Ti contents with respect to the total amount of metals other than lithium were maintained at 10 mol%, 10 mol% (y value equivalent to 0.20), and 20 mol% (z value equivalent to 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is 1.74 (x value conversion 0.270), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is clear that a lithium manganese composite oxide having 2 was obtained.
  • the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done.
  • the evaluation results of the charge / discharge characteristics are shown in FIG. 10 and Table 3, the sample of Example 3 not only shows a charge / discharge capacity close to 200 mAh / g after activation, but also contains the M 2 element described later and is a sample of Comparative Example 3 obtained under the same production conditions.
  • the charge / discharge characteristics at the first cycle after the activation treatment are almost equal, and the charge / discharge curve is similar to that at the 20th cycle after the activation treatment up to 50 cycles after the activation treatment. .
  • the Fe and Ni contents with respect to the total amount of metals other than lithium are maintained at 10 mol% and 10 mol% (y value equivalent to 0.20), respectively, and the Li / (M 1 + Mn) ratio was 1.71 (x value conversion 0.262), and a lithium manganese composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.
  • the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done.
  • the evaluation results of the charge / discharge characteristics are shown in FIG. 12 and Table 3, the sample of Comparative Example 3 shows a charge / discharge capacity close to 230 mAh / g after activation, but during the 50-cycle discharge after the activation treatment, 3.7 is associated with the structural transition from the layered rock salt structure to the spinel phase.
  • Example 4 A sample was prepared in the same manner as in Example 1 except that the final firing conditions were 900 ° C. and 5 hours in a nitrogen stream. The actual measurement (+) and calculation (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
  • the sample of Example 4 has a smaller amount of transition metal in the Li-Mn layer than the sample of Comparative Example 4 which does not contain Ti described later. It can be seen that the amount of transition metal in the single layer is large, and that transition metal ions tend to be irregularly arranged by introducing Ti. Further, it can be seen that the sample of Example 4 has a higher degree of hexagonal network regular arrangement than the sample of Comparative Example 4 which does not contain Ti described later.
  • the Fe, Ni, and Ti contents with respect to the total amount of metals other than lithium were maintained at 10 mol%, 10 mol% (y value equivalent to 0.20), and 20 mol% (z value equivalent to 0.20), respectively.
  • the Li / (M 1 + M 2 + Mn) ratio is also 1.64 (x value conversion 0.242), so the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is clear that a lithium manganese composite oxide having 2 was obtained.
  • the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done.
  • the evaluation results of the charge / discharge characteristics are shown in FIG. 14 and Table 3, the sample of Example 4 not only shows a charge / discharge capacity close to 200 mAh / g after activation, but also contains the M 2 element described later, and the sample of Comparative Example 4 obtained under the same production conditions.
  • the charge / discharge characteristics at the first cycle after the activation treatment are almost equal, and the charge / discharge curve is similar to that at the 20th cycle after the activation treatment up to 50 cycles after the activation treatment. .
  • the Fe and Ni contents with respect to the total amount of metals other than lithium are maintained at 10 mol% and 10 mol% (y value equivalent to 0.20), respectively, and the Li / (M 1 + Mn) ratio was 1.72 (x value conversion 0.265), and a lithium manganese composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.
  • the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done.
  • the evaluation results of the charge / discharge characteristics are shown in FIG. 16 and Table 3, the sample of Comparative Example 4 shows a charge / discharge capacity close to 200 mAh / g after activation, but it is 3.7 with the structural transition from the layered rock salt structure to the spinel phase after 50 cycles of discharge after the activation treatment.
  • Example 5 Sample synthesis, structure and composition evaluation 10.10 g of iron (III) nitrate nonahydrate, 7.27 g of nickel (II) nitrate hexahydrate, 29.69 g of manganese (II) chloride tetrahydrate (total amount 0.25 mol, Fe: Ni: Mn molar ratio 1: 1: 6) was added to 500 mL of distilled water and completely dissolved. In another beaker, 50 g of sodium hydroxide was weighed, 500 mL of distilled water was added and dissolved while stirring to prepare an aqueous sodium hydroxide solution. This aqueous sodium hydroxide solution was placed in a titanium beaker and allowed to stand in a thermostat kept at 20 ° C.
  • the metal salt aqueous solution was gradually dropped into the sodium hydroxide solution over about 3 hours to form an Fe—Ni—Mn precipitate (coprecipitate).
  • oxygen was blown into the reaction solution containing the coprecipitate with stirring at room temperature for 2 days to ripen the precipitate.
  • the obtained precipitate was washed with distilled water, filtered, dispersed with distilled water and completely dissolved in lithium hydroxide monohydrate 20.98 g (0.5 mol) and GeO 2 5.23 g (0.05 mol) and a mixer Mix to form a uniform slurry.
  • the slurry was transferred to a tetrafluoroethylene petri dish, dried at 50 ° C. for 2 days, and then pulverized to prepare a firing raw material.
  • the obtained powder was heated to 650 ° C. over 1 hour, held at that temperature for 5 hours, and then cooled in the furnace to near room temperature. After pulverization, the temperature was raised again to 900 ° C. over 1 hour in a nitrogen stream using an electric furnace, held at that temperature for 5 hours, and then cooled to near room temperature in the furnace. In order to remove the fired product from the electric furnace and remove the excess lithium salt, the fired product is washed with distilled water, filtered and dried to powder the target product, iron, nickel and germanium substituted Li 2 MnO 3 Obtained as a product.
  • the amount of the transition metal is large, and that the transition metal ions tend to be irregularly arranged by introducing Ge.
  • the sample of Example 5 has a higher degree of hexagonal network alignment than the sample of Comparative Example 4 that does not contain Ge described above.
  • Example 5 not only shows a charge / discharge capacity of nearly 250 mAh / g after activation, but also contains the aforementioned M 2 element and is a comparative example obtained under the same production conditions.
  • the charge / discharge characteristics at the 1st cycle after the activation treatment are improved, and the charge / discharge curve similar to that at the 20th cycle after the activation treatment is shown up to 50 cycles after the activation treatment. Show.
  • Mn occupies 100% of the hexagonal mesh configuration position (4g) position, and the hexagonal network center position (2b Mn ions are not present at other positions such as), but in reality, 100% of Mn ions are not present at the 4g position, and some Mn ions are arranged at three Li positions.
  • g 4g indicates the Mn occupancy at the hexagonal mesh position (4g) position
  • g 2b indicates the Mn occupancy at the 2b position
  • g 2c indicates the Mn occupancy at the 2c position
  • g 4h indicates The Mn occupancy at 4h position is shown.
  • the difference in Mn occupancy between the 4g position and the 2b position (g 4g -g 2b ) is defined as hexagonal network regularity, and the larger the value, the more ideal the Li 2 MnO 3 type monoclinic layered rock salt structure To do.
  • the average value 1 indicates the average occupancy (element ratio (%)) of the transition metal element at the lattice positions (4g and 2b positions) in the Li-Mn layer, and the average value 2 indicates the lattice in the Li single layer.
  • the average occupancy (element ratio (%)) of the transition metal element at the position (positions 4h and 2c) is shown.
  • the total amount of transition metals is based on the occupancy of the transition metal elements (element ratio (%)) at the lattice positions (4g and 2b) in the Li-Mn layer using the monoclinic layered rock salt structure model.
  • the sum of the occupation ratio (element ratio (%)) of the transition metal element at the lattice position (4h and 2c) in the single layer is shown.
  • a smaller average value 1 and a larger average value 2 mean that the transition metal ions are irregularly arranged.
  • Charge / Discharge Characteristic Evaluation Charge / discharge tests were conducted using the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 as positive electrode materials. Specifically, 5 mg of the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were mixed well with 5 mg of acetylene black, and then 0.5 mg of polytetrafluoroethylene powder was added and bonded, and crimped onto an Al mesh. Thus, a positive electrode was produced. The obtained positive electrode was vacuum-dried at 120 ° C. overnight, and then a lithium secondary battery was produced in the glove box. As the electrolytic solution, a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 3: 7) was used, and metallic lithium was used as the negative electrode.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the charge / discharge test was shifted to a cycle deterioration test after the stage charge process for obtaining an activated sample.
  • the test is performed at the start of charging, and is cycled by increasing the charging capacity in the order of 80, 120, 160, and 200 mAh / g at a potential range of 2.0 to 4.8 V, a test temperature of 30 ° C., and a current density of 40 mA / g.
  • Activation processing was performed by constant current-constant voltage charging up to 4.8 V (current termination at 4.8 V was 10 mA / g).
  • the stage charge activation treatment is essential for evaluating the charge / discharge characteristics of the lithium manganese composite oxide of the present invention. In particular, it is an essential process when Fe is contained as the M 1 element.
  • the charge / discharge curve changes as the cycle progresses (especially the deviation from the similar shape seen after the 20th cycle) by evaluating up to 50 cycles with constant current charge / discharge at 2.0-4.8V. ) was evaluated.
  • the discharge curve at 50 cycle discharge after activation 54 cycle discharge: 54d
  • the presence or absence of additional capacitance at 2.2 V or lower due to (2) structural transition to the Li 2 (Mn, Ni) O 2 phase was evaluated.
  • the results are shown in FIGS. 2, 4, 6, 8, 10, 12, 14, 16 and 18 and Table 4.
  • a charging curve (5c) at the time of 1 cycle charging after the activation process and a charging curve at the time of 20 cycles charging after the activation process ( 24c), charge curve at the time of 50 cycles after activation treatment (54c), discharge curve after 1 cycle discharge after activation treatment (5d), discharge curve after 20 cycles after activation treatment (24d), and activity
  • the discharge curve (54d) at the time of 50-cycle discharge after the oxidization treatment is shown, with a curve rising to the right corresponding to charging and a curve falling to the right corresponding to discharging.
  • Q 5c is the capacity at one cycle after activation
  • Q 5d is the capacity at one cycle after activation
  • Q 54d is the capacity at 50 cycles after activation
  • (Q 1d sum of ⁇ Q 5d) / (sum of Q 1c ⁇ Q 5c) is one in which the sum of the discharge capacity of each cycle in step charge activated during processing, divided by the sum of the charge capacity of each cycle.
  • V 5d ⁇ ave represents the initial average discharge voltage during one cycle discharge after the activation treatment.
  • the lithium manganese composite oxide of the present invention not only exhibits a large charge / discharge capacity of 200 mAh / g or more for the first time, but also includes two side reactions that occur after the cycle has elapsed. It was confirmed that the substance has excellent long-term cycle characteristics and suppresses the change in crystal structure due to.

Abstract

A lithium manganese composite oxide which is represented by general formula (1) Li1+x(M1 yM2 zMn1-y-z)1-xO2 (wherein M1 represents Fe and/or Ni; M2 represents Ti and/or Ge; and x, y and Z satisfy 0 < x < 1/3, 0 ≤ y ≤ 0.4 and 0 < z ≤ 0.3) and contains a crystal phase having a monoclinic layered rock salt structure or a hexagonal layered rock salt structure is a novel material that has few resource constraints and uses low-cost elements, while achieving high capacity and high discharge voltage and exhibiting excellent long-term cycle characteristics for maintaining the similarity of the shapes of charge/discharge curves during charge/discharge cycles if used for a positive electrode material for lithium ion secondary batteries.

Description

チタン及び/又はゲルマニウム置換リチウムマンガン系複合酸化物及びその製造方法Titanium and / or germanium-substituted lithium manganese composite oxide and method for producing the same
 本発明は、チタン及び/又はゲルマニウム置換リチウムマンガン系複合酸化物及びその製造方法に関する。 The present invention relates to a titanium and / or germanium substituted lithium manganese composite oxide and a method for producing the same.
 現在、我が国において、携帯電話、スマートフォン、ノートパソコン、タブレット型パソコン等のポータブル機器に搭載されている二次電池のほとんどは、リチウムイオン二次電池である。リチウムイオン二次電池は、今後、電気自動車、電力負荷平準化システム等の大型電池としても実用化されつつあり、その重要性はますます高まっている。 Currently, most of the secondary batteries installed in portable devices such as mobile phones, smartphones, notebook computers, and tablet computers in Japan are lithium ion secondary batteries. In the future, lithium ion secondary batteries are being put into practical use as large batteries for electric vehicles, power load leveling systems, and the like, and their importance is increasing.
 現在、リチウムイオン二次電池においては、正極材料としてはリチウム含有遷移金属酸化物、負極材料としては黒鉛等の炭素材料が使用されている。特に、正極材料において可逆的に脱離(充電に相当)、挿入(放電に相当)するリチウムイオン量が電池の容量を決定づけ、脱離及び挿入時の電圧が電池の作動電圧を決定づけるために、電池の容量及び動作電圧は正極によって決定づけられる。さらに、電池の構成部材コストは正極活物質が最も高く、正極材料の選択はリチウムイオン二次電池の開発において最も重要である。 Currently, in lithium ion secondary batteries, a lithium-containing transition metal oxide is used as the positive electrode material, and a carbon material such as graphite is used as the negative electrode material. In particular, the amount of lithium ions reversibly desorbed (equivalent to charging) and inserted (equivalent to discharging) in the positive electrode material determines the capacity of the battery, and the voltage at the time of desorption and insertion determines the operating voltage of the battery. Battery capacity and operating voltage are determined by the positive electrode. Furthermore, the cost of the constituent members of the battery is highest for the positive electrode active material, and the selection of the positive electrode material is most important in the development of a lithium ion secondary battery.
 このため、リチウムイオン二次電池の用途拡大及び大型化に伴い、正極材料の一層の需要増加が予想される。しかしながら、正極材料として通常使用されるコバルト酸リチウムは、希少金属であるコバルトを多量に含むために、リチウムイオン二次電池の素材コストを上昇させる要因の一つとなっている。さらに、現在コバルト資源の約20%が電池産業に用いられていることを考慮すれば、LiCoO2からなる正極材料のみでは今後の需要拡大に対応することは困難と考えられる。このため、特に、自動車用途等の大型リチウムイオン二次電池に用いるためには、資源的に豊富な元素を用いた酸化物正極材料が求められている。 For this reason, further increase in demand for the positive electrode material is expected as the use of the lithium ion secondary battery is expanded and the size thereof is increased. However, lithium cobaltate, which is usually used as a positive electrode material, contains a large amount of cobalt, which is a rare metal, and is one of the factors that increase the material cost of lithium ion secondary batteries. Furthermore, considering that about 20% of cobalt resources are currently used in the battery industry, it is considered difficult to meet future demand growth with only the positive electrode material made of LiCoO 2 . For this reason, especially in order to use for large sized lithium ion secondary batteries, such as a use for motor vehicles, the oxide positive electrode material using an element rich in resources is calculated | required.
 現在、より安価で資源的に制約の少ない正極材料として、本発明者らは、リチウムマンガン酸化物(Li2MnO3)とリチウムフェライトとからなる層状岩塩型構造の固溶体(Li1+x(FeyMn1-y)1-xO2(0<x<1/3, 0<y<1)、以下「鉄含有Li2MnO3」と言うこともある)が、室温での充放電試験においてはリチウムコバルト酸化物並の4V近い平均放電電圧を有することを見出している(例えば、特許文献1参照)。 At present, as a cathode material that is less expensive and less resource-constrained, the present inventors have developed a layered rock-salt-type solid solution (Li 1 + x (Fe 1 ) consisting of lithium manganese oxide (Li 2 MnO 3 ) and lithium ferrite. y Mn 1-y ) 1-x O 2 (0 <x <1/3, 0 <y <1), sometimes referred to as “iron-containing Li 2 MnO 3 ”) Has an average discharge voltage close to 4 V, comparable to that of lithium cobalt oxide (see, for example, Patent Document 1).
 また、本発明者らは、鉄とともに資源的に豊富なニッケルを含有するリチウムマンガン酸化物(鉄及びニッケル含有Li2MnO3等)が、4V領域のサイクル劣化を著しく改善できることを見出している(例えば、特許文献2参照)。 In addition, the present inventors have found that lithium manganese oxide (such as iron and nickel-containing Li 2 MnO 3 ) containing abundant nickel together with iron can remarkably improve cycle deterioration in the 4 V region ( For example, see Patent Document 2).
 さらに、本発明者らは、鉄とともに資源的に豊富で安価なチタンを含有するリチウムマンガン酸化物(チタン含有Li2MnO3、鉄及びチタン含有Li2MnO3等)が、高容量を示し、特に、特定の化学組成、遷移金属イオン分布において、室温における高電流密度下での放電特性や低温での放電特性に優れることを見出している(例えば、特許文献3参照)。 Furthermore, the present inventors have shown that lithium manganese oxides (such as titanium-containing Li 2 MnO 3 , iron and titanium-containing Li 2 MnO 3 ) containing titanium that is resource-rich and inexpensive together with iron exhibit high capacity, In particular, it has been found that a specific chemical composition and transition metal ion distribution are excellent in discharge characteristics under a high current density at room temperature and discharge characteristics at a low temperature (see, for example, Patent Document 3).
 以上の通り、リチウムコバルト系正極材料に代わり得るリチウムマンガン系正極材料について種々の報告がなされているが、より一層の充放電特性改善が望まれている。 As described above, various reports have been made on lithium manganese-based positive electrode materials that can replace lithium cobalt-based positive electrode materials, but further improvement in charge / discharge characteristics is desired.
特開2002-068748号公報JP 2002-068748 A 特開2003-048718号公報JP 2003-048718 A 特開2008-063211号公報JP 2008-063211 A
 しかしながら、特許文献1~2のリチウムマンガン系複合酸化物を使用した場合には、充放電を繰り返すことにより、層状岩塩型構造の結晶相から徐々にスピネル型構造の結晶相又はリチウム過剰結晶相に変化するために、それぞれ放電時3.5V付近で急激な電位低下が見られ、放電時2.2V付近で付加的な容量の出現が見られる。工業的には、100サイクルや1000サイクル経過後であっても充放電曲線形状を維持できることが好ましいが、この手法ではそれ以前に充放電特性の低下が見られる。このため、特許文献1~2のリチウムマンガン系複合酸化物は、これら2種類の結晶構造転移によって充放電曲線形状が著しく変化し、充放電サイクル時の充放電曲線の相似性が維持できないために実用上好ましくない。 However, when the lithium manganese composite oxides of Patent Documents 1 and 2 are used, by repeating charge and discharge, the crystal phase of the layered rock salt structure is gradually changed to the crystal phase of the spinel structure or the lithium excess crystal phase. Due to the change, a sudden drop in potential is observed around 3.5V during discharge, and additional capacity appears around 2.2V during discharge. Industrially, it is preferable that the charge / discharge curve shape can be maintained even after 100 cycles or 1000 cycles, but this method shows a decrease in charge / discharge characteristics before that. For this reason, the lithium manganese composite oxides of Patent Documents 1 and 2 change the charge / discharge curve shape remarkably due to these two types of crystal structure transitions, and the similarity of the charge / discharge curve during the charge / discharge cycle cannot be maintained. It is not preferable for practical use.
 また、特許文献3のリチウムマンガン系複合酸化物は、放電電圧が低く、充放電曲線ヒステリシスも大きくなってしまう。 Moreover, the lithium manganese composite oxide of Patent Document 3 has a low discharge voltage and a large charge / discharge curve hysteresis.
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、資源的な制約が少なく安価な元素を使用するとともに、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる新規な材料を提供することを主な目的とする。 The present invention has been made in view of the current state of the prior art described above, and uses a low-cost element with less resource restrictions and has a high capacity when used as a positive electrode material for a lithium ion secondary battery. The main object of the present invention is to provide a novel material that has a high discharge voltage and is excellent in cycle characteristics over a long period of time because the similarity of the charge / discharge curve shape during the charge / discharge cycle can be maintained.
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、特定量の鉄及び/又はニッケルを含むLi2MnO3型複合酸化物に、さらに、特定量のチタン及び/又はゲルマニウムを固溶させた複合酸化物は、資源的な制約が少なく安価な元素を使用しているとともに、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れることを見出した。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。即ち、本発明は、以下の構成を包含する。
項1.一般式(1):
Li1+x(M1 yM2 zMn1-y-z)1-xO2   (1)
[式中、M1はFe及び/又はNiを示す。M2はTi及び/又はGeを示す。x、y及びzは、0<x<1/3、0≦y≦0.4、0<z≦0.3を示す。]
で表され、且つ、
単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含むリチウムマンガン系複合酸化物。
項2.前記一般式(1)において、M1がNiを含有する、項1に記載のリチウムマンガン系複合酸化物。
項3.単斜晶層状岩塩型構造の結晶相のみからなる、項1又は2に記載のリチウムマンガン系複合酸化物。
項4.項1~3のいずれかに記載のリチウムマンガン系複合酸化物の製造方法であって、
(1)マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物とを含む混合物を、アルカリ性として沈殿物を形成する工程、
(2)工程1で得られた沈殿物に湿式酸化処理を施して熟成させる工程、
(3)工程2で得られた熟成物を、リチウム化合物を含む原料化合物の共存下に、加熱する工程
をこの順に備える、製造方法。
項5.前記工程1における混合物が、さらに、チタン化合物を含む、項4に記載の製造方法。
項6.前記工程3における原料化合物が、さらに、ゲルマニウム化合物を含む、項4又は5に記載の製造方法。
項7.前記工程3が、前記工程2で得られた熟成物と、前記原料化合物と混合した後に加熱する工程である、項4~6のいずれかに記載の製造方法。
項8.前記工程3における加熱が、大気中で加熱した後に、大気中又は不活性雰囲気下で再度加熱する工程である、項4~7のいずれかに記載の製造方法。
項9.項1~3のいずれかに記載のリチウムマンガン系複合酸化物からなるリチウムイオン二次電池用正極材料。
項10.項9に記載のリチウムイオン二次電池用正極材料を構成要素とするリチウムイオン二次電池。
The inventors of the present invention have intensively studied to achieve the above-described object. As a result, a composite oxide in which a specific amount of titanium and / or germanium is further dissolved in a Li 2 MnO 3 type composite oxide containing a specific amount of iron and / or nickel is less expensive and less expensive. In addition, when used as a positive electrode material for lithium ion secondary batteries, it has a high capacity, a high discharge voltage, and the similarity of the charge / discharge curve shape during the charge / discharge cycle It was found that long-term cycle characteristics are excellent. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
Item 1. General formula (1):
Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O 2 (1)
[Wherein M 1 represents Fe and / or Ni. M 2 represents Ti and / or Ge. x, y, and z represent 0 <x <1/3, 0 ≦ y ≦ 0.4, and 0 <z ≦ 0.3. ]
And
A lithium manganese composite oxide containing a crystal phase of a monoclinic layered rock salt type structure or a hexagonal layered rock salt type structure.
Item 2. Item 2. The lithium manganese composite oxide according to Item 1, wherein M 1 in the general formula (1) contains Ni.
Item 3. Item 3. The lithium manganese composite oxide according to Item 1 or 2, comprising only a crystal phase having a monoclinic layered rock salt structure.
Item 4. Item 4. The method for producing a lithium manganese composite oxide according to any one of Items 1 to 3,
(1) a step of forming a precipitate by making a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound alkaline,
(2) A step of subjecting the precipitate obtained in step 1 to wet oxidation and aging,
(3) A production method comprising a step of heating the aged product obtained in step 2 in the order of coexistence of a raw material compound containing a lithium compound.
Item 5. Item 5. The method according to Item 4, wherein the mixture in Step 1 further contains a titanium compound.
Item 6. Item 6. The production method according to Item 4 or 5, wherein the raw material compound in Step 3 further contains a germanium compound.
Item 7. Item 7. The production method according to any one of Items 4 to 6, wherein Step 3 is a step of heating after mixing the aged product obtained in Step 2 and the raw material compound.
Item 8. Item 8. The manufacturing method according to any one of Items 4 to 7, wherein the heating in Step 3 is a step of heating again in the air or in an inert atmosphere after heating in the air.
Item 9. Item 4. A positive electrode material for a lithium ion secondary battery comprising the lithium manganese composite oxide according to any one of Items 1 to 3.
Item 10. Item 10. A lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to Item 9.
 本発明によれば、資源的な制約が少なく安価な元素を使用しつつ、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる新規な材料を提供することができる。 According to the present invention, when used as a positive electrode material for a lithium ion secondary battery while using an inexpensive element with few resource restrictions, it has a high capacity, a high discharge voltage, and a charge. Since the similarity of the charge / discharge curve shape during the discharge cycle can be maintained, a novel material excellent in long-term cycle characteristics can be provided.
 特に、本発明のリチウムマンガン系複合酸化物は、高電位までの充電時においても化学的に安定であるため、長期サイクル時においても優れた充放電特性を発揮することができる。 In particular, the lithium manganese composite oxide of the present invention is chemically stable even when charged to a high potential, and therefore can exhibit excellent charge / discharge characteristics even during long-term cycles.
実施例1で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 1 are shown. 実施例1で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Example 1 is a positive electrode material and metal lithium is a negative electrode material. 比較例1で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Comparative Example 1 are shown. 比較例1で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。2 shows a charge / discharge curve of a lithium secondary battery using the sample obtained in Comparative Example 1 as a positive electrode material and metallic lithium as a negative electrode material. 実施例2で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 2 are shown. 実施例2で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。2 shows a charge / discharge curve of a lithium secondary battery using the sample obtained in Example 2 as a positive electrode material and metallic lithium as a negative electrode material. 比較例2で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Comparative Example 2 are shown. 比較例2で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Comparative Example 2 was used as a positive electrode material and metallic lithium was used as a negative electrode material. 実施例3で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 3 are shown. 実施例3で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Example 3 was used as a positive electrode material and metal lithium was used as a negative electrode material. 比較例3で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Comparative Example 3 are shown. 比較例3で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。2 shows a charge / discharge curve of a lithium secondary battery using the sample obtained in Comparative Example 3 as a positive electrode material and metallic lithium as a negative electrode material. 実施例4で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 4 are shown. 実施例4で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Example 4 was used as a positive electrode material and metallic lithium was used as a negative electrode material. 比較例4で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Comparative Example 4 are shown. 比較例4で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。2 shows a charge / discharge curve of a lithium secondary battery in which the sample obtained in Comparative Example 4 is a positive electrode material and metallic lithium is a negative electrode material. 実施例5で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measured (+) and calculated (solid line) X-ray diffraction patterns of the sample obtained in Example 5 are shown. 実施例5で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charging / discharging curve of the lithium secondary battery which used the sample obtained in Example 5 as a positive electrode material and used metallic lithium as a negative electrode material is shown.
 1.リチウムマンガン系複合酸化物
 本発明のリチウムマンガン系複合酸化物は、一般式(1):
Li1+x(M1 yM2 zMn1-y-z)1-xO2   (1)
[式中、M1はFe及び/又はNiを示す。M2はTi及び/又はGeを示す。x、y及びzは、0<x<1/3、0≦y≦0.4、0<z≦0.3を示す。]
で表される化合物であって、岩塩型構造を基本として、単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含んでいる。
1. Lithium manganese complex oxide The lithium manganese complex oxide of the present invention has the general formula (1):
Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O 2 (1)
[Wherein M 1 represents Fe and / or Ni. M 2 represents Ti and / or Ge. x, y, and z represent 0 <x <1/3, 0 ≦ y ≦ 0.4, and 0 <z ≦ 0.3. ]
And includes a crystal phase of a monoclinic layered rock salt type structure or a hexagonal layered rock salt type structure based on a rock salt type structure.
 単斜晶層状岩塩型構造は、空間群: Monoclinic layered rock salt structure is a space group:
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
で帰属させることができる結晶相であり、具体的には、容量及びサイクル特性の観点から、Li2MnO3に類似する単位胞を有する結晶相のみからなるLi2MnO3型単斜晶層状岩塩型構造の結晶相であることが好ましい。 In a crystalline phase that can be attributed, in particular, capacity and in terms of cycle characteristics, Li 2 MnO 3 type monoclinic layered rock salt consisting only crystal phase with a unit cell similar to Li 2 MnO 3 A crystal phase with a mold structure is preferred.
 一方、六方晶層状岩塩型構造は、空間群: On the other hand, the hexagonal layered rock-salt structure is a space group:
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
で帰属させることができる結晶相であり、具体的には、容量及びサイクル特性の観点から、LiNiO2に類似する単位胞を有する結晶相のみからなるLiNiO2型六方晶層状岩塩型構造の結晶相であることが好ましい。 In a crystalline phase that can be attributed, in particular, capacity and in terms of the cycle characteristics, the crystalline phase of LiNiO 2 type hexagonal layered rock-salt structure comprising only crystalline phase with a unit cell similar to LiNiO 2 It is preferable that
 本発明のリチウムマンガン系複合酸化物は、上記の単斜晶層状岩塩型構造及び六方晶層状岩塩型構造の結晶相のうち、一方のみを有していてもよいし、双方を有していてもよい。いずれの場合においても、本発明のリチウムマンガン系複合酸化物は、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる材料である。 The lithium manganese composite oxide of the present invention may have only one or both of the crystal phases of the above monoclinic layered rock salt structure and hexagonal layered rock salt structure. Also good. In any case, the lithium manganese composite oxide of the present invention has a high capacity, a high discharge voltage, and a charge / discharge cycle when used as a positive electrode material for a lithium ion secondary battery. This material is excellent in cycle characteristics over a long period of time because the similarity of the charge / discharge curve shape can be maintained.
 本発明のリチウムマンガン系複合酸化物が、上記の単斜晶層状岩塩型構造及び六方晶層状岩塩型構造の結晶相の双方を有する場合、各結晶相の割合は特に制限されず、通常、層状岩塩型構造の結晶相の総量を100重量%として、単斜晶層状岩塩型構造の結晶相は1~99重量%(特に5~95重量%、さらに10~90重量%)、六方晶層状岩塩型構造の結晶相は1~99重量%(特に5~95重量%、さらに10~90重量%)が好ましい。 When the lithium manganese based composite oxide of the present invention has both the monoclinic layered rock salt structure and the crystal phase of the hexagonal layered rock salt structure, the proportion of each crystal phase is not particularly limited, and is usually layered. The total crystal phase of the rock salt type structure is 100% by weight, the crystal phase of the monoclinic layered rock salt type structure is 1 to 99% by weight (especially 5 to 95% by weight, and further 10 to 90% by weight), hexagonal layered rock salt The crystal phase of the mold structure is preferably 1 to 99% by weight (particularly 5 to 95% by weight, more preferably 10 to 90% by weight).
 一方、本発明のリチウムマンガン系複合酸化物は、上記の単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含んでいればよく、陽イオン分布の異なる他の岩塩型構造(例えば、立方晶岩塩型構造等)の結晶相を含む混合相であってもよい。また、本発明のリチウムマンガン系複合酸化物が、上記の単斜晶層状岩塩型構造及び/又は六方晶層状岩塩型構造の結晶相のみからなる材料であってもよい。 On the other hand, the lithium manganese composite oxide of the present invention only needs to contain the crystal phase of the above monoclinic layered rock salt structure or hexagonal layered rock salt structure, and other rock salt structures with different cation distributions ( For example, a mixed phase including a crystal phase of a cubic rock salt structure or the like may be used. Further, the lithium manganese composite oxide of the present invention may be a material composed only of the crystal phase of the above monoclinic layered rock salt structure and / or hexagonal layered rock salt structure.
 後述する本発明の製造方法によれば、得られるリチウムマンガン系複合酸化物は、上記の単斜晶層状岩塩型構造及び/又は六方晶層状岩塩型構造の結晶相のみからなる材料が形成されやすいが、例えば、600℃以下の低温で合成する場合には、立方晶岩塩型構造の結晶相が含まれることがある。この立方晶岩塩型構造の結晶相も、優れた充放電特性を発揮する結晶構造であるため、この結晶構造を有していても何ら差し支えない。 According to the production method of the present invention to be described later, the resulting lithium manganese composite oxide is likely to form a material consisting only of the crystal phase of the above monoclinic layered rock salt structure and / or hexagonal layered rock salt structure. However, when synthesizing at a low temperature of 600 ° C. or lower, for example, a crystal phase having a cubic rock salt structure may be included. Since the crystal phase of this cubic rock salt structure is also a crystal structure that exhibits excellent charge / discharge characteristics, it does not matter if it has this crystal structure.
 ただし、本発明においては、単斜晶層状岩塩型構造及び六方晶層状岩塩型構造の結晶相を有することにより、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる材料であることから、単斜晶層状岩塩型構造及び六方晶層状岩塩型構造の結晶相の存在割合は高いことが好ましい。このような観点から、本発明のリチウムマンガン系複合酸化物が、陽イオン分布の異なる他の岩塩型構造(立方晶岩塩型構造等)を有する場合、層状岩塩型構造の結晶相との割合は、通常、本発明のリチウムマンガン系複合酸化物の総量を100重量%として、層状岩塩型構造の結晶相は1~99重量%(特に10~95重量%、さらに50~90重量%)、他の岩塩型構造(立方晶岩塩型構造等)の結晶相は1~99重量%(特に5~90重量%、さらに10~50重量%)が好ましい。 However, in the present invention, having a monoclinic layered rock salt type structure and a hexagonal layered rock salt type crystal phase, when used in a positive electrode material for a lithium ion secondary battery, has a high capacity and high Monoclinic layered rock salt structure and hexagonal layered rock salt because it has a discharge voltage and is excellent in long-term cycle characteristics because it can maintain the similarity of the charge / discharge curve shape during the charge / discharge cycle The proportion of the crystal phase of the mold structure is preferably high. From such a viewpoint, when the lithium manganese composite oxide of the present invention has other rock salt type structures (cubic rock salt type structures, etc.) having different cation distributions, the ratio of the layered rock salt type structure to the crystal phase is Usually, the total amount of the lithium manganese composite oxide of the present invention is 100% by weight, the crystal phase of the layered rock salt structure is 1 to 99% by weight (especially 10 to 95% by weight, more preferably 50 to 90% by weight), etc. The crystal phase of the rock salt type structure (such as cubic rock salt type structure) is preferably 1 to 99% by weight (especially 5 to 90% by weight, more preferably 10 to 50% by weight).
 本発明のリチウムマンガン系複合酸化物は、上記した一般式(1)で表されるとおり、Li、Mn及びM2を必須の元素として含んでおり、さらに、必要に応じてM1を固溶させている。 The lithium manganese based composite oxide of the present invention contains Li, Mn and M 2 as essential elements as represented by the above general formula (1), and further, M 1 is dissolved as required. I am letting.
 本発明のリチウムマンガン系複合酸化物がM1を含んでいる場合(M1を固溶させている場合)、固溶させるM1イオン量(y値;M1/(M1+M2+Mn))は、Liイオン以外の金属イオンの総量の40%以下(0<y≦0.4)、好ましくは5~35%(0.05≦y≦0.35)、より好ましくは10~30%(0.1≦y≦0.3)である。M1イオンの固溶量(y値)が過剰となる場合には、相対的にMn量が少なくなることから、組成式当たりのリチウム含有量が低下するために充放電容量が著しく低下する。一方、M1イオンの固溶量(y値)の下限値を上記範囲とすることで、放電電位をより上昇させ、ヒステリシスをより低減することができる。 When the lithium manganese-based composite oxide contains an M 1 (if a solid solution of M 1), M 1 ion amount to solid solution of the present invention (y value; M 1 / (M 1 + M 2 + Mn)) is 40% or less of the total amount of metal ions other than Li ions (0 <y ≦ 0.4), preferably 5 to 35% (0.05 ≦ y ≦ 0.35), more preferably 10 to 30% (0.1 ≦ y ≦ 0.3). When the amount of solid solution (y value) of M 1 ions is excessive, the amount of Mn is relatively reduced, so that the lithium content per composition formula is lowered, so that the charge / discharge capacity is significantly lowered. On the other hand, by setting the lower limit of the solid solution amount (y value) of M 1 ions within the above range, the discharge potential can be further increased and the hysteresis can be further reduced.
 本発明のリチウムマンガン系複合酸化物がM1を含んでいる場合(M1を固溶させている場合)、Li、Mn等を置換する形で、層状岩塩型構造中に存在していると思われるが、Fe及びNiの片方のみを含んでいてもよいし、Fe及びNiの双方を含んでいてもよい。より詳細には、NiよりもFeのほうが安価ではあるが、Niのほうが酸化還元電位が高いために放電電圧を高くしやすいため、高電位が求められる用途(自動車用途等の大型リチウムイオン二次電池等)には適している。このため、Fe及びNiの使用量については、用途に応じて適宜設定することが好ましい。例えば、Fe及びNi の双方を含む場合、M1元素の総量を100重量%として、Feは10~90重量%(特に30~70重量%、さらに40~60重量%)が好ましい。なお、Niの使用量は、Feの使用量との合計が100重量%となるように設定される。 (If a solid solution of M 1) the lithium-manganese-based composite oxide of the present invention may contain M 1, Li, in the form of replacing Mn or the like, when present in the layered rock-salt structure It seems that only one of Fe and Ni may be included, or both Fe and Ni may be included. More specifically, although Fe is cheaper than Ni, Ni has a higher oxidation-reduction potential, so it is easier to increase the discharge voltage, so applications where high potential is required (such as large lithium ion secondary for automotive applications) Suitable for batteries. For this reason, about the usage-amount of Fe and Ni, it is preferable to set suitably according to a use. For example, when both Fe and Ni are included, the total amount of M 1 element is 100% by weight, and Fe is preferably 10 to 90% by weight (particularly 30 to 70% by weight, more preferably 40 to 60% by weight). The amount of Ni used is set so that the total amount with the amount of Fe used is 100% by weight.
 本発明のリチウムマンガン系複合酸化物中に固溶させるM2イオン量(z値;M2/(M1+M2+Mn))は、Liイオン以外の金属イオンの総量の30%以下(0<z≦0.3)、好ましくは1~25%(0.01≦z≦0.25)である。なお、M2としてTiを使用する場合は、M2イオン量は10~25%(0.10≦z≦0.25)が好ましく、Geを使用する場合は、M2イオン量は1~10%(0.01≦z≦0.10)が好ましい。また、M2としてTi及びGeの双方を使用する場合は、その割合に応じて適宜設定することが好ましい。M2イオンの固溶量(z値)が過剰となる場合には、M2イオンの電気化学的活性度の低さから充放電容量が著しく低下する。一方、M2イオンの固溶量(z値)が少なすぎると充放電サイクル時の充放電曲線形状の相似性を維持しにくいために長期間充放電サイクルを行った場合のサイクル特性に劣る。 The amount of M 2 ions (z value; M 2 / (M 1 + M 2 + Mn)) dissolved in the lithium manganese composite oxide of the present invention is 30% or less of the total amount of metal ions other than Li ions ( 0 <z ≦ 0.3), preferably 1 to 25% (0.01 ≦ z ≦ 0.25). When using Ti as M 2 is, M 2 ion amount is preferably 10 ~ 25% (0.10 ≦ z ≦ 0.25), when using the Ge is, M 2 ion amount is 1 ~ 10% (0.01 ≦ z ≦ 0.10) is preferred. When using both the Ti and Ge as M 2 is preferably set as appropriate depending on the ratio. When the solid solution amount (z value) of M 2 ions is excessive, the charge / discharge capacity is remarkably lowered due to the low electrochemical activity of M 2 ions. On the other hand, when the solid solution amount (z value) of the M 2 ion is too small, it is difficult to maintain the similarity of the charge / discharge curve shape during the charge / discharge cycle, so that the cycle characteristics when the charge / discharge cycle is performed for a long time are inferior.
 本発明のリチウムマンガン系複合酸化物におけるM2もM1と同様に、Li、Mn等を置換する形で、層状岩塩型構造中に存在していると思われるが、Ti及びGeの片方のみを含んでいてもよいし、Ti及びGeの双方を含んでいてもよい。より詳細には、GeよりもTiのほうが安価ではあるが、Geは少ない元素量で優れた効果を発揮することができるためGeを使用した場合には原料の使用量を低減することもできる。このため、Ti及びGeの使用量については、用途に応じて適宜設定することが好ましい。例えば、Ti及びGe の双方を含む場合、M2元素の総量を100重量%として、Tiは10~90重量%(特に30~70重量%、さらに40~60重量%)が好ましい。なお、Geの使用量は、Tiの使用量との合計が100重量%となるように設定される。 M 2 in the lithium manganese composite oxide of the present invention is also considered to be present in the layered rock-salt structure in the form of substituting Li, Mn, etc. like M 1 , but only one of Ti and Ge May be included, and both Ti and Ge may be included. More specifically, although Ti is cheaper than Ge, Ge can exhibit an excellent effect with a small amount of elements, and therefore, when Ge is used, the amount of raw material used can be reduced. For this reason, about the usage-amount of Ti and Ge, it is preferable to set suitably according to a use. For example, when both Ti and Ge are included, the total amount of M 2 elements is 100% by weight, and Ti is preferably 10 to 90% by weight (particularly 30 to 70% by weight, more preferably 40 to 60% by weight). The amount of Ge used is set so that the total amount with the amount of Ti used is 100% by weight.
 本発明リチウムマンガン系複合酸化物に固溶させるM1とM2の合計量(y+z)は、前記一般式(1)において、70%以下(0<y+z≦0.7)が好ましく、10~60%(0.1≦y+z≦0.6)がより好ましく、20~50%(0.2≦y+z≦0.5)がさらに好ましく、25~45%(0.25≦y+z≦0.45)が特に好ましい。これにより、リチウムイオン二次電池用正極材料に用いた場合に、容量をより高くし、放電電圧をより高くし、充放電サイクル時の充放電曲線形状の相似性を維持しやすくできるために長期間のサイクル特性をより優れたものとすることができる。 The total amount (y + z) of M 1 and M 2 to be dissolved in the lithium manganese composite oxide of the present invention is preferably 70% or less (0 <y + z ≦ 0.7) in the general formula (1), 10 to 60% (0.1 ≦ y + z ≦ 0.6) is more preferable, 20 to 50% (0.2 ≦ y + z ≦ 0.5) is further preferable, and 25 to 45% (0.25 ≦ y + z ≦ 0.45) is particularly preferable. . As a result, when used as a positive electrode material for a lithium ion secondary battery, the capacity is increased, the discharge voltage is increased, and it is easy to maintain the similarity of the charge / discharge curve shape during the charge / discharge cycle. The cycle characteristics of the period can be made more excellent.
 また、本発明のリチウムマンガン系複合酸化物において、単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を保つことができる限り、Liイオン量(x)は、遷移金属の平均価数によって0と1/3の間の値をとることができる。通常、0.100~0.300が好ましく、0.200~0.280がより好ましく、0.230~0.270がさらに好ましい。 In the lithium manganese composite oxide of the present invention, the amount of Li ions (x) is the average valence of the transition metal as long as the crystal phase of the monoclinic layered rock salt structure or the hexagonal layered rock salt structure can be maintained. It can take values between 0 and 1/3 depending on the number. Usually, 0.100 to 0.300 is preferable, 0.200 to 0.280 is more preferable, and 0.230 to 0.270 is further preferable.
 さらに、本発明のリチウムマンガン系複合酸化物は、充放電特性に重大な影響を及ぼさない範囲の水酸化リチウム、炭酸リチウム、鉄化合物、ニッケル化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、これらの化合物の水和物;リチウム、鉄、ニッケル、チタン及びゲルマニウムの2種以上を含む複合金属化合物等の不純物相を含んでいてもよい。単斜晶層状岩塩型構造、六方晶層状岩塩型構造及び陽イオン分布の異なる他の岩塩型構造(立方晶岩塩型構造等)の結晶相以外の不純物相の量については、本発明の効果を損なわない範囲とすることができ、例えば、本発明のリチウムマンガン系複合酸化物中に0~10重量%が好ましく、0~5重量%がより好ましい。 Further, the lithium manganese based composite oxide of the present invention includes lithium hydroxide, lithium carbonate, iron compound, nickel compound, titanium compound, germanium compound, manganese compound, and compounds that do not significantly affect the charge / discharge characteristics. A hydrate of: an impurity phase such as a composite metal compound containing two or more of lithium, iron, nickel, titanium, and germanium. For the amount of impurity phase other than the crystal phase of monoclinic layered rock salt structure, hexagonal layered rock salt structure and other rock salt structures with different cation distribution (cubic rock salt structure, etc.) For example, 0 to 10% by weight is preferable in the lithium manganese composite oxide of the present invention, and 0 to 5% by weight is more preferable.
 以上のような条件を満たす本発明のリチウムマンガン系複合酸化物は、長期の充放電サイクル時においても、充放電曲線形状の相似性を維持することができ、層状岩塩型構造の結晶相からスピネル型構造の結晶相への相転移に基づく放電時3.5 V付近での急激な電位低下と、層状岩塩型構造の結晶相からリチウム過剰結晶相への相転移に基づく放電時2.2 V付近での付加的な容量の出現とをいずれも抑制できるため、本発明のリチウムマンガン系複合酸化物は、高容量及び高い放電電圧を有するのみならず、長期間の充放電サイクル時においても優れたサイクル特性を有する。このため、本発明のリチウムマンガン系複合酸化物は、小型民生用リチウムイオン二次電池のみならず車載用等の大型リチウムイオン二次電池用正極材料として極めて有用である。 The lithium manganese composite oxide of the present invention that satisfies the above conditions can maintain the similarity of the charge / discharge curve shape even during a long charge / discharge cycle, and the spinel from the crystal phase of the layered rock salt structure. Abrupt potential drop around 3.5 放電 V during discharge based on the phase transition to the crystalline phase of the type structure, and addition around 2.2 V during discharge based on the phase transition from the crystal phase of the layered rock salt type structure to the lithium-rich crystal phase Therefore, the lithium manganese composite oxide of the present invention not only has a high capacity and a high discharge voltage, but also has excellent cycle characteristics even during a long charge / discharge cycle. Have. For this reason, the lithium manganese composite oxide of the present invention is extremely useful as a positive electrode material for large-sized lithium ion secondary batteries for in-vehicle use as well as small-sized consumer lithium ion secondary batteries.
  2.リチウムマンガン系複合酸化物の製造方法
 本発明のリチウムマンガン系複合酸化物は、通常の複合酸化物の合成法を用いて合成することができる。具体的には、共沈-焼成法、共沈-水熱-焼成法、固相反応法等により合成することが可能である。特に優れた充放電特性を有する複合酸化物を容易に製造できる観点から、共沈-焼成法を採用することが好ましい。
2. Method for Producing Lithium Manganese Composite Oxide The lithium manganese composite oxide of the present invention can be synthesized by using an ordinary composite oxide synthesis method. Specifically, it can be synthesized by a coprecipitation-firing method, a coprecipitation-hydrothermal-firing method, a solid phase reaction method, or the like. From the viewpoint of easily producing a complex oxide having particularly excellent charge / discharge characteristics, it is preferable to employ a coprecipitation-firing method.
 例えば、共沈-焼成法を採用する場合は、例えば、
(1)マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物と必要に応じてチタン化合物とを含む混合物を、アルカリ性として沈殿物を形成する工程(以下、工程1と言うこともある)、
(2)工程1で得られた沈殿物に湿式酸化処理を施して熟成させる工程(以下、工程2と言うこともある)、
(3)工程2で得られた熟成物を、リチウム化合物及び必要に応じてゲルマニウム化合物を含む原料化合物の共存下に、加熱する工程(以下、工程3と言うこともある)をこの順に備える製造方法により、本発明のリチウムマンガン系複合酸化物を得ることができる。
For example, when the coprecipitation-firing method is adopted, for example,
(1) A step of forming a precipitate by making a mixture containing a manganese compound, at least one compound selected from the group consisting of an iron compound and a nickel compound, and a titanium compound as necessary, alkaline (hereinafter referred to as step 1 and step 1) Sometimes)
(2) A step of subjecting the precipitate obtained in step 1 to wet oxidation treatment and aging (hereinafter sometimes referred to as step 2),
(3) Manufacture comprising a step of heating the aged product obtained in step 2 in the presence of a lithium compound and, if necessary, a raw material compound containing a germanium compound (hereinafter also referred to as step 3) in this order. By the method, the lithium manganese composite oxide of the present invention can be obtained.
 (2-1)工程1
 工程1では、マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物とを含む混合物を、アルカリ性として沈殿物を形成する。具体的には、マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物とを含む混合物の溶液からアルカリ性として沈殿物を形成することが簡便である。
(2-1) Process 1
In step 1, a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound is made alkaline to form a precipitate. Specifically, it is convenient to form a precipitate as alkaline from a solution of a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound.
 なお、最終的に得ようとする本発明のリチウムマンガン系複合酸化物において、Ti元素を含んでいる場合は、マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物と、チタン化合物とを含む混合物を、アルカリ性として沈殿物を形成する工程とすることが好ましい。具体的には、マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物と、チタン化合物とを含む混合物の溶液をアルカリに加えて沈殿物を形成することが簡便である。 In addition, in the lithium manganese composite oxide of the present invention to be finally obtained, when it contains a Ti element, at least one compound selected from the group consisting of a manganese compound and an iron compound and a nickel compound, It is preferable that the mixture containing the titanium compound is made alkaline to form a precipitate. Specifically, it is convenient to form a precipitate by adding a solution of a mixture containing a manganese compound, at least one compound selected from the group consisting of an iron compound and a nickel compound, and a titanium compound to an alkali. .
 マンガン化合物、鉄化合物、ニッケル化合物及びチタン化合物としては、これらの化合物を含む混合水溶液を形成できる成分が好ましい。水溶性の化合物を用いることが好ましい。このような水溶性化合物の具体例としては、例えば、マンガン、鉄、ニッケル又はチタンの塩化物、硝酸塩、硫酸塩、シュウ酸塩、酢酸塩等の水溶性塩;水酸化物等を挙げることができる。また、チタン酸マンガン、チタン酸ニッケル、亜マンガン酸ニッケル、マンガン酸鉄等の複数の金属種を含む化合物を使用することもできる。マンガン化合物としては、過マンガン酸カリウム等の過マンガン酸塩もリチウムイオン以外の金属分布の均一化を図ることができ、充放電特性をより改善することができる。これらの水溶性化合物は、無水物及び水和物のいずれも採用し得る。また、マンガン、鉄、ニッケル又はチタンの酸化物、金属等の非水溶性化合物であっても、例えば、硫酸、塩酸等の酸を用いて溶解させて水溶液として用いることが可能である。これらの各原料化合物は、各金属源について、それぞれ単独で使用することもでき、2種以上を組合せて使用することもできる。 As the manganese compound, iron compound, nickel compound and titanium compound, a component capable of forming a mixed aqueous solution containing these compounds is preferable. It is preferable to use a water-soluble compound. Specific examples of such water-soluble compounds include water-soluble salts such as manganese, iron, nickel or titanium chlorides, nitrates, sulfates, oxalates and acetates; hydroxides and the like. it can. Moreover, the compound containing several metal seed | species, such as manganese titanate, nickel titanate, nickel manganate, iron manganate, can also be used. As a manganese compound, permanganates such as potassium permanganate can also achieve uniform distribution of metals other than lithium ions, and charge / discharge characteristics can be further improved. These water-soluble compounds can employ both anhydrides and hydrates. Further, even water-insoluble compounds such as manganese, iron, nickel or titanium oxides and metals can be dissolved in an acid such as sulfuric acid and hydrochloric acid and used as an aqueous solution. Each of these raw material compounds can be used individually for each metal source, or can be used in combination of two or more.
 マンガン化合物、鉄化合物、ニッケル化合物及びチタン化合物の混合割合は、目的とする本発明のリチウムマンガン系複合酸化物における各元素比と同様の元素比とし得る。 The mixing ratio of the manganese compound, iron compound, nickel compound and titanium compound can be the same element ratio as the element ratio in the target lithium manganese composite oxide of the present invention.
 混合水溶液とする場合の各化合物の濃度については、特に限定的ではなく、均一な混合水溶液を形成でき、且つ円滑に共沈物を形成できるように適宜決めることができる。通常、マンガン化合物、鉄化合物、ニッケル化合物及びチタン化合物の合計濃度は、0.01~5mol/L、特に0.1~2mol/Lが好ましい。 The concentration of each compound in the case of a mixed aqueous solution is not particularly limited, and can be appropriately determined so that a uniform mixed aqueous solution can be formed and a coprecipitate can be smoothly formed. Usually, the total concentration of the manganese compound, iron compound, nickel compound and titanium compound is preferably 0.01 to 5 mol / L, particularly preferably 0.1 to 2 mol / L.
 混合水溶液とする場合の溶媒としては、水を単独で用いる他、メタノール、エタノール等の水溶性アルコールを含む水-アルコール混合溶媒を用いることもできる。水-アルコール混合溶媒を用いることにより、アルコールが不凍液として働き、0℃を下回る温度での沈殿生成が可能となる。低温での沈殿物形成を行うことにより、M1元素としてFeを含む場合の沈殿形成時に発生しやすいリチウムフェライト、マンガンフェライト等の不純物の生成をより抑制する、すなわちより遷移金属分布の均一な共沈物を得ることができる。また、水のみでは沈殿物が形成しにくい過マンガン酸カリウム等のマンガン源も採用できるために原料の選択の幅がより広がる。アルコールの使用量は、目的とする沈殿生成温度等に応じて適宜決めることができ、通常、水100重量部に対して、50重量部以下(例えば10~50重量部)の使用量とすることが適当である。 As a solvent in the case of a mixed aqueous solution, water can be used alone, or a water-alcohol mixed solvent containing a water-soluble alcohol such as methanol or ethanol can be used. By using a water-alcohol mixed solvent, the alcohol acts as an antifreeze and precipitates can be formed at temperatures below 0 ° C. By performing precipitate formation at low temperatures, prone lithium ferrite during precipitation when containing Fe as M 1 element suppresses more the formation of impurities such as manganese ferrite, i.e. uniform co more transition metal distribution You can get a deposit. In addition, since a manganese source such as potassium permanganate, which is difficult to form a precipitate only with water, can be used, the range of raw material selection is further expanded. The amount of alcohol used can be determined appropriately according to the target precipitation temperature, etc., and is usually 50 parts by weight or less (for example, 10 to 50 parts by weight) with respect to 100 parts by weight of water. Is appropriate.
 前記混合物(特に前記混合水溶液)をアルカリ性とすることで、沈殿物(共沈物)を生成させることができる。良好な沈殿物を形成する条件は、前記混合物(特に前記混合水溶液)に含まれる各化合物の種類、濃度等によって異なるので一概に規定出来ないが、通常、pH8以上(例えばpH8~14)が好ましく、pH11以上(例えばpH11~14)がより好ましい。 A precipitate (coprecipitate) can be generated by making the mixture (particularly the mixed aqueous solution) alkaline. Conditions for forming a good precipitate cannot be defined unconditionally because they vary depending on the type, concentration, etc. of each compound contained in the mixture (particularly the mixed aqueous solution), but usually a pH of 8 or more (for example, pH 8 to 14) is preferable. More preferably, the pH is 11 or more (for example, pH 11 to 14).
 前記混合物(特に前記混合水溶液)をアルカリ性にする方法については、特に限定はなく、通常は、均一な沈殿物の形成のために、アルカリを含む水溶液に前記混合物(特に前記混合水溶液)を添加する方法によっても沈殿物(共沈物)を形成することができる。また前記混合水溶液にアルカリ又はアルカリを含む水溶液を添加することによっても沈殿を得ることができる。 There is no particular limitation on the method of making the mixture (especially the mixed aqueous solution) alkaline. Usually, the mixture (particularly the mixed aqueous solution) is added to an aqueous solution containing alkali in order to form a uniform precipitate. A precipitate (coprecipitate) can also be formed by the method. The precipitate can also be obtained by adding an alkali or an aqueous solution containing an alkali to the mixed aqueous solution.
 前記混合物(特に前記混合水溶液)をアルカリ性にするために用いるアルカリとしては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物、アンモニア等を用いることができる。これらのアルカリを水溶液として用いる場合には、例えば、濃度が0.1~20mol/L、特に0.3~10mol/Lの水溶液として用いることができる。また、アルカリは、上記した金属化合物の混合水溶液と同様に、水溶性アルコールを含む水-アルコール混合溶媒に溶解することもできる。 As the alkali used to make the mixture (in particular, the mixed aqueous solution) alkaline, for example, alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, and lithium hydroxide, ammonia, and the like can be used. When these alkalis are used as an aqueous solution, for example, they can be used as an aqueous solution having a concentration of 0.1 to 20 mol / L, particularly 0.3 to 10 mol / L. In addition, the alkali can be dissolved in a water-alcohol mixed solvent containing a water-soluble alcohol, similarly to the mixed aqueous solution of the metal compound described above.
 沈殿生成の際には、前記混合物(特に前記混合水溶液)の温度を、通常、-50~50℃、特に-20~30℃とすることにより、M1としてFeを含む場合に反応時の中和熱発生に伴うスピネルフェライトの生成がより抑制され、また、微細且つ均質な沈殿物(共沈物)が形成されやすくなるために後述のリチウム化合物との反応性をより高め、本発明のリチウムマンガン系複合酸化物を合成しやすくなる。また、本工程で良好に沈殿物(共沈物)を形成させるためには、中和熱の発生をより抑制するため、アルカリに対して、前記混合物(特に前記混合水溶液)を少なくとも数時間かけて徐々に滴下していく方法が好ましい。この際の反応時間は長ければ長いほどよいが、実際には、1時間~1日、特に2~12時間が好ましい。 During precipitation, the temperature of the mixture (particularly the mixed aqueous solution) is usually -50 to 50 ° C, particularly -20 to 30 ° C, so that when M 1 contains Fe, The generation of spinel ferrite due to the generation of sum heat is further suppressed, and fine and homogeneous precipitates (coprecipitates) are easily formed. It becomes easy to synthesize manganese-based composite oxides. Moreover, in order to form a precipitate (coprecipitate) satisfactorily in this step, the mixture (particularly the mixed aqueous solution) is required to take at least several hours against alkali in order to further suppress the generation of heat of neutralization. The method of gradually dripping is preferable. In this case, the longer the reaction time, the better. However, in practice, 1 hour to 1 day, particularly 2 to 12 hours are preferable.
  (2-2)工程2
 上記工程1で沈殿物(共沈物)を形成した後には、沈殿物(共沈物)を湿式酸化により熟成する。具体的には、工程2では、工程1で得られた沈殿物(共沈物)に湿式酸化処理を施して熟成させる。より詳細には、上記工程1で得られた沈殿物(共沈物)を含むアルカリ水溶液に、コンプレッサー、酸素ガス発生器等で、酸素を含む気体を吹き込んでバブリング処理することにより熟成させることができる。
(2-2) Step 2
After the precipitate (coprecipitate) is formed in the above step 1, the precipitate (coprecipitate) is aged by wet oxidation. Specifically, in step 2, the precipitate (coprecipitate) obtained in step 1 is subjected to wet oxidation treatment and aged. More specifically, it can be aged by bubbling by bubbling oxygen-containing gas into the alkaline aqueous solution containing the precipitate (coprecipitate) obtained in the above step 1 with a compressor, an oxygen gas generator or the like. it can.
 吹き込む気体には、一定量の酸素を含むことが好ましい。具体的には、吹き込むガスの10~100体積%の酸素を含むことが好ましい。このような吹き込む気体としては、例えば、空気、酸素等が挙げられ、酸素が好ましい。 The gas to be blown preferably contains a certain amount of oxygen. Specifically, it is preferable to contain 10 to 100% by volume of oxygen of the gas to be blown. Examples of such a gas to be blown include air and oxygen, and oxygen is preferable.
 熟成温度は特に制限されず、沈殿物(共沈物)の湿式酸化処理を行い得る温度が好ましい。通常、0~150℃が好ましく、10~100℃がより好ましい。また、熟成時間も特に制限されず、沈殿物(共沈物)の湿式酸化処理を行い得る時間が好ましい。この熟成時間は長ければ長いほどよいが、実際には、0.5~7日が好ましく、2~4日がより好ましい。 The aging temperature is not particularly limited, and a temperature at which wet oxidation treatment of the precipitate (coprecipitate) can be performed is preferable. Usually, 0 to 150 ° C. is preferable, and 10 to 100 ° C. is more preferable. Further, the aging time is not particularly limited, and a time during which the wet oxidation treatment of the precipitate (coprecipitate) can be performed is preferable. The longer the aging time is, the better. In practice, however, 0.5 to 7 days is preferable, and 2 to 4 days is more preferable.
 得られた沈殿を必要に応じて蒸留水等で洗浄して、過剰のアルカリ成分、残留原料等を除去し、濾別することによって、沈殿を精製することも可能である。 It is also possible to purify the precipitate by washing the resulting precipitate with distilled water or the like as necessary to remove excess alkali components, residual raw materials, etc., and filtering.
  (2-3)工程3
 次いで、工程3では、工程2で得られた熟成物を、リチウム化合物を含む原料化合物の共存下に、加熱する。具体的には、工程2で得られた熟成物と、リチウム化合物を含む原料化合物とを含有する水溶液を、必要に応じてスラリーを形成して乾燥及び粉砕後、加熱(特に焼成)することが好ましい。
(2-3) Step 3
Next, in step 3, the aged product obtained in step 2 is heated in the presence of a raw material compound containing a lithium compound. Specifically, the aged product obtained in step 2 and an aqueous solution containing a raw material compound containing a lithium compound may be heated (particularly calcined) after forming a slurry and drying and grinding as required. preferable.
 使用する水溶液における、上記工程2で得られた熟成物の含有量は、通常、水1 Lあたり100~3000gが好ましく、500~2000gがより好ましい。 In the aqueous solution to be used, the content of the aged product obtained in the above step 2 is usually preferably 100 to 3000 g, more preferably 500 to 2000 g per 1 L of water.
 リチウム化合物としては、例えば、塩化リチウム、ヨウ化リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム等の水溶性リチウム塩;炭酸リチウム等を用いることができる。これらのリチウム化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、リチウム化合物としては、無水物及び水和物のいずれも採用し得る。特に、本発明のリチウムマンガン系複合酸化物がGeを含む場合には、リチウム化合物として水酸化リチウムを用いれば、非水溶性ゲルマニウム化合物を溶解しやすくすることができるため好ましい。 Examples of the lithium compound include water-soluble lithium salts such as lithium chloride, lithium iodide, lithium nitrate, lithium acetate, and lithium hydroxide; lithium carbonate and the like. These lithium compounds can be used alone or in combination of two or more. Moreover, as a lithium compound, both an anhydride and a hydrate can be employ | adopted. In particular, when the lithium manganese composite oxide of the present invention contains Ge, it is preferable to use lithium hydroxide as the lithium compound because the water-insoluble germanium compound can be easily dissolved.
 リチウム化合物の使用量は、上記工程2で得られた熟成物と、後述のゲルマニウム化合物との合計量を基準とし、Li/(M1+M2)=1~5が好ましく、1.5~3がより好ましい。 The amount of the lithium compound used is preferably Li / (M 1 + M 2 ) = 1 to 5, preferably 1.5 to 3, based on the total amount of the aged product obtained in the above step 2 and the germanium compound described later. More preferred.
 また、水溶液中のリチウム化合物の濃度は、通常、0.1~10mol/Lが好ましく、1~8mol/Lがより好ましい。 Further, the concentration of the lithium compound in the aqueous solution is usually preferably 0.1 to 10 mol / L, more preferably 1 to 8 mol / L.
 また、本発明のリチウムマンガン系複合酸化物がGeを含む場合には、原料化合物としてゲルマニウム化合物を使用することが好ましい。 Further, when the lithium manganese composite oxide of the present invention contains Ge, it is preferable to use a germanium compound as a raw material compound.
 ゲルマニウム化合物としては、塩化ゲルマニウム、ヨウ化ゲルマニウム等の水溶性ゲルマニウム化合物;酸化ゲルマニウム、金属ゲルマニウム等の非水溶性ゲルマニウム化合物等が挙げられる。非水溶性ゲルマニウム化合物を使用する場合は、ゲルマニウムが両性元素であることを活かし、酸又は前記したアルカリ等でゲルマニウム化合物を溶解させることにより、工程2で得た熟成物との反応性を向上させることが好ましい。なお、リチウム化合物として水酸化リチウムを使用する場合には、別途酸又はアルカリを使用せずとも、非水溶性ゲルマニウム化合物を溶解させることが可能である。 Examples of germanium compounds include water-soluble germanium compounds such as germanium chloride and germanium iodide; water-insoluble germanium compounds such as germanium oxide and metal germanium. When using a water-insoluble germanium compound, taking advantage of the fact that germanium is an amphoteric element, the germanium compound is dissolved with an acid or alkali as described above to improve the reactivity with the aged product obtained in step 2. It is preferable. In addition, when using lithium hydroxide as a lithium compound, it is possible to dissolve a water-insoluble germanium compound without using an acid or an alkali separately.
 加熱後に洗浄処理を行う場合は、ゲルマニウムは洗い流される量が多いので、ゲルマニウム化合物の添加量(仕込み量)は得ようとする複合酸化物中の含有量より多くすることが好ましい。このような観点から、ゲルマニウム化合物の使用量は、上記工程2で得られた熟成物と、ゲルマニウム化合物との合計量を基準とし、Ge/(M1+M2)=0.01~0.5が好ましく、0.1~0.4がより好ましい。 When washing is performed after heating, the amount of germanium that is washed away is large, and therefore the amount of germanium compound added (the amount charged) is preferably greater than the content in the composite oxide to be obtained. From such a viewpoint, the amount of the germanium compound used is preferably Ge / (M 1 + M 2 ) = 0.01 to 0.5, based on the total amount of the matured product obtained in the above step 2 and the germanium compound. 0.1 to 0.4 is more preferable.
 また、水溶液中のゲルマニウム化合物の濃度は、通常、0.05~1.0mol/Lが好ましく、0.1~0.7mol/Lがより好ましい。 Further, the concentration of the germanium compound in the aqueous solution is usually preferably from 0.05 to 1.0 mol / L, more preferably from 0.1 to 0.7 mol / L.
 工程2で得た熟成物と、リチウム化合物及び必要に応じてジルコニウム化合物との混合方法は特に制限されない。例えば、水溶性リチウム化合物の水溶液に、工程2で得た熟成物を添加し、撹拌して分散させた後に、別途作製した水溶性ゲルマニウム化合物の水溶液又は非水溶性ゲルマニウム化合物のアルカリ溶液を添加し、よく撹拌した後に、必要に応じて乾燥及び粉砕することが好ましい。 The mixing method of the aged product obtained in step 2, the lithium compound and, if necessary, the zirconium compound is not particularly limited. For example, after adding the aged product obtained in Step 2 to an aqueous solution of a water-soluble lithium compound and stirring and dispersing it, an aqueous solution of a water-soluble germanium compound or an alkali solution of a water-insoluble germanium compound that is separately prepared is added. After stirring well, it is preferable to dry and pulverize as necessary.
 撹拌は、通常の方法を採用することができ、例えば、ミキサー、V型混合機、W型混合機、リボン混合機等の公知の混合機で撹拌することが好ましい。 Stirring can be carried out by a usual method, for example, it is preferable to stir with a known mixer such as a mixer, a V-type mixer, a W-type mixer, or a ribbon mixer.
 乾燥する場合、乾燥条件は特に制限されない。乾燥温度は、例えば、20~100℃が好ましく、30~80℃がより好ましい。また、乾燥時間は、例えば、1時間~5日が好ましく、12時間~3日がより好ましい。 When drying, the drying conditions are not particularly limited. For example, the drying temperature is preferably 20 to 100 ° C., more preferably 30 to 80 ° C. The drying time is preferably, for example, 1 hour to 5 days, and more preferably 12 hours to 3 days.
 後の加熱処理の際に反応性を向上させるために、粉砕することが好ましい。粉砕の程度については、粗大粒子が含まれず、混合物が均一な色調となっていることが好ましい。粉砕する場合、通常の方法を採用することができ、例えば、振動ミル、ボールミル、ジェットミル等で粉砕することができる。また、粉砕を2回以上繰り返すこともできる。また、加熱処理は、加熱温度を段階的に上げて実施することもできる。 In order to improve the reactivity during the subsequent heat treatment, it is preferable to grind. Regarding the degree of pulverization, it is preferable that coarse particles are not included and the mixture has a uniform color tone. When pulverizing, a normal method can be adopted, and for example, pulverization can be performed by a vibration mill, a ball mill, a jet mill or the like. Further, the grinding can be repeated twice or more. In addition, the heat treatment can be performed by gradually increasing the heating temperature.
 加熱処理は、通常、密閉容器(電気炉等)中で行うことが好ましい。 The heat treatment is usually preferably performed in a closed container (such as an electric furnace).
 加熱条件は特に限定されるものではないが、充放電サイクル特性をより安定化させるために、最終加熱温度を750℃以上とすることが好ましい。また、加熱温度は、リチウムが揮発しにくいように、1000℃以下が好ましい。最終加熱温度は、特に、800~950℃が好ましい。この範囲で加熱(特に焼成)することにより、より短時間の焼成で、高い容量及びより高い放電電圧を有するのみならず、長期間の充放電サイクル時においてもより優れたサイクル特性を有するリチウムマンガン系複合酸化物を得やすい。 The heating conditions are not particularly limited, but the final heating temperature is preferably 750 ° C. or higher in order to further stabilize the charge / discharge cycle characteristics. The heating temperature is preferably 1000 ° C. or lower so that lithium is less likely to volatilize. The final heating temperature is particularly preferably 800 to 950 ° C. By heating (especially firing) in this range, lithium manganese not only has a high capacity and a high discharge voltage, but also has excellent cycle characteristics even during a long charge / discharge cycle. It is easy to obtain a composite oxide.
 加熱雰囲気(特に焼成雰囲気)も特に制限されない。最終加熱雰囲気を窒素、アルゴン等の不活性雰囲気又は還元性雰囲気とする場合は、試料の分解を抑制するため、あらかじめ、大気中、500~750℃(特に550~700℃)の低温で加熱(特に焼成)してから、不活性雰囲気又は還元性雰囲気での最終加熱(特に最終焼成)を行うことが好ましい。また、最終加熱雰囲気を大気中とする場合であっても、Li含有量、粉体特性等の制御をより精密に行うために、2段階の加熱(特に焼成)を行うこともできる。なお、最終加熱雰囲気を還元性雰囲気とする場合は、例えば、不活性雰囲気下において、有機物、炭素粉末等の存在下に焼成することによって、還元性雰囲気下における加熱処理(特に焼成)が可能である。 The heating atmosphere (particularly the firing atmosphere) is not particularly limited. When the final heating atmosphere is an inert atmosphere such as nitrogen or argon or a reducing atmosphere, in order to suppress the decomposition of the sample, heat it beforehand in the air at a low temperature of 500 to 750 ° C (especially 550 to 700 ° C) ( It is preferable to perform final heating (particularly final baking) in an inert atmosphere or a reducing atmosphere after firing. Even when the final heating atmosphere is air, two-stage heating (especially firing) can be performed in order to more precisely control the Li content, powder characteristics, and the like. When the final heating atmosphere is a reducing atmosphere, for example, by baking in an inert atmosphere in the presence of organic matter, carbon powder, etc., heat treatment (particularly baking) in a reducing atmosphere is possible. is there.
 有機物としては、特に限定はなく、上記加熱温度(特に焼成温度)において分解して還元性雰囲気とすることができる炭素含有化合物が好ましい。特に、水溶性の有機物を用いる場合には、水溶液状態でリチウムマンガン系複合酸化物粉末と分散混合できるので有利である。このような有機物の具体例としては、例えば、ショ糖、ブドウ糖、デンプン、酢酸、クエン酸、シュウ酸、安息香酸、アミノ酢酸等を挙げることができる。 The organic substance is not particularly limited, and a carbon-containing compound that can be decomposed into a reducing atmosphere at the heating temperature (particularly the firing temperature) is preferable. In particular, when a water-soluble organic substance is used, it is advantageous because it can be dispersed and mixed with the lithium manganese composite oxide powder in an aqueous solution state. Specific examples of such organic substances include sucrose, glucose, starch, acetic acid, citric acid, oxalic acid, benzoic acid, aminoacetic acid and the like.
 炭素粉末としては、例えば、有機物の熱分解によって得られた炭素粉末、例えば、黒鉛、アセチレンブラック等を用いることができる。 As the carbon powder, for example, carbon powder obtained by thermal decomposition of an organic substance, for example, graphite, acetylene black, or the like can be used.
 上記した有機物及び炭素粉末は、単独で用いることもでき、2種以上を組合せて用いることもできる。 The above-mentioned organic substances and carbon powder can be used alone or in combination of two or more.
 有機物及び炭素粉末よりなる群から選ばれた少なくとも一種の成分の使用量は、リチウムマンガン系複合酸化物に対して、炭素のモル量換算で0.001~5倍モルが好ましく、0.01~1倍モルがより好ましい。水溶液として用いる場合には有機物等の濃度は、上記した使用量の範囲となるように適宜決めることができる。 The amount of at least one component selected from the group consisting of organic matter and carbon powder is preferably 0.001 to 5 times mol, and 0.01 to 1 times mol in terms of the molar amount of carbon with respect to the lithium manganese composite oxide. More preferred. When used as an aqueous solution, the concentration of the organic substance or the like can be appropriately determined so as to be within the above-mentioned range of use amount.
 加熱時間も特に制限されない。より詳細には、最終加熱温度における保持時間は10分~24時間が好ましく、30分~12時間がより好ましい。また、2段階の加熱処理を行う場合、1段階目の加熱温度における保持時間は10分~24時間(特に30分~12時間)が好ましく、2段階目の最終加熱温度における保持時間は10分~24時間(特に30分~12時間)が好ましい。 The heating time is not particularly limited. More specifically, the holding time at the final heating temperature is preferably 10 minutes to 24 hours, more preferably 30 minutes to 12 hours. In addition, when performing two-stage heat treatment, the holding time at the first stage heating temperature is preferably 10 minutes to 24 hours (particularly 30 minutes to 12 hours), and the holding time at the second stage final heating temperature is 10 minutes. ~ 24 hours (especially 30 minutes to 12 hours) is preferred.
 上記した方法で本発明のリチウムマンガン系複合酸化物を得た後、必要に応じて、過剰のリチウム化合物を除去するために、得られた焼成物を水洗処理、溶媒洗浄処理等に供することができる。その後、濾過を行い、例えば、80℃以上、好ましくは100℃以上で加熱乾燥することもできる。 After obtaining the lithium manganese composite oxide of the present invention by the above-described method, the obtained fired product may be subjected to a water washing treatment, a solvent washing treatment, etc., in order to remove an excess lithium compound, if necessary. it can. Thereafter, filtration is performed, and for example, heat drying can be performed at 80 ° C. or higher, preferably 100 ° C. or higher.
 さらに、必要に応じて、この加熱乾燥物を粉砕し、リチウム化合物及び有機物を加えて加熱(特に焼成)し、洗浄し、乾燥するという一連の操作を繰り返し行うことにより、リチウムマンガン系複合酸化物の優れた特性をより一層改善することもできる。 Further, if necessary, the heat-dried material is pulverized, and a lithium compound and an organic material are added and heated (particularly calcined), washed, and dried to repeatedly perform a series of operations, whereby the lithium manganese composite oxide It is also possible to further improve the excellent characteristics.
  3.リチウムイオン二次電池
 本発明のリチウムマンガン系複合酸化物を用いるリチウムイオン二次電池は、公知の手法により製造することができる。例えば、正極材料として、本発明のリチウムマンガン系複合酸化物を使用し、負極材料として、公知の金属リチウム、炭素系材料(活性炭、黒鉛等)、ケイ素、酸化ケイ素、Si-SiO系材料、リチウムチタン酸化物等を使用し、電解液として、公知のエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等の1種以上からなる溶媒に過塩素酸リチウム、LiPF6等のリチウム塩を溶解させた溶液(有機電解液)、無機固体電解質(Li2S-P2S5系、Li2S-GeS2-P2S5系等)を使用し、さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てることができる。なお、本発明において、「リチウムイオン二次電池」とは、負極材料として金属リチウムを用いた「リチウム二次電池」も包含する概念である。また、本発明において、「リチウムイオン二次電池」とは、非水電解液を使用した「非水リチウムイオン二次電池」と固体電解質を使用した「全固体リチウムイオン二次電池」のいずれも包含する概念である。
3. Lithium Ion Secondary Battery A lithium ion secondary battery using the lithium manganese composite oxide of the present invention can be produced by a known method. For example, the lithium manganese composite oxide of the present invention is used as a positive electrode material, and known metal lithium, carbon-based materials (activated carbon, graphite, etc.), silicon, silicon oxide, Si—SiO based materials, lithium as negative electrode materials A solution in which lithium salt such as lithium perchlorate or LiPF 6 is dissolved in a solvent composed of one or more of known ethylene carbonate, dimethyl carbonate, diethyl carbonate, etc. Solution), inorganic solid electrolyte (Li 2 S-P 2 S 5 series, Li 2 S-GeS 2 -P 2 S 5 series, etc.) and other known battery components, Thus, a lithium ion secondary battery can be assembled. In the present invention, the “lithium ion secondary battery” is a concept including a “lithium secondary battery” using metallic lithium as a negative electrode material. In the present invention, the term “lithium ion secondary battery” refers to both a “nonaqueous lithium ion secondary battery” using a nonaqueous electrolyte and an “all solid lithium ion secondary battery” using a solid electrolyte. It is a concept to include.
 以下、実施例および比較例を示し、本発明の特徴とするところを一層明確にするが、本発明は以下の実施例に限定されるものではない。 Hereinafter, examples and comparative examples will be shown to further clarify the features of the present invention, but the present invention is not limited to the following examples.
  [実施例1]
 試料合成、並びに構造及び組成評価
 硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、30%硫酸チタン(IV)水溶液40.00g、塩化マンガン(II)4水和物29.69g(全量0.25mol、Fe: Ni: Ti: Mnモル比1: 1: 2: 6)を500mLの蒸留水に加え完全に溶解させた。別のビーカーに水酸化ナトリウム50gを秤量し、蒸留水500mLを添加して撹拌しつつ溶解させて水酸化ナトリウム水溶液を作製した。この水酸化ナトリウム水溶液をチタン製ビーカーに入れ、20℃に保たれた恒温槽内に静置した。次いでこの水酸化ナトリウム溶液に、上記金属塩水溶液を約3時間かけて徐々に滴下し、Fe-Ni-Ti-Mn沈殿物(共沈物)を形成させた。反応液が完全にアルカリ性になっていることを確認し、撹拌下に共沈物を含む反応液に、室温で2日間酸素を吹き込んで湿式酸化処理して、沈殿を熟成させた。
[Example 1]
Sample synthesis, structure and composition evaluation 10.10 g of iron (III) nitrate nonahydrate, 7.27 g of nickel (II) nitrate hexahydrate, 40.00 g of 30% titanium sulfate (IV) aqueous solution, manganese (II) chloride 4 water 29.69 g of Japanese product (total amount 0.25 mol, Fe: Ni: Ti: Mn molar ratio 1: 1: 2: 6) was added to 500 mL of distilled water and completely dissolved. In another beaker, 50 g of sodium hydroxide was weighed, 500 mL of distilled water was added and dissolved while stirring to prepare an aqueous sodium hydroxide solution. This aqueous sodium hydroxide solution was placed in a titanium beaker and allowed to stand in a thermostat kept at 20 ° C. Next, the metal salt aqueous solution was gradually dropped into the sodium hydroxide solution over about 3 hours to form an Fe—Ni—Ti—Mn precipitate (coprecipitate). After confirming that the reaction solution was completely alkaline, oxygen was blown into the reaction solution containing the coprecipitate with stirring at room temperature for 2 days to ripen the precipitate.
 得られた沈殿物を蒸留水で洗浄して濾別し、蒸留水で分散させた0.25mol炭酸リチウム18.47gとミキサー混合し、均一なスラリーを形成させた。スラリーをテトラフルオロエチレン製シャーレに移し、50℃で2日間乾燥後、粉砕して焼成用原料を作製した。 The obtained precipitate was washed with distilled water, filtered, and mixed with 18.47 g of 0.25 mol lithium carbonate dispersed in distilled water to form a uniform slurry. The slurry was transferred to a tetrafluoroethylene petri dish, dried at 50 ° C. for 2 days, and then pulverized to prepare a firing raw material.
 次いで得られた粉末を、1時間かけて650℃まで昇温し、その温度で5時間保持後、炉中で室温付近まで冷却した。粉砕後、再度電気炉を用いて、窒素気流下、1時間かけて850℃まで昇温し、その温度で5時間保持後、炉中で室温付近まで冷却した。つまり、1段階目は大気中、2段階目は窒素雰囲気で焼成することにより、試料作製を行った。電気炉から焼成物を取り出し、過剰のリチウム塩を除去するために、焼成物を蒸留水で水洗し、濾過し、乾燥して目的物である、鉄、ニッケル及びチタン置換Li2MnO3を粉末状生成物として得た。 Next, the obtained powder was heated to 650 ° C. over 1 hour, held at that temperature for 5 hours, and then cooled in the furnace to near room temperature. After pulverization, the temperature was raised again to 850 ° C. over 1 hour in a nitrogen stream using an electric furnace, held at that temperature for 5 hours, and then cooled to near room temperature in the furnace. In other words, the sample was prepared by firing in air in the first stage and in a nitrogen atmosphere in the second stage. In order to remove the fired product from the electric furnace and remove the excess lithium salt, the fired product is washed with distilled water, filtered, and dried to powder the target iron, nickel and titanium substituted Li 2 MnO 3 Obtained as a product.
  X線回折による評価
 この最終生成物の実測(+)及び計算(実線)X線回折パターンを図1に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは以下の表1に記載の格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。また、表2の構造内遷移金属イオン分布を確認すると、実施例1の試料は後述するTiを含まない比較例1の試料と比較してLi-Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ti導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また実施例1の試料は後述するTiを含まない比較例1の試料と比較して六角網目規則配列度が高いことがわかる。
Evaluation by X-ray diffraction The actual measurement (+) and calculation (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results by Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants listed in Table 1 below, and only the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I understood that it consists of. Also, when the transition metal ion distribution in the structure shown in Table 2 was confirmed, the sample of Example 1 had a smaller amount of transition metal in the Li-Mn layer than the sample of Comparative Example 1 not containing Ti described later, and the Li single layer. It can be seen that the amount of inner transition metal is large, and that transition metal ions tend to be irregularly arranged by introducing Ti. In addition, it can be seen that the sample of Example 1 has a higher degree of hexagonal network alignment than the sample of Comparative Example 1 that does not contain Ti described later.
 化学分析等による評価
 化学分析より、リチウム以外の全金属量に対するFe、Ni、Ti含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)、20mol%(z値0.20相当)を維持しており、Li/(M1+M2+Mn)比も1.68(x値換算0.254)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。
Evaluation by chemical analysis Based on chemical analysis, the Fe, Ni, and Ti contents with respect to the total amount of metals other than lithium are 10 mol%, 10 mol% (y value equivalent to 0.20), and 20 mol% (z value equivalent to 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is 1.68 (x value conversion 0.254), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1 It is clear that a lithium manganese composite oxide having -x O 2 was obtained.
  充放電特性評価
 詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。
The details of the charge / discharge characteristic evaluation are described in the charge / discharge characteristic evaluation described later. A lithium secondary battery using the obtained sample as the positive electrode material and metallic lithium as the negative electrode material was prepared, and an activation treatment and a cycle test were performed. It was.
 図2及び表4の結果から、実施例1の試料は活性化後には240mAh/g近い充放電容量を示すのみならず、後述するM2元素を含まず、同一作製条件で得られた比較例1の試料と比較して、活性化処理後1サイクル時の充放電特性がほぼ同等であるばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。 From the results of FIG. 2 and Table 4, the sample of Example 1 not only shows a charge / discharge capacity of approximately 240 mAh / g after activation, but also contains a M 2 element described later, and is a comparative example obtained under the same production conditions. Compared with the sample No. 1, not only the charge / discharge characteristics at the first cycle after the activation treatment are almost the same, but also the charge / discharge curves similar to those at the 20th cycle after the activation treatment up to 50 cycles after the activation treatment. Show. In other words, a sudden drop in potential from around 3.7 V accompanying the structural transition from the layered rock salt structure to the spinel phase during 50-cycle discharge after activation treatment, and the Li 2 (Ni, Mn) O 2 phase from the layered rock salt structure From the fact that no additional capacity appears at 2.2 V or less accompanying the structural transition to, it is clear that the positive electrode material is excellent in high capacity and long-term cycle characteristics.
  [比較例1]
 出発原料として、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物39.58g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 8)を500mLの蒸留水に加え完全に溶解させた。それ以降は実施例1と同様に正極材料作製を行った。
[Comparative Example 1]
Starting materials: iron nitrate (III) nonahydrate 10.10 g, nickel nitrate (II) hexahydrate 7.27 g, manganese chloride tetrahydrate 39.58 g (total 0.25 mol, Fe: Ni: Mn mol) The ratio 1: 1: 8) was added to 500 mL of distilled water and completely dissolved. Thereafter, the positive electrode material was produced in the same manner as in Example 1.
 この最終生成物の実測(+)及び計算(実線)X線回折パターンを図3に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。 The actual measurement (+) and calculation (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
 また、化学分析より、リチウム以外の全金属量に対するFe、Ni含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)を維持しており、Li/(M1+Mn)比も1.71(x値換算0.262)であることからM2を含まない組成式Li1+x(M1 yMn1-y)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。 Also, from chemical analysis, the Fe and Ni contents with respect to the total amount of metals other than lithium are maintained at 10 mol% and 10 mol% (y value equivalent to 0.20), respectively, and the Li / (M 1 + Mn) ratio Was 1.71 (x value conversion 0.262), and a lithium manganese composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.
 さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図4及び表3に示す。図4及び表3より比較例1の試料は活性化後には250mAh/g近い充放電容量を示すが、活性化処理後50サイクル放電時には、層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が見られることから、実施例1のリチウムマンガン系複合酸化物と比較し、長期サイクル特性に劣る正極材料であることが明らかである。 Furthermore, the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done. The evaluation results of the charge / discharge characteristics are shown in FIG. 4 and Table 3, the sample of Comparative Example 1 shows a charge / discharge capacity of approximately 250 mAh / g after activation, but 3.7 times due to the structural transition from the layered rock salt structure to the spinel phase during 50 cycles of discharge after the activation treatment. Implemented because of the sudden drop in potential from around V and the appearance of additional capacity below 2.2 V due to the structural transition from the layered rock salt structure to the Li 2 (Ni, Mn) O 2 phase Compared to the lithium manganese composite oxide of Example 1, it is clear that the cathode material is inferior in long-term cycle characteristics.
 [実施例2]
 最終焼成雰囲気を大気中とした以外は、実施例1と同様に試料作製を行った。つまり、大気中で2回焼成することにより、試料作製を行った。この最終生成物の実測(+)及び計算(実線)X線回折パターンを図5に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。
[Example 2]
A sample was prepared in the same manner as in Example 1 except that the final firing atmosphere was air. In other words, the sample was prepared by firing twice in the air. FIG. 5 shows the measured (+) and calculated (solid line) X-ray diffraction patterns of this final product. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
 また、後述の表2の構造内遷移金属イオン分布を確認すると、実施例2の試料は後述するTiを含まない比較例2の試料と比較してLi-Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ti導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また、実施例2の試料は後述するTiを含まない比較例2の試料と比較して六角網目規則配列度が高いことがわかる。 Further, when the transition metal ion distribution in the structure of Table 2 described later is confirmed, the sample of Example 2 has a smaller amount of transition metal in the Li-Mn layer than the sample of Comparative Example 2 that does not contain Ti described later. It can be seen that the amount of transition metal in the single layer is large, and that transition metal ions tend to be irregularly arranged by introducing Ti. In addition, it can be seen that the sample of Example 2 has a higher degree of hexagonal network alignment than the sample of Comparative Example 2 that does not contain Ti described later.
 また、化学分析より、リチウム以外の全金属量に対するFe、Ni、Ti含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)、20mol%(z値0.20相当)を維持しており、Li/(M1+M2+Mn)比も1.72(x値換算0.265)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。 Also, according to chemical analysis, the Fe, Ni, and Ti contents with respect to the total amount of metals other than lithium were maintained at 10 mol%, 10 mol% (y value equivalent to 0.20), and 20 mol% (z value equivalent to 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is also 1.72 (x value conversion 0.265), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is clear that a lithium manganese composite oxide having 2 was obtained.
 さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図6及び表3に示す。図6及び表3より実施例2の試料は活性化後には240 mAh/g近い充放電容量を示すのみならず、後述するM2元素を含まず、同一作製条件で得られた比較例2の試料と比較して、活性化処理後1サイクル時の充放電特性がほぼ同等であるばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7 V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2 V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。 Furthermore, the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done. The evaluation results of the charge / discharge characteristics are shown in FIG. 6 and Table 3, the sample of Example 2 not only shows a charge / discharge capacity close to 240 mAh / g after activation, but also does not contain the M 2 element described later, and the sample of Comparative Example 2 obtained under the same production conditions. Compared to the sample, not only the charge / discharge characteristics at the first cycle after the activation treatment are almost equivalent, but also a charge / discharge curve similar to that at the 20th cycle after the activation treatment is shown up to 50 cycles after the activation treatment. Yes. In other words, a sudden drop in potential from around 3.7 V accompanying the structural transition from the layered rock-salt structure to the spinel phase during 50-cycle discharge after activation treatment, and the Li 2 (Ni, Mn) O 2 phase from the layered rock-salt structure From the fact that no additional capacity appears at 2.2 V or less due to the structural transition, it is clear that the positive electrode material is excellent in high capacity and long-term cycle characteristics.
  [比較例2]
 出発原料として、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物39.58g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 8)を500mLの蒸留水に加え完全に溶解させた。それ以降は実施例2と同様に正極材料作製を行った。
[Comparative Example 2]
Starting materials: iron nitrate (III) nonahydrate 10.10 g, nickel nitrate (II) hexahydrate 7.27 g, manganese chloride tetrahydrate 39.58 g (total 0.25 mol, Fe: Ni: Mn mol) The ratio 1: 1: 8) was added to 500 mL of distilled water and completely dissolved. Thereafter, the cathode material was produced in the same manner as in Example 2.
 この最終生成物の実測(+)及び計算(実線)X線回折パターンを図7に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。 FIG. 7 shows the measured (+) and calculated (solid line) X-ray diffraction patterns of this final product. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
 また、化学分析より、リチウム以外の全金属量に対するFe、Ni含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)を維持しており、Li/(M1+Mn)比も1.73(x値換算0.267)であることからM2を含まない組成式Li1+x(M1 yMn1-y)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。 Also, from chemical analysis, the Fe and Ni contents with respect to the total amount of metals other than lithium are maintained at 10 mol% and 10 mol% (y value equivalent to 0.20), respectively, and the Li / (M 1 + Mn) ratio 1.73 (x value conversion 0.267), a lithium manganese composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.
 さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図8及び表3に示す。図8及び表3より比較例2の試料は活性化後には250mAh/g近い充放電容量を示すが、活性化処理後50サイクル放電時には、層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が見られることから、実施例2のリチウムマンガン系複合酸化物と比較し、長期サイクル特性に劣る正極材料であることが明らかである。 Furthermore, the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done. The evaluation results of the charge / discharge characteristics are shown in FIG. 8 and Table 3, the sample of Comparative Example 2 shows a charge / discharge capacity of approximately 250 mAh / g after activation, but 3.7 cycles accompanying the structural transition from the layered rock-salt structure to the spinel phase during 50 cycles of discharge after activation. Implemented because of the sudden drop in potential from around V and the appearance of additional capacity below 2.2 V due to the structural transition from the layered rock salt structure to the Li 2 (Ni, Mn) O 2 phase Compared with the lithium manganese composite oxide of Example 2, it is clear that the cathode material is inferior in long-term cycle characteristics.
  [実施例3]
 最終焼成条件を900℃、5時間、大気中とした以外は、実施例1と同様に試料作製を行った。つまり、大気中で2回焼成することにより、試料作製を行った。この最終生成物の実測(+)及び計算(実線)X線回折パターンを図9に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。
[Example 3]
A sample was prepared in the same manner as in Example 1 except that the final firing conditions were 900 ° C. and 5 hours in the air. In other words, the sample was prepared by firing twice in the air. The actual measurement (+) and calculation (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
 また、後述の表2の構造内遷移金属イオン分布を確認すると、実施例3の試料は後述するTiを含まない比較例3の試料と比較してLi-Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ti導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また、実施例3の試料は後述するTiを含まない比較例3の試料と比較して六角網目規則配列度が高いことがわかる。 Further, when the transition metal ion distribution in the structure of Table 2 described later is confirmed, the sample of Example 3 has a smaller amount of transition metal in the Li-Mn layer than the sample of Comparative Example 3 not containing Ti described later, and Li It can be seen that the amount of transition metal in the single layer is large, and that transition metal ions tend to be irregularly arranged by introducing Ti. In addition, it can be seen that the sample of Example 3 has a higher degree of hexagonal network alignment than the sample of Comparative Example 3 that does not contain Ti described later.
 また、化学分析より、リチウム以外の全金属量に対するFe、Ni、Ti含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)、20mol%(z値0.20相当)を維持しており、Li/(M1+M2+Mn)比も1.74(x値換算0.270)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。 Also, according to chemical analysis, the Fe, Ni, and Ti contents with respect to the total amount of metals other than lithium were maintained at 10 mol%, 10 mol% (y value equivalent to 0.20), and 20 mol% (z value equivalent to 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is 1.74 (x value conversion 0.270), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is clear that a lithium manganese composite oxide having 2 was obtained.
 さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図10及び表3に示す。図10及び表3より実施例3の試料は活性化後には200mAh/g近い充放電容量を示すのみならず、後述するM2元素を含まず、同一作製条件で得られた比較例3の試料と比較して、活性化処理後1サイクル時の充放電特性がほぼ同等であるばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。 Furthermore, the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done. The evaluation results of the charge / discharge characteristics are shown in FIG. 10 and Table 3, the sample of Example 3 not only shows a charge / discharge capacity close to 200 mAh / g after activation, but also contains the M 2 element described later and is a sample of Comparative Example 3 obtained under the same production conditions. Compared with, the charge / discharge characteristics at the first cycle after the activation treatment are almost equal, and the charge / discharge curve is similar to that at the 20th cycle after the activation treatment up to 50 cycles after the activation treatment. . In other words, a sudden drop in potential from around 3.7 V accompanying the structural transition from the layered rock salt structure to the spinel phase during 50-cycle discharge after activation treatment, and the Li 2 (Ni, Mn) O 2 phase from the layered rock salt structure From the fact that no additional capacity appears at 2.2 V or less accompanying the structural transition to, it is clear that the positive electrode material is excellent in high capacity and long-term cycle characteristics.
  [比較例3]
 出発原料として、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物39.58g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 8)を500mLの蒸留水に加え完全に溶解させた。それ以降は実施例3と同様に正極材料作製を行った。
[Comparative Example 3]
Starting materials: iron nitrate (III) nonahydrate 10.10 g, nickel nitrate (II) hexahydrate 7.27 g, manganese chloride tetrahydrate 39.58 g (total 0.25 mol, Fe: Ni: Mn mol) The ratio 1: 1: 8) was added to 500 mL of distilled water and completely dissolved. Thereafter, the positive electrode material was produced in the same manner as in Example 3.
 この最終生成物の実測(+)及び計算(実線)X線回折パターンを図11に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。 The measured (+) and calculated (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
 また、化学分析より、リチウム以外の全金属量に対するFe、Ni含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)を維持しており、Li/(M1+Mn)比も1.71(x値換算0.262)であることからM2を含まない組成式Li1+x(M1 yMn1-y)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。 Also, from chemical analysis, the Fe and Ni contents with respect to the total amount of metals other than lithium are maintained at 10 mol% and 10 mol% (y value equivalent to 0.20), respectively, and the Li / (M 1 + Mn) ratio Was 1.71 (x value conversion 0.262), and a lithium manganese composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.
 さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図12及び表3に示す。図12及び表3より比較例3の試料は活性化後には230mAh/g近い充放電容量を示すが、活性化処理後50サイクル放電時には、層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が見られることから、実施例3のリチウムマンガン系複合酸化物と比較し、長期サイクル特性に劣る正極材料であることが明らかである。 Furthermore, the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done. The evaluation results of the charge / discharge characteristics are shown in FIG. 12 and Table 3, the sample of Comparative Example 3 shows a charge / discharge capacity close to 230 mAh / g after activation, but during the 50-cycle discharge after the activation treatment, 3.7 is associated with the structural transition from the layered rock salt structure to the spinel phase. Implemented because of the sudden drop in potential from around V and the appearance of additional capacity below 2.2 V due to the structural transition from the layered rock salt structure to the Li 2 (Ni, Mn) O 2 phase Compared with the lithium manganese composite oxide of Example 3, it is clear that the cathode material is inferior in long-term cycle characteristics.
 [実施例4]
 最終焼成条件を900℃、5時間、窒素気流中とした以外は、実施例1と同様に試料作製を行った。この最終生成物の実測(+)及び計算(実線)X線回折パターンを図13に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。
[Example 4]
A sample was prepared in the same manner as in Example 1 except that the final firing conditions were 900 ° C. and 5 hours in a nitrogen stream. The actual measurement (+) and calculation (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
 また、後述の表2の構造内遷移金属イオン分布を確認すると、実施例4の試料は後述するTiを含まない比較例4の試料と比較してLi-Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ti導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また、実施例4の試料は後述するTiを含まない比較例4の試料と比較して六角網目規則配列度が高いことがわかる。 Further, when the transition metal ion distribution in the structure of Table 2 described later is confirmed, the sample of Example 4 has a smaller amount of transition metal in the Li-Mn layer than the sample of Comparative Example 4 which does not contain Ti described later. It can be seen that the amount of transition metal in the single layer is large, and that transition metal ions tend to be irregularly arranged by introducing Ti. Further, it can be seen that the sample of Example 4 has a higher degree of hexagonal network regular arrangement than the sample of Comparative Example 4 which does not contain Ti described later.
 また、化学分析より、リチウム以外の全金属量に対するFe、Ni、Ti含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)、20mol%(z値0.20相当)を維持しており、Li/(M1+M2+Mn)比も1.64(x値換算0.242)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。 Also, according to chemical analysis, the Fe, Ni, and Ti contents with respect to the total amount of metals other than lithium were maintained at 10 mol%, 10 mol% (y value equivalent to 0.20), and 20 mol% (z value equivalent to 0.20), respectively. The Li / (M 1 + M 2 + Mn) ratio is also 1.64 (x value conversion 0.242), so the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is clear that a lithium manganese composite oxide having 2 was obtained.
 さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図14及び表3に示す。図14及び表3より実施例4の試料は活性化後には200mAh/g近い充放電容量を示すのみならず、後述するM2元素を含まず、同一作製条件で得られた比較例4の試料と比較して、活性化処理後1サイクル時の充放電特性がほぼ同等であるばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。 Furthermore, the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done. The evaluation results of the charge / discharge characteristics are shown in FIG. 14 and Table 3, the sample of Example 4 not only shows a charge / discharge capacity close to 200 mAh / g after activation, but also contains the M 2 element described later, and the sample of Comparative Example 4 obtained under the same production conditions. Compared with, the charge / discharge characteristics at the first cycle after the activation treatment are almost equal, and the charge / discharge curve is similar to that at the 20th cycle after the activation treatment up to 50 cycles after the activation treatment. . In other words, a sudden drop in potential from around 3.7 V accompanying the structural transition from the layered rock salt structure to the spinel phase during 50-cycle discharge after activation treatment, and the Li 2 (Ni, Mn) O 2 phase from the layered rock salt structure From the fact that no additional capacity appears at 2.2 V or less accompanying the structural transition to, it is clear that the positive electrode material is excellent in high capacity and long-term cycle characteristics.
  [比較例4]
 出発原料として、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物39.58g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 8)を500mLの蒸留水に加え完全に溶解させた。それ以降は実施例4と同様に正極材料作製を行った。
[Comparative Example 4]
Starting materials: iron nitrate (III) nonahydrate 10.10 g, nickel nitrate (II) hexahydrate 7.27 g, manganese chloride tetrahydrate 39.58 g (total 0.25 mol, Fe: Ni: Mn mol) The ratio 1: 1: 8) was added to 500 mL of distilled water and completely dissolved. Thereafter, the positive electrode material was produced in the same manner as in Example 4.
 この最終生成物の実測(+)及び計算(実線)X線回折パターンを図15に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。 The actual measurement (+) and calculation (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results of the Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants shown in Table 1 below, and only from the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I found out that
 また、化学分析より、リチウム以外の全金属量に対するFe、Ni含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)を維持しており、Li/(M1+Mn)比も1.72(x値換算0.265)であることからM2を含まない組成式Li1+x(M1 yMn1-y)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。 Also, from chemical analysis, the Fe and Ni contents with respect to the total amount of metals other than lithium are maintained at 10 mol% and 10 mol% (y value equivalent to 0.20), respectively, and the Li / (M 1 + Mn) ratio Was 1.72 (x value conversion 0.265), and a lithium manganese composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.
 さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図16及び表3に示す。図16及び表3より比較例4の試料は活性化後には200mAh/g近い充放電容量を示すが、活性化処理後50サイクル放電時には、層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が見られることから、実施例4のリチウムマンガン系複合酸化物と比較し、長期サイクル特性に劣る正極材料であることが明らかである。 Furthermore, the lithium secondary battery which made the obtained sample the positive electrode material and made metal lithium into the negative electrode material was produced in the procedure as described in the charge / discharge characteristic evaluation mentioned later for details, and the activation process and the cycle test were done. The evaluation results of the charge / discharge characteristics are shown in FIG. 16 and Table 3, the sample of Comparative Example 4 shows a charge / discharge capacity close to 200 mAh / g after activation, but it is 3.7 with the structural transition from the layered rock salt structure to the spinel phase after 50 cycles of discharge after the activation treatment. Implemented because of the sudden drop in potential from around V and the appearance of additional capacity below 2.2 V due to the structural transition from the layered rock salt structure to the Li 2 (Ni, Mn) O 2 phase As compared with the lithium manganese composite oxide of Example 4, it is clear that the cathode material is inferior in long-term cycle characteristics.
  [実施例5]
 試料合成、並びに構造及び組成評価
 硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物29.69g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 6)を500mLの蒸留水に加え完全に溶解させた。別のビーカーに水酸化ナトリウム50gを秤量し、蒸留水500mLを添加して撹拌しつつ溶解させて水酸化ナトリウム水溶液を作製した。この水酸化ナトリウム水溶液をチタン製ビーカーに入れ、20℃に保たれた恒温槽内に静置した。次いでこの水酸化ナトリウム溶液に、上記金属塩水溶液を約3時間かけて徐々に滴下し、Fe-Ni-Mn沈殿物(共沈物)を形成させた。反応液が完全にアルカリ性になっていることを確認し、撹拌下に共沈物を含む反応液に、室温で2日間酸素を吹き込んで湿式酸化処理して、沈殿を熟成させた。
[Example 5]
Sample synthesis, structure and composition evaluation 10.10 g of iron (III) nitrate nonahydrate, 7.27 g of nickel (II) nitrate hexahydrate, 29.69 g of manganese (II) chloride tetrahydrate (total amount 0.25 mol, Fe: Ni: Mn molar ratio 1: 1: 6) was added to 500 mL of distilled water and completely dissolved. In another beaker, 50 g of sodium hydroxide was weighed, 500 mL of distilled water was added and dissolved while stirring to prepare an aqueous sodium hydroxide solution. This aqueous sodium hydroxide solution was placed in a titanium beaker and allowed to stand in a thermostat kept at 20 ° C. Next, the metal salt aqueous solution was gradually dropped into the sodium hydroxide solution over about 3 hours to form an Fe—Ni—Mn precipitate (coprecipitate). After confirming that the reaction solution was completely alkaline, oxygen was blown into the reaction solution containing the coprecipitate with stirring at room temperature for 2 days to ripen the precipitate.
 得られた沈殿物を蒸留水で洗浄して濾別し、蒸留水で分散及び完全に溶解させた水酸化リチウム1水和物20.98g(0.5mol)及びGeO2 5.23g(0.05mol)とミキサー混合し、均一なスラリーを形成させた。スラリーをテトラフルオロエチレン製シャーレに移し、50℃で2日間乾燥後、粉砕して焼成用原料を作製した。 The obtained precipitate was washed with distilled water, filtered, dispersed with distilled water and completely dissolved in lithium hydroxide monohydrate 20.98 g (0.5 mol) and GeO 2 5.23 g (0.05 mol) and a mixer Mix to form a uniform slurry. The slurry was transferred to a tetrafluoroethylene petri dish, dried at 50 ° C. for 2 days, and then pulverized to prepare a firing raw material.
 次いで得られた粉末を、1時間かけて650℃まで昇温し、その温度で5時間保持後、炉中で室温付近まで冷却した。粉砕後、再度電気炉を用いて、窒素気流下、1時間かけて900℃まで昇温し、その温度で5時間保持後、炉中で室温付近まで冷却した。電気炉から焼成物を取り出し、過剰のリチウム塩を除去するために、焼成物を蒸留水で水洗し、濾過し、乾燥して目的物である、鉄、ニッケル及びゲルマニウム置換Li2MnO3を粉末状生成物として得た。 Next, the obtained powder was heated to 650 ° C. over 1 hour, held at that temperature for 5 hours, and then cooled in the furnace to near room temperature. After pulverization, the temperature was raised again to 900 ° C. over 1 hour in a nitrogen stream using an electric furnace, held at that temperature for 5 hours, and then cooled to near room temperature in the furnace. In order to remove the fired product from the electric furnace and remove the excess lithium salt, the fired product is washed with distilled water, filtered and dried to powder the target product, iron, nickel and germanium substituted Li 2 MnO 3 Obtained as a product.
  X線回折による評価
 この最終生成物の実測(+)及び計算(実線)X線回折パターンを図17に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは以下の表1に記載の格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。また、表2の構造内遷移金属イオン分布を確認すると、実施例5の試料は前述のGeを含まない比較例4の試料と比較してLi-Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ge導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また実施例5の試料は前述するGeを含まない比較例4の試料と比較して六角網目規則配列度が高いことがわかる。
Evaluation by X-ray diffraction The actual measurement (+) and calculation (solid line) X-ray diffraction patterns of this final product are shown in FIG. From the analysis results by Rietveld analysis program RIETAN-FP, all peaks can be indexed with the lattice constants listed in Table 1 below, and only the crystalline phase with monoclinic Li 2 MnO 3 unit cells (C2 / m) I understood that it consists of. Also, when the transition metal ion distribution in the structure shown in Table 2 was confirmed, the sample of Example 5 had a smaller amount of transition metal in the Li-Mn layer than the sample of Comparative Example 4 containing no Ge, and the Li single layer. It can be seen that the amount of the transition metal is large, and that the transition metal ions tend to be irregularly arranged by introducing Ge. In addition, it can be seen that the sample of Example 5 has a higher degree of hexagonal network alignment than the sample of Comparative Example 4 that does not contain Ge described above.
  化学分析等による評価
 化学分析より、リチウム以外の全金属量に対するFe、Ni、Ge含有量が仕込み量とは異なるものの、それぞれ、12mol%と12mol%(y値0.24相当)、4mol%(z値0.04相当)であり、Li/(M1+M2+Mn)比も1.65(x値換算0.245)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。なお、含有量が仕込み量からずれたのは、Geが両性金属のために焼成後の水洗時に一部溶出したためと考えられる。しかしながら完全になくなるわけではないので、Ge含有量を増やすためには仕込み量を多めにする等して対応し得る。
Evaluation by chemical analysis Based on chemical analysis, the Fe, Ni, and Ge contents with respect to the total amount of metals other than lithium differ from the charged amounts, but 12 mol% and 12 mol% (equivalent to y value 0.24) and 4 mol% (z value), respectively. 0.04) and the Li / (M 1 + M 2 + Mn) ratio is 1.65 (x value conversion 0.245), so the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) It is clear that a lithium manganese composite oxide having 1-x O 2 was obtained. The reason why the content deviated from the charged amount is presumably because Ge was partially eluted during washing with water after firing because of the amphoteric metal. However, since it is not completely eliminated, it is possible to increase the Ge content by increasing the amount charged.
  充放電特性評価
 詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。図18及び表4の結果から、実施例5の試料は活性化後には250mAh/g近い充放電容量を示すのみならず、前述のM2元素を含まず、同一作製条件で得られた比較例4の試料と比較して、活性化処理後1サイクル時の充放電特性が向上しているばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7 V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2 V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。
The details of the charge / discharge characteristic evaluation are described in the charge / discharge characteristic evaluation described later. A lithium secondary battery using the obtained sample as the positive electrode material and metallic lithium as the negative electrode material was prepared, and an activation treatment and a cycle test were performed. It was. From the results shown in FIG. 18 and Table 4, the sample of Example 5 not only shows a charge / discharge capacity of nearly 250 mAh / g after activation, but also contains the aforementioned M 2 element and is a comparative example obtained under the same production conditions. Compared with the sample of 4, the charge / discharge characteristics at the 1st cycle after the activation treatment are improved, and the charge / discharge curve similar to that at the 20th cycle after the activation treatment is shown up to 50 cycles after the activation treatment. Show. In other words, a sudden drop in potential from around 3.7 V accompanying the structural transition from the layered rock-salt structure to the spinel phase during 50-cycle discharge after activation treatment, and the Li 2 (Ni, Mn) O 2 phase from the layered rock-salt structure From the fact that no additional capacity appears at 2.2 V or less due to the structural transition, it is clear that the positive electrode material is excellent in high capacity and long-term cycle characteristics.
  [試験結果]
 X線回折による評価
 実施例1~5及び比較例1~4で得た試料のX線回折パターンから、リートベルト解析プログラムRIETAN-FP(F. Izumi, K. Momma, "Three-Dimensional Visualization in Powder Diffraction", Solid State Phenomena, Vol. 130, pp. 15-20, 2007)による解析結果より、各試料の格子定数及び格子体積を評価した。結果を表1に示す。なお、表1において、a、b及びcは、それぞれ各軸の長さを示し、βは稜cとaとの間の角を示す。また、Vは格子体積を示す。
[Test results]
Evaluation by X-ray diffraction From the X-ray diffraction patterns of the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4, the Rietveld analysis program RIETAN-FP (F. Izumi, K. Momma, "Three-Dimensional Visualization in Powder Diffraction ", Solid State Phenomena, Vol. 130, pp. 15-20, 2007), the lattice constant and lattice volume of each sample were evaluated. The results are shown in Table 1. In Table 1, a, b, and c indicate the lengths of the respective axes, and β indicates an angle between the edges c and a. V represents the lattice volume.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次に、実施例1~5及び比較例1~4で得た試料のX線回折パターンから、各格子位置の遷移金属量を可変とした構造モデルから得られる計算パターンを実測パターンに合わせこむことにより、構造内遷移金属イオン分布を評価した。結果を表2に示す。 Next, from the X-ray diffraction patterns of the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4, the calculation pattern obtained from the structural model in which the amount of transition metal at each lattice position is variable is matched with the actual measurement pattern. Thus, the transition metal ion distribution in the structure was evaluated. The results are shown in Table 2.
 なお、公知物質であるLi2MnO3において、Mnイオンが規則配列状態である場合は、六角網目格子構成位置(4g)位置にMnが100%占有し、Li位置である六角網目中心位置(2b)等の他の位置にはMnイオンが存在しないが、実際には、4g位置にMnイオンが100%存在することはなく、一部のMnイオンは3つのLi位置に配置する。表2において、g4gは六角網目格子構成位置(4g)位置のMn占有率を示し、g2bは2b位置のMn占有率を示し、g2cは2c位置のMn占有率を示し、g4hは4h位置のMn占有率を示す。4g位置と2b位置のMn占有率の差(g4g-g2b)が六角網目規則配列度として定義され、大きいほど理想的なLi2MnO3型単斜晶層状岩塩型構造であることを意味する。また、平均値1は、Li-Mn層内の格子位置(4g及び2b位置)における遷移金属元素の平均占有率(元素比(%))を示し、平均値2は、Li単独層内の格子位置(4h及び2c位置)における遷移金属元素の平均占有率(元素比(%))を示す。また、全遷移金属量は、単斜晶層状岩塩型構造モデルを用いた際のLi-Mn層内の格子位置(4g及び2b)における遷移金属元素の占有率(元素比(%))とLi単独層内の格子位置(4h及び2c)における遷移金属元素の占有率(元素比(%))の和を示す。平均値1が少なく平均値2が大きいほど、遷移金属イオンが不規則配列していることを意味する。 In the case of Li 2 MnO 3 which is a known substance, when Mn ions are regularly arranged, Mn occupies 100% of the hexagonal mesh configuration position (4g) position, and the hexagonal network center position (2b Mn ions are not present at other positions such as), but in reality, 100% of Mn ions are not present at the 4g position, and some Mn ions are arranged at three Li positions. In Table 2, g 4g indicates the Mn occupancy at the hexagonal mesh position (4g) position, g 2b indicates the Mn occupancy at the 2b position, g 2c indicates the Mn occupancy at the 2c position, and g 4h indicates The Mn occupancy at 4h position is shown. The difference in Mn occupancy between the 4g position and the 2b position (g 4g -g 2b ) is defined as hexagonal network regularity, and the larger the value, the more ideal the Li 2 MnO 3 type monoclinic layered rock salt structure To do. The average value 1 indicates the average occupancy (element ratio (%)) of the transition metal element at the lattice positions (4g and 2b positions) in the Li-Mn layer, and the average value 2 indicates the lattice in the Li single layer. The average occupancy (element ratio (%)) of the transition metal element at the position (positions 4h and 2c) is shown. In addition, the total amount of transition metals is based on the occupancy of the transition metal elements (element ratio (%)) at the lattice positions (4g and 2b) in the Li-Mn layer using the monoclinic layered rock salt structure model. The sum of the occupation ratio (element ratio (%)) of the transition metal element at the lattice position (4h and 2c) in the single layer is shown. A smaller average value 1 and a larger average value 2 mean that the transition metal ions are irregularly arranged.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 化学分析等による評価
 実施例1~5及び比較例1~4で得た試料について、ICP発光分析により、化学分析を行った。結果を表3に示す。結果を表3に示す。
Evaluation by Chemical Analysis etc. The samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were subjected to chemical analysis by ICP emission analysis. The results are shown in Table 3. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 充放電特性評価
 実施例1~5及び比較例1~4で得られた試料を正極材料として用いて、充放電試験を行った。具体的には、実施例1~5及び比較例1~4で得られた試料5mgをアセチレンブラック5mgとよく混合後、ポリテトラフルオロエチレン粉末0.5mgを加えて結着させ、Alメッシュ上に圧着して正極を作製した。得られた正極を120℃で一晩真空乾燥後、グローブボックス内にて、リチウム二次電池を作製した。電解液はLiPF6をエチレンカーボネート(EC)及びジメチルカーボネート(DMC)の混合溶媒(体積比3: 7)に溶解させた溶液を使用し、負極は金属リチウムを用いた。
Charge / Discharge Characteristic Evaluation Charge / discharge tests were conducted using the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 as positive electrode materials. Specifically, 5 mg of the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were mixed well with 5 mg of acetylene black, and then 0.5 mg of polytetrafluoroethylene powder was added and bonded, and crimped onto an Al mesh. Thus, a positive electrode was produced. The obtained positive electrode was vacuum-dried at 120 ° C. overnight, and then a lithium secondary battery was produced in the glove box. As the electrolytic solution, a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 3: 7) was used, and metallic lithium was used as the negative electrode.
 充放電試験は活性化試料を得るための段階充電処理後、サイクル劣化試験に移行させた。試験は充電開始で行い、2.0-4.8Vの電位範囲、試験温度30℃、電流密度40mA/gで充電容量を80、120、160、200mAh/gの順に増加させてサイクルさせ、5サイクル目は4.8Vまで定電流-定電圧充電(4.8Vにおける電流終止は10mA/g)による活性化処理を行った。なお、段階充電活性化処理は本発明のリチウムマンガン系複合酸化物の充放電特性評価には必須である。特に、M1元素としてFeを含む場合は必須プロセスである。活性化処理後、2.0-4.8Vで定電流充放電にて50サイクルまで評価を行うことにより、サイクル経過に伴う、充放電曲線変化(特に20サイクル経過以降に見られる、相似形形状からの逸脱)を評価した。特に前述したように、活性化処理後50サイクル放電時(54サイクル放電時: 54d)の放電曲線にて、(1) 層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近での急激な電位の落ち込み、(2) Li2(Mn,Ni)O2相への構造転移に伴う2.2V以下における付加的な容量の出現の有無を評価した。結果を図2、4、6、8、10、12、14、16及び18、並びに表4に示す。なお、図2、4、6、8、10、12、14、16及び18においては、活性化処理後1サイクル充電時の充電曲線(5c)、活性化処理後20サイクル充電時の充電曲線(24c)、活性化処理後50サイクル充電時の充電曲線(54c)、活性化処理後1サイクル放電時の放電曲線(5d)、活性化処理後20サイクル放電時の放電曲線(24d)、及び活性化処理後50サイクル放電時の放電曲線(54d)を示しており、右上がりの曲線が充電、右下がりの曲線が放電に対応する。また、表4において、Q5cは活性化処理後1サイクル充電時の容量、Q5dは活性化処理後1サイクル放電時の容量、Q54dは活性化処理後50サイクル放電時の容量、(Q1d~Q5dの和)/(Q1c~Q5cの和)は、段階充電活性化処理中における各サイクルの放電容量の合計を、各サイクルの充電容量の和で除したものである。V5d・aveは活性化処理後1サイクル放電時の初期平均放電電圧を示す。 The charge / discharge test was shifted to a cycle deterioration test after the stage charge process for obtaining an activated sample. The test is performed at the start of charging, and is cycled by increasing the charging capacity in the order of 80, 120, 160, and 200 mAh / g at a potential range of 2.0 to 4.8 V, a test temperature of 30 ° C., and a current density of 40 mA / g. Activation processing was performed by constant current-constant voltage charging up to 4.8 V (current termination at 4.8 V was 10 mA / g). The stage charge activation treatment is essential for evaluating the charge / discharge characteristics of the lithium manganese composite oxide of the present invention. In particular, it is an essential process when Fe is contained as the M 1 element. After the activation process, the charge / discharge curve changes as the cycle progresses (especially the deviation from the similar shape seen after the 20th cycle) by evaluating up to 50 cycles with constant current charge / discharge at 2.0-4.8V. ) Was evaluated. In particular, as described above, in the discharge curve at 50 cycle discharge after activation (54 cycle discharge: 54d), (1) abruptly around 3.7V accompanying the structural transition from the layered rock salt structure to the spinel phase The presence or absence of additional capacitance at 2.2 V or lower due to (2) structural transition to the Li 2 (Mn, Ni) O 2 phase was evaluated. The results are shown in FIGS. 2, 4, 6, 8, 10, 12, 14, 16 and 18 and Table 4. 2, 4, 6, 8, 10, 12, 14, 16, and 18, a charging curve (5c) at the time of 1 cycle charging after the activation process, and a charging curve at the time of 20 cycles charging after the activation process ( 24c), charge curve at the time of 50 cycles after activation treatment (54c), discharge curve after 1 cycle discharge after activation treatment (5d), discharge curve after 20 cycles after activation treatment (24d), and activity The discharge curve (54d) at the time of 50-cycle discharge after the oxidization treatment is shown, with a curve rising to the right corresponding to charging and a curve falling to the right corresponding to discharging. In Table 4, Q 5c is the capacity at one cycle after activation, Q 5d is the capacity at one cycle after activation, Q 54d is the capacity at 50 cycles after activation, (Q 1d sum of ~ Q 5d) / (sum of Q 1c ~ Q 5c) is one in which the sum of the discharge capacity of each cycle in step charge activated during processing, divided by the sum of the charge capacity of each cycle. V 5d · ave represents the initial average discharge voltage during one cycle discharge after the activation treatment.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上の実施例及び比較例から明らかなように、本発明のリチウムマンガン系複合酸化物は、初回に200mAh/g以上の大きな充放電容量を示すのみならず、サイクル経過後に起こる、2つの副反応による結晶構造変化を抑制する、長期サイクル特性に優れる物質であることが確認できた。 As is clear from the above Examples and Comparative Examples, the lithium manganese composite oxide of the present invention not only exhibits a large charge / discharge capacity of 200 mAh / g or more for the first time, but also includes two side reactions that occur after the cycle has elapsed. It was confirmed that the substance has excellent long-term cycle characteristics and suppresses the change in crystal structure due to.

Claims (10)

  1. 一般式(1):
    Li1+x(M1 yM2 zMn1-y-z)1-xO2   (1)
    [式中、M1はFe及び/又はNiを示す。M2はTi及び/又はGeを示す。x、y及びzは、0<x<1/3、0≦y≦0.4、0<z≦0.3を示す。]
    で表され、且つ、
    単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含むリチウムマンガン系複合酸化物。
    General formula (1):
    Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O 2 (1)
    [Wherein M 1 represents Fe and / or Ni. M 2 represents Ti and / or Ge. x, y, and z represent 0 <x <1/3, 0 ≦ y ≦ 0.4, and 0 <z ≦ 0.3. ]
    And
    A lithium manganese composite oxide containing a crystal phase of a monoclinic layered rock salt type structure or a hexagonal layered rock salt type structure.
  2. 前記一般式(1)において、M1がNiを含有する、請求項1に記載のリチウムマンガン系複合酸化物。 The lithium manganese composite oxide according to claim 1 , wherein M 1 in the general formula (1) contains Ni.
  3. 単斜晶層状岩塩型構造の結晶相のみからなる、請求項1又は2に記載のリチウムマンガン系複合酸化物。 The lithium manganese composite oxide according to claim 1 or 2, comprising only a crystal phase having a monoclinic layered rock salt structure.
  4. 請求項1~3のいずれかに記載のリチウムマンガン系複合酸化物の製造方法であって、
    (1)マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物とを含む混合物を、アルカリ性として沈殿物を形成する工程、
    (2)工程1で得られた沈殿物に湿式酸化処理を施して熟成させる工程、
    (3)工程2で得られた熟成物を、リチウム化合物を含む原料化合物の共存下に、加熱する工程
    をこの順に備える、製造方法。
    A method for producing a lithium manganese composite oxide according to any one of claims 1 to 3,
    (1) a step of forming a precipitate by making a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound alkaline,
    (2) A step of subjecting the precipitate obtained in step 1 to wet oxidation and aging,
    (3) A production method comprising a step of heating the aged product obtained in step 2 in the order of coexistence of a raw material compound containing a lithium compound.
  5. 前記工程1における混合物が、さらに、チタン化合物を含む、請求項4に記載の製造方法。 The manufacturing method of Claim 4 with which the mixture in the said process 1 contains a titanium compound further.
  6. 前記工程3における原料化合物が、さらに、ゲルマニウム化合物を含む、請求項4又は5に記載の製造方法。 The manufacturing method of Claim 4 or 5 with which the raw material compound in the said process 3 contains a germanium compound further.
  7. 前記工程3が、前記工程2で得られた熟成物と、前記原料化合物と混合した後に加熱する工程である、請求項4~6のいずれかに記載の製造方法。 The production method according to any one of claims 4 to 6, wherein the step 3 is a step of heating after mixing the aged product obtained in the step 2 and the raw material compound.
  8. 前記工程3における加熱が、大気中で加熱した後に、大気中又は不活性雰囲気下で再度加熱する工程である、請求項4~7のいずれかに記載の製造方法。 The production method according to any one of claims 4 to 7, wherein the heating in the step 3 is a step of heating again in the air or in an inert atmosphere after heating in the air.
  9. 請求項1~3のいずれかに記載のリチウムマンガン系複合酸化物からなるリチウムイオン二次電池用正極材料。 A positive electrode material for a lithium ion secondary battery comprising the lithium manganese composite oxide according to any one of claims 1 to 3.
  10. 請求項9に記載のリチウムイオン二次電池用正極材料を構成要素とするリチウムイオン二次電池。 The lithium ion secondary battery which uses the positive electrode material for lithium ion secondary batteries of Claim 9 as a component.
PCT/JP2017/036223 2016-10-07 2017-10-05 Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same WO2018066633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018543956A JP7048944B2 (en) 2016-10-07 2017-10-05 Titanium and / or germanium-substituted lithium-manganese-based composite oxide and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016199187 2016-10-07
JP2016-199187 2016-10-07

Publications (1)

Publication Number Publication Date
WO2018066633A1 true WO2018066633A1 (en) 2018-04-12

Family

ID=61831375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036223 WO2018066633A1 (en) 2016-10-07 2017-10-05 Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same

Country Status (2)

Country Link
JP (1) JP7048944B2 (en)
WO (1) WO2018066633A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085311A (en) * 2016-11-25 2018-05-31 日立造船株式会社 Positive electrode active material for all-solid battery, method for manufacturing positive electrode including the same, positive electrode for all-solid battery, and all-solid battery including the same
WO2019235573A1 (en) * 2018-06-06 2019-12-12 国立研究開発法人産業技術総合研究所 Lithium-manganese-based composite oxide and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274940A (en) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same
WO2015025721A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Positive electrode material for lithium-ion battery, method for producing same, and lithium-ion battery using same
WO2015025844A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Lithium-iron-manganese-based composite oxide and lithium-ion secondary cell using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274940A (en) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same
WO2015025721A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Positive electrode material for lithium-ion battery, method for producing same, and lithium-ion battery using same
WO2015025844A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Lithium-iron-manganese-based composite oxide and lithium-ion secondary cell using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TABUCHI, M. ET AL.: "Stepwise charging and calcination atmosphere effects for iron and nickel substituted lithium manganese oxide positive electrode material", JOURNAL OF POWER SOURCES, vol. 313, 4 March 2016 (2016-03-04), pages 120 - 127, XP029474017, DOI: doi:10.1016/j.jpowsour.2015.12.008 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085311A (en) * 2016-11-25 2018-05-31 日立造船株式会社 Positive electrode active material for all-solid battery, method for manufacturing positive electrode including the same, positive electrode for all-solid battery, and all-solid battery including the same
WO2019235573A1 (en) * 2018-06-06 2019-12-12 国立研究開発法人産業技術総合研究所 Lithium-manganese-based composite oxide and method for producing same
JPWO2019235573A1 (en) * 2018-06-06 2021-07-08 国立研究開発法人産業技術総合研究所 Lithium manganese-based composite oxide and its manufacturing method
JP7302826B2 (en) 2018-06-06 2023-07-04 国立研究開発法人産業技術総合研究所 Lithium-manganese composite oxide and method for producing the same

Also Published As

Publication number Publication date
JPWO2018066633A1 (en) 2019-07-25
JP7048944B2 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
JP4963059B2 (en) Lithium manganese composite oxide containing titanium and nickel
JP5263761B2 (en) Monoclinic lithium manganese composite oxide having cation ordered structure and method for producing the same
JP5158787B2 (en) NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
EP1837937B1 (en) Lithium manganese-based composite oxide and method for preparing the same
JP6119003B2 (en) Lithium manganese composite oxide and method for producing the same
WO2012132155A1 (en) Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
JP5516926B2 (en) Monoclinic Lithium Manganese Composite Oxide with Regular Structure and Method for Producing the Same
JP5958926B2 (en) Lithium manganese composite oxide and method for producing the same
JP3922040B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP5673932B2 (en) Lithium manganese composite oxide having cubic rock salt structure and method for producing the same
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
WO2018096999A1 (en) Lithium-manganese complex oxide and method for producing same
JP4457213B2 (en) Method for producing lithium ferrite composite oxide
WO2018066633A1 (en) Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same
KR20080088177A (en) Spinel type cathode active material for lithium secondary batteries and manufacturing method for the same
JP7128475B2 (en) Lithium-manganese composite oxide and method for producing the same
JP4734672B2 (en) Method for producing lithium-iron-manganese composite oxide
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
KR101383681B1 (en) Method for preparing lithium manganese oxides electrode materials, lithium manganese oxides electrode materials prepared thereby and rechargeable battery comprising the electrode materials
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same
JP7133215B2 (en) Nickel-manganese composite oxide and method for producing the same
JP3968420B2 (en) Cubic rock salt type lithium ferrite complex oxide and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018543956

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858469

Country of ref document: EP

Kind code of ref document: A1