JP2014079853A - Diamond-coated hard metal drill - Google Patents

Diamond-coated hard metal drill Download PDF

Info

Publication number
JP2014079853A
JP2014079853A JP2012229833A JP2012229833A JP2014079853A JP 2014079853 A JP2014079853 A JP 2014079853A JP 2012229833 A JP2012229833 A JP 2012229833A JP 2012229833 A JP2012229833 A JP 2012229833A JP 2014079853 A JP2014079853 A JP 2014079853A
Authority
JP
Japan
Prior art keywords
diamond
drill
film
coated
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012229833A
Other languages
Japanese (ja)
Other versions
JP6040698B2 (en
Inventor
Hideo Oshima
秀夫 大島
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012229833A priority Critical patent/JP6040698B2/en
Publication of JP2014079853A publication Critical patent/JP2014079853A/en
Application granted granted Critical
Publication of JP6040698B2 publication Critical patent/JP6040698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a diamond-coated hard metal drill which shows excellent abrasion resistance even when a stress is applied intermittently to the tip of the drill, e.g., in CFRP drilling, and exerts excellent drilling workability over a long period.SOLUTION: In a diamond-coated hard metal drill consisting a drill substrate composed of tungsten carbide based hard metal based on tungsten carbide and cobalt in a content of cobalt of 3-15 mass% and coated with a diamond film of an average film thickness of 5-30 μm. In an outer peripheral edge part of a drill tip, the crystal grain size in the film surface direction is 0.2-0.8 μm, and the ratio of the peak intensity of the peak 1333±20 cmoriginated from diamond to the peak intensity of the peak 1560±30 cmoriginated from ingredients other than diamond, measured by Raman spectroscopy, is 6-100.

Description

本発明は、炭素繊維強化プラスチック(以下、CFRP)単体またはCFRPとAlとの重ね合わせ穿孔などにおいて、耐チッピング性にすぐれるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮するダイヤモンド被覆超硬合金製ドリルに関する。   The present invention provides a diamond coating that exhibits excellent chipping resistance and excellent wear resistance over a long period of use in carbon fiber reinforced plastic (hereinafter referred to as CFRP) alone or overlap drilling of CFRP and Al. It relates to a drill made of cemented carbide.

従来、炭化タングステン基(以下、WC基)超硬合金からなる基体に、ダイヤモンド膜を被覆したダイヤモンド被覆超硬合金製ドリル(以下、単にダイヤモンド被覆ドリルという)が知られているが、従来のダイヤモンド被覆ドリルにおいては、耐溶着性、耐摩耗性が十分でないため、これを改善するために種々の提案がなされている。 Conventionally, a diamond-coated cemented carbide drill (hereinafter simply referred to as a diamond-coated drill) in which a base made of a tungsten carbide group (hereinafter referred to as a WC group) cemented carbide is coated with a diamond film is known. In the coated drill, since welding resistance and wear resistance are not sufficient, various proposals have been made to improve this.

例えば、特許文献1においては、ダイヤモンド被覆切削工具において、ダイヤモンド膜の成長表面を構成するダイヤモンド結晶粒子の平均粒径が1.5μm以下であり、ダイヤモンド膜の厚さが0.1μm以上20μm以下であり、ダイヤモンド膜の平均表面粗さがRaで0.01μm以上0.2μm以下であることによって、切削性能・耐摩耗性・耐溶着性・加工面粗さを向上させることが提案されている。   For example, in Patent Document 1, in a diamond-coated cutting tool, the average grain size of diamond crystal particles constituting the growth surface of the diamond film is 1.5 μm or less, and the thickness of the diamond film is 0.1 μm or more and 20 μm or less. In addition, it has been proposed that the diamond film has an average surface roughness Ra of 0.01 μm or more and 0.2 μm or less to improve cutting performance, wear resistance, welding resistance, and machined surface roughness.

また、特許文献2においては、工具基体と該工具基体基材の表面に少なくとも20μmの全厚に被覆、積層された複数の多結晶ダイヤモンド膜の層とから実質的になり、各多結晶ダイヤモンド膜の層が、厚さ6〜13μm、膜の面方向の平均結晶径3〜7μmで、表面に露出した(111)配向のダイヤモンド結晶子を有し、1333cm−1付近に現れるダイヤモンドのラマンピーク最大強度をI(D)、1200cm−1と1600cm−1の間に現れる非ダイヤモンドのラマンピーク最大強度をI(U)とするとき、I(U)/I(D)<0.2であることによって、ダイヤモンド膜の表面平滑性を高め、ダイヤモンド膜自体の耐摩耗性を高く維持し、且つ、ダイヤモンド膜の耐欠損性を高めたダイヤモンド被覆切削工具が提案されている。 In Patent Document 2, each polycrystalline diamond film is substantially composed of a tool substrate and a plurality of polycrystalline diamond film layers coated and laminated on the surface of the tool substrate substrate to a total thickness of at least 20 μm. The layer has an average crystal diameter of 3 to 7 μm with a thickness of 6 to 13 μm, a diamond crystallite with (111) orientation exposed on the surface, and a maximum Raman peak of diamond appearing in the vicinity of 1333 cm −1 I (U) / I (D) <0.2, where I (U) is the maximum Raman peak intensity of non-diamond appearing between I (D) and 1200 cm −1 and 1600 cm −1. Proposed a diamond-coated cutting tool that increases the surface smoothness of the diamond film, maintains the wear resistance of the diamond film itself, and increases the fracture resistance of the diamond film. That.

国際公開2005−011902号公報International Publication No. 2005-011902 特開平9−71498号公報Japanese Patent Laid-Open No. 9-71498

近年の切削加工の技術分野における省力化および省エネ化、さらに低コスト化に対する要求は強く、また、切削ドリルの汎用性も求められてきているが、従来のダイヤモンド被覆ドリルを、CFRP単体、あるいは、CFRPとAl合金の複合材等の難削材のドリル加工に供した場合には、摩耗進行が早く、また、チゼルエッジ部での溶着発生等により、穴精度の劣化や切れ刃が欠損するなどの問題が生じていた。 In recent years, there is a strong demand for labor saving and energy saving in the technical field of cutting processing, and further cost reduction, and versatility of cutting drills is also demanded. When subjected to drilling of difficult-to-cut materials such as CFRP and Al alloy composites, the wear progresses quickly, and due to the occurrence of welding at the chisel edge, etc. There was a problem.

また、例えば、前記特許文献1、2に示されるダイヤモンド被覆切削工具においては、ダイヤモンド膜の結晶粒界が比較的弱いために、これをCFRPのドリル加工に用いたとき、ダイヤモンドの結晶粒界から摩耗進行が発生し、早期に寿命になるという問題があった。結晶粒径を大きくして粒界を少なくすれば進行摩耗は抑えられるが、CFRPのドリル加工のような、断続的に刃先に応力がかかる場合には、チッピングが生じやすいという問題があった。 Further, for example, in the diamond-coated cutting tool disclosed in Patent Documents 1 and 2, since the crystal grain boundary of the diamond film is relatively weak, when this is used for drilling CFRP, the diamond crystal grain boundary is There was a problem that wear progressed and the life was shortened early. Progressive wear can be suppressed by increasing the crystal grain size and reducing the grain boundary, but there is a problem that chipping is likely to occur when stress is intermittently applied to the cutting edge as in the case of CFRP drilling.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、CFRPのドリル加工のように断続的に刃先に応力がかかる場合でも、すぐれた耐摩耗性を示し、長期に亘ってすぐれたドリル加工性能を発揮するダイヤモンド被覆ドリルを提供することである。 Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent wear resistance even when stress is applied to the cutting edge intermittently as in CFRP drilling, and for a long time. It is to provide a diamond-coated drill that exhibits excellent drilling performance.

本発明者らは、CFRP単体、あるいは、CFRPとAl合金の複合材等の難削材のドリル加工において、結晶粒界からの摩耗進行を生じにくくするとともに、長期の使用に亘って、すぐれた耐摩耗性を発揮するダイヤモンド被覆ドリルを提供すべく鋭意研究を重ねたところ、次のような知見を得た。 In the drilling of difficult-to-cut materials such as CFRP alone or a composite material of CFRP and Al alloy, the present inventors made it difficult for wear to progress from the grain boundaries and were excellent over a long period of use. As a result of extensive research to provide a diamond-coated drill that exhibits wear resistance, the following findings were obtained.

即ち、熱フィラメントCVD装置内でダイヤモンドを成膜するにあたって、粒界に非ダイヤモンド成分が形成されるために粒界強度が弱いという問題があったことから、粒界に生成する非ダイヤモンド成分が極力少なくなるように成膜する製法について鋭意研究した。その結果、熱フィラメントCVD装置内のメタン濃度を高めにした工程(高濃度工程)と低めにした工程(低濃度工程)を繰り返すことにより、粒界に生じた非ダイヤモンド成分をエッチングしながら成膜することが可能となることを見出した。そして、この製法にて成膜したドリルは、前述の高濃度工程と低濃度工程の繰り返し数、各工程の合成時間、基体温度などを調整することにより、ダイヤモンド膜を構成する結晶粒の平均粒径および結晶性を任意に制御することが可能であることを見出した。そして、ダイヤモンド膜の結晶粒の膜平面方向の平均粒径が0.2〜0.8μmであり、かつ、ラマン分光測定による、ダイヤモンド由来のピーク高さ(1333cm−1)の非ダイヤモンド成分由来のピーク高さ(1500〜1600cm−1)に対するピーク強度比が6〜100とすることにより、摩耗進行を抑え、膜の靭性を向上させて、耐チッピング性、耐摩耗性が向上することを見出した。 That is, when diamond is formed in a hot filament CVD apparatus, there is a problem that the non-diamond component is formed at the grain boundary, and hence the grain boundary strength is weak. We have eagerly studied the production method for forming the film so as to reduce it. As a result, by repeating the process of increasing the methane concentration (high concentration process) and the process of decreasing the concentration (low concentration process) in the hot filament CVD apparatus, the film is formed while etching the non-diamond components generated at the grain boundaries. I found out that it would be possible. And the drill formed into a film by this manufacturing method adjusts the number of repetitions of the above-mentioned high concentration process and low concentration process, the synthesis time of each process, the substrate temperature, etc., and adjusts the average grain size of the crystal grains constituting the diamond film. It has been found that the diameter and crystallinity can be arbitrarily controlled. And the average particle diameter of the crystal | crystallization plane direction of the crystal grain of a diamond film is 0.2-0.8 micrometer, And it is derived from the non-diamond component of the peak height (1333 cm < -1 >) derived from a diamond by Raman spectroscopy measurement. It has been found that when the peak intensity ratio with respect to the peak height (1500 to 1600 cm −1 ) is 6 to 100, the progress of wear is suppressed, the toughness of the film is improved, and the chipping resistance and wear resistance are improved. .

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステンとコバルトを主成分とし、かつ、3〜15質量%のコバルトを含有する炭化タングステン基超硬合金からなるドリル基体に平均膜厚5〜30μmのダイヤモンド膜を被覆したダイヤモンド被覆超硬合金製ドリルにおいて、
ドリル先端の外周刃部の結晶粒の膜平面方向の平均粒径が0.2〜0.8μmであり、かつ、ラマン分光測定によるダイヤモンド由来の1333±20cm−1のピーク強度の非ダイヤモンド成分由来の1560±30cm−1のピーク強度に対する比が6〜100であることを特徴とするダイヤモンド被覆超硬合金製ドリル。
(2) (1)に記載のダイヤモンド被覆超硬合金製ドリルにおいて、
ドリル先端のチゼルエッジにおけるラマン分光測定によるダイヤモンド由来の1333±20cm−1のピーク強度の非ダイヤモンド成分由来の1560±30cm−1のピーク強度に対する比が前記ドリル先端の外周刃部における比の0.5〜0.9倍であることを特徴とするダイヤモンド被覆超硬合金製ドリル。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) Diamond coating in which a tungsten carbide-based cemented carbide containing tungsten carbide and cobalt as main components and containing 3 to 15% by mass of cobalt is coated with a diamond film having an average film thickness of 5 to 30 μm. In cemented carbide drills,
The average grain size in the film plane direction of the crystal grains of the outer peripheral edge of the drill tip is 0.2 to 0.8 μm, and is derived from a non-diamond component having a peak intensity of 1333 ± 20 cm −1 derived from diamond by Raman spectroscopy. A diamond-coated cemented carbide drill characterized by having a ratio of 1560 ± 30 cm −1 to a peak intensity of 6 to 100.
(2) In the diamond-coated cemented carbide drill according to (1),
A ratio of a peak intensity of 1333 ± 20 cm −1 derived from diamond to a peak intensity of 1560 ± 30 cm −1 derived from a non-diamond component by Raman spectroscopic measurement at the chisel edge of the drill tip is 0.5 of the ratio at the outer peripheral edge of the drill tip. A diamond-coated cemented carbide drill characterized by being -0.9 times. "
It is characterized by.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

ドリル基体の組成:
本発明のダイヤモンド被覆ドリルのドリル基体としては、硬質相成分としての炭化タングステン(WCで示す)と結合相成分としてのCoを少なくとも含有し、かつ、Co含有量は3〜15質量%であるWC基超硬合金を使用した。
Co成分には、結合相を形成して基体の強度および靭性を向上させる作用があるが、WC基超硬合金中のCo含有量が3質量%未満では、特に靭性の向上が望めず、一方、Co含有量が15質量%を越えると、塑性変形が起り易くなって、偏摩耗の進行が促進されるようになることから、WC基超硬合金中のCo含有量は3〜15質量%と定めた。
Drill base composition:
As a drill base of the diamond-coated drill of the present invention, WC having at least tungsten carbide (indicated by WC) as a hard phase component and Co as a binder phase component, and having a Co content of 3 to 15% by mass. A base cemented carbide was used.
The Co component has an effect of improving the strength and toughness of the substrate by forming a binder phase. However, when the Co content in the WC-based cemented carbide is less than 3% by mass, no improvement in toughness can be expected. When the Co content exceeds 15% by mass, plastic deformation easily occurs and the progress of uneven wear is promoted. Therefore, the Co content in the WC-based cemented carbide is 3 to 15% by mass. It was determined.

ダイヤモンド膜の平均膜厚:
基体表面に被覆するダイヤモンド膜は、その平均膜厚が5μm未満では、長期の使用に亘って十分な耐摩耗性を発揮することができず、一方、ダイヤモンドの平均膜厚が30μmを超えると、チッピング、欠損、剥離が発生しやすくなることから、ダイヤモンド膜の平均膜厚は、5〜30μmと定めた。
なお、ダイヤモンド膜の平均膜厚の測定は、切れ刃部を切断して走査型電子顕微鏡(SEM)観察を行い、軸方向に膜厚の5点測定を行い、その平均値を平均膜厚とした。
Average film thickness of diamond film:
When the average film thickness of the diamond film coated on the substrate surface is less than 5 μm, sufficient wear resistance cannot be exhibited over a long period of use, while when the average film thickness of diamond exceeds 30 μm, Since the chipping, deficiency, and peeling easily occur, the average film thickness of the diamond film was determined to be 5 to 30 μm.
In addition, the measurement of the average film thickness of a diamond film cut | disconnects a cutting edge part, performs a scanning electron microscope (SEM) observation, performs five-point measurement of a film thickness to an axial direction, and the average value is made into an average film thickness did.

ドリル先端の外周刃部の結晶粒の膜平面方向の平均粒径:
さらに、本発明のダイヤモンド被覆ドリルでは、ドリル先端の外周刃部の結晶粒の膜平面方向の平均粒径を0.2〜0.8μmとする。その理由は、0.2μm未満では工具の摩耗進行が早く、工具寿命が短くなる。一方、0.8μmを超えると膜の靭性が低下するため、チッピングが生じやすい。そのため、ドリル先端の外周刃部の結晶粒の膜平面方向の平均粒径を0.2〜0.8μmと定めた。
なお、結晶粒の膜平面方向の平均粒径は、ダイヤモンド膜の断面方向で膜の最表面から2μmまでの領域において透過型電子顕微鏡(TEM)観察を行い、直線交差線分法に基づき、5μmの長さで3本の直線を用いて、平均粒径を求めた。
Average grain size in the film plane direction of the crystal grains of the outer peripheral edge of the drill tip:
Furthermore, in the diamond-coated drill of the present invention, the average grain size in the film plane direction of the crystal grains of the outer peripheral cutting edge at the tip of the drill is set to 0.2 to 0.8 μm. The reason is that if the thickness is less than 0.2 μm, the wear of the tool progresses quickly and the tool life is shortened. On the other hand, if the thickness exceeds 0.8 μm, the toughness of the film decreases, and chipping is likely to occur. Therefore, the average grain size in the film plane direction of the crystal grains of the outer peripheral cutting edge at the tip of the drill was determined to be 0.2 to 0.8 μm.
The average grain size of crystal grains in the plane direction of the film is 5 μm based on a straight line segmentation method by observation with a transmission electron microscope (TEM) in a region from the outermost surface of the diamond film to 2 μm in the cross-sectional direction of the diamond film. The average particle size was determined using three straight lines.

ドリル先端の外周刃部におけるダイヤモンド膜のダイヤモンド比:
さらに、結晶粒をラマン分光測定したとき、ダイヤモンド由来の1333±20cm−1のピーク強度の非ダイヤモンド成分由来の1560±30cm−1のピーク強度に対する比(ダイヤモンド比)を6〜100とした。その理由は、前記比の値が、6未満では粒界強度が低いために、結晶粒界から摩耗が進行しやすくなって耐摩耗性が低下し、100を超える場合、そもそも成膜することが困難であるばかりか、たとえ成膜できても成膜後の熱収縮による残留応力が大きくなる傾向があり、膜の剥離が生じやすくなる。そのため、前記比の値を6〜100と定めた。
Diamond ratio of the diamond film at the outer peripheral edge of the drill tip:
Furthermore, when the crystal grains were measured by Raman spectroscopy, the ratio (diamond ratio) of the peak intensity of 1333 ± 20 cm −1 derived from diamond to the peak intensity of 1560 ± 30 cm −1 derived from the non-diamond component was set to 6 to 100. The reason is that if the value of the ratio is less than 6, the grain boundary strength is low, so that the wear easily proceeds from the crystal grain boundary, resulting in a decrease in wear resistance. Not only is it difficult, but even if the film can be formed, the residual stress due to thermal shrinkage after film formation tends to increase, and the film tends to peel off. Therefore, the value of the ratio is set to 6 to 100.

ドリル先端のチゼルエッジにおけるダイヤモンド膜のダイヤモンド比:
ドリル先端のチゼルエッジにおけるラマン分光測定によるダイヤモンド由来の1333±20cm−1のピーク強度の非ダイヤモンド成分由来の1560±30cm−1のピーク強度に対する比(ダイヤモンド比)を前記ドリル先端の外周刃部分における比の0.5〜0.9倍とすることによって、一層、耐摩耗性を改善することが可能になる。その理由は、チゼルエッジのダイヤモンド膜の結晶性を、ある程度低下させておくことと、外周刃部の結晶性に比して相対的に低下させておくことにより、チゼルエッジにおける被削材との溶着発生を抑制することが可能になるという理由による。
すなわち、前記比の値が0.5未満の場合には、チゼルエッジ付近における耐摩耗性低下が顕著となり、一方、0.9を超える場合には、被削材との溶着発生抑制効果が少なくなるため、前記比の値は0.5〜0.9であることが望ましい。
Diamond ratio of diamond film at chisel edge at drill tip:
The ratio (diamond ratio) of the peak intensity of 1333 ± 20 cm −1 derived from diamond to the peak intensity of 1560 ± 30 cm −1 derived from non-diamond components measured by Raman spectroscopy at the chisel edge of the drill tip is the ratio at the outer peripheral edge portion of the drill tip By setting the ratio to 0.5 to 0.9 times the wear resistance, the wear resistance can be further improved. The reason for this is that the crystallinity of the diamond film on the chisel edge is reduced to some extent, and it is relatively lowered compared to the crystallinity of the outer peripheral edge, so that the welding of the chisel edge with the work material occurs. This is because it becomes possible to suppress this.
That is, when the value of the ratio is less than 0.5, the wear resistance in the vicinity of the chisel edge is significantly reduced. On the other hand, when it exceeds 0.9, the effect of suppressing the occurrence of welding with the work material is reduced. Therefore, the value of the ratio is preferably 0.5 to 0.9.

外周刃部およびチゼルエッジにおいて、ダイヤモンド由来の1333±20cm−1のピーク強度の非ダイヤモンド成分由来の1560±30cm−1のピーク強度に対する比が、前述したような値を有するダイヤモンド膜は、後述する成膜法によって、形成することができる。 A diamond film having a ratio of a peak intensity of 1333 ± 20 cm −1 derived from diamond to a peak intensity of 1560 ± 30 cm −1 derived from a non-diamond component at the outer peripheral edge and the chisel edge has a value as described above. It can be formed by a film method.

なお、本発明でいう「チゼルエッジ」とは、「ドリルの中央先端部から100μmの範囲内」を指し、「外周刃部」とは、「ドリルの外周部の肩部から100μmの範囲内」を指す。   In the present invention, “chisel edge” refers to “within a range of 100 μm from the center tip of the drill”, and “outer peripheral blade portion” refers to “within a range of 100 μm from the shoulder of the outer periphery of the drill”. Point to.

本発明のダイヤモンド被覆ドリルは、例えば、以下の方法によって製造することができる。
まず、WCとCoを主成分とし、Coを3〜15質量%含有する超硬合金焼結体からなるWC基超硬合金ドリル基体を作製した後、該超硬合金ドリル基体の表面近傍のCoを化学的なエッチング(硫酸+過酸化水素+水)によって除去する。その後、熱フィラメントCVD装置に装入し、ドリル基体のシャンク部を水冷治具で冷却支持し、フィラメントをドリル外周部の近傍にセットし、前述のメタン濃度を高めにした工程と低めにした工程を繰り返すことと、フィラメント電流値などの調整によって工具基体温度を適切に制御することによって製造することができる。
なお、ドリル径によってフィラメントの位置を調節することも必要であり、例えば、ドリル径が6mmより細い場合には、フィラメント位置を下側に移動させ、また、ドリル径が10mmより太い場合には、フィラメント位置を上側に移動させて、チゼルエッジ部と外周刃部のそれぞれの膜質の制御や所望の膜厚になるように調整することが必要である。
このようなダイヤモンド膜の成膜法により、ドリル基体上に平均膜厚5〜30μmのダイヤモンド膜を被膜することが出来るとともに、ドリル先端の外周刃部におけるダイヤモンド膜のラマン分光測定によるダイヤモンド比が6〜100、ドリル先端の外周刃部の結晶粒の膜平面方向の平均粒径が0.2〜0.8μm、ドリル先端のチゼルエッジ部におけるダイヤモンド膜のダイヤモンド比が0.5〜0.9である本発明のダイヤモンド被覆ドリルを製造することができる。
The diamond-coated drill of the present invention can be manufactured, for example, by the following method.
First, a WC-based cemented carbide drill base composed of a cemented carbide sintered body containing WC and Co as main components and containing 3 to 15% by mass of Co is manufactured, and then Co in the vicinity of the surface of the cemented carbide drill base is prepared. Are removed by chemical etching (sulfuric acid + hydrogen peroxide + water). After that, it is inserted into a hot filament CVD apparatus, the shank part of the drill base is cooled and supported with a water cooling jig, the filament is set in the vicinity of the outer periphery of the drill, and the process of increasing the methane concentration as described above and the process of reducing it And the tool base temperature can be controlled appropriately by adjusting the filament current value and the like.
It is also necessary to adjust the position of the filament according to the drill diameter. For example, when the drill diameter is smaller than 6 mm, the filament position is moved downward, and when the drill diameter is larger than 10 mm, It is necessary to move the filament position upward to control the film quality of the chisel edge portion and the outer peripheral blade portion and adjust the film thickness to a desired thickness.
By such a diamond film formation method, a diamond film having an average film thickness of 5 to 30 μm can be coated on the drill base, and the diamond ratio of the diamond film at the outer peripheral edge of the drill tip is 6 by diamond spectroscopy. ~ 100, the average grain size in the film plane direction of the crystal grains of the outer peripheral edge of the drill tip is 0.2 ~ 0.8μm, the diamond ratio of the diamond film at the chisel edge part of the drill tip is 0.5 ~ 0.9 The diamond-coated drill of the present invention can be manufactured.

本発明のダイヤモンド被覆ドリルは、ドリル先端の外周刃部の結晶粒の膜平面方向の平均粒径を適正な範囲に保つことによって奏される膜の靭性の向上と、結晶性を適正な範囲に保つことによって粒界強度が向上することによる耐摩耗性の向上という、それぞれ別の要因によってもたらされる効果が相俟って、膜の靭性および耐摩耗性を著しく向上できるため、長期の使用に亘って、すぐれた切削性能を発揮することができ、その効果は絶大である。   The diamond-coated drill of the present invention improves the toughness of the film and keeps the crystallinity within an appropriate range by maintaining the average grain size in the film plane direction of the crystal grains of the outer peripheral edge of the drill tip. The combined effects of the different factors of improving the wear resistance due to the improvement of the grain boundary strength due to the maintenance can significantly improve the toughness and wear resistance of the film. Therefore, it can exhibit excellent cutting performance, and its effect is enormous.

本発明のダイヤモンド被覆ドリルのダイヤモンド膜のミクロ組織を示す概略説明図である。It is a schematic explanatory drawing which shows the microstructure of the diamond film of the diamond covering drill of this invention.

つぎに、本発明のダイヤモンド被覆ドリルについて、実施例により具体的に説明する。   Next, the diamond-coated drill of the present invention will be specifically described with reference to examples.

(a)原料粉末として、いずれも0.5〜3μmの範囲内の所定の平均粒径を有するWC粉末、Co粉末、Cr粉末、VC粉末、TaC粉末、NbC粉末、TiC粉末およびZrC粉末を、表1に示される割合に配合し、さらにバインダーと溶剤を加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、いずれも100MPaの圧力でプレス成形して、直径が10mmの丸棒圧粉体とし、これらの丸棒圧粉体を、1Paの真空雰囲気中、1380〜1450℃の温度で1〜2時間保持後、炉冷の条件で焼結することにより、WC基超硬合金焼結体1〜5を製造した。 (A) WC powder, Co powder, Cr 3 C 2 powder, VC powder, TaC powder, NbC powder, TiC powder and ZrC having a predetermined average particle diameter in the range of 0.5 to 3 μm as raw material powders The powder was blended in the proportions shown in Table 1, and after further adding a binder and a solvent, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded at a pressure of 100 MPa. WC-based cemented carbide is obtained by sintering in a 1 Pa vacuum atmosphere at a temperature of 1380 to 1450 ° C. for 1 to 2 hours and then sintering under furnace cooling conditions. Alloy sintered bodies 1 to 5 were produced.

(b)前記WC基超硬合金焼結体1〜5を、溝形成部の外径寸法が8mmとなるように研削加工することにより、WC基超硬合金製ドリル基体(以下、単に「ドリル基体」という)1〜5を製造した。 (B) By grinding the WC-based cemented carbide sintered bodies 1 to 5 so that the outer diameter of the groove forming portion is 8 mm, a WC-based cemented carbide drill base (hereinafter simply referred to as “drill”). 1 to 5) (referred to as “substrate”) were produced.

(c)前記ドリル基体1〜5を、硫酸と過酸化水素と水を1:1:100(容積比)で混合したエッチング液に数秒浸漬して、ドリル基体1〜5の表面近傍のCoを数ミクロンの深さまでエッチングで除去する。 (C) The drill bases 1 to 5 are immersed for several seconds in an etching solution in which sulfuric acid, hydrogen peroxide, and water are mixed at 1: 1: 100 (volume ratio), so that Co near the surface of the drill bases 1 to 5 is removed. Etch away to a depth of a few microns.

(d)前記ドリル基体1〜5を、熱フィラメントCVD装置に装入し、ドリル基体をシャンク部で水冷治具により冷却支持し、フィラメントをドリルの外周部から5〜8mmの位置にセットする。フィラメントに電流を流して2200℃の温度とし、装置内に水素ガスとメタンガスをメタン高濃度工程の条件(メタン濃度が1.5〜2.5%)で導入する工程と、フィラメントの電流量を高めて、フィラメント温度を2300℃にするとともにメタン濃度を0.2〜0.8%のメタン低濃度工程、この2つの工程を10〜20分間隔で繰り返してドリル基体1〜5にダイヤモンド膜を成膜することにより、表2に示す本発明のダイヤモンド被覆ドリル(以下、単に、「本発明ドリル」という)1〜10を製造した。 (D) The drill bases 1 to 5 are inserted into a hot filament CVD apparatus, the drill base is cooled and supported by a water cooling jig at the shank, and the filament is set at a position of 5 to 8 mm from the outer periphery of the drill. A current is passed through the filament to a temperature of 2200 ° C., and hydrogen gas and methane gas are introduced into the apparatus under conditions of a high methane concentration process (methane concentration is 1.5 to 2.5%), and the amount of current in the filament is By increasing the filament temperature to 2300 ° C. and reducing the methane concentration to 0.2 to 0.8%, the methane concentration step is repeated at intervals of 10 to 20 minutes to form a diamond film on the drill bases 1 to 5. By forming a film, diamond-coated drills of the present invention (hereinafter simply referred to as “the present drill”) 1 to 10 shown in Table 2 were produced.

比較のため、本発明ドリル1〜10の前記製造工程における工程(a)〜(d)により、表2に示す比較例のダイヤモンド被覆WC基超硬合金製ドリル(以下、単に、「比較例ドリル」という)1〜10を製造した。
なお、比較例ドリル1〜10の製法においては、メタン濃度を低濃度とする工程を行わないことに加え、ドリル基体を冷却しない。そのため、ドリルとフィラメント間の距離は基体温度を適正に保つために、15〜20mmの範囲である点で本発明の製法とは異なっている。
For comparison, the diamond-coated WC-based cemented carbide drills of the comparative examples shown in Table 2 (hereinafter simply referred to as “comparative example drills”) according to the steps (a) to (d) in the manufacturing steps of the present invention drills 1 to 10. 1) to 10).
In addition, in the manufacturing method of the comparative example drills 1-10, in addition to not performing the process which makes a methane density | concentration low, a drill base | substrate is not cooled. Therefore, the distance between the drill and the filament is different from the manufacturing method of the present invention in that the distance between the drill and the filament is in the range of 15 to 20 mm in order to keep the substrate temperature properly.

ついで、前述のように製造した本発明ドリル1〜10および比較例ドリル1〜10について、ドリルの切れ刃部を切断して、軸方向にSEMで観察し、それぞれの部分の5点について膜厚を測定し、測定値を平均することによって、ダイヤモンド膜の平均膜厚を求めた。表2にその値を示す。さらに、ドリルの切れ刃部でTEM観察試料を膜の断面が観察できる形で作製し、膜の最表面近傍から2μmまでの部分での平均粒径を直線交差法によって算出し、表2にその値を示す。   Next, for the inventive drills 1 to 10 and comparative drills 1 to 10 manufactured as described above, the cutting edge of the drill was cut and observed in the axial direction with an SEM. Was measured, and the average value of the diamond film was obtained by averaging the measured values. Table 2 shows the values. Furthermore, a TEM observation sample was prepared in such a way that the cross section of the film could be observed with the cutting edge of the drill, and the average particle diameter in the part from the vicinity of the outermost surface of the film to 2 μm was calculated by the linear crossing method. Indicates the value.

また、本発明ドリル1〜10および比較例ドリル1〜10のチゼルエッジ部および外周刃部について、Arレーザーによるラマン分光測定を工具の表面側において3点行い、ダイヤモンド由来の1333cm−1±20cm−1のピーク強度の非ダイヤモンド成分由来の1560±30cm−1のピーク強度に対する比を3点の平均値としてそれぞれ求めた。表2にその値を示す。 Also, the chisel edge portion and the outer peripheral edge portion of the present invention drills 10 and Comparative Examples drill 10, a Raman spectroscopic measurement by Ar laser was performed three points on the surface side of the tool, from diamond 1333 cm -1 ± 20 cm -1 The ratio of the peak intensity to the peak intensity of 1560 ± 30 cm −1 derived from the non-diamond component was determined as an average value of three points. Table 2 shows the values.

つぎに、本発明ドリル1〜10および比較例ドリル1〜10を用いて、以下の条件で、CFRPとAl合金A7075の複合材(入口側がCFRP材:15mm、出口側がAl材:5mm)のドリル穴開け試験を行った。
切削速度: 110 m/min,
送り: 0.15 mm/rev,
穴深さ: 20 mm(貫通穴),
前記切削試験において、正常摩耗の場合は被削材の入口側もしくは出口側でのバリが0.5mmを超えた時点で使用寿命とし、それまでの穴あけ加工数を測定した。
また、チッピング、ドリル折損等が原因で使用寿命に至った場合には、それまでの穴あけ加工数を測定した。
表3にこれらの測定結果を示す。
Next, a drill of a composite material of CFRP and Al alloy A7075 (CFRP material: 15 mm on the inlet side: Al material: 5 mm on the outlet side) using the present invention drills 1 to 10 and comparative drills 1 to 10 under the following conditions: A drilling test was performed.
Cutting speed: 110 m / min,
Feed: 0.15 mm / rev,
Hole depth: 20 mm (through hole),
In the cutting test, in the case of normal wear, the service life was measured when the burr on the entrance side or the exit side of the work material exceeded 0.5 mm, and the number of drilling operations up to that point was measured.
In addition, when the service life was reached due to chipping, drill breakage, etc., the number of drilling operations so far was measured.
Table 3 shows these measurement results.

表2および表3の結果からも明らかなように、本発明ドリル1〜10は、外周刃部の結晶粒の平均粒径を0.2〜0.8μmに制御するとともに結晶性を高くしたことにより、膜の靭性が向上し、チッピングの発生を抑制できるので、長期の使用に亘って、すぐれた耐摩耗性を発揮することができる。
これに対して、比較例ドリル1〜10は、本発明ドリルに比して、穴あけ加工数が少ない(最大でも31個)ばかりか、溶着などが原因で切削の早期に切れ刃にチッピング等の異常損傷を発生し、工具寿命も非常に短いことが明らかである。
As is clear from the results of Tables 2 and 3, the drills 1 to 10 of the present invention controlled the average grain size of the crystal grains of the outer peripheral edge to 0.2 to 0.8 μm and increased the crystallinity. Thus, the toughness of the film is improved and the occurrence of chipping can be suppressed, so that excellent wear resistance can be exhibited over a long period of use.
On the other hand, the comparative example drills 1 to 10 have not only a small number of drilling processes (31 at the maximum) as compared with the drill of the present invention, but also chipping at the cutting edge early due to welding or the like. It is clear that abnormal damage occurs and the tool life is very short.

本発明のダイヤモンド被覆ドリルは、CFRPとAlの重ね合わせ穿孔などにおいて、耐チッピング性にすぐれるばかりか、長期の使用に亘ってすぐれた耐摩耗性を発揮することから、切削加工の省エネ化、低コスト化に十分満足に対応できるものである。   The diamond-coated drill of the present invention not only has excellent chipping resistance in CFRP and Al overlap drilling, etc., but also exhibits excellent wear resistance over a long period of use. It can cope with cost reduction sufficiently satisfactorily.

Claims (2)

炭化タングステンとコバルトを主成分とし、かつ、3〜15質量%のコバルトを含有する炭化タングステン基超硬合金からなるドリル基体に平均膜厚5〜30μmのダイヤモンド膜を被覆したダイヤモンド被覆超硬合金製ドリルにおいて、
ドリル先端の外周刃部分において膜平面方向の結晶の平均粒径が0.2〜0.8μmであり、ラマン分光測定によるダイヤモンド由来の1333±20cm−1のピーク強度の非ダイヤモンド成分由来の1560±30cm−1のピーク強度に対する比が6〜100であることを特徴とするダイヤモンド被覆超硬合金製ドリル。
Made of diamond-coated cemented carbide with a tungsten carbide-based cemented carbide containing tungsten carbide and cobalt as main components and a tungsten carbide-based cemented carbide containing 3 to 15% by mass of cobalt coated with a diamond film with an average film thickness of 5 to 30 μm In the drill,
The average grain size of the crystal in the film plane direction is 0.2 to 0.8 μm at the outer peripheral edge of the drill tip, and 1560 ± derived from a non-diamond component having a peak intensity of 1333 ± 20 cm −1 derived from diamond by Raman spectroscopy. A diamond-coated cemented carbide drill having a ratio of 6 to 100 with respect to a peak intensity of 30 cm −1 .
請求項1に記載のダイヤモンド被覆超硬合金製ドリルにおいて、
ドリル先端のチゼル部におけるラマン分光測定によるダイヤモンド由来の1333±20cm−1のピーク強度の非ダイヤモンド成分由来の1560±30cm−1のピーク強度に対する比が前記ドリル先端の外周刃部分における比の0.5〜0.9倍であることを特徴とするダイヤモンド被覆超硬合金製ドリル。
In the diamond-coated cemented carbide drill according to claim 1,
The ratio of the peak intensity of 1333 ± 20 cm −1 derived from diamond to the peak intensity of 1560 ± 30 cm −1 derived from non-diamond components by Raman spectroscopy measurement at the chisel portion of the drill tip is 0. A diamond-coated cemented carbide drill characterized by being 5-0.9 times.
JP2012229833A 2012-10-17 2012-10-17 Diamond-coated cemented carbide drill Expired - Fee Related JP6040698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229833A JP6040698B2 (en) 2012-10-17 2012-10-17 Diamond-coated cemented carbide drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229833A JP6040698B2 (en) 2012-10-17 2012-10-17 Diamond-coated cemented carbide drill

Publications (2)

Publication Number Publication Date
JP2014079853A true JP2014079853A (en) 2014-05-08
JP6040698B2 JP6040698B2 (en) 2016-12-07

Family

ID=50784539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229833A Expired - Fee Related JP6040698B2 (en) 2012-10-17 2012-10-17 Diamond-coated cemented carbide drill

Country Status (1)

Country Link
JP (1) JP6040698B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015046573A1 (en) * 2013-09-30 2017-03-09 京セラ株式会社 CUTTING TOOL AND PROCESS FOR PRODUCING CUT WORK
CN111521480A (en) * 2020-05-21 2020-08-11 胡惠娇 Rotary strength detection equipment for water drill bit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158106A (en) * 1997-08-19 1999-03-02 Osaka Diamond Ind Co Ltd Diamond-coated cutting tool and its manufacture
WO2005011902A1 (en) * 2003-07-31 2005-02-10 A.L.M.T.Corp. Diamond film coated tool and process for producing the same
JP2006138011A (en) * 2004-10-14 2006-06-01 Sumitomo Electric Ind Ltd Diamond film-coated member, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158106A (en) * 1997-08-19 1999-03-02 Osaka Diamond Ind Co Ltd Diamond-coated cutting tool and its manufacture
WO2005011902A1 (en) * 2003-07-31 2005-02-10 A.L.M.T.Corp. Diamond film coated tool and process for producing the same
JP2006138011A (en) * 2004-10-14 2006-06-01 Sumitomo Electric Ind Ltd Diamond film-coated member, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015046573A1 (en) * 2013-09-30 2017-03-09 京セラ株式会社 CUTTING TOOL AND PROCESS FOR PRODUCING CUT WORK
JP2018027616A (en) * 2013-09-30 2018-02-22 京セラ株式会社 Cutting tool and method for manufacturing cut product
CN111521480A (en) * 2020-05-21 2020-08-11 胡惠娇 Rotary strength detection equipment for water drill bit
CN111521480B (en) * 2020-05-21 2024-03-26 胡惠娇 Rotary strength detection equipment of water drill bit

Also Published As

Publication number Publication date
JP6040698B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JPWO2018174139A1 (en) Diamond coated cemented carbide cutting tool
JP5716861B1 (en) Diamond-coated cemented carbide cutting tool and method for manufacturing the same
JP2011104687A (en) Diamond coating tool having excellent peeling resistance and wear resistance
JP5488873B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP6489505B2 (en) Diamond coated cemented carbide cutting tool with improved cutting edge strength
JP5850396B2 (en) Diamond coated cemented carbide cutting tool with excellent toughness and wear resistance
JP6195068B2 (en) Diamond coated cemented carbide cutting tool with improved cutting edge strength
JP6040698B2 (en) Diamond-coated cemented carbide drill
JP5163879B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP6102613B2 (en) Diamond coated cemented carbide cutting tool with improved cutting edge strength
JP2014210314A (en) Diamond-coated cemented carbide cutting tool with improved cutting edge strength
JP2017064840A (en) Diamond-coated cutting tool made of cemented carbide
KR20180011148A (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP5838858B2 (en) Diamond coated cemented carbide drill with excellent wear resistance
JP5292900B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP6330999B2 (en) Diamond coated cemented carbide cutting tool
JP2006150572A (en) Boron doped diamond coating film, and diamond coated cutting tool
JP2011131347A (en) Diamond-coated cemented carbide cutting tool
JP7313604B2 (en) diamond coated cutting tools
EP4180155A1 (en) Diamond-coated tool
JP7216916B2 (en) Diamond-coated cemented carbide tools
JP2019089146A (en) Diamond-coated cutting tool
JP5246597B2 (en) Diamond coated tools
JP7216915B2 (en) Diamond-coated cemented carbide tools
JP2020049587A (en) Diamond-coated cemented carbide cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6040698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees