JP2020049408A - Water treatment device, and device of detecting degradation of ultraviolet lamp for water treatment device - Google Patents

Water treatment device, and device of detecting degradation of ultraviolet lamp for water treatment device Download PDF

Info

Publication number
JP2020049408A
JP2020049408A JP2018179612A JP2018179612A JP2020049408A JP 2020049408 A JP2020049408 A JP 2020049408A JP 2018179612 A JP2018179612 A JP 2018179612A JP 2018179612 A JP2018179612 A JP 2018179612A JP 2020049408 A JP2020049408 A JP 2020049408A
Authority
JP
Japan
Prior art keywords
ultraviolet
illuminance
water
water treatment
ultraviolet lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018179612A
Other languages
Japanese (ja)
Other versions
JP7188952B2 (en
Inventor
勝久 矢田
Katsuhisa Yada
勝久 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Valve Co Ltd
Original Assignee
Toyo Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Valve Co Ltd filed Critical Toyo Valve Co Ltd
Priority to JP2018179612A priority Critical patent/JP7188952B2/en
Publication of JP2020049408A publication Critical patent/JP2020049408A/en
Priority to JP2022192548A priority patent/JP7411770B2/en
Application granted granted Critical
Publication of JP7188952B2 publication Critical patent/JP7188952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

To provide a water treatment device capable of more efficiently treating water by virtue of its excellent disinfecting/cleaning function even when a plurality of water treatment devices are used in a longer channel for treating a large amount of water, by intensively monitoring a lighted state and an unlighted state of a plurality of ultraviolet lamps while minimizing adverse influence on its components caused by ultraviolet rays, and a device of detecting degradation of an ultraviolet lamp for use in a water treatment device.SOLUTION: The water treatment device comprising a reaction tank 2 incorporating an ultraviolet lamp 10 emitting ultraviolet rays to water to be treated, a photocatalyst 7 disposed in the reaction tank 2, an ozone supply section 4 that supplies the reaction tank 2 with ozone, an ultraviolet sensor 3 disposed outside the reaction tank 2 to measure the ultraviolet illuminance of the ultraviolet lamp 10 when water to be treated flows through the inside of the reaction tank 2, and a memory/control device 5 having a function of converting the ultraviolet illuminance measured by the ultraviolet sensor 3 to an ultraviolet illuminance of a specific wavelength, is characterized in that the memory/control device 5 has a function of detecting an unlighted state of the ultraviolet lamp or a degraded state of the ultraviolet lamp based on the ultraviolet illuminance of the specific wavelength.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、半導体製造工程や液晶製造工程などで用いられる純水や、或は農耕栽培用として使用される養液などの被処理水を再利用可能に処理する水処理装置と水処理装置用紫外線ランプの劣化検知装置に関する。   The present invention relates to a water treatment apparatus and a water treatment apparatus for treating water to be treated, such as pure water used in a semiconductor manufacturing process or a liquid crystal manufacturing process, or a nutrient solution used for agricultural cultivation in a reusable manner. The present invention relates to an apparatus for detecting deterioration of an ultraviolet lamp for an apparatus.

例えば、半導体素子や液晶ガラスの製造工程では、半導体ウエハ基板、液晶ガラス基板、ガラス基板などを洗浄するために大量の純水が使用され、一方、農業分野においては、養液栽培により農作物を育成する際に大量の養液が必要になる。これら大量の水の使用に関し、環境への負荷低減、水資源の有効活用などの観点から、使用後の純水や養液を回収して再利用することが望まれている。   For example, in the manufacturing process of semiconductor elements and liquid crystal glass, a large amount of pure water is used to wash semiconductor wafer substrates, liquid crystal glass substrates, glass substrates, and the like, while in the agricultural field, growing crops by hydroponic cultivation. Requires a large amount of nutrient solution. Regarding the use of such a large amount of water, it is desired to collect and reuse used pure water and nutrient solution from the viewpoints of reducing the burden on the environment and effectively utilizing water resources.

純水や養液などを再利用可能に処理する場合には、一般にこれら被処理水を循環させる流路の一部に水処理装置が設けられ、この水処理装置には被処理水を除菌浄化するための紫外線ランプ(紫外線光源)が配置されることが多い。紫外線ランプを用いて除菌浄化する際には、被処理水の除菌浄化に必要な紫外線照度を計測するため、紫外線計測用の紫外線センサが設けられている場合がある。   When treating pure water or nutrient solution in a reusable manner, a water treatment device is generally provided in a part of a flow path for circulating the water to be treated, and the water treatment device is used to disinfect the water to be treated. An ultraviolet lamp (ultraviolet light source) for purifying is often provided. When purifying bacteria using an ultraviolet lamp, an ultraviolet sensor for measuring ultraviolet rays may be provided in order to measure ultraviolet illuminance required for purifying bacteria to be treated.

例えば、特許文献1の紫外線照射装置では、被処理水が流れる反応槽に紫外線監視窓が設けられ、この紫外線監視窓に紫外線センサである紫外線モニタが設置される。そして、被処理水を透過した紫外線照度が紫外線モニタで計測され、この紫外線照度と照射部から照射される紫外線照度とにより被処理水に対する紫外線透過率が算出され、この紫外線透過率に基づいて照射部の劣化が検出されるようになっている。   For example, in the ultraviolet irradiation device of Patent Document 1, an ultraviolet monitoring window is provided in a reaction tank through which water to be treated flows, and an ultraviolet monitor serving as an ultraviolet sensor is installed in the ultraviolet monitoring window. Then, the UV illuminance transmitted through the water to be treated is measured by an ultraviolet monitor, and the UV transmittance to the water to be treated is calculated based on the UV illuminance and the UV illuminance radiated from the irradiation unit. The deterioration of the part is detected.

一方、特許文献2の紫外線水処理システムでは、紫外線水処理装置に紫外線測定用の紫外線照度計が設けられ、この照度計により照度が測定される。このシステムにおいて、測定された照度と予め設定された設定値とが比較され、その状態に応じて紫外線ランプの照度低下やランプ切れを予測するものとしている。   On the other hand, in the ultraviolet water treatment system of Patent Document 2, an ultraviolet illuminometer for measuring ultraviolet light is provided in the ultraviolet water treatment device, and the illuminance is measured by the illuminometer. In this system, the measured illuminance is compared with a preset set value, and a decrease in the illuminance of the ultraviolet lamp or a lamp burnout is predicted according to the state.

上記の紫外線ランプを利用した水処理装置に対して、さらに除菌浄化能力を高めるためにオゾン供給装置を加えたものが開示されている(例えば、特許文献3参照。)。この水処理装置では、紫外線照射装置の一次側にオゾン供給装置が配置され、オゾンが供給された被処理水が反応容器内の紫外線ランプを通過し、この紫外線ランプの紫外線により除菌浄化される。これに加えて、反応容器内には光触媒が設けられ、この光触媒によっても被処理水の殺菌及び有機物の分解処理がおこなわれる。   There is disclosed a water treatment apparatus using an ultraviolet lamp, in which an ozone supply device is added to further increase the sterilization and purification ability (for example, see Patent Document 3). In this water treatment device, an ozone supply device is disposed on the primary side of an ultraviolet irradiation device, and the water to be treated supplied with ozone passes through an ultraviolet lamp in a reaction vessel, and is sterilized and purified by the ultraviolet light of the ultraviolet lamp. . In addition, a photocatalyst is provided in the reaction vessel, and the photocatalyst also performs sterilization of water to be treated and decomposition of organic substances.

これらの水処理装置により被処理水を大量に除菌浄化して再利用可能にするためには多数の水処理装置が必要になり、それに伴って使用する紫外線ランプの数も増加することになる。この場合、紫外線による除菌浄化機能を一定に維持するためには、運転時の各紫外線ランプが確実に点灯状態にあり、紫外線照度が所定以上に達している必要がある。そのため、近年では、紫外線ランプの点灯/消灯状態や、紫外線照度の減少を集中して監視できる水処理装置が要望されている。   A large number of water treatment devices are required in order to disinfect and purify a large amount of water to be treated by these water treatment devices so that the water can be reused, and accordingly, the number of ultraviolet lamps used increases. . In this case, in order to maintain the sterilizing and purifying function by ultraviolet rays at a constant level, it is necessary that each of the ultraviolet lamps is reliably turned on during operation and the ultraviolet illuminance has reached a predetermined level or more. Therefore, in recent years, there has been a demand for a water treatment apparatus capable of centrally monitoring the on / off state of the ultraviolet lamp and the decrease in the ultraviolet illuminance.

特許第5649703号公報Japanese Patent No. 5649703 特開2009−82774号公報JP 2009-82774 A 特許第4229363号公報Japanese Patent No. 4229363

紫外線ランプの点灯/消灯状態を確認するためには、例えば、各紫外線ランプへのオンオフの制御信号を検知することが考えられるが、この場合、制御信号がオンの状態であるにもかかわらず、紫外線ランプの寿命などにより実際には消灯状態になって正確に検知できない場合がある。
一方、紫外線ランプの点灯/消灯状態を現場で視覚的に確認することも考えられるが、半導体製造設備や農業の現場では、水の流れる流路が数十メートルに達することもあるため、この流路に沿って多数設置された紫外線ランプのそれぞれの点灯状態を視認するには手間がかかる。
In order to confirm the on / off state of the ultraviolet lamp, for example, it is conceivable to detect an on / off control signal for each ultraviolet lamp. In this case, although the control signal is on, Depending on the life of the ultraviolet lamp or the like, the lamp may be actually turned off and cannot be detected accurately.
On the other hand, it is also conceivable to visually check the on / off state of the ultraviolet lamp on site. It takes time and effort to visually recognize the lighting state of each of the many ultraviolet lamps installed along the road.

これに対して、特許文献1や特許文献2では、紫外線ランプの状態を一括して集中的に監視しようとしているが、これらは紫外線ランプと紫外線センサとが近接しているために、紫外線ランプからの紫外線で紫外線センサを含む部品が劣化しやすくなる。そのため、紫外線センサの信号伝達用配線の被覆を厚くするなどの対策が必要になる。また、紫外線の減衰を防ぐためには、紫外線ランプと流路との間隔を狭くする必要が生じるが、これにより、紫外線センサを流路内に配置することが難しくなる。
これらのことから、この種の紫外線照射装置を多数使用して半導体製造分野や農業分野の長い水処理流路を構成しにくくなり、紫外線ランプの点灯/消灯状態や紫外線照度の状態を正確に計測することが困難になる。
In contrast, Patent Literature 1 and Patent Literature 2 attempt to collectively monitor the state of the ultraviolet lamps collectively. However, since these are located close to the ultraviolet lamp and the ultraviolet sensor, they are difficult to monitor. The components including the ultraviolet sensor are easily deteriorated by the ultraviolet rays. For this reason, it is necessary to take measures such as increasing the thickness of the signal transmission wiring of the ultraviolet sensor. Further, in order to prevent the attenuation of the ultraviolet rays, it is necessary to reduce the distance between the ultraviolet lamp and the flow path, but this makes it difficult to arrange the ultraviolet sensor in the flow path.
For these reasons, it is difficult to construct a long water treatment channel in the semiconductor manufacturing and agricultural fields by using a large number of this type of ultraviolet irradiation device, and to accurately measure the on / off state of the ultraviolet lamp and the state of ultraviolet illuminance. It becomes difficult to do.

さらに、特許文献3のように紫外線照射装置にオゾン供給装置を設ける場合、オゾンが供給された被処理水を紫外線ランプで効果的に除菌浄化するためには、特に、波長254nm付近の紫外線を照射してラジカル反応を発生させる必要がある。この場合、波長254nm付近の紫外線の照度は、紫外線ランプの光源からの離間距離につれて極端に減衰しやすい特性があるから、紫外線ランプと流路との間隔をさらに狭くしなければならず、流路内に紫外線センサを配置することが一層困難になる。   Further, in the case where an ozone supply device is provided in an ultraviolet irradiation device as in Patent Document 3, in order to effectively sterilize and purify ozone-supplied water to be treated with an ultraviolet lamp, in particular, ultraviolet light having a wavelength of about 254 nm is used. It is necessary to generate a radical reaction by irradiation. In this case, the illuminance of ultraviolet light having a wavelength of about 254 nm has a characteristic of being extremely attenuated as the distance from the light source of the ultraviolet lamp increases, so that the distance between the ultraviolet lamp and the flow path must be further reduced. It becomes more difficult to place an ultraviolet sensor inside.

上記の理由により、紫外線ランプの劣化等による紫外線照射量の低下を正確に計測できなくなることがあり、その結果、紫外線を被処理水に対して十分に照射することができなくなる可能性が生じる。
そのため、この紫外線照射装置を、例えば半導体製造工程で用いた場合には、紫外線量の不足によりオゾン供給装置、光触媒による複合的な除菌浄化が効果的になされず、特に高品質が要求される半導体製品に悪影響を及ぼすおそれがある。
一方、農耕栽培用として用いた場合には、養液中には不純物が含まれているため、この不純物の付着により紫外線が透過するガラスが汚れやすくなるという問題も有している。この場合、紫外線照射量の低下がより激しくなり、紫外線による除菌浄化作用が不十分になる。
For the above-described reasons, it may not be possible to accurately measure a decrease in the amount of ultraviolet irradiation due to deterioration of the ultraviolet lamp or the like. As a result, there is a possibility that the water to be treated cannot be sufficiently irradiated with the ultraviolet light.
For this reason, when this ultraviolet irradiation apparatus is used in, for example, a semiconductor manufacturing process, complex sterilization and purification using an ozone supply device and a photocatalyst cannot be effectively performed due to a shortage of ultraviolet light, and particularly high quality is required. There is a risk of adversely affecting semiconductor products.
On the other hand, when used for agricultural cultivation, since the nutrient solution contains impurities, there is also a problem that the glass that transmits ultraviolet light is easily stained due to the attachment of the impurities. In this case, the amount of irradiation of ultraviolet rays decreases more drastically, and the action of removing and purifying bacteria by ultraviolet rays becomes insufficient.

紫外線センサを反応槽の内部に設けた場合、故障時などにおいて紫外線センサの取出しが困難になり、特に、水処理装置を小型化した場合には一層着脱が難しくなってメンテナンスしにくくなるという問題も有している。   If an ultraviolet sensor is provided inside the reaction tank, it becomes difficult to take out the ultraviolet sensor in the event of a failure, and in particular, if the water treatment device is downsized, it becomes more difficult to attach and detach it, making maintenance more difficult. Have.

本発明は、上記の課題点を解決するために開発したものであり、その目的とするところは、大量の水処理により長い流路で多数使用する場合にも、紫外線ランプの点灯/消灯状態、及び劣化状態を集中的に監視し、紫外線による部品への悪影響を最小限に抑えつつ高い除菌浄化機能により効率的に水処理可能な水処理装置と水処理装置用紫外線ランプの劣化検知装置を提供することにある。   The present invention has been developed in order to solve the above-mentioned problems, and the object thereof is to turn on / off the ultraviolet lamp even when a large number of water treatments are used in a long flow path. And a water treatment device that can efficiently treat water with a high sterilization and purification function while minimizing adverse effects on parts due to ultraviolet rays and a deterioration detection device for ultraviolet lamps for water treatment devices. To provide.

上記目的を達成するため、請求項1に係る発明は、被処理水に紫外線を照射する紫外線ランプを内蔵した反応槽と、この反応槽内部に設けた光触媒と、反応槽にオゾンを供給するオゾン供給部とを有し、反応槽の外側に被処理水が反応槽内を通過するときの紫外線ランプの紫外線照度を計測する紫外線センサが配置され、この紫外線センサで計測された紫外線照度から特定の波長の紫外線照度に換算する機能を有する記憶・制御装置を備え、この記憶・制御装置が特定の波長の紫外線照度から紫外線ランプの消灯又は劣化状態を検知する機能を有する水処理装置である。   In order to achieve the above object, an invention according to claim 1 is a reaction tank having a built-in ultraviolet lamp for irradiating ultraviolet rays to water to be treated, a photocatalyst provided inside the reaction tank, and ozone for supplying ozone to the reaction tank. A supply unit, and an ultraviolet sensor that measures the ultraviolet illuminance of an ultraviolet lamp when the water to be treated passes through the reaction tank is disposed outside the reaction tank, and a specific ultraviolet light intensity is measured from the ultraviolet illuminance measured by the ultraviolet sensor. The water treatment device includes a storage / control device having a function of converting the wavelength into ultraviolet illuminance, and the storage / control device has a function of detecting whether the ultraviolet lamp is turned off or deteriorated based on the ultraviolet illuminance of a specific wavelength.

請求項2に係る発明は、特定の波長の紫外線照度は、被処理水をラジカル反応させる略254nm近傍の波長の紫外線照度であり、紫外線センサで計測される紫外線照度は、略254nm近傍よりも波長の長い紫外線照度である水処理装置である。   In the invention according to claim 2, the ultraviolet illuminance of a specific wavelength is an ultraviolet illuminance of a wavelength of about 254 nm which causes a radical reaction of the water to be treated, and the ultraviolet illuminance measured by the ultraviolet sensor is more than the wavelength of about 254 nm. Water treatment equipment with long UV illuminance.

請求項3に係る発明は、少なくとも略254nm近傍よりも波長の長い紫外線を透過させる特性を有する外ガラス管が設けられ、この外ガラス管の外側に紫外線センサが近接状態で配置された水処理装置である。   According to a third aspect of the present invention, there is provided a water treatment apparatus provided with an outer glass tube having a property of transmitting ultraviolet light having a wavelength longer than at least about 254 nm, and an ultraviolet sensor disposed close to the outer glass tube. It is.

請求項4に係る発明は、記憶・制御装置は、紫外線ランプの紫外線照度がゼロのときに消灯を検知し、又は紫外線照度が所定の値以下に低下したときに寿命時期を検知する機能を備えた水処理装置である。   According to a fourth aspect of the present invention, the storage / control device has a function of detecting turning off when the ultraviolet illuminance of the ultraviolet lamp is zero, or detecting a life time when the ultraviolet illuminance falls below a predetermined value. Water treatment equipment.

請求項5に係る発明は、記憶・制御装置内に、紫外線センサで計測される紫外線照度から特定の波長の紫外線照度への換算用の照度減衰特性データが被処理水の種類ごとに記憶されている水処理装置である。   The invention according to claim 5 is that, in the storage / control device, illuminance attenuation characteristic data for conversion from ultraviolet illuminance measured by an ultraviolet sensor to ultraviolet illuminance of a specific wavelength is stored for each type of the water to be treated. Water treatment equipment.

請求項6に係る発明は、照度減衰特性データは、半導体製造用途で使用される純水、農業用途で使用される養液の2つの被処理水に対応したデータである水処理装置。   7. The water treatment apparatus according to claim 6, wherein the illuminance attenuation characteristic data is data corresponding to two waters to be treated: pure water used for semiconductor manufacturing and nutrient solution used for agricultural use.

請求項7に係る発明は、記憶・制御装置は、記憶部と制御部とを有し、記憶部に照度減衰特性データが記憶され、制御部は、紫外線センサで計測された紫外線照度を照度減衰特性データを介して特定の波長の紫外線照度に換算し、この換算値から紫外線ランプの消灯又は劣化状態を検知する機能を有する水処理装置である。   According to a seventh aspect of the present invention, the storage / control device includes a storage unit and a control unit, wherein the storage unit stores the illuminance attenuation characteristic data, and the control unit reduces the illuminance of the ultraviolet light measured by the ultraviolet sensor. The water treatment apparatus has a function of converting into an ultraviolet illuminance of a specific wavelength through characteristic data, and detecting the turning off or deterioration state of the ultraviolet lamp from the converted value.

請求項8に係る発明は、記憶・制御装置は、特定の波長の紫外線照度に基づいて、紫外線ランプの要交換時期、反応槽の要掃除時期、紫外線ランプの消耗或は故障による消灯の各状態を知らせる所定の信号を発する機能を有する水処理装置である。   According to an eighth aspect of the present invention, the storage / control device is configured such that, based on the ultraviolet illuminance of the specific wavelength, each of the states of replacement of the ultraviolet lamp, cleaning of the reaction tank, turning off of the ultraviolet lamp due to exhaustion or failure of the ultraviolet lamp. This is a water treatment apparatus having a function of issuing a predetermined signal notifying the user.

請求項9に係る発明は、水処理装置に設けられ、紫外線センサと記憶・制御装置とを備えた水処理装置用紫外線ランプの劣化検知装置である。   The invention according to claim 9 is a deterioration detection device for an ultraviolet lamp for a water treatment device, which is provided in the water treatment device and includes an ultraviolet sensor and a storage / control device.

請求項1に係る発明によると、反応槽の外側に紫外線ランプの紫外線照度を計測する紫外線センサを配置し、この紫外線センサで計測した紫外線照度により記憶・制御装置で特定の波長の紫外線照度に換算し、この紫外線照度から紫外線ランプの消灯又は劣化状態を検知することにより、反応槽の内側に紫外線センサを設けることなく紫外線ランプの状態を確認できる。このため、部品に悪影響を与える波長の紫外線の外部への漏れを防ぐ構成にでき、悪影響の少ない波長の紫外線を反応槽の外部で計測することで紫外線センサなどの構成部品の故障などを防ぎつつ、除菌浄化に必要な紫外線照度を確保できる。大量の水処理が必要な半導体製造工程などの長い流路で多数使用する場合にも、それに伴って増加する紫外線ランプの点灯/消灯状態、及び劣化状態を集中的に監視できる。その結果、オゾナイザでオゾンを供給した被処理水に、紫外線処理及び光触媒を十分に作用させて三位一体による除菌浄化処理を施し、特に、オゾンを含有した被処理水への適正な紫外線の照射量を維持し、オゾンと紫外線との除菌浄化機能を相乗的に向上させた高い除菌浄化機能で効率的に水処理可能になる。仮に、紫外線センサに不具合が生じた場合には、反応槽外部の紫外線を取り外して容易にメンテナンスできる。   According to the invention according to claim 1, an ultraviolet sensor for measuring the ultraviolet illuminance of the ultraviolet lamp is arranged outside the reaction tank, and the ultraviolet illuminance measured by the ultraviolet sensor is converted into an ultraviolet illuminance of a specific wavelength by the storage / control device. Then, by detecting whether the ultraviolet lamp is turned off or deteriorated from the ultraviolet illuminance, the state of the ultraviolet lamp can be confirmed without providing an ultraviolet sensor inside the reaction tank. For this reason, it is possible to prevent ultraviolet rays having a wavelength that adversely affects the components from leaking to the outside, and it is possible to prevent ultraviolet rays sensors and other components from malfunctioning by measuring ultraviolet rays having a wavelength with little adverse effect outside the reaction tank. In addition, the ultraviolet illuminance required for sanitizing and purifying can be secured. Even when many lamps are used in a long flow path such as a semiconductor manufacturing process requiring a large amount of water treatment, it is possible to intensively monitor the on / off state and the deterioration state of the ultraviolet lamp, which increase with the use. As a result, the water to be treated supplied with ozone by the ozonizer is subjected to an ultraviolet treatment and a sanitizing and purifying treatment by activating the photocatalyst sufficiently, and in particular, the irradiation of the treated water containing ozone with an appropriate amount of ultraviolet rays. , And the water treatment can be efficiently performed with a high sterilization and purification function that synergistically improves the sterilization and purification function of ozone and ultraviolet rays. If a failure occurs in the ultraviolet sensor, maintenance can be easily performed by removing ultraviolet rays outside the reaction tank.

請求項2に係る発明によると、紫外線センサで部品に対する悪影響の少ない略254nmよりも波長の長い紫外線照度を計測し、この計測結果から内部流路を流れる被処理水への略254nmの波長の紫外線照度を検知できる。これにより、略254nmの波長の被処理水に対する紫外線照度を維持し、オゾンを含有させた被処理水のラジカル反応を促進して効果的にヒドロキシラジカルを生成して除菌浄化効果を高めることができる。   According to the second aspect of the present invention, the ultraviolet sensor measures ultraviolet illuminance having a wavelength longer than approximately 254 nm, which has less adverse effect on components, and from the measurement result, the ultraviolet light having a wavelength of approximately 254 nm is applied to the water to be treated flowing through the internal flow path. Illuminance can be detected. Thereby, it is possible to maintain the ultraviolet illuminance on the water to be treated having a wavelength of about 254 nm, promote the radical reaction of the water to be treated containing ozone, effectively generate hydroxy radicals, and enhance the sterilization and purification effect. it can.

請求項3に係る発明によると、略254nmの波長の紫外線を遮断して外部への漏れを防ぐ。これにより、内部流路を流れる被処理水への優れた除菌浄化効果を確保しつつ、外部の部品への紫外線による悪影響を回避して劣化を阻止できる。この場合、254nmよりも波長の長い紫外線が外ガラス管を透過し、この紫外線の照度を紫外線センサにより正確に計測可能となる。   According to the third aspect of the invention, ultraviolet rays having a wavelength of about 254 nm are blocked to prevent leakage to the outside. As a result, it is possible to prevent the deterioration of the external components by avoiding the adverse effects of ultraviolet rays, while ensuring an excellent sterilizing and purifying effect on the water to be treated flowing through the internal flow passage. In this case, ultraviolet rays having a wavelength longer than 254 nm pass through the outer glass tube, and the illuminance of the ultraviolet rays can be accurately measured by an ultraviolet sensor.

請求項4に係る発明によると、記憶・制御装置を介して紫外線ランプの消灯状態、又は紫外線照度が不足した寿命時期を区別して正確に検知できるため、これらの各検知結果により本体内部を清掃したり或は紫外線ランプを交換でき、紫外線ランプの故障や照度不足などの状態に応じて適切なメンテナンス作業を実施できる。   According to the fourth aspect of the present invention, since the ultraviolet lamp is turned off or the lifetime when the ultraviolet illuminance is insufficient can be distinguished and accurately detected through the storage / control device, the inside of the main body is cleaned based on each detection result. Or, the ultraviolet lamp can be replaced, and an appropriate maintenance operation can be performed according to a condition such as failure of the ultraviolet lamp or insufficient illuminance.

請求項5に係る発明によると、記憶・制御装置内に照度減衰特性データが被処理水の種類ごとに記憶されているため、被処理水に応じて紫外線ランプの消灯又は劣化状態を正確に検知できる。   According to the invention of claim 5, since the illuminance attenuation characteristic data is stored in the storage / control device for each type of the water to be treated, it is possible to accurately detect whether the ultraviolet lamp is turned off or deteriorated according to the water to be treated. it can.

請求項6に係る発明によると、記憶部に半導体製造用途で使用される純水、農業用途で使用される養液の2つの被処理水に対する照度減衰特性がそれぞれ記憶されていることで、これら被処理水の種類に応じて紫外線ランプの劣化の状態を正確に検知し、それぞれの水処理能力を維持できる。   According to the invention according to claim 6, the storage unit stores the illuminance attenuation characteristics for the two treatment waters of pure water used for semiconductor manufacturing and nutrient solution used for agricultural use, respectively. The state of deterioration of the ultraviolet lamp can be accurately detected in accordance with the type of water to be treated, and the respective water treatment capacities can be maintained.

請求項7に係る発明によると、記憶部に記憶された照度減衰データと制御部で換算した特定の波長の紫外線データとを比較することで、紫外線ランプの消灯状態や劣化状態を即時に検知することができる。このため、紫外線ランプの異常に迅速に対応して一定の除菌浄化機能を発揮できる。このため、清浄な純水が要求される半導体製造工程においては、消灯状態の回避や寿命の予測により安定した高品質の浄水で半導体製品を処理できる。一方、農耕栽培用の養液の場合、養液に含まれる不純物によるガラスの汚れを迅速に確認してメンテナンスや清掃を実施できることで、良質の養液を循環させることが可能になる。   According to the invention according to claim 7, by comparing the illuminance attenuation data stored in the storage unit with the ultraviolet data of the specific wavelength converted by the control unit, the extinguished state or the deteriorated state of the ultraviolet lamp is immediately detected. be able to. For this reason, a certain disinfection purification function can be exhibited in response to the abnormality of the ultraviolet lamp quickly. For this reason, in a semiconductor manufacturing process requiring clean pure water, it is possible to process a semiconductor product with stable, high-quality water by avoiding a light-off state and estimating a lifetime. On the other hand, in the case of a nutrient solution for agricultural cultivation, it is possible to circulate high-quality nutrient solution because maintenance and cleaning can be performed by quickly confirming contamination of the glass due to impurities contained in the nutrient solution.

請求項8に係る発明によると、紫外線ランプの要交換時期、反応槽の要掃除時期、紫外線ランプの消耗或は故障による消灯時に応じて信号を発するため、それぞれの状況に応じて適切な対応を迅速に施すことが可能になる。   According to the invention according to claim 8, since a signal is issued according to the time when the ultraviolet lamp needs to be replaced, the time when the reaction tank needs to be cleaned, or when the ultraviolet lamp is exhausted or turned off due to a failure, appropriate measures are taken according to each situation. It can be applied quickly.

請求項9に係る発明によると、紫外線センサとユニット化した記憶・制御装置とにより構成でき、新規に設ける水処理装置本体や既設の水処理装置本体に対しても、構造を複雑化することなく容易に取付けでき、使用に際しては、紫外線センサにより反応槽からの紫外線の照度を計測し、この計測値をもとに記憶・制御装置を介して紫外線ランプの劣化を正確に検知可能となる。   According to the ninth aspect of the present invention, it can be configured by an ultraviolet sensor and a unitized storage and control device, and the structure of the newly provided water treatment device main body or the existing water treatment device main body is not complicated. It can be easily mounted, and when used, the illuminance of ultraviolet rays from the reaction tank is measured by an ultraviolet sensor, and based on the measured value, deterioration of the ultraviolet lamp can be accurately detected via a storage / control device.

本発明の水処理装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the water treatment apparatus of this invention. 図1の水処理装置のブロック図である。It is a block diagram of the water treatment apparatus of FIG. 図1における反応槽を示す概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view showing a reaction tank in FIG. 1. (a)は反応槽の一部拡大概略断面図である。(b)は紫外線の距離と照度との関係を示すグラフである。(A) is a partial enlarged schematic sectional view of a reaction tank. (B) is a graph showing the relationship between the ultraviolet ray distance and the illuminance. 被処理水に応じた紫外線ランプの寿命曲線をあらわすグラフである。It is a graph showing the life curve of the ultraviolet lamp according to the water to be treated. 純水の照度減衰特性をあらわすグラフである。It is a graph showing the illuminance attenuation characteristic of pure water. 養液の照度減衰特性をあらわすグラフである。It is a graph showing the illuminance attenuation characteristic of a nutrient solution.

以下に、本発明における水処理装置と水処理装置用紫外線ランプの劣化検知装置を図面に基づいて詳細に説明する。図1は、水処理装置の一実施形態の模式図を示し、図2は水処理装置のブロック図を示している。   Hereinafter, a water treatment apparatus and a deterioration detecting device for an ultraviolet lamp for the water treatment apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of an embodiment of the water treatment device, and FIG. 2 is a block diagram of the water treatment device.

図において、水処理装置(以下、装置本体1という)は、例えば半導体製造設備や農耕設備に純水や養液を供給する循環流路の一部として組み込まれ、図示しないポンプで循環させた純水や養液を被処理水として除菌浄化し、流路に還元するように設けられる。   In the figure, a water treatment apparatus (hereinafter referred to as apparatus main body 1) is incorporated as a part of a circulation flow path for supplying pure water or nutrient solution to semiconductor manufacturing equipment or agricultural equipment, for example, and is circulated by a pump (not shown). It is provided so that water or nutrient solution is sterilized and purified as water to be treated, and is returned to the flow path.

装置本体1は、反応槽2、紫外線センサ3、オゾンを供給するオゾン供給部4、記憶・制御装置5、光触媒7を有し、このうち、紫外線センサ3と記憶・制御装置5とにより水処理装置用紫外線ランプの劣化検知装置(以下、検知装置本体6という)が構成される。   The apparatus main body 1 includes a reaction tank 2, an ultraviolet sensor 3, an ozone supply unit 4 for supplying ozone, a storage / control device 5, and a photocatalyst 7, among which water treatment is performed by the ultraviolet sensor 3 and the storage / control device 5. An apparatus for detecting deterioration of an ultraviolet lamp for an apparatus (hereinafter, referred to as a detection apparatus main body 6) is configured.

この装置本体1において、反応槽2には、被処理水に紫外線を照射する紫外線照射部となる紫外線ランプ10が内蔵され、反応槽2内部には光触媒7が設けられる。反応槽2の一次側には入口側接続口11、二次側には出口側接続口12がそれぞれ設けられ、入口側接続口11にオゾン供給部4が接続され、このオゾン供給部4の一次側に流入流路15、反応槽2の出口側接続口12に流出流路16がそれぞれ接続されることで循環流路の一部に配置される。この構成により、装置本体1は、オゾン供給部4によるオゾン供給機能と、紫外線ランプ10による紫外線照射機能と、光触媒7による光触媒作用機能とを有し、これらを有機的に結合した三位一体の機能により被処理水を効果的に除菌浄化処理するようになっている。   In the apparatus main body 1, an ultraviolet lamp 10 serving as an ultraviolet irradiation unit that irradiates ultraviolet rays to the water to be treated is built in the reaction tank 2, and a photocatalyst 7 is provided inside the reaction tank 2. An inlet-side connection port 11 is provided on the primary side of the reaction tank 2, and an outlet-side connection port 12 is provided on the secondary side. The ozone supply section 4 is connected to the inlet-side connection port 11. The inflow channel 15 is connected to the side, and the outflow channel 16 is connected to the outlet connection port 12 of the reaction tank 2, so that they are arranged in a part of the circulation channel. With this configuration, the apparatus main body 1 has an ozone supply function by the ozone supply unit 4, an ultraviolet irradiation function by the ultraviolet lamp 10, and a photocatalytic function by the photocatalyst 7, and has a three-in-one function by organically connecting these. The to-be-processed water is effectively sterilized and purified.

図3において、紫外線ランプ10は反応槽2の中央部に配置され、この紫外線ランプ10の外周側に保護用の内ガラス管20が設けられ、この内ガラス管20の外周側に外ガラス管21が配置される。内ガラス管20と外ガラス管21との間には被処理水の略円筒形状の流路22が形成され、この流路22内の内周側、外周側に沿うようして長さ方向に光触媒7が配置される。このように、紫外線ランプ10が反応槽2の中央部に配置されていることで、反応槽2全体がコンパクト化され、かつ紫外線ランプ10から被処理水に向けて放射状に紫外線が照射されることで、被処理水を効率的に除菌浄化する。   In FIG. 3, the ultraviolet lamp 10 is disposed at the center of the reaction tank 2, and an inner glass tube 20 for protection is provided on the outer peripheral side of the ultraviolet lamp 10, and an outer glass tube 21 is provided on the outer peripheral side of the inner glass tube 20. Is arranged. A substantially cylindrical flow path 22 of the water to be treated is formed between the inner glass tube 20 and the outer glass tube 21, and the flow path 22 extends in the length direction along the inner circumference and the outer circumference in the flow path 22. Photocatalyst 7 is arranged. By arranging the ultraviolet lamp 10 in the center of the reaction tank 2 as described above, the entire reaction tank 2 is made compact, and ultraviolet rays are radiated from the ultraviolet lamp 10 radially toward the water to be treated. Thus, the water to be treated is efficiently sterilized and purified.

ここで、紫外線とは、可視光線の波長よりも短くX線の波長よりも長い不可視光線の電磁波であり、一般的にはおよそ100〜400nmの波長の光を表している。このうち、特に250〜270nmの波長の紫外線の殺菌性が強いといわれており、さらには波長254nm近傍の紫外線は殺菌性がより高く、殺菌線(殺菌放射)と呼ばれている。   Here, the ultraviolet rays are invisible electromagnetic waves shorter than the wavelength of visible light and longer than the wavelength of X-rays, and generally represent light having a wavelength of about 100 to 400 nm. Among them, it is said that ultraviolet rays having a wavelength of 250 to 270 nm have a particularly high bactericidal property, and ultraviolet rays having a wavelength near 254 nm have a higher bactericidal property and are called germicidal rays (germicidal radiation).

本実施形態における紫外線ランプ10は、略254nm近傍の波長の紫外線を中心に発光するものが用いられる。これにより、後述のオゾン供給部4によりオゾンが含有された被処理水に略254nmの波長の紫外線が照射されたときに、促進酸化作用によりオゾンが活性酸素と酸素とに分解され、活性酸素により様々な活性酸素種がつくられる。このとき生成されるヒドロキシラジカルは、オゾンよりも酸化力が強く、オゾンに抵抗性のある微生物もより効果的に殺菌可能になる。   As the ultraviolet lamp 10 in the present embodiment, a lamp that emits mainly ultraviolet light having a wavelength of about 254 nm is used. Thus, when the water to be treated containing ozone is irradiated with ultraviolet rays having a wavelength of about 254 nm by the ozone supply unit 4 described later, the ozone is decomposed into active oxygen and oxygen by the accelerated oxidation action, and Various reactive oxygen species are produced. The hydroxy radicals generated at this time have a stronger oxidizing power than ozone, and microorganisms resistant to ozone can be more effectively sterilized.

さらに、紫外線ランプ10は、略254nm近傍の波長の紫外線以外の光、具体的には波長略400nm近傍やそれ以上の波長の紫外線も含んでいる。このうち略254nm近傍の波長の紫外線は、紫外線センサ3で検知することが難しいが、略400nm近傍の波長及びそれ以上の波長の光は、紫外線センサ3で検知可能になっている。
ここでいう略400nm近傍とは、350nm±50nmを意味する。ただし、この値は紫外線ランプ10が有する分光分布により異なるが、少なくとも254nmよりも長い波長の紫外線が好ましい。
Further, the ultraviolet lamp 10 also contains light other than ultraviolet light having a wavelength of about 254 nm, specifically, ultraviolet light having a wavelength of about 400 nm or more. Of these, it is difficult to detect ultraviolet light having a wavelength of approximately 254 nm or so with the ultraviolet sensor 3, but light having a wavelength of approximately 400 nm or more can be detected by the ultraviolet sensor 3.
Here, the vicinity of about 400 nm means 350 nm ± 50 nm. However, this value varies depending on the spectral distribution of the ultraviolet lamp 10, but ultraviolet light having a wavelength longer than at least 254 nm is preferable.

紫外線ランプ10は、略400nmの波長の光を有する蛍光ランプや、LEDを複数個並べたランプであってもよい。さらに、紫外線ランプ10は、反応槽2の形状や内部構造に応じて直線形、円筒形、螺旋形、波形などの各種形状のものを用いることもできる。   The ultraviolet lamp 10 may be a fluorescent lamp having light having a wavelength of approximately 400 nm or a lamp in which a plurality of LEDs are arranged. Further, the ultraviolet lamp 10 may have various shapes such as a linear shape, a cylindrical shape, a spiral shape, and a waveform depending on the shape and the internal structure of the reaction tank 2.

図4(a)、図4(b)において、内ガラス管20は、紫外線透過率、耐熱性、強度等の理由から、例えば石英ガラスにより設けられ、紫外線ランプ10から少なくとも距離Lが4〜5mm程度離れるような内径に形成される。内ガラス管20を石英ガラスで形成した場合、紫外線のうちの略254nm近傍から略400nm程度の波長の光を透過可能になる。内ガラス管20を前記の寸法で形成する理由としては、紫外線ランプ10からの距離が4mmよりも小さいと加工精度等によって上端側と下端側とで歪みが生じたときに長尺状の端部同士の歪みが増大し、紫外線ランプ10に接触して適切に組付けできない可能性があるためである。一方、距離が5mmよりも大きいと、距離が増すにつれて減衰率が激しくなる略254nmの波長の紫外線を、被処理水に十分に照射できなくなる。   4A and 4B, the inner glass tube 20 is provided by, for example, quartz glass for reasons of ultraviolet transmittance, heat resistance, strength, and the like, and at least the distance L from the ultraviolet lamp 10 is 4 to 5 mm. The inner diameter is formed so as to be slightly apart. When the inner glass tube 20 is formed of quartz glass, light having a wavelength of about 400 nm from about 254 nm of ultraviolet light can be transmitted. The reason why the inner glass tube 20 is formed with the above-mentioned dimensions is that if the distance from the ultraviolet lamp 10 is smaller than 4 mm, distortion occurs between the upper end and the lower end due to processing accuracy and the like. This is because there is a possibility that the distortion between them increases, and the UV lamp 10 cannot be properly assembled in contact with the UV lamp 10. On the other hand, if the distance is greater than 5 mm, the water to be treated cannot be sufficiently irradiated with ultraviolet light having a wavelength of about 254 nm, the attenuation rate of which increases as the distance increases.

反応槽2の外表面側の外ガラス管21は、略254nmよりも波長の長い紫外線を透過可能な特性を有するガラスにより設けられる。このため、外ガラス管21は、例えばホウケイ酸ガラスにより設けられ、このホウケイ酸ガラスは、紫外線のうち略400nm近傍の波長の光のみを透過し、略254nm近傍の波長の殺菌線を透過することはできない。   The outer glass tube 21 on the outer surface side of the reaction tank 2 is made of glass having a property of transmitting ultraviolet light having a wavelength longer than approximately 254 nm. For this reason, the outer glass tube 21 is provided by, for example, borosilicate glass, and this borosilicate glass transmits only light having a wavelength of about 400 nm of ultraviolet light and transmits germicidal rays of a wavelength of about 254 nm. Can not.

上記の材料で内ガラス管20、外ガラス管21をそれぞれ形成しているため、紫外線ランプ10から紫外線が照射されたときには、図4(b)に示すように、波長略254nm近傍の光が内ガラス管20を透過し、この光が被処理水に達すると大きく照度が減少し、内ガラス管20の外周面から長さXが数mm程度の位置で照度がゼロになる。この場合、この長さX内に内周側の光触媒7が入っているため、略254nmの波長の紫外線が光触媒に作用するようになっている。一方、紫外線帯域の中で長波長成分である波長370〜400nm近傍の光は、徐々に照度が低下しつつ内ガラス管20、流路22、外ガラス管21を透過する。   Since the inner glass tube 20 and the outer glass tube 21 are formed of the above-described materials, when the ultraviolet lamp 10 irradiates ultraviolet light, light having a wavelength of about 254 nm is emitted as shown in FIG. When the light passes through the glass tube 20 and reaches the water to be treated, the illuminance decreases greatly, and the illuminance becomes zero at a position where the length X is about several mm from the outer peripheral surface of the inner glass tube 20. In this case, since the inner side photocatalyst 7 is contained in the length X, ultraviolet rays having a wavelength of approximately 254 nm act on the photocatalyst. On the other hand, light having a wavelength of about 370 to 400 nm, which is a long-wavelength component, in the ultraviolet band passes through the inner glass tube 20, the flow path 22, and the outer glass tube 21 while the illuminance gradually decreases.

図4(a)に示すように、紫外線センサ3は、外ガラス管21の外側に近接状態で配置され、この紫外線センサ3により、被処理水が反応槽2内を通過するときの内ガラス管20、流路22、外ガラス管21を透過する紫外線ランプ10の紫外線の照度を計測可能になっている。紫外線センサ3は、略254nmよりも波長の長い紫外線照度を検知することが可能なセンサであり、図4(b)において、外ガラス管21の外側に透過した略400nm近傍の波長の紫外線の照度を計測し、その照度の大きさにより後述の記憶・制御装置5を介して紫外線ランプ10の劣化診断を可能としている。   As shown in FIG. 4A, the ultraviolet sensor 3 is disposed outside the outer glass tube 21 in a close state, and the inner glass tube when the water to be treated passes through the inside of the reaction tank 2 is provided by the ultraviolet sensor 3. The illuminance of ultraviolet light of the ultraviolet lamp 10 passing through the passage 20, the flow path 22, and the outer glass tube 21 can be measured. The ultraviolet sensor 3 is a sensor capable of detecting ultraviolet illuminance having a wavelength longer than approximately 254 nm. In FIG. 4B, the illuminance of ultraviolet light having a wavelength of approximately 400 nm transmitted to the outside of the outer glass tube 21 is shown. Is measured, and the magnitude of the illuminance enables the deterioration diagnosis of the ultraviolet lamp 10 via the storage / control device 5 described later.

紫外線センサ3の受光側には、略400nmよりも長い波長の可視光をカットするフィルタ25が設けられる。このフィルタ25により可視光をカットして紫外線センサ3への悪影響を抑え、紫外線センサ3で略400nm近傍の波長のみの照度を計測可能に設けている。フィルタ25は、略400nm近傍未満の紫外線をカットする性質を有している必要はない。これは前述したように、略400nm未満の紫外線は、紫外線センサ3に到達するまでに照度0%に減衰するためである。   On the light receiving side of the ultraviolet sensor 3, a filter 25 for cutting visible light having a wavelength longer than approximately 400 nm is provided. The filter 25 cuts visible light to suppress the adverse effect on the ultraviolet sensor 3, and the ultraviolet sensor 3 can measure the illuminance only at a wavelength of about 400 nm. The filter 25 does not need to have a property of cutting ultraviolet rays having a wavelength of less than about 400 nm. This is because, as described above, the ultraviolet light having a wavelength of less than approximately 400 nm is attenuated to 0% before reaching the ultraviolet sensor 3.

光触媒7は、金属チタン基材の表面を酸化させて酸化チタンを生成することで剥離しにくい構成に設けられ、例えば、網やチタン線、繊維状チタン材料の集合体、或は多孔性チタン材料等からなるチタン又はチタン合金などの材料の表面側に二酸化チタンを被覆して設けられる。金属チタン基材を細状に形成した場合には反応面積が大きくなり、オゾンとの反応性が良くなる。金属チタン基材は、チタンやチタン合金以外の材料であってもよく、例えばガラスやシリカゲル等を材料としてこの材料の表面に酸化チタンを形成するようにしてもよいが、耐久性を考えた場合、チタン基材に生成したものが望ましい。光触媒7は、略250〜350nmの波長の紫外線光線で活性化しやすくなっている。   The photocatalyst 7 is provided in a configuration in which the surface of the metal titanium base material is oxidized to form titanium oxide and thus hardly peels off. For example, a mesh, a titanium wire, an aggregate of a fibrous titanium material, or a porous titanium material It is provided by coating titanium dioxide on the surface side of a material such as titanium or titanium alloy. When the metal titanium base material is formed in a thin shape, the reaction area becomes large, and the reactivity with ozone is improved. The metal titanium base material may be a material other than titanium or a titanium alloy, for example, a material such as glass or silica gel may be used to form titanium oxide on the surface of this material. And those formed on a titanium substrate. The photocatalyst 7 is easily activated by an ultraviolet ray having a wavelength of about 250 to 350 nm.

図1の装置本体において、オゾン供給部4は、前述のように反応槽2の一次側に接続され、反応槽2側に流れる被処理水にオゾンを供給可能に設けられる。オゾン供給部4は、オゾナイザ30、エジェクタ31、オゾン供給管32、逆止弁33を備えている。   1, the ozone supply unit 4 is connected to the primary side of the reaction tank 2 as described above, and is provided so as to supply ozone to the water to be treated flowing to the reaction tank 2 side. The ozone supply unit 4 includes an ozonizer 30, an ejector 31, an ozone supply pipe 32, and a check valve 33.

オゾナイザ30は、アース電極41と高圧電極を貼りつけた誘電体42との間に放電空隙を有する構造を成し、アース電極41と誘電体42との間に高電圧を印加して放電させ、放電空隙を流れる空気を原料としてオゾンを生成するものである。空気は、図示しないポンプによりオゾナイザ30の放電空隙に連続的に供給され、生成されたオゾン(及び溶存酸素)は、オゾナイザ30に接続されたオゾン供給管32を介してエジェクタ31に供給可能に設けられる。   The ozonizer 30 has a structure having a discharge gap between the ground electrode 41 and the dielectric 42 to which the high-voltage electrode is attached, and applies a high voltage between the ground electrode 41 and the dielectric 42 to cause discharge. The ozone is generated using air flowing through the discharge gap as a raw material. The air is continuously supplied to a discharge gap of the ozonizer 30 by a pump (not shown), and the generated ozone (and dissolved oxygen) is provided so as to be supplied to the ejector 31 via an ozone supply pipe 32 connected to the ozonizer 30. Can be

エジェクタ31は、例えば、フッ素樹脂等の樹脂、或はセラミックや金属を材料として形成され、流入流路15に設けられることによりこの流入流路15を流れる被処理水にオゾナイザ30により生成されたオゾンを混合可能になっている。エジェクタ31とオゾナイザ30との間には、逆流防止用の逆止弁33が設けられ、この逆止弁33を通過したオゾンと溶存酸素は、エジェクタ31内部の図示しない狭い通路を通過することで流速が速められながら気泡状態で被処理水に溶け込み、微細気泡状の混合液(オゾン水)を生成して反応槽2側に供給可能になっている。   The ejector 31 is formed of, for example, a resin such as a fluororesin, or a material such as ceramic or metal, and is provided in the inflow passage 15 so that ozone generated by the ozonizer 30 is applied to the water to be treated flowing through the inflow passage 15. Can be mixed. A check valve 33 for preventing backflow is provided between the ejector 31 and the ozonizer 30, and the ozone and dissolved oxygen passing through the check valve 33 pass through a narrow passage (not shown) inside the ejector 31. It is dissolved in the water to be treated in a bubble state while the flow rate is increased, and a mixed liquid (ozone water) in the form of fine bubbles is generated and supplied to the reaction tank 2 side.

図2において、記憶・制御装置5は、反応槽2、紫外線センサ3、オゾン供給部4に電気的に接続され、紫外線センサ3で計測された略400nm近傍の波長の紫外線照度から、特定の波長の紫外線照度に換算する機能を有している。装置本体1は、この特定の波長の紫外線照度から、紫外線ランプ10の消灯又は劣化状態を検知する機能を有する。   In FIG. 2, the storage / control device 5 is electrically connected to the reaction tank 2, the ultraviolet sensor 3, and the ozone supply unit 4, and determines a specific wavelength based on the ultraviolet illuminance of the wavelength around 400 nm measured by the ultraviolet sensor 3. It has a function of converting to ultraviolet illuminance. The apparatus main body 1 has a function of detecting whether the ultraviolet lamp 10 is turned off or deteriorated from the ultraviolet illuminance of the specific wavelength.

この場合、図5の時間経過に対する紫外線ランプ10の略400nm近傍の波長の照度変化を示すグラフにおいて、記憶・制御装置5は、紫外線照度がゼロのときに紫外線ランプ10が消灯状態にあることを検知し、又は、紫外線照度が予め設定した処理の値以下に低下したときに、寿命時期であることを検知する機能を備えている。   In this case, in the graph of FIG. 5 showing the change in the illuminance of the ultraviolet lamp 10 at a wavelength near 400 nm with respect to the elapse of time, the storage / control device 5 indicates that the ultraviolet lamp 10 is in the off state when the ultraviolet illuminance is zero. It has a function of detecting, or detecting that it is the end of life when the ultraviolet illuminance falls below the value of a preset process.

本実施形態において、特定の波長の紫外線照度とは、被処理水をラジカル反応させる前述した略254nmの波長の紫外線照度であり、被処理水への除菌浄化性の低い前述の略400nmの波長の紫外線照度を計測することで、最も除菌浄化性に優れた略254nmの波長の紫外線照度を認識可能になっている。   In the present embodiment, the UV illuminance of a specific wavelength is the UV illuminance of the above-described wavelength of about 254 nm that causes a radical reaction of the water to be treated, and the wavelength of about 400 nm of the above-described low disinfecting and purifying property to the water to be treated. By measuring the UV illuminance, it is possible to recognize the UV illuminance having a wavelength of approximately 254 nm, which is the most excellent in removing bacteria.

記憶・制御装置5は、各種データを記憶するための記憶部50と、装置本体1の動作状態を検知可能な制御部51とを有している。
記憶部50には、照度減衰特性データ55や、紫外線センサ3による紫外線照度の計測結果などが記憶される。照度減衰特性データ55は、紫外線センサ3で計測される紫外線ランプ10の紫外線照度から特定の波長の紫外線照度への換算用として、被処理水の種類ごとに記憶部50に記憶される。
The storage / control device 5 includes a storage unit 50 for storing various data, and a control unit 51 capable of detecting an operation state of the device main body 1.
The storage unit 50 stores the illuminance attenuation characteristic data 55, the measurement result of the ultraviolet illuminance by the ultraviolet sensor 3, and the like. The illuminance attenuation characteristic data 55 is stored in the storage unit 50 for each type of water to be treated, for conversion from the ultraviolet illuminance of the ultraviolet lamp 10 measured by the ultraviolet sensor 3 to the ultraviolet illuminance of a specific wavelength.

本例における照度減衰特性データ55は、図6に示す半導体製造用途で使用される純水、及び図7に示す農業用途で使用される(培)養液の2つの被処理水に対応したグラフを備える。各グラフにおいて、実線の曲線は、紫外線ランプ10照射時に発光する紫外線(100〜400nmの波長の光)の特性を示し、グラフ中の2つの縦軸にその単位を示している。破線の曲線は、紫外線の特性と比較するために、紫外線ランプ10照射時に発光する可視光(略400〜略780nmの波長の光)の特性を示したものであり、グラフ中の左側の縦軸にその単位を示している。   The illuminance attenuation characteristic data 55 in this example is a graph corresponding to two types of treated water: pure water used in semiconductor manufacturing applications shown in FIG. 6 and (cultivation) nutrient solution used in agricultural applications shown in FIG. Is provided. In each graph, the solid curve shows the characteristics of ultraviolet light (light having a wavelength of 100 to 400 nm) emitted when the ultraviolet lamp 10 is irradiated, and the two vertical axes in the graph show the units. The dashed curve shows the characteristics of visible light (light having a wavelength of about 400 to about 780 nm) emitted when irradiated with the ultraviolet lamp 10 for comparison with the properties of ultraviolet rays. Shows the unit.

これらの照度減衰特性データ55より、紫外線センサ3で計測した略400nm近傍の波長の紫外線照度(400nm照度とする:単位mW/cm)を、略254nm近傍の波長の紫外線照度(254nm照度とする:単位mW/cm)に変換する際には、記憶・制御装置5により以下のようにおこなわれる。
なお、紫外線ランプ10は一般的には254nm近傍の波長の紫外線照度が新品時のこの照度の70%以下になった際、寿命と見做している。ただし、あくまでこの寿命は一般的な話であるから、この寿命は紫外線ランプを製造するメーカー等によって異なる。
From these illuminance attenuation characteristic data 55, the ultraviolet illuminance at a wavelength of approximately 400 nm measured by the ultraviolet sensor 3 (400 nm illuminance: unit mW / cm 2 ) is converted to the ultraviolet illuminance at a wavelength of approximately 254 nm (254 nm illuminance). : Unit mW / cm 2 ) is performed by the storage / control device 5 as follows.
In general, the life of the ultraviolet lamp 10 is considered when the ultraviolet illuminance at a wavelength near 254 nm becomes 70% or less of the illuminance when it is new. However, since this life is a general story, this life depends on the manufacturer of the ultraviolet lamp and the like.

図6の純水の場合、グラフから例えば、400nm照度が初期値Bの0.02mW/cmのときに254nm照度が略8mW/cm、400nm照度が0.018mW/cmのときに254nm照度が略5.75mW/cm、400nm照度が0.017mW/cmのときに254nm照度が略4.5mW/cmにそれぞれ変換される。 In the case of the pure water in FIG. 6, for example, from the graph, the 254 nm illuminance is approximately 8 mW / cm 2 when the 400 nm illuminance is the initial value B of 0.02 mW / cm 2 , and the 254 nm when the 400 nm illuminance is 0.018 mW / cm 2. When the illuminance is approximately 5.75 mW / cm 2 and the 400 nm illuminance is 0.017 mW / cm 2 , the 254 nm illuminance is converted to approximately 4.5 mW / cm 2 .

一方、グラフ中の可視光の場合、例えば、この可視光の照度(可視光照度とする:単位LX)が初期値Bの280LXのときに254nm照度が略8mW/cmであり、この可視光照度は、254nm照度が略4.5W/cmまで低下した場合にもほとんど変わらない。すなわち、仮に可視光の照度を計測したとしても、その計測値が略4.5W/cmよりも小さくなるまで変わることがないため、その段階まで254nm照度の低下を確認することはできない。 On the other hand, in the case of visible light in the graph, for example, when the illuminance of this visible light (visible light illuminance: unit LX) is 280 LX, which is the initial value B, the 254 nm illuminance is approximately 8 mW / cm 2 , and the visible light illuminance is When the illuminance at 254 nm is reduced to approximately 4.5 W / cm 2, there is almost no change. That is, even if the illuminance of visible light is measured, it does not change until the measured value becomes smaller than approximately 4.5 W / cm 2, so that a decrease in the illuminance of 254 nm cannot be confirmed until that stage.

図7の養液の場合も同様であり、グラフから例えば、400nm照度が初期値Bの0.01mW/cmのときに254nm照度が略8mW/cm、400nm照度が略0.0095mW/cmのときに254nm照度が略5.6mW/cmにそれぞれ変換される。 The same applies to the case of the nutrient solution of FIG. 7. For example, from the graph, when the 400 nm illuminance is 0.01 mW / cm 2 of the initial value B, the 254 nm illuminance is approximately 8 mW / cm 2 , and the 400 nm illuminance is approximately 0.0095 mW / cm 2. In the case of 2 , the 254 nm illuminance is converted to approximately 5.6 mW / cm 2 .

図7における可視光の場合、例えば、可視光照度が初期値Bの270LXのときに254nm照度が略8mW/cmであり、この可視光照度は、254nm照度が略5.6W/cmまで低下したときに反対に上昇する傾向にある。これにより、可視光の照度を計測したとしても、254nm照度の低下を確認することはできない。
上記のように、400nm照度を計測し、その計測結果を254nm照度に変換することで紫外線ランプ10の照度低下を細かく測定可能になっている。
For visible light in FIG. 7, for example, an approximately 8 mW / cm 2 254nm illuminance at 270LX visible light illuminance initial value B, the visible light illuminance is decreased 254nm illumination to approximately 5.6 W / cm 2 Sometimes it tends to rise. As a result, even if the illuminance of visible light is measured, a decrease in the illuminance of 254 nm cannot be confirmed.
As described above, by measuring the illuminance at 400 nm and converting the measurement result to 254 nm illuminance, the decrease in illuminance of the ultraviolet lamp 10 can be finely measured.

図6、図7において、一点鎖線は、254nm照度の寿命となる基準を表している。紫外線ランプ10の寿命としては、初期値Bの照度から例えば70%の照度まで低下した場合を一つの基準として交換するとよく、この場合、図6の純水、図7の養液ともに254nm照度が5.6mW/cmになった場合となる。より好ましくは、初期値Bの照度から90%の照度まで254nm照度が低下した場合を寿命とするのがよい。
なお、図6の純水の場合、55%の照度まで低下したときにも可視光の照度が変わらないため、可視光センサの計測により紫外線ランプ10の寿命を判断することは難しい。
つまり、254nmの紫外線照度の初期値の70%が400nm近傍の紫外線照度の初期値の90%であるから、400nm近傍の紫外線照度をこの紫外線センサ3で測定することにより、紫外線ランプ3の寿命を診断することができる。
In FIGS. 6 and 7, the dashed line indicates the reference for the lifetime of the 254 nm illuminance. The life of the ultraviolet lamp 10 may be changed based on the case where the illuminance of the initial value B is reduced to, for example, 70% of the illuminance, as one reference. In this case, the 254 nm illuminance of both the pure water of FIG. 6 and the nutrient solution of FIG. It becomes a case where it became 5.6 mW / cm 2 . More preferably, the life is defined as a case where the illuminance of 254 nm decreases from the illuminance of the initial value B to the illuminance of 90%.
In the case of the pure water shown in FIG. 6, even when the illuminance is reduced to 55%, the illuminance of the visible light does not change. Therefore, it is difficult to determine the life of the ultraviolet lamp 10 by measuring the visible light sensor.
In other words, since 70% of the initial value of the illuminance at 254 nm is 90% of the initial value of the illuminance at around 400 nm, the life of the ultraviolet lamp 3 is measured by measuring the illuminance at around 400 nm with the ultraviolet sensor 3. Can be diagnosed.

一方において、記憶・制御装置5における制御部51は、紫外線センサ3で計測された紫外線照度を、照度減衰特性データ55を介して特定の波長の紫外線照度、すなわち略254nmの波長の紫外線照度に換算し、この換算値から紫外線ランプ10の消灯又は劣化状態を検知する機能を有している。   On the other hand, the control unit 51 in the storage / control device 5 converts the ultraviolet illuminance measured by the ultraviolet sensor 3 into ultraviolet illuminance of a specific wavelength, that is, ultraviolet illuminance of a wavelength of approximately 254 nm, via the illuminance attenuation characteristic data 55. Then, it has a function of detecting whether the ultraviolet lamp 10 is turned off or deteriorated from the converted value.

そして、制御部51は、略254nmの波長の紫外線照度の結果に基づいて、紫外線ランプ10の要交換時期、反応槽2の要掃除時期、紫外線ランプ10の消耗或は故障による消灯の各状態を知らせる所定の信号を発する機能を有し、この信号を確認することで紫外線ランプ10の状況に応じた所定の処置を施すことが可能になっている。   Based on the result of the UV illuminance of the wavelength of approximately 254 nm, the control unit 51 determines the time for replacement of the UV lamp 10, the time for cleaning the reaction tank 2, and the state of turning off the UV lamp 10 due to exhaustion or failure of the UV lamp 10. It has a function of issuing a predetermined signal to notify, and by confirming this signal, it is possible to perform a predetermined treatment according to the condition of the ultraviolet lamp 10.

なお、本実施形態において、被処理水が反応槽2を通過するときの紫外線照度から換算する特定の波長の紫外線照度として、略254nmの波長の紫外線照度としているが、この特定の波長の紫外線照度は、被処理流体の種類等に応じて異なる波長の紫外線照度とすることもできる。   In the present embodiment, the UV illuminance of a specific wavelength converted from the UV illuminance when the water to be treated passes through the reaction tank 2 is the UV illuminance of a wavelength of approximately 254 nm. Can be ultraviolet illuminance of a different wavelength depending on the type of the fluid to be treated and the like.

紫外線センサ3で紫外線ランプ10からの略400nm近傍の波長の紫外線照度を計測しているが、異なる波長の紫外線照度を計測してもよく、紫外線ランプ10の種類などにより外ガラス管21を透過する波長が異なる場合、その紫外線ランプ10に応じた適宜の紫外線センサ3を用いることができる。紫外線を照射可能であれば、紫外線ランプ10の代わりに、例えば低圧又は高圧水銀ランプなどのランプを用いることもできる。   The UV sensor 3 measures the UV illuminance at a wavelength of about 400 nm from the UV lamp 10, but may measure the UV illuminance at a different wavelength, and transmits through the outer glass tube 21 depending on the type of the UV lamp 10. When the wavelength is different, an appropriate ultraviolet sensor 3 corresponding to the ultraviolet lamp 10 can be used. A lamp such as a low-pressure or high-pressure mercury lamp may be used instead of the ultraviolet lamp 10 as long as it can irradiate ultraviolet light.

また、被処理水は、純水や養液以外であってもよく、例えば、養殖用の培養液を被処理水とすることもできる。この場合、被処理水に応じた照度減衰特性データ55を記憶部50に記憶することでその被処理水に応じた紫外線ランプ10の消灯又は劣化状態などを検知可能になる。   The water to be treated may be other than pure water or a nutrient solution. For example, a culture solution for aquaculture may be used as the water to be treated. In this case, by storing the illuminance attenuation characteristic data 55 corresponding to the water to be treated in the storage unit 50, it is possible to detect whether the ultraviolet lamp 10 is turned off or deteriorated according to the water to be treated.

続いて、上述した水処理装置の動作並びにこの動作中に紫外線ランプの消灯又は劣化状態を検知するときの制御例を説明する。
図1において、図示しないポンプにより被処理水が装置本体1側に送水されると、この被処理水は流入流路15よりオゾン供給部4に流入する。
Subsequently, an operation of the above-described water treatment apparatus and a control example when detecting the extinguishing or deterioration state of the ultraviolet lamp during this operation will be described.
In FIG. 1, when the water to be treated is sent to the apparatus main body 1 side by a pump (not shown), the water to be treated flows into the ozone supply unit 4 from the inflow passage 15.

このとき、被処理水には、流入流路15に設けたエジェクタ31を介してオゾナイザ30により生成されたオゾン(及び溶存酸素)が混合され、微細気泡状のオゾンが気泡状態で被処理水中に溶け込んだ混合液(オゾン水)が生成される。この場合に供給されるオゾンの濃度は、低濃度であると細菌の殺菌と有機物の分解ができず、高濃度であると下流側の機器や部品の寿命を短くするおそれがある。そのため、水処理する被処理水の総量、被処理水の送水量、効果的なオゾン処理を行うためのオゾン濃度の下限値と上限値を総合的に判断し、本実施形態では、オゾン供給部4で供給するオゾン量を0.05〜2.0(g/H)に調整している。   At this time, ozone (and dissolved oxygen) generated by the ozonizer 30 via the ejector 31 provided in the inflow passage 15 is mixed with the water to be treated, and ozone in the form of fine bubbles is mixed into the water to be treated in a bubble state. A dissolved liquid mixture (ozone water) is generated. If the concentration of ozone supplied in this case is low, bacteria cannot be sterilized and organic substances cannot be decomposed. If the concentration is high, the life of equipment and components on the downstream side may be shortened. For this reason, the total amount of the water to be treated, the amount of the water to be treated, and the lower and upper limits of the ozone concentration for effective ozone treatment are comprehensively determined. The amount of ozone supplied in step 4 is adjusted to 0.05 to 2.0 (g / H).

供給されたオゾンの殺菌効果により被処理水中の細菌の多くは殺菌され、殺菌された細菌の死骸を含む有機物の多くは分解処理される。   Most of the bacteria in the water to be treated are killed by the sterilizing effect of the supplied ozone, and many of the organic matter including the dead bacteria are killed.

続いて、オゾンを含んだ被処理水が入口側接続口11から反応槽2に流入すると、流路22内の紫外線ランプ10と光触媒7とを通過し、オゾンが溶け込んだ被処理水に紫外線ランプから紫外線が照射されることにより、・OH(ヒドロキシラジカル又はOHラジカル)といわれるラジカル(不対電子を持つ化学種で活性化が強い物質)が生成される。   Subsequently, when the to-be-treated water containing ozone flows into the reaction tank 2 from the inlet-side connection port 11, it passes through the ultraviolet lamp 10 and the photocatalyst 7 in the flow path 22, and the ultraviolet light is added to the to-be-treated water in which ozone is dissolved. Irradiates with ultraviolet rays to generate a radical (a chemical species having unpaired electrons and a strong activation) called OH (hydroxyl radical or OH radical).

この・OHは活性化が強いため、オゾン供給部4でオゾン処理した際に殺菌されずに被処理水中に残留している細菌をほぼ殺菌することができると共に、分解されずに被処理水中に残留している有機物をほぼ分解処理できる。   Since this OH is strongly activated, bacteria remaining in the water to be treated without being sterilized when the ozone is treated by the ozone supply unit 4 can be substantially sterilized, and the OH can be dissolved in the water to be treated without being decomposed. The remaining organic matter can be almost completely decomposed.

以上のように、反応槽2では、紫外線ランプ10と光触媒7によりOHラジカルが生成されることと、低濃度のオゾンとの組合せ、即ち有機的結合により残留している細菌・有機物を確実に除菌浄化する。
反応槽2で除菌浄化処理された被処理水は、出口側接続口12から流出流路16を介して循環流路に戻される。
As described above, in the reaction tank 2, OH radicals are generated by the ultraviolet lamp 10 and the photocatalyst 7 and a combination of low concentration ozone, that is, bacteria and organic substances remaining due to organic bonding are reliably removed. Purify bacteria.
The water to be treated, which has been subjected to the sterilization and purification treatment in the reaction tank 2, is returned from the outlet side connection port 12 to the circulation flow path via the outflow flow path 16.

上記の装置本体1の動作中に紫外線ランプ10の照射状態を確認する場合、処理槽2内に被処理水が流れている状態で紫外線ランプ10の400nmの波長の紫外線照度を紫外線センサ3で計測し、この計測結果を記憶・制御装置5の照度減衰特性データ55を介して略254nm近傍の波長の紫外線照度に換算することで、この紫外線照度から紫外線ランプ10の消灯又は劣化状態を検知可能になっている。   When the irradiation state of the ultraviolet lamp 10 is checked during the operation of the apparatus main body 1, the ultraviolet illuminance of the ultraviolet lamp 10 at a wavelength of 400 nm of the ultraviolet lamp 10 is measured by the ultraviolet sensor 3 while the water to be treated is flowing in the processing tank 2. Then, by converting this measurement result to ultraviolet illuminance of a wavelength near 254 nm through the illuminance attenuation characteristic data 55 of the storage / control device 5, it is possible to detect whether the ultraviolet lamp 10 is turned off or deteriorated from the ultraviolet illuminance. Has become.

具体的には、例えば、以下の手順により紫外線ランプ10の状態を確認するようにする。ここで、図5は、被処理水に応じた紫外線ランプ10の寿命曲線を示し、時間の経過に対する略400nm近傍の波長の光の照度の減衰の基準となる曲線を表している。この基準となる紫外線ランプの寿命曲線のデータも記憶部50に記憶されている。   Specifically, for example, the state of the ultraviolet lamp 10 is checked by the following procedure. Here, FIG. 5 shows a life curve of the ultraviolet lamp 10 according to the water to be treated, and shows a curve serving as a reference for attenuating the illuminance of light having a wavelength of about 400 nm with respect to the passage of time. The data of the life curve of the ultraviolet lamp serving as this reference is also stored in the storage unit 50.

水処理装置の運転を開始した場合、図5のグラフにおいて、水処理を開始してからの運転の総時間(以下、総時間という)が所定時間Aに達したか否かが記憶・制御装置5で判定される。この「所定時間A」とは、新品の紫外線ランプ10が初めて点灯してから照度が安定するまでの時間に基づいて設定される。所定時間Aを経過させる理由としては、図の二点鎖線に示すように、新品の紫外線ランプ10の初期点灯時には照度が安定しにくく、時間の経過と共に徐々に照度が高まって安定した照度となるためである。所定時間Aは、例えば約900秒程度とするとよく、紫外線ランプ10の種類や個体差により適宜設定するようにする。   When the operation of the water treatment apparatus is started, in the graph of FIG. 5, the storage / control apparatus determines whether or not the total operation time since the start of the water treatment (hereinafter referred to as the total time) has reached a predetermined time A. 5 is determined. The “predetermined time A” is set based on the time from when the new ultraviolet lamp 10 is turned on for the first time to when the illuminance is stabilized. The reason why the predetermined time A elapses is that, as shown by the two-dot chain line in the figure, the illuminance is difficult to stabilize at the initial lighting of the new ultraviolet lamp 10, and the illuminance gradually increases with the elapse of time and becomes stable. That's why. The predetermined time A may be, for example, about 900 seconds, and may be appropriately set depending on the type of the ultraviolet lamp 10 and individual differences.

総時間が所定時間A(例えば900秒)に達した場合、その段階で外ガラス管21を透過する略400nm近傍の紫外線照度(400nm照度)を制御部51の制御により紫外線センサ3で計測し、その計測結果を紫外線照度の初期値B(以下、初期値Bという)として記憶部50に記憶する。   When the total time reaches a predetermined time A (for example, 900 seconds), at that stage, the UV sensor 3 controls the UV illuminance (400 nm illuminance) of approximately 400 nm passing through the outer glass tube 21 under the control of the control unit 51, The measurement result is stored in the storage unit 50 as an initial value B of the ultraviolet illuminance (hereinafter, referred to as an initial value B).

この段階から装置本体1による被処理水の実用的な除菌浄化が可能になるため、オゾン供給部4に被処理水を供給し、このオゾン供給部4、反応槽2の紫外線ランプ10、光触媒7により除菌浄化をおこなうようにする。   From this stage, since practical disinfection and purification of the water to be treated by the apparatus body 1 becomes possible, the water to be treated is supplied to the ozone supply unit 4, the ozone supply unit 4, the ultraviolet lamp 10 of the reaction tank 2, 7 to remove bacteria.

この水処理過程において、図5の一定時間である時間ΔTにおける実測した400nm照度の傾きと、基準となるデータの寿命曲線の傾きとを制御部51により比較する。この場合、減少方向の傾きを正の値とする。   In this water treatment process, the control unit 51 compares the inclination of the actually measured 400 nm illuminance at the time ΔT, which is the fixed time in FIG. 5, with the inclination of the life curve of the reference data. In this case, the slope in the decreasing direction is a positive value.

その際、時間ΔTにおける400nm照度の傾きが、寿命曲線の傾きよりも大きいときには、続けて紫外線ランプ10の照度が初期値Bの90%未満であるか否かを制御部51で判定する。   At this time, when the inclination of the illuminance at 400 nm at the time ΔT is greater than the inclination of the life curve, the control unit 51 subsequently determines whether or not the illuminance of the ultraviolet lamp 10 is less than 90% of the initial value B.

紫外線ランプ10の紫外線照度が所定の値以下に低下したとき、例えば初期値Bの90%未満であるときには、紫外線照度が不足であると判定し、制御部51により紫外線ランプ10が寿命時期であることを検知する。その後、紫外線ランプ10の交換が必要であることを図示しないランプや警告音により発報し、この発報により、紫外線ランプ10の寿命を装置本体の外部の記憶・制御装置5から速やかに確認することができる。そして、この結果より紫外線ランプ10を交換するようにすれば、装置本体1の処理能力を維持して安定した稼働を継続できる。   When the ultraviolet illuminance of the ultraviolet lamp 10 falls below a predetermined value, for example, when it is less than 90% of the initial value B, it is determined that the ultraviolet illuminance is insufficient, and the control unit 51 determines that the ultraviolet lamp 10 is at the end of its life. Detect that After that, the fact that the ultraviolet lamp 10 needs to be replaced is notified by a lamp or a warning sound (not shown), and the life of the ultraviolet lamp 10 is promptly confirmed from the storage / control device 5 external to the apparatus main body. be able to. If the ultraviolet lamp 10 is replaced based on this result, the processing performance of the apparatus main body 1 can be maintained and stable operation can be continued.

一方、紫外線ランプ10の照度が初期値Bの90%以上であるときには、寿命に達していないと制御部51で判定し、引き続き照度の検知処理を継続する。   On the other hand, when the illuminance of the ultraviolet lamp 10 is 90% or more of the initial value B, the control unit 51 determines that the life has not been reached, and continues the illuminance detection process.

図5の二点鎖線に示すように、時間ΔTの400nm照度の傾きが、寿命曲線の傾きよりも大きい値になったときには、少なくとも、(a)反応槽2内部のうち、被処理水が通過する部位に析出物等が付着しているか、或いは(b)何らかの理由で想定より早く紫外線ランプ10が劣化していることが原因と考えられる。この場合、反応槽2の掃除が必要であることをランプや警告音により発報する。   As shown by the two-dot chain line in FIG. 5, when the inclination of the illuminance at 400 nm at the time ΔT becomes larger than the inclination of the life curve, at least (a) the water to be treated in the reaction tank 2 It is considered that the cause is that a deposit or the like is attached to a portion where the ultraviolet lamp 10 is deteriorated, or (b) the ultraviolet lamp 10 is deteriorated earlier than expected for some reason. In this case, the fact that the reaction tank 2 needs to be cleaned is notified by a lamp or a warning sound.

反応槽2の掃除後には、図示しないリセットボタンを押すようにし、このリセットボタンが押されたか否かの判定が制御部51によりおこなわれる。リセットボタンが押されていない場合、再度反応槽2の掃除が必要であることを発報する。このように、リセットボタンは、反応槽の掃除の有無を確認するために設けられる。   After cleaning the reaction tank 2, a reset button (not shown) is pressed, and the control unit 51 determines whether the reset button is pressed. If the reset button has not been pressed, it is notified that the reaction tank 2 needs to be cleaned again. As described above, the reset button is provided to confirm whether or not the reaction tank is cleaned.

リセットボタンが押された後には、寿命曲線のそれまでの経過時間Tに対する紫外線照度の値Dよりも、実際に計測した400nm照度の値が大きいか否かを制御部51が判定する。この判定結果により、計測した400nm照度の数値が寿命曲線の紫外線照度D以上であるときには、引き続き紫外線照度の判定が継続される。一方、400nm照度の数値が紫外線照度D未満であるときには、前述の(b)何らかの理由による想定よりも早い紫外線ランプ10の劣化であるとみなし、紫外線ランプ10が異常であることを外部に発報する。   After the reset button is pressed, the control unit 51 determines whether or not the value of the actually measured 400-nm illuminance is larger than the value of the ultraviolet illuminance D with respect to the elapsed time T of the life curve. As a result of this determination, when the measured value of the 400-nm illuminance is equal to or greater than the ultraviolet illuminance D of the life curve, the determination of the ultraviolet illuminance is continued. On the other hand, when the numerical value of the 400 nm illuminance is less than the ultraviolet illuminance D, it is regarded that the deterioration of the ultraviolet lamp 10 is faster than expected due to the above-mentioned (b) for some reason, and the abnormality of the ultraviolet lamp 10 is reported to the outside. I do.

上記の装置本体1の動作中には、制御部51によるインタラプト(割り込み)制御がおこなわれる。このインタラプト制御において、紫外線照度がゼロであるか否かが判定され、これがゼロであるときには、紫外線ランプ10が消灯状態にあると検知し、ランプや警告音により発報する。一方、これらの値がゼロよりも大きい場合には、引き続き検知処理が継続される。   During the operation of the apparatus main body 1, an interrupt (interruption) control by the control unit 51 is performed. In this interrupt control, it is determined whether or not the ultraviolet illuminance is zero. When the illuminance is zero, it is detected that the ultraviolet lamp 10 is off, and an alarm is issued by a lamp or a warning sound. On the other hand, when these values are larger than zero, the detection processing is continued.

一方、上記の紫外線ランプ10の紫外線照度がゼロか否かの判定は、インタラプト制御以外によりおこなわれてもよい。この場合、上記した時間ΔTにおける400nm照度の傾きと、基準となる寿命曲線との比較の手順の後に、紫外線照度がゼロであるか否かが判定される。これがゼロであるときには、紫外線ランプ10が消灯状態であると検知し、ランプや警告音により発報する手順を実施し、続いて、上述の手順と同様に紫外線ランプ10の紫外線照度が所定の値以下に低下したか否かを判断する手順以降を実施するようにする。   On the other hand, the determination as to whether or not the ultraviolet illuminance of the ultraviolet lamp 10 is zero may be performed by means other than the interrupt control. In this case, after the procedure of comparing the inclination of the 400-nm illuminance at the time ΔT with the reference life curve, it is determined whether or not the ultraviolet illuminance is zero. When the value is zero, the procedure detects that the ultraviolet lamp 10 is turned off and issues a warning by a lamp or a warning sound. Then, similarly to the above procedure, the ultraviolet illuminance of the ultraviolet lamp 10 is set to a predetermined value. The procedure after the procedure for determining whether or not the temperature has decreased is performed below.

また、一定の時間ΔTにおける400nm照度の傾きと、寿命曲線の傾きとを比較する手順を省略してもよく、この場合には、紫外線ランプ10の紫外線照度が初期値Bの90%未満に達したことのみにより、紫外線ランプ10の寿命時期を検知する。このため、制御手順を簡略化できる。   Further, the procedure of comparing the inclination of the 400 nm illuminance at a certain time ΔT with the inclination of the life curve may be omitted. In this case, the ultraviolet illuminance of the ultraviolet lamp 10 reaches less than 90% of the initial value B. Only by doing so, the life time of the ultraviolet lamp 10 is detected. Therefore, the control procedure can be simplified.

次に、本発明の水処理装置と水処理装置用紫外線ランプの劣化検知装置の上記実施形態における作用を説明する。
装置本体1は、紫外線ランプ10を内蔵した反応槽2と、光触媒7と、オゾン供給部4とを有し、反応槽2の外側に紫外線センサ3を配置し、この紫外線センサ3で計測した紫外線照度の換算結果から紫外線ランプ10の特定の波長の照度を記憶・制御装置5で検知しているため、大量の水処理が必要であって装置本体1の数が増加する場合にも、紫外線センサ3の計測結果をもとにして、全ての紫外線ランプ10の点灯や消灯状態、及び劣化状態を記憶・制御装置5を介して集中的に監視できる。
Next, the operation of the above-described embodiment of the water treatment device and the deterioration detection device for the ultraviolet lamp for the water treatment device of the present invention will be described.
The apparatus main body 1 includes a reaction tank 2 having a built-in ultraviolet lamp 10, a photocatalyst 7, and an ozone supply unit 4. An ultraviolet sensor 3 is disposed outside the reaction tank 2, and ultraviolet light measured by the ultraviolet sensor 3 is used. Since the illuminance at a specific wavelength of the ultraviolet lamp 10 is detected by the storage / control device 5 from the illuminance conversion result, even when a large amount of water treatment is required and the number of the apparatus main bodies 1 increases, the ultraviolet sensor Based on the measurement result of 3, the on / off state and the deterioration state of all the ultraviolet lamps 10 can be intensively monitored via the storage / control device 5.

この場合、紫外線センサ3を外ガラス管21の外側に近接状態で配置し、この紫外線センサ3により略400nm近傍の波長の紫外線照度を検知しているので、外ガラス管21を、略254nmの波長の紫外線を遮断するホウケイ酸ガラス等で設けることができる。これにより、外ガラス管21の内側の流路22では、略254nmの波長の紫外線によるラジカル反応によって被処理水に優れた除菌浄化機能を施しつつ、部品に悪影響を及ぼすこの略254nmの波長の紫外線の外ガラス管21から外側への漏れを防ぎ、この紫外線による紫外線センサ3やその他の部品への悪影響を阻止して劣化を防止する。   In this case, since the ultraviolet sensor 3 is arranged close to the outside of the outer glass tube 21 and the ultraviolet sensor 3 detects ultraviolet illuminance having a wavelength of about 400 nm, the outer glass tube 21 is set to a wavelength of about 254 nm. Borosilicate glass or the like that blocks ultraviolet rays. As a result, in the flow path 22 inside the outer glass tube 21, the water having a wavelength of about 254 nm, which exerts a bad influence on parts, while giving an excellent sterilization and purification function to the water to be treated by a radical reaction due to ultraviolet rays having a wavelength of about 254 nm. It prevents ultraviolet rays from leaking from the outer glass tube 21 to the outside and prevents the ultraviolet rays from adversely affecting the ultraviolet sensor 3 and other components, thereby preventing deterioration.

しかも、ホウケイ酸ガラス21を透過する略400nmの波長の紫外線照度を紫外線センサ3により計測し、その紫外線照度の計測結果から記憶部50内の照度減衰特性データ55を介して略254nmの波長の紫外線照度に換算した照度を確認できるため、被処理水の除菌浄化に最も効果的な略254nmの紫外線照度を正確に把握できる。そのため、高い水処理制度が要求される半導体製造工程などで装置本体1を使用する場合にも、各装置本体1の紫外線照度を高い状態に保って高品質な製品を製造可能になる。   In addition, the UV illuminance of a wavelength of about 400 nm transmitted through the borosilicate glass 21 is measured by the UV sensor 3, and the UV illuminance of the wavelength of about 254 nm is obtained from the measurement result of the UV illuminance via the illuminance attenuation characteristic data 55 in the storage unit 50. Since the illuminance converted into the illuminance can be confirmed, the ultraviolet illuminance of approximately 254 nm, which is most effective for the sterilization and purification of the water to be treated, can be accurately grasped. Therefore, even when the apparatus main body 1 is used in a semiconductor manufacturing process or the like that requires a high water treatment system, it is possible to manufacture a high-quality product while keeping the ultraviolet illuminance of each apparatus main body 1 high.

記憶・制御装置5内に、半導体製造用途で使用される純水、農業用途で使用される養液の2つの被処理水の種類ごとの照度減衰特性データ55を記憶しているので、何れの被処理水を水処理する場合にも、紫外線照度のわずかな減衰も計測して劣化状態を詳細に確認できる。   The storage / control device 5 stores the illuminance attenuation characteristic data 55 for each type of water to be treated, ie, pure water used for semiconductor manufacturing and nutrient solution used for agricultural purposes. Even in the case of treating the water to be treated, even a slight attenuation of the UV illuminance can be measured to check the deterioration state in detail.

また、紫外線ランプ10の劣化検知用の検知装置本体6は、紫外線センサ3と記憶・制御装置5を水処理装置に容易に取り付けて紫外線ランプ10の消灯状態や劣化状態を正確に検知でき、反応槽2やオゾン供給部4による水処理性能に悪影響を及ぼすこともない。  In addition, the detection device main body 6 for detecting the deterioration of the ultraviolet lamp 10 can easily detect the extinguished state or the deteriorated state of the ultraviolet lamp 10 by easily attaching the ultraviolet sensor 3 and the storage / control device 5 to the water treatment apparatus. There is no adverse effect on the water treatment performance of the tank 2 or the ozone supply unit 4.

以上、本発明の実施の形態について詳述したが、本発明は、前記実施の形態記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で、種々の変更ができるものである。   As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to the above embodiments, and does not depart from the spirit of the invention described in the claims of the present invention. Thus, various changes can be made.

1 装置本体
2 反応槽
3 紫外線センサ
4 オゾン供給部
5 記憶・制御装置
6 検知装置本体
7 光触媒
10 紫外線ランプ
21 外ガラス管
50 記憶部
51 制御部
55 照度減衰特性データ
DESCRIPTION OF SYMBOLS 1 Main body 2 Reaction tank 3 Ultraviolet sensor 4 Ozone supply part 5 Storage / control device 6 Detector main body 7 Photocatalyst 10 Ultraviolet lamp 21 Outer glass tube 50 Storage part 51 Control part 55 Illumination attenuation characteristic data

Claims (9)

被処理水に紫外線を照射する紫外線ランプを内蔵した反応槽と、この反応槽内部に設けた光触媒と、前記反応槽にオゾンを供給するオゾン供給部とを有し、前記反応槽の外側に前記被処理水が前記反応槽内を通過するときの前記紫外線ランプの紫外線照度を計測する紫外線センサが配置され、この紫外線センサで計測された紫外線照度から特定の波長の紫外線照度に換算する機能を有する記憶・制御装置を備え、この記憶・制御装置が前記特定の波長の紫外線照度から前記紫外線ランプの消灯又は劣化状態を検知する機能を有することを特徴とする水処理装置。   A reaction tank having a built-in ultraviolet lamp for irradiating ultraviolet rays to the water to be treated, a photocatalyst provided inside the reaction tank, and an ozone supply unit for supplying ozone to the reaction tank; An ultraviolet sensor for measuring the ultraviolet illuminance of the ultraviolet lamp when the water to be treated passes through the inside of the reaction tank is provided, and has a function of converting the ultraviolet illuminance measured by the ultraviolet sensor into ultraviolet illuminance of a specific wavelength. A water treatment apparatus, comprising: a storage / control device, wherein the storage / control device has a function of detecting whether the ultraviolet lamp is turned off or deteriorated from the ultraviolet illuminance of the specific wavelength. 前記特定の波長の紫外線照度は、前記被処理水をラジカル反応させる略254nm近傍の波長の紫外線照度であり、前記紫外線センサで計測される紫外線照度は、略254nm近傍よりも波長の長い紫外線照度である請求項1に記載の水処理装置。   The ultraviolet illuminance of the specific wavelength is an ultraviolet illuminance of a wavelength near approximately 254 nm that causes a radical reaction of the water to be treated, and the ultraviolet illuminance measured by the ultraviolet sensor is an ultraviolet illuminance having a wavelength longer than approximately 254 nm. The water treatment device according to claim 1. 前記反応槽の外表面側に、少なくとも略254nm近傍よりも波長の長い紫外線を透過させる特性を有する外ガラス管が設けられ、この外ガラス管の外側に前記紫外線センサが近接状態で配置された請求項1又は2に記載の水処理装置。   An outer glass tube having a characteristic of transmitting ultraviolet light having a wavelength longer than at least approximately 254 nm is provided on an outer surface side of the reaction vessel, and the ultraviolet sensor is disposed outside the outer glass tube in a close state. Item 3. The water treatment device according to item 1 or 2. 前記記憶・制御装置は、前記紫外線ランプの紫外線照度がゼロのときに消灯を検知し、又は紫外線照度が所定の値以下に低下したときに寿命時期を検知する機能を備えた請求項1乃至3の何れか1項に記載の水処理装置。   4. The storage / control device according to claim 1, further comprising a function of detecting turning-off when the ultraviolet illuminance of the ultraviolet lamp is zero, or detecting a life time when the ultraviolet illuminance falls below a predetermined value. The water treatment device according to any one of the above. 前記記憶・制御装置内に、前記紫外線センサで計測される紫外線照度から特定の波長の紫外線照度への換算用の照度減衰特性データが前記被処理水の種類ごとに記憶されている請求項1乃至4の何れか1項に記載の水処理装置。   The illuminance attenuation characteristic data for conversion from ultraviolet illuminance measured by the ultraviolet sensor to ultraviolet illuminance of a specific wavelength is stored in the storage / control device for each type of the water to be treated. The water treatment apparatus according to any one of items 4 to 5. 前記照度減衰特性データは、半導体製造用途で使用される純水、農業用途で使用される養液の2つの前記被処理水に対応したデータである請求項5に記載の水処理装置。   The water treatment apparatus according to claim 5, wherein the illuminance attenuation characteristic data is data corresponding to two types of water to be treated, namely, pure water used for semiconductor manufacturing and nutrient solution used for agricultural use. 前記記憶・制御装置は、記憶部と制御部とを有し、前記記憶部に前記照度減衰特性データが記憶され、前記制御部は、前記紫外線センサで計測された紫外線照度を前記照度減衰特性データを介して特定の波長の紫外線照度に換算し、この換算値から前記紫外線ランプの消灯又は劣化状態を検知する機能を有する請求項5又は6に記載の水処理装置。   The storage / control device has a storage unit and a control unit, and the illuminance attenuation characteristic data is stored in the storage unit, and the control unit converts the ultraviolet illuminance measured by the ultraviolet sensor into the illuminance attenuation characteristic data. 7. The water treatment apparatus according to claim 5, further comprising a function of converting the illuminance of the ultraviolet light into a specific wavelength through the illuminator, and detecting whether the ultraviolet lamp is turned off or deteriorated based on the converted value. 前記記憶・制御装置は、前記特定の波長の紫外線照度に基づいて、前記紫外線ランプの要交換時期、前記反応槽の要掃除時期、前記紫外線ランプの消耗或は故障による消灯の各状態を知らせる所定の信号を発する機能を有する請求項1乃至7の何れか1項に記載の水処理装置。   The storage and control device is configured to notify a predetermined time for exchanging the ultraviolet lamp, a time for cleaning the reaction tank, and turning off the ultraviolet lamp due to wear or failure based on the ultraviolet illuminance of the specific wavelength. The water treatment apparatus according to any one of claims 1 to 7, which has a function of emitting a signal. 請求項1乃至8の何れか1項に記載の水処理装置に設けられ、前記紫外線センサと前記記憶・制御装置とを備えた水処理装置用紫外線ランプの劣化検知装置。   An apparatus for detecting deterioration of an ultraviolet lamp for a water treatment apparatus, provided in the water treatment apparatus according to any one of claims 1 to 8, comprising the ultraviolet sensor and the storage / control device.
JP2018179612A 2018-09-26 2018-09-26 Deterioration detector for water treatment equipment and UV lamps for water treatment equipment Active JP7188952B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018179612A JP7188952B2 (en) 2018-09-26 2018-09-26 Deterioration detector for water treatment equipment and UV lamps for water treatment equipment
JP2022192548A JP7411770B2 (en) 2018-09-26 2022-12-01 water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018179612A JP7188952B2 (en) 2018-09-26 2018-09-26 Deterioration detector for water treatment equipment and UV lamps for water treatment equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022192548A Division JP7411770B2 (en) 2018-09-26 2022-12-01 water treatment equipment

Publications (2)

Publication Number Publication Date
JP2020049408A true JP2020049408A (en) 2020-04-02
JP7188952B2 JP7188952B2 (en) 2022-12-13

Family

ID=69995021

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018179612A Active JP7188952B2 (en) 2018-09-26 2018-09-26 Deterioration detector for water treatment equipment and UV lamps for water treatment equipment
JP2022192548A Active JP7411770B2 (en) 2018-09-26 2022-12-01 water treatment equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022192548A Active JP7411770B2 (en) 2018-09-26 2022-12-01 water treatment equipment

Country Status (1)

Country Link
JP (2) JP7188952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813020A (en) * 2023-06-21 2023-09-29 惠州市泓利实业有限公司 Intelligent water purifying device and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352686A (en) * 1989-07-19 1991-03-06 Matsushita Electric Works Ltd Uv-sterilization water purifier
JPH10296246A (en) * 1997-04-25 1998-11-10 Bridgestone Corp Bathwater circulation device
JP2004223502A (en) * 2002-09-30 2004-08-12 Hiroshi Hayashi Ultraviolet sterilization and cleaning device equipped with detection and determination function of ultraviolet light/cracking, and the like
US20060151369A1 (en) * 2002-11-22 2006-07-13 Zsolt Hegmegi Method and device for purification of a liquid
JP2011055795A (en) * 2009-09-14 2011-03-24 Toyo Valve Co Ltd Water quality adjusting system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261955B2 (en) 2002-09-26 2009-05-13 日本郵船株式会社 Water purification method and apparatus
JP4229363B2 (en) 2002-11-08 2009-02-25 正夫 土屋 Water treatment equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352686A (en) * 1989-07-19 1991-03-06 Matsushita Electric Works Ltd Uv-sterilization water purifier
JPH10296246A (en) * 1997-04-25 1998-11-10 Bridgestone Corp Bathwater circulation device
JP2004223502A (en) * 2002-09-30 2004-08-12 Hiroshi Hayashi Ultraviolet sterilization and cleaning device equipped with detection and determination function of ultraviolet light/cracking, and the like
US20060151369A1 (en) * 2002-11-22 2006-07-13 Zsolt Hegmegi Method and device for purification of a liquid
JP2011055795A (en) * 2009-09-14 2011-03-24 Toyo Valve Co Ltd Water quality adjusting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813020A (en) * 2023-06-21 2023-09-29 惠州市泓利实业有限公司 Intelligent water purifying device and control method thereof
CN116813020B (en) * 2023-06-21 2024-03-12 惠州市泓利实业有限公司 Intelligent water purifying device and control method thereof

Also Published As

Publication number Publication date
JP2023014285A (en) 2023-01-26
JP7188952B2 (en) 2022-12-13
JP7411770B2 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP4355315B2 (en) Fluid purification device
US6469308B1 (en) Ultraviolet radiated water treatment tank
US8552395B2 (en) Ultraviolet irradiation system
US20110150708A1 (en) Ultraviolet irradiation device
JP7411770B2 (en) water treatment equipment
JP2008093549A (en) Water purification device
JP2007245097A (en) Ultraviolet disinfection device
WO2019088015A1 (en) Washing water treatment device and washing water treatment method
JP2012061413A (en) Ultraviolet irradiation device
JP2008136940A (en) Ultraviolet disinfection instrument
US20160214076A1 (en) Gas and water sanitizing system and method
KR20120049002A (en) Apparatus and control method of wall mounting type uv-led disinfection panel including the automatic control function for controlling disinfection intensity
JP2013075271A (en) Water treatment method and water treatment apparatus
JP2013136031A (en) Ultraviolet treatment device
JP6422900B2 (en) Liquid processing apparatus and liquid processing system
US20160213444A1 (en) Device and method for sanitizing gas and water
KR200399286Y1 (en) Sterilizer using uv rays and fine gas drops
JP6382714B2 (en) Pure water production equipment
KR100641065B1 (en) Sterilizer using uv rays and fine gas drops
JP2011161443A (en) Ultraviolet disinfection instrument
KR100877562B1 (en) Non contacting ultraviolet liquid treatment apparatus and method using the same
CN210367061U (en) Pulse ultraviolet fluid sterilizer and instant-to-use fluid system with same
KR100955301B1 (en) Sterilizing water apparatus using the ultra-violet ray lamp
JP2008068203A (en) Ultraviolet sterilization system
JP2004223345A (en) Method and apparatus for purifying fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221201

R150 Certificate of patent or registration of utility model

Ref document number: 7188952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350