JP2020049587A - Diamond-coated cemented carbide cutting tool - Google Patents

Diamond-coated cemented carbide cutting tool Download PDF

Info

Publication number
JP2020049587A
JP2020049587A JP2018181515A JP2018181515A JP2020049587A JP 2020049587 A JP2020049587 A JP 2020049587A JP 2018181515 A JP2018181515 A JP 2018181515A JP 2018181515 A JP2018181515 A JP 2018181515A JP 2020049587 A JP2020049587 A JP 2020049587A
Authority
JP
Japan
Prior art keywords
diamond
coated
film
tool
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018181515A
Other languages
Japanese (ja)
Inventor
英彰 高島
Hideaki Takashima
英彰 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018181515A priority Critical patent/JP2020049587A/en
Publication of JP2020049587A publication Critical patent/JP2020049587A/en
Pending legal-status Critical Current

Links

Abstract

To provide a diamond-coated cutting tool that combines deposition resistance and wear resistance and has extended cutting life even when being used for high-speed drilling in a CFRP/Al alloy stack material, for example.SOLUTION: In a diamond-coated cutting tool, a diamond coating film with a film thickness of 7 to 25 μm is coated at a surface of a tool substrate that is made of a tungsten carbide-base cemented carbide alloy. The diamond coating film has an average crystal grain size of more than 3.0 μm, D/G of 10 or more and a surface roughness Ra of the coating film of 0.5 μm or less.SELECTED DRAWING: None

Description

本発明は、特に、炭素繊維強化プラスチック(CFRP)とAl合金等からなる難削複合材(以下、「CFRP/Al合金スタック材」と称する)の高速切削加工において、優れた耐溶着性および耐摩耗性を発揮し、工具寿命を改善したダイヤモンド被覆炭化タングステン(WC)基超硬合金製切削工具に関する。   The present invention is particularly applicable to high-speed cutting of a difficult-to-cut composite material (hereinafter, referred to as a “CFRP / Al alloy stack material”) made of carbon fiber reinforced plastic (CFRP) and an Al alloy or the like. The present invention relates to a diamond-coated tungsten carbide (WC) -based cemented carbide cutting tool exhibiting wear properties and improving tool life.

従来、WC基超硬合金(以下、「超硬合金」と称する)からなる工具基体に、ダイヤモンド膜を被覆したダイヤモンド被覆超硬合金製切削工具(以下、「ダイヤモンド被覆工具」と称する)を用いて難削材であるAl合金またはCFRP等を加工する際に、アブレッシブ摩耗を抑制するために、ダイヤモンド皮膜の結晶粒径を小さくすることにより面粗度を低減する提案がなされている。   Conventionally, a diamond-coated cemented carbide cutting tool coated with a diamond film (hereinafter, referred to as a "diamond-coated tool") is used for a tool base made of a WC-based cemented carbide (hereinafter, referred to as a "hard metal"). When processing hard-to-cut materials such as Al alloys or CFRP, it has been proposed to reduce the surface roughness by reducing the crystal grain size of the diamond film in order to suppress abrasive wear.

例えば、特許文献1には、ダイヤモンド皮膜が、表面およびダイヤモンドの結晶成長方向と略直角な断面の結晶粒径が2μm以下となるように、核付着処理および結晶成長処理を繰り返して形成された微結晶の多層構造を成していることを特徴とし、ダイヤモンド皮膜凹凸面が形成された加工面の面粗さが向上したダイヤモンド被覆工具が記載されている。   For example, Patent Document 1 discloses that a diamond film is formed by repeating a nucleus attachment process and a crystal growth process such that the crystal grain size of a surface and a cross section substantially perpendicular to the crystal growth direction of diamond is 2 μm or less. A diamond-coated tool characterized by having a multi-layer structure of crystals and having improved surface roughness of a processed surface on which an irregular surface of a diamond film is formed is described.

また、例えば、特許文献2には、基体が超硬合金またはサーメットであり、厚さが1μm以上20μm以下のダイヤモンド膜の成長表面を構成するダイヤモンド結晶粒子の平均粒径が1.5μm以下であり、前記ダイヤモンド膜の平均表面粗さがRaで0.01μm以上0.2μm以下であり、前記ダイヤモンド結晶粒子は微細ダイヤモンドが集合して形成されており、前記ダイヤモンド膜の断面において、微細ダイヤモンドがダイヤモンド膜の成長方向に細長く配列し、かつ微細ダイヤモンドの短径が、基材表面からダイヤモンド膜の膜厚1μm以上の部分では0.001μm以上0.1μm以下であることを特徴とするダイヤモンド膜被覆工具が記載されている。   Further, for example, in Patent Document 2, the base is a cemented carbide or a cermet, and the average grain size of diamond crystal grains constituting a growth surface of a diamond film having a thickness of 1 μm or more and 20 μm or less is 1.5 μm or less. The average surface roughness of the diamond film is not less than 0.01 μm and not more than 0.2 μm in Ra, and the diamond crystal particles are formed by assembling fine diamonds. A diamond film-coated tool, which is elongated in the direction of film growth, and where the minor axis of the fine diamond is 0.001 μm or more and 0.1 μm or less in a portion where the thickness of the diamond film is 1 μm or more from the substrate surface. Is described.

特許第3477162号公報Japanese Patent No. 3377162 特開2006−130578号公報JP 2006-130578 A

近年の切削加工の技術分野における省力化および省エネ化、さらに低コスト化に対する要求は強く、これに伴い、切削加工は益々高速化の傾向にある。一方、従来のダイヤモンド被覆工具を、例えば、CFRP/Al合金スタック材の高速切削に用いる場合、鋭利な刃先が要求されるため、高い刃先強度が要求され、長期の使用にわたって、アブレッシブ摩耗を抑制し、かつ耐溶着性および耐チッピング性を発揮することが十分とは言えず、高い加工精度を維持することが難しく、その結果、比較的短時間で使用寿命に至ることが多かった。   In recent years, there has been a strong demand for labor saving, energy saving, and further cost reduction in the technical field of cutting, and with this, cutting has tended to become faster. On the other hand, when a conventional diamond-coated tool is used, for example, for high-speed cutting of a CFRP / Al alloy stack material, a sharp edge is required, so that a high edge strength is required, and the abrasive wear is suppressed over a long period of use. In addition, it is not sufficient to exhibit the welding resistance and the chipping resistance, and it is difficult to maintain high processing accuracy. As a result, the service life is often shortened in a relatively short time.

特許文献1および2に開示されているダイヤモンド皮膜は、結晶粒を小さくすることにより面粗度が低減し平滑となっており、耐溶着性の向上は期待できるものの、ダイヤモンド皮膜の結晶粒を小さくすることにより、sp結合に対するsp結合比率が低下し、ダイヤモンド皮膜の持つ硬さが活かされず、耐摩耗性が低下するおそれがあり、CFRP/Al合金スタック材の高速穴あけ加工等において十分な使用寿命を有するとは言えない。 The diamond coatings disclosed in Patent Literatures 1 and 2 have reduced surface roughness and smoothness by reducing crystal grains, and although improvement in welding resistance can be expected, the crystal grains of the diamond coating are reduced. By doing so, the ratio of the sp 3 bond to the sp 2 bond is reduced, the hardness of the diamond film is not utilized, and the abrasion resistance may be reduced, which is sufficient for high-speed drilling of a CFRP / Al alloy stack material. It cannot be said that it has a service life.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、ダイヤモンド被覆工具において、耐溶着性と耐摩耗性を兼ね備え、例えば、CFRP/Al合金スタック材の高速穴あけ加工においても切削寿命が長いダイヤモンド被覆工具を提供することである。   Therefore, a technical problem to be solved by the present invention, that is, an object of the present invention is to provide a diamond-coated tool having both welding resistance and abrasion resistance, for example, in high-speed drilling of a CFRP / Al alloy stack material. It is to provide a diamond coated tool having a long cutting life.

上述の従来のダイヤモンド被覆工具が有する課題を解決すべく、本発明者は鋭意、研究と実験を繰り返した。その結果、耐溶着性と耐摩耗性を兼ね備えたダイヤモンド皮膜を得るためには、ダイヤモンド皮膜の結晶粒を小さくして面粗度を低減させるのではなく、ダイヤモンド皮膜の結晶粒は大きくして、適切な後処理によって面粗度を低減させればよいという驚くべき新規な知見を得た。また、ダイヤモンド皮膜を<110>方向に配向すれば、より一層、耐溶着性と平滑性に優れることも発見した。   In order to solve the above-mentioned problems of the conventional diamond-coated tool, the inventor diligently repeated research and experiments. As a result, in order to obtain a diamond film having both welding resistance and abrasion resistance, instead of reducing the crystal grain of the diamond film to reduce the surface roughness, the crystal grain of the diamond film is increased, A surprising new finding that the surface roughness should be reduced by appropriate post-treatment has been obtained. It has also been found that if the diamond film is oriented in the <110> direction, it is even more excellent in welding resistance and smoothness.

本発明は、前記知見に基づいたものであり、以下の形態を含むものである。
「(1)炭化タングステン基超硬合金で構成された工具基体表面に膜厚が7〜25μmのダイヤモンド皮膜が被覆されたダイヤモンド被覆工具において、前記ダイヤモンド皮膜は平均結晶粒径が3.0μmを超え、波長532nmの可視レーザーを用いたラマン分光による測定し、1332〜1337cm−1に確認されるダイヤモンドのピーク強度(D)と1560〜1600cm−1間にピークを有するグラファイトのピーク強度(G)との比であるD/Gが10以上、皮膜の面粗度Raが0.5μm以下であるダイヤモンド被覆切削工具。
(2)前記(1)のダイヤモンド膜を構成する柱状晶の<110>方向の配向率が40%以上であることを特徴とするダイヤモンド被覆切削工具。」
The present invention is based on the above findings and includes the following embodiments.
"(1) In a diamond coated tool in which a diamond coating having a film thickness of 7 to 25 μm is coated on the surface of a tool substrate made of a tungsten carbide-based cemented carbide, the diamond coating has an average crystal grain size exceeding 3.0 μm. And Raman spectroscopy using a visible laser with a wavelength of 532 nm, and the peak intensity (D) of diamond confirmed at 1332 to 1337 cm -1 and the peak intensity (G) of graphite having a peak between 1560 and 1600 cm -1. A diamond-coated cutting tool having a D / G ratio of 10 or more and a surface roughness Ra of the coating of 0.5 μm or less.
(2) A diamond-coated cutting tool, wherein the orientation ratio of the columnar crystal constituting the diamond film of (1) in the <110> direction is 40% or more. "

前記のダイヤモンド被覆切削工具は、耐溶着性と耐摩耗性を兼ね備えているため、CFRP/Al合金スタック材等の難削材に対して、例えば、ドリルによる高速穴あけ加工に用いる場合であっても、長期にわって加工精度が維持でき、また、寿命が長く、突発的なチッピングが抑制され、切削工具性能が安定して発揮するという優れた効果を有する。   Since the diamond-coated cutting tool has both welding resistance and wear resistance, even when used for high-speed drilling of difficult-to-cut materials such as CFRP / Al alloy stack materials, for example, by drilling. In addition, there is an excellent effect that machining accuracy can be maintained over a long period of time, life is long, sudden chipping is suppressed, and cutting tool performance is stably exhibited.

次に、本発明のダイヤモンド被覆切削工具のダイヤモンド皮膜について、より詳細に説明する。なお、本明細書、特許請求の範囲において、数値範囲を「〜」を用いて表現する場合、その範囲は上限および下限の数値を含むものである。   Next, the diamond film of the diamond-coated cutting tool of the present invention will be described in more detail. In the present specification and claims, when a numerical range is expressed by using “to”, the range includes upper and lower numerical values.

1.ダイヤモンド皮膜の平均膜厚:
本発明のダイヤモンド被覆切削工具におけるダイヤモンド皮膜の平均膜厚は7〜25μmとする。この範囲とした理由は、7μm未満であると、耐摩耗性を重視するCFRP/Al合金スタック材の切削において十分な工具寿命を得ることができず、25μmを超えると、鋭利な刃先を得ることが難しくなって、CFRP/Al合金スタック材の切削においては被削材にバリや層間剥離を生じやすくなるためである。
ここで、ダイヤモンド皮膜の平均膜厚の測定は、工具基体に垂直な方向の断面(膜厚方向の断面である縦断面)をCross−sectional Polisher(以下、CPという)にて加工し、加工した断面を走査電子顕微鏡を用いて適切な倍率(例、倍率5000倍)で膜厚を測定し、例えば、観察視野内の5点の膜厚を測定して平均して求める。
1. Average thickness of diamond film:
The average thickness of the diamond film in the diamond-coated cutting tool of the present invention is 7 to 25 μm. The reason for this range is that if it is less than 7 μm, a sufficient tool life cannot be obtained when cutting a CFRP / Al alloy stack material which emphasizes wear resistance, and if it exceeds 25 μm, a sharp edge is obtained. This is because it becomes difficult to produce burrs and delamination on the work material when cutting the CFRP / Al alloy stack material.
Here, the average film thickness of the diamond film was measured by processing a cross section in a direction perpendicular to the tool base (a vertical cross section that is a cross section in the film thickness direction) with a Cross-section Polisher (hereinafter, referred to as CP). The film thickness of the cross section is measured using a scanning electron microscope at an appropriate magnification (for example, 5000 times), and for example, the film thickness is measured and averaged at five points in the observation visual field.

2.ダイヤモンド皮膜の平均結晶粒径:
本発明のダイヤモンド被覆切削工具におけるダイヤモンド皮膜の平均結晶粒径は3.0μmを超えるものとする。その理由は、3.0μm以下であると、ダイヤモンド皮膜中に結晶粒界の占める体積が多くなって、sp結合の割合が高くなり、耐摩耗性が低下するためである。
ここで、ダイヤモンド皮膜の平均結晶粒径は、ダイヤモンド被覆切削工具の切れ刃逃げ面のダイヤモンド皮膜の表面を走査電子顕微鏡にて観察し、50μm四方の3視野内の任意に引かれた10μm線分内に含まれるダイヤモンドの結晶粒の数を計測し、線分長(10μm)を結晶数で除した値の平均値を算出し求める。
2. Average grain size of diamond film:
The average crystal grain size of the diamond film in the diamond-coated cutting tool of the present invention exceeds 3.0 μm. The reason is that if the thickness is 3.0 μm or less, the volume occupied by the crystal grain boundaries in the diamond film increases, the ratio of sp 2 bonds increases, and the wear resistance decreases.
Here, the average crystal grain size of the diamond film is determined by observing the surface of the diamond film on the flank of the cutting edge of the diamond-coated cutting tool with a scanning electron microscope and arbitrarily drawing a 10 μm line segment in three visual fields of 50 μm square. The number of diamond crystal grains contained in the sample is measured, and the average value of the value obtained by dividing the line length (10 μm) by the number of crystals is calculated.

3.D/Gの値:
波長532nmの可視レーザーを用いたラマン分光による測定し、1332〜1337cm−1に確認されるダイヤモンドのピーク強度(D)と1560〜1600cm−1間にピークを有するグラファイトのピーク強度(G)との比(D/G)は、10以上とする。その理由は、10未満であると、ダイヤモンド皮膜のsp結合の割合が低く、皮膜がダイヤモンドの本来の硬さを得ることができず、耐摩耗性が十分でないためである。
3. D / G values:
Measured by Raman spectroscopy using a visible laser of wavelength 532 nm, the peak intensity of graphite (G) with a peak between 1560~1600Cm -1 and the peak intensity of the diamond (D) to be checked 1332~1337Cm -1 The ratio (D / G) is 10 or more. The reason is that if it is less than 10, the ratio of sp 3 bonds in the diamond film is low, the film cannot obtain the original hardness of diamond, and the wear resistance is not sufficient.

4.面粗度(Ra):
面粗度(Ra)は、0.5μm以下とする。その理由は、0.5μmを超えると刃先に溶着を生じ、剥離を生じやすく、刃先形状が保てなくなり、加工品位が低下するためである。
4. Surface roughness (Ra):
The surface roughness (Ra) is 0.5 μm or less. The reason is that if the thickness exceeds 0.5 μm, welding occurs on the cutting edge, peeling easily occurs, the shape of the cutting edge cannot be maintained, and the processing quality deteriorates.

5.ダイヤモンド皮膜を構成する柱状晶の<110>方向の配向率:
本発明のダイヤモンド被覆切削工具において、耐摩耗性および耐溶着性の向上のために、ダイヤモンド皮膜の<110>方向の配向率が40%以上であることが好ましい。
ここで、ダイヤモンド皮膜を構成する柱状晶の<110>方向の配向率は、刃先の断面をCPにて研磨加工し、EBSDにより30μm四方の皮膜断面の領域を3箇所の皮膜表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、皮膜の結晶粒個々の(110)面の法線がなす角度と膜厚方向との傾斜角度を測定し、測定された傾斜角のうち、0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0〜45度の範囲内に存在する度数(傾斜角度数分布における度数全体)に対する傾斜角度が0〜20°範囲内に存在する度数の合計の割合を<110>配向率とする。
5. Orientation ratio of columnar crystal constituting diamond film in <110> direction:
In the diamond-coated cutting tool of the present invention, the orientation ratio of the diamond film in the <110> direction is preferably 40% or more in order to improve wear resistance and welding resistance.
Here, the orientation ratio of the columnar crystal constituting the diamond film in the <110> direction can be determined by polishing the cross section of the cutting edge with a CP, and making a 30 μm square region of the film cross section perpendicular to three film surfaces by EBSD. An electron beam is irradiated to each of the crystal grains existing within the measurement range of the polished surface of the film cross section, and the angle formed by the normal of the (110) plane of each of the crystal grains of the film and the inclination angle between the film thickness direction are measured. Of the measured inclination angles, the inclination angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and the frequencies existing in each division are totaled, whereby the angles of 0 to 45 degrees are counted. The <110> orientation ratio is defined as the ratio of the sum of the frequencies in which the tilt angle is in the range of 0 to 20 ° with respect to the frequencies existing in the range (entire frequencies in the tilt angle number distribution).

6.製造方法(成膜条件)
本発明のダイヤモンド被覆切削工具におけるダイヤモンド皮膜は、熱フィラメント法に用いるCVD装置を用いて、例えば、以下のような条件で成膜し、プラズマ処理とブラスト処理からなる後処理を施して、製作することができる。
(1)成膜条件
フィラメント温度:2300〜2500℃
ガスに対するCHガスの割合:0.8〜2.0体積%
反応圧力:600〜1000Pa
成膜時間:10〜25時間
(2)後処理
(2−1)プラズマ処理
酸素プラズマによりダイヤモンド皮膜表層の改質処理を行い、面粗度を低減させる。
酸素ガス:300ml/min
放電方式:RF(高周波)
出力:100〜300W
処理時間:2.5〜3.5時間
バイアス:直流パルス
(2−2)ブラスト処理
プラズマ処理により皮膜表面に形成された脆弱層の除去および面粗度を低減させる。
媒体:SiC粉末とダイヤモンド粉末の混合メディア(ダイヤモンドの配合比:2〜4%)
投射圧力:0.10〜0.20MPa
処理時間:4〜6分
6. Manufacturing method (film formation conditions)
The diamond film in the diamond-coated cutting tool of the present invention is manufactured by, for example, forming a film under the following conditions using a CVD apparatus used for a hot filament method, and performing a post-process including a plasma process and a blast process. be able to.
(1) Film formation conditions Filament temperature: 2300 to 2500 ° C
Ratio of CH 4 gas to H 2 gas: 0.8 to 2.0% by volume
Reaction pressure: 600 to 1000 Pa
Film formation time: 10 to 25 hours (2) Post-treatment (2-1) Plasma treatment The surface of the diamond film is modified by oxygen plasma to reduce the surface roughness.
Oxygen gas: 300 ml / min
Discharge method: RF (high frequency)
Output: 100-300W
Treatment time: 2.5 to 3.5 hours Bias: DC pulse (2-2) Blast treatment Removal of the brittle layer formed on the film surface by plasma treatment and reduction of surface roughness.
Medium: Mixed media of SiC powder and diamond powder (diamond mixing ratio: 2 to 4%)
Projection pressure: 0.10 to 0.20 MPa
Processing time: 4-6 minutes

次に、実施例について説明する。なお、実施例ではドリルを例に挙げて説明するが本発明に係るダイヤモンド被覆切削工具はこれに限られるものではない。   Next, examples will be described. In the embodiment, a drill will be described as an example, but the diamond-coated cutting tool according to the present invention is not limited to this.

原料粉末として、いずれも1μm以下の平均粒径を有するWC粉末、1〜3μmの平均粒径を有するTaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで96時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1350〜1400℃に1時間保持の条件で焼結し、直径が10mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、直径7mmのドリル形状の超硬合金製の工具基体A、Bを製作した。 As raw material powders, WC powder having an average particle size of 1 μm or less, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder each having an average particle size of 1 to 3 μm were prepared. The mixture was wet-mixed in a ball mill for 96 hours, dried, and then pressed into a green compact at a pressure of 100 MPa, and the green compact was vacuumed at 6 Pa at a temperature of 1350 to 1400 ° C. Sintering under the condition of holding for 1 hour to form a round bar sintered body for forming a tool base having a diameter of 10 mm. Tool bases A and B made of hard alloy were produced.

引き続いて、この超硬合金基体A、Bの表面をエタノール中で超音波洗浄し、乾燥した後、エッチング処理を行った後、粒径1〜2μmのダイヤモンド粉末を含むイソプロピルアルコール液中で10分間の超音波処理を行なった。   Subsequently, the surfaces of the cemented carbide substrates A and B were subjected to ultrasonic cleaning in ethanol, dried, and then subjected to an etching treatment, followed by 10 minutes in an isopropyl alcohol solution containing diamond powder having a particle size of 1 to 2 μm. Was subjected to ultrasonic treatment.

その後、前記超硬合金基体A、Bを熱フィラメント法に用いるCVD装置に装入し、所定の平均膜厚、平均粒径の結晶性ダイヤモンド層を成膜形成し、ブラスト処理を行い本発明被覆工具1〜13を製作した。成膜条件は、表2に示すとおりである。CVD装置内に熱電対を導入し、基体のシャンク側のφ1mmの穴より熱電対を挿入し、基体温度を測定した。また、ダイヤモンド皮膜において表層から0.5μmの厚さまでグラファイト成分の増加が認められたため、この厚さまでをブラスト処理により除去した。   Thereafter, the cemented carbide substrates A and B are charged into a CVD apparatus used for a hot filament method, a crystalline diamond layer having a predetermined average film thickness and an average particle diameter is formed and blasted, and the present invention is coated. Tools 1 to 13 were manufactured. The film forming conditions are as shown in Table 2. A thermocouple was introduced into the CVD apparatus, a thermocouple was inserted through a φ1 mm hole on the shank side of the substrate, and the substrate temperature was measured. In addition, an increase in the graphite component from the surface layer to a thickness of 0.5 μm was observed in the diamond film, and up to this thickness was removed by blasting.

このようにして得られたダイヤモンド皮膜について、前述の方法により、ダイヤモンド皮膜の平均膜厚、平均結晶粒径、D/G、面粗度(Ra)、<110>方向の配向率をそれぞれ求めた。それぞれの値を表3に示す。   With respect to the diamond film thus obtained, the average thickness, average crystal grain size, D / G, surface roughness (Ra), and orientation ratio in the <110> direction of the diamond film were determined by the methods described above. . Table 3 shows the respective values.

比較の目的で、前記超硬合金基体A、Bを熱フィラメントCVD装置に装入し、ダイヤモンド膜を成膜し、比較被覆工具1〜9を製作した。成膜条件は表2に示すとおりである。
そして、前述の方法により、ダイヤモンド皮膜の平均膜厚、平均結晶粒径、D/G、面粗度(Ra)、<110>方向の配向率をそれぞれ求めた。それぞれの値を表4に示す。
For the purpose of comparison, the cemented carbide substrates A and B were charged into a hot filament CVD apparatus, a diamond film was formed, and comparative coating tools 1 to 9 were manufactured. The film forming conditions are as shown in Table 2.
The average thickness, average crystal grain size, D / G, surface roughness (Ra), and orientation ratio in the <110> direction of the diamond film were determined by the above-described methods. Table 4 shows the respective values.

続いて、前記本発明被覆工具1〜13および比較被覆工具1〜9について、下記条件で穴開け回数の評価試験を行い、工具寿命を調べた。
被削材:厚さ 27mm
CFRP(厚さ20mm)とAl合金(A7075:厚さ7mm)からなる複合材
切削速度:VC=100m/分
送り量:fr=0.15mm/rev貫通
*工具寿命の判定方法:加工穴数50毎に、ドリルの刃先とワークを観察し、刃先に基体の露出、欠損、チッピングが生じた時点でドリルの寿命とした。また、加工精度を保つ基準として、被削材の加工面にバリ発生しない、層間剥離が加工面から1mm以内に抑えられた加工状態を合格判定とした。
試験結果を表5に示す。
Subsequently, the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 9 were subjected to an evaluation test of the number of perforations under the following conditions, and the tool life was examined.
Work material: thickness 27mm
Composite material consisting of CFRP (thickness 20 mm) and Al alloy (A7075: thickness 7 mm) Cutting speed: VC = 100 m / min Feeding amount: fr = 0.15 mm / rev penetration * Tool life judgment method: Number of machining holes 50 Each time, the edge of the drill and the workpiece were observed, and the life of the drill was defined as the point at which the base was exposed, chipped, or chipped. In addition, as a criterion for maintaining the processing accuracy, a processing state in which burrs did not occur on the processed surface of the work material and delamination was suppressed within 1 mm from the processed surface was determined to be acceptable.
Table 5 shows the test results.

表5に示される結果から、本発明被覆工具1〜13は、長期にわたり安定した加工穴を得ることができた。
これに対して、本発明の規定を満足しない比較被覆工具1〜9においては、いずれも、欠損・チッピングが発生するばかりか、切削長が短い、または短時間で使用寿命に至っている。
From the results shown in Table 5, the coated tools 1 to 13 of the present invention were able to obtain stable machined holes for a long period of time.
In contrast, all of the comparative coated tools 1 to 9 that do not satisfy the requirements of the present invention not only cause chipping and chipping, but also have a short cutting length or a short service life.

前述のとおり、この発明のダイヤモンド被覆工具は、難削材であるCFRP/Al合金スタック材の切削において、長期の使用にわたり優れた耐溶着性、耐摩耗性を発揮するものであるから、切削加工装置のFA化、ならびに切削加工の省力化および省エネ化、さらには、低コスト化に十分に満足できる対応ができるものである。   As described above, the diamond coated tool of the present invention exhibits excellent welding resistance and wear resistance over a long period of use in cutting a CFRP / Al alloy stack material which is a difficult-to-cut material. This makes it possible to fully satisfy the requirements for FA of the apparatus, labor saving and energy saving of the cutting process, and furthermore, cost reduction.

Claims (2)

炭化タングステン基超硬合金で構成された工具基体表面に膜厚が7〜25μmのダイヤモンド皮膜が被覆されたダイヤモンド被覆工具において、前記ダイヤモンド皮膜は平均結晶粒径が3.0μmを超え、波長532nmの可視レーザーを用いたラマン分光による測定し、1332〜1337cm−1に確認されるダイヤモンドのピーク強度(D)と1560〜1600cm−1間にピークを有するグラファイトのピーク強度(G)との比であるD/Gが10以上、皮膜の面粗度Raが0.5μm以下であるダイヤモンド被覆切削工具。 In a diamond coated tool in which a diamond film having a film thickness of 7 to 25 μm is coated on a tool substrate surface made of a tungsten carbide based cemented carbide, the diamond film has an average crystal grain size exceeding 3.0 μm and a wavelength of 532 nm. It is measured by Raman spectroscopy using a visible laser, and is the ratio of the peak intensity (D) of diamond confirmed at 1332 to 1337 cm -1 to the peak intensity (G) of graphite having a peak between 1560 and 1600 cm -1. A diamond-coated cutting tool having a D / G of 10 or more and a surface roughness Ra of 0.5 μm or less. 請求項1のダイヤモンド膜を構成する柱状晶の<110>方向の配向率が40%以上であることを特徴とするダイヤモンド被覆切削工具。   2. A diamond-coated cutting tool, wherein the columnar crystal constituting the diamond film according to claim 1 has an orientation ratio in a <110> direction of 40% or more.
JP2018181515A 2018-09-27 2018-09-27 Diamond-coated cemented carbide cutting tool Pending JP2020049587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018181515A JP2020049587A (en) 2018-09-27 2018-09-27 Diamond-coated cemented carbide cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018181515A JP2020049587A (en) 2018-09-27 2018-09-27 Diamond-coated cemented carbide cutting tool

Publications (1)

Publication Number Publication Date
JP2020049587A true JP2020049587A (en) 2020-04-02

Family

ID=69995120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181515A Pending JP2020049587A (en) 2018-09-27 2018-09-27 Diamond-coated cemented carbide cutting tool

Country Status (1)

Country Link
JP (1) JP2020049587A (en)

Similar Documents

Publication Publication Date Title
JP5344204B2 (en) Surface coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5590330B2 (en) Diamond coated cutting tool
JPWO2018174139A1 (en) Diamond coated cemented carbide cutting tool
JP2011101910A (en) Diamond-coated cutting tool
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP5488873B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2008105164A (en) Surface-coated cutting tool
JP5163879B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP5240666B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP2008238392A (en) Cutting tool
JP6102571B2 (en) Surface coated cutting tool
JP5292900B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2017064840A (en) Diamond-coated cutting tool made of cemented carbide
JP2009214196A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to defect
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2020049587A (en) Diamond-coated cemented carbide cutting tool
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011131347A (en) Diamond-coated cemented carbide cutting tool
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP2019093521A (en) Cutting tool made by diamond-coated hard metal
JP2014079853A (en) Diamond-coated hard metal drill
JP5246597B2 (en) Diamond coated tools