JP7411770B2 - water treatment equipment - Google Patents

water treatment equipment Download PDF

Info

Publication number
JP7411770B2
JP7411770B2 JP2022192548A JP2022192548A JP7411770B2 JP 7411770 B2 JP7411770 B2 JP 7411770B2 JP 2022192548 A JP2022192548 A JP 2022192548A JP 2022192548 A JP2022192548 A JP 2022192548A JP 7411770 B2 JP7411770 B2 JP 7411770B2
Authority
JP
Japan
Prior art keywords
ultraviolet
illuminance
water
treated
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022192548A
Other languages
Japanese (ja)
Other versions
JP2023014285A (en
Inventor
勝久 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
Toyo Valve Co Ltd
Original Assignee
Kitz Corp
Toyo Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp, Toyo Valve Co Ltd filed Critical Kitz Corp
Priority to JP2022192548A priority Critical patent/JP7411770B2/en
Publication of JP2023014285A publication Critical patent/JP2023014285A/en
Application granted granted Critical
Publication of JP7411770B2 publication Critical patent/JP7411770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、例えば、半導体製造工程や液晶製造工程などで用いられる純水や、或は農耕栽培用として使用される養液などの被処理水を再利用可能に処理する水処理装置に関する。 The present invention relates to a water treatment device for reusing water to be treated, such as pure water used in semiconductor manufacturing processes or liquid crystal manufacturing processes, or nutrient solutions used for agricultural cultivation. .

例えば、半導体素子や液晶ガラスの製造工程では、半導体ウエハ基板、液晶ガラス基板、ガラス基板などを洗浄するために大量の純水が使用され、一方、農業分野においては、養液栽培により農作物を育成する際に大量の養液が必要になる。これら大量の水の使用に関し、環境への負荷低減、水資源の有効活用などの観点から、使用後の純水や養液を回収して再利用することが望まれている。 For example, in the manufacturing process of semiconductor elements and liquid crystal glass, large amounts of pure water are used to clean semiconductor wafer substrates, liquid crystal glass substrates, glass substrates, etc.In the agricultural field, on the other hand, crops are grown using hydroponic cultivation. This requires a large amount of nutrient solution. Regarding the use of these large amounts of water, it is desired to collect and reuse the purified water and nutrient solution after use from the viewpoint of reducing the burden on the environment and effectively utilizing water resources.

純水や養液などを再利用可能に処理する場合には、一般にこれら被処理水を循環させる流路の一部に水処理装置が設けられ、この水処理装置には被処理水を除菌浄化するための紫外線ランプ(紫外線光源)が配置されることが多い。紫外線ランプを用いて除菌浄化する際には、被処理水の除菌浄化に必要な紫外線照度を計測するため、紫外線計測用の紫外線センサが設けられている場合がある。 When treating pure water, nutrient solution, etc. so that it can be reused, a water treatment device is generally installed in a part of the flow path that circulates the water to be treated. Ultraviolet lamps (ultraviolet light sources) are often installed for purification. When performing sterilization and purification using an ultraviolet lamp, an ultraviolet sensor for measuring ultraviolet rays may be provided in order to measure the ultraviolet irradiance necessary for sterilizing and purifying the water to be treated.

例えば、特許文献1の紫外線照射装置では、被処理水が流れる反応槽に紫外線監視窓が設けられ、この紫外線監視窓に紫外線センサである紫外線モニタが設置される。そして、被処理水を透過した紫外線照度が紫外線モニタで計測され、この紫外線照度と照射部から照射される紫外線照度とにより被処理水に対する紫外線透過率が算出され、この紫外線透過率に基づいて照射部の劣化が検出されるようになっている。 For example, in the ultraviolet irradiation device of Patent Document 1, an ultraviolet monitoring window is provided in a reaction tank through which water to be treated flows, and an ultraviolet monitor, which is an ultraviolet sensor, is installed in this ultraviolet monitoring window. The ultraviolet irradiance transmitted through the water to be treated is measured by an ultraviolet monitor, and the ultraviolet transmittance of the water to be treated is calculated from this ultraviolet illuminance and the ultraviolet illuminance irradiated from the irradiation part, and the irradiation is performed based on this ultraviolet transmittance. Deterioration of parts can be detected.

一方、特許文献2の紫外線水処理システムでは、紫外線水処理装置に紫外線測定用の紫外線照度計が設けられ、この照度計により照度が測定される。このシステムにおいて、測定された照度と予め設定された設定値とが比較され、その状態に応じて紫外線ランプの照度低下やランプ切れを予測するものとしている。 On the other hand, in the ultraviolet water treatment system of Patent Document 2, the ultraviolet water treatment device is provided with an ultraviolet illuminance meter for measuring ultraviolet rays, and the illuminance is measured by this illuminance meter. In this system, the measured illuminance is compared with a preset setting value, and depending on the condition, it is possible to predict a decrease in the illuminance of the ultraviolet lamp or a lamp burnout.

上記の紫外線ランプを利用した水処理装置に対して、さらに除菌浄化能力を高めるためにオゾン供給装置を加えたものが開示されている(例えば、特許文献3参照。)。この水処理装置では、紫外線照射装置の一次側にオゾン供給装置が配置され、オゾンが供給された被処理水が反応容器内の紫外線ランプを通過し、この紫外線ランプの紫外線により除菌浄化される。これに加えて、反応容器内には光触媒が設けられ、この光触媒によっても被処理水の殺菌及び有機物の分解処理がおこなわれる。 A water treatment device using an ultraviolet lamp described above has been disclosed in which an ozone supply device is added in order to further enhance the sterilization and purification ability (see, for example, Patent Document 3). In this water treatment equipment, an ozone supply device is placed on the primary side of the ultraviolet irradiation device, and the water to be treated that has been supplied with ozone passes through an ultraviolet lamp in a reaction vessel, where it is sterilized and purified by the ultraviolet light from the ultraviolet lamp. . In addition, a photocatalyst is provided in the reaction vessel, and this photocatalyst also sterilizes the water to be treated and decomposes organic matter.

これらの水処理装置により被処理水を大量に除菌浄化して再利用可能にするためには多数の水処理装置が必要になり、それに伴って使用する紫外線ランプの数も増加することになる。この場合、紫外線による除菌浄化機能を一定に維持するためには、運転時の各紫外線ランプが確実に点灯状態にあり、紫外線照度が所定以上に達している必要がある。そのため、近年では、紫外線ランプの点灯/消灯状態や、紫外線照度の減少を集中して監視できる水処理装置が要望されている。 In order to sterilize and purify a large amount of water to be treated and make it reusable using these water treatment devices, a large number of water treatment devices are required, and the number of ultraviolet lamps used will also increase accordingly. . In this case, in order to maintain a constant sterilization and purification function using ultraviolet rays, it is necessary that each ultraviolet lamp during operation is reliably lit and the ultraviolet irradiance reaches a predetermined level or higher. Therefore, in recent years, there has been a demand for water treatment equipment that can intensively monitor the on/off status of ultraviolet lamps and the decrease in ultraviolet illuminance.

特許第5649703号公報Patent No. 5649703 特開2009-82774号公報JP2009-82774A 特許第4229363号公報Patent No. 4229363

紫外線ランプの点灯/消灯状態を確認するためには、例えば、各紫外線ランプへのオンオフの制御信号を検知することが考えられるが、この場合、制御信号がオンの状態であるにもかかわらず、紫外線ランプの寿命などにより実際には消灯状態になって正確に検知できない場合がある。
一方、紫外線ランプの点灯/消灯状態を現場で視覚的に確認することも考えられるが、半導体製造設備や農業の現場では、水の流れる流路が数十メートルに達することもあるため、この流路に沿って多数設置された紫外線ランプのそれぞれの点灯状態を視認するには手間がかかる。
In order to check the on/off state of the UV lamps, for example, it is possible to detect the on/off control signal for each UV lamp, but in this case, even though the control signal is in the on state, Depending on the lifespan of the ultraviolet lamp, it may actually be turned off and cannot be detected accurately.
On the other hand, it is possible to visually check the on/off status of ultraviolet lamps on-site, but in semiconductor manufacturing facilities and agricultural sites, water flow channels can reach several tens of meters, so this is not possible. It takes time and effort to visually check the lighting status of each of the many ultraviolet lamps installed along the road.

これに対して、特許文献1や特許文献2では、紫外線ランプの状態を一括して集中的に監視しようとしているが、これらは紫外線ランプと紫外線センサとが近接しているために、紫外線ランプからの紫外線で紫外線センサを含む部品が劣化しやすくなる。そのため、紫外線センサの信号伝達用配線の被覆を厚くするなどの対策が必要になる。また、紫外線の減衰を防ぐためには、紫外線ランプと流路との間隔を狭くする必要が生じるが、これにより、紫外線センサを流路内に配置することが難しくなる。
これらのことから、この種の紫外線照射装置を多数使用して半導体製造分野や農業分野の長い水処理流路を構成しにくくなり、紫外線ランプの点灯/消灯状態や紫外線照度の状態を正確に計測することが困難になる。
On the other hand, Patent Document 1 and Patent Document 2 attempt to centrally monitor the status of the UV lamps all at once, but in these cases the UV lamps and the UV sensors are in close proximity, so Components including the ultraviolet sensor are likely to deteriorate due to ultraviolet rays. Therefore, it is necessary to take measures such as thickening the coating of the signal transmission wiring of the ultraviolet sensor. Furthermore, in order to prevent the attenuation of ultraviolet light, it is necessary to narrow the distance between the ultraviolet lamp and the flow path, but this makes it difficult to arrange the ultraviolet sensor within the flow path.
For these reasons, it is difficult to use many UV irradiation devices of this type to construct long water treatment channels in the semiconductor manufacturing and agricultural fields, and it is difficult to accurately measure the on/off status of UV lamps and the status of UV irradiance. becomes difficult to do.

さらに、特許文献3のように紫外線照射装置にオゾン供給装置を設ける場合、オゾンが供給された被処理水を紫外線ランプで効果的に除菌浄化するためには、特に、波長254nm付近の紫外線を照射してラジカル反応を発生させる必要がある。この場合、波長254nm付近の紫外線の照度は、紫外線ランプの光源からの離間距離につれて極端に減衰しやすい特性があるから、紫外線ランプと流路との間隔をさらに狭くしなければならず、流路内に紫外線センサを配置することが一層困難になる。 Furthermore, when an ozone supply device is provided in the ultraviolet irradiation device as in Patent Document 3, in order to effectively sterilize and purify the water to be treated to which ozone has been supplied using an ultraviolet lamp, it is necessary to use ultraviolet rays with a wavelength of around 254 nm. It is necessary to irradiate it to generate a radical reaction. In this case, since the illuminance of ultraviolet light with a wavelength of around 254 nm tends to be extremely attenuated as the distance from the light source of the ultraviolet lamp increases, the distance between the ultraviolet lamp and the flow path must be further narrowed. It becomes more difficult to place a UV sensor inside.

上記の理由により、紫外線ランプの劣化等による紫外線照射量の低下を正確に計測できなくなることがあり、その結果、紫外線を被処理水に対して十分に照射することができなくなる可能性が生じる。
そのため、この紫外線照射装置を、例えば半導体製造工程で用いた場合には、紫外線量の不足によりオゾン供給装置、光触媒による複合的な除菌浄化が効果的になされず、特に高品質が要求される半導体製品に悪影響を及ぼすおそれがある。
一方、農耕栽培用として用いた場合には、養液中には不純物が含まれているため、この不純物の付着により紫外線が透過するガラスが汚れやすくなるという問題も有している。この場合、紫外線照射量の低下がより激しくなり、紫外線による除菌浄化作用が不十分になる。
For the above reasons, it may become impossible to accurately measure the decrease in the amount of ultraviolet irradiation due to deterioration of the ultraviolet lamp, etc., and as a result, there is a possibility that the water to be treated cannot be sufficiently irradiated with ultraviolet rays.
Therefore, when this ultraviolet irradiation device is used, for example, in the semiconductor manufacturing process, the combined sterilization and purification using the ozone supply device and photocatalyst cannot be performed effectively due to the insufficient amount of ultraviolet rays, and particularly high quality is required. It may have an adverse effect on semiconductor products.
On the other hand, when used for agricultural cultivation, the nutrient solution contains impurities, which causes the problem that the glass through which ultraviolet rays can be easily smeared due to the adhesion of these impurities. In this case, the amount of ultraviolet irradiation decreases more drastically, and the sterilization and purification effect of ultraviolet rays becomes insufficient.

紫外線センサを反応槽の内部に設けた場合、故障時などにおいて紫外線センサの取出しが困難になり、特に、水処理装置を小型化した場合には一層着脱が難しくなってメンテナンスしにくくなるという問題も有している。 If the UV sensor is installed inside the reaction tank, it will be difficult to remove it in the event of a breakdown, etc., and especially if the water treatment equipment is downsized, it will become even more difficult to install and remove, making maintenance difficult. have.

本発明は、上記の課題点を解決するために開発したものであり、その目的とするところは、大量の水処理により長い流路で多数使用する場合にも、紫外線ランプの劣化状態を集中的に監視し、紫外線による部品への悪影響を最小限に抑えつつ高い除菌浄化機能により効率的に水処理可能な水処理装置を提供することにある。 The present invention was developed to solve the above-mentioned problems, and its purpose is to centralize the deterioration state of ultraviolet lamps even when they are used in large numbers in long channels due to large amounts of water treatment. The purpose of the present invention is to provide a water treatment device capable of efficiently treating water with a high sterilization and purification function while minimizing the harmful effects of ultraviolet rays on components.

上記目的を達成するため、請求項1に係る発明は、被処理水に殺菌線を含む紫外線を照射する紫外線ランプと、紫外線ランプを内蔵し被処理水が通水する反応槽と、反応槽の外側には被処理水を通過した紫外線のうち殺菌線より長波長帯域の紫外線を透過可能な透過部と、透過部を透過した殺菌線より長波長帯域の紫外線の紫外線照度を計測する紫外線センサを配置し、紫外線センサの紫外線照度の計測値に基づいて、殺菌線より長波長帯域の紫外線照度の所定値以下への低下をもって紫外線ランプの寿命とみなし、紫外線ランプの劣化状態を検知する制御部を備えた水処理装置である。 In order to achieve the above object, the invention according to claim 1 provides an ultraviolet lamp that irradiates ultraviolet rays containing germicidal radiation to water to be treated, a reaction tank having a built-in ultraviolet lamp and through which water to be treated flows, and a reaction tank. On the outside, there is a transmitting part that can transmit ultraviolet rays in a wavelength range longer than the germicidal radiation that has passed through the water to be treated, and an ultraviolet sensor that measures the ultraviolet irradiance of the UV radiation in a wavelength range longer than the germicidal radiation that has passed through the transparent part. control system that detects the deterioration state of the UV lamp by determining that the UV lamp has reached the end of its lifespan when the UV illuminance in the wavelength range longer than the germicidal line falls below a predetermined value based on the UV illuminance measurement value of the UV sensor. It is a water treatment equipment equipped with a section.

請求項2に係る発明は、紫外線センサに到達される紫外線は、300~400nmである水処理装置である。
請求項3に係る発明は、被処理水にオゾンを供給するオゾン供給部を有する水処理装置である。
The invention according to claim 2 is a water treatment device in which the ultraviolet light that reaches the ultraviolet sensor has a wavelength of 300 to 400 nm.
The invention according to claim 3 is a water treatment apparatus having an ozone supply section that supplies ozone to water to be treated.

請求項1に係る発明によると、反応槽の外側には前記被処理水を通過した紫外線のうち殺菌線より長波長帯域の紫外線を透過可能な透過部と、透過部を透過した殺菌線より長波長帯域の紫外線の紫外線照度を計測する紫外線センサを配置し、紫外線センサの紫外線照度の計測値に基づいて、殺菌線より長波長帯域の紫外線照度の所定値以下への低下をもって紫外線ランプの寿命とみなし、紫外線ランプの劣化状態を検知する制御部を備えたので、反応槽の内側に紫外線センサを設けることなく紫外線ランプの状態を確認できる。このため、部品に悪影響を与える波長の紫外線の外部への漏れを防ぐ構成にでき、悪影響の少ない波長の紫外線を反応槽の外部で計測することで紫外線センサなどの構成部品の故障などを防ぎつつ、除菌浄化に必要な紫外線照度を確保できる。大量の水処理が必要な半導体製造工程などの長い流路で多数使用する場合にも、それに伴って増加する紫外線ランプの劣化状態を集中的に監視できる。仮に、紫外線センサに不具合が生じた場合には、反応槽外部の紫外線センサを取り外して容易にメンテナンスできる。 According to the invention according to claim 1, on the outside of the reaction tank, there is a transmitting part that can transmit ultraviolet rays in a wavelength range longer than the germicidal radiation among the UV light that has passed through the water to be treated, and a transmitting part that is longer than the germicidal radiation that has passed through the transmitting part. An ultraviolet sensor is installed to measure the ultraviolet irradiance of the ultraviolet rays in the wavelength band , and based on the measured value of the ultraviolet rays of the ultraviolet rays in the wavelength band, the life of the ultraviolet lamp is determined when the ultraviolet irradiance in the wavelength band longer than the germicidal line decreases to a predetermined value or less. In addition, since a control unit for detecting the deterioration state of the ultraviolet lamp is provided, the state of the ultraviolet lamp can be checked without providing an ultraviolet sensor inside the reaction tank. For this reason, it is possible to create a configuration that prevents ultraviolet rays with wavelengths that have an adverse effect on components from leaking to the outside, and by measuring ultraviolet rays with less harmful wavelengths outside the reaction tank, it can prevent damage to components such as ultraviolet sensors. , it is possible to secure the ultraviolet light intensity necessary for sterilization and purification. Even when UV lamps are used in large numbers in long channels, such as in semiconductor manufacturing processes that require large amounts of water treatment, it is possible to intensively monitor the deterioration status of ultraviolet lamps, which increases accordingly . If a problem occurs with the ultraviolet sensor, the ultraviolet sensor can be removed from the outside of the reaction tank for easy maintenance.

請求項2に係る発明によると、可視光による紫外線センサへの悪影響を抑えることができる。
請求項3に係る発明によると、オゾン供給部によって供給されたオゾンの殺菌効果により被処理水中の細菌の多くは殺菌され、殺菌された細菌の死骸を含む有機物の多くを分解処理することができる。
According to the invention according to claim 2, the adverse effect of visible light on the ultraviolet sensor can be suppressed.
According to the invention according to claim 3, most of the bacteria in the water to be treated are sterilized due to the sterilizing effect of ozone supplied by the ozone supply unit, and most of the organic matter including the dead bodies of sterilized bacteria can be decomposed. .

本発明の水処理装置の一実施形態を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows one embodiment of the water treatment apparatus of this invention. 図1の水処理装置のブロック図である。FIG. 2 is a block diagram of the water treatment device of FIG. 1. FIG. 図1における反応槽を示す概略縦断面図である。FIG. 2 is a schematic vertical cross-sectional view showing the reaction tank in FIG. 1. FIG. (a)は反応槽の一部拡大概略断面図である。(b)は紫外線の距離と照度との関係を示すグラフである。(a) is a partially enlarged schematic sectional view of a reaction tank. (b) is a graph showing the relationship between the distance of ultraviolet rays and the illuminance. 被処理水に応じた紫外線ランプの寿命曲線をあらわすグラフである。It is a graph showing a lifespan curve of an ultraviolet lamp depending on the water to be treated. 純水の照度減衰特性をあらわすグラフである。It is a graph showing the illuminance attenuation characteristics of pure water. 養液の照度減衰特性をあらわすグラフである。It is a graph showing the illuminance attenuation characteristic of a nutrient solution.

以下に、本発明における水処理装置と水処理装置用紫外線ランプの劣化検知装置を図面に基づいて詳細に説明する。図1は、水処理装置の一実施形態の模式図を示し、図2は水処理装置のブロック図を示している。 EMBODIMENT OF THE INVENTION Below, the deterioration detection apparatus of the water treatment apparatus and the ultraviolet lamp for water treatment apparatuses in this invention is demonstrated in detail based on drawing. FIG. 1 shows a schematic diagram of an embodiment of a water treatment device, and FIG. 2 shows a block diagram of the water treatment device.

図において、水処理装置(以下、装置本体1という)は、例えば半導体製造設備や農耕設備に純水や養液を供給する循環流路の一部として組み込まれ、図示しないポンプで循環させた純水や養液を被処理水として除菌浄化し、流路に還元するように設けられる。 In the figure, a water treatment device (hereinafter referred to as the device main body 1) is incorporated as a part of a circulation channel that supplies pure water or nutrient solution to, for example, semiconductor manufacturing equipment or agricultural equipment. It is installed to sterilize and purify water or nutrient solution as water to be treated, and then return it to the flow path.

装置本体1は、反応槽2、紫外線センサ3、オゾンを供給するオゾン供給部4、記憶・制御装置5、光触媒7を有し、このうち、紫外線センサ3と記憶・制御装置5とにより水処理装置用紫外線ランプの劣化検知装置(以下、検知装置本体6という)が構成される。 The device main body 1 includes a reaction tank 2, an ultraviolet sensor 3, an ozone supply section 4 that supplies ozone, a storage/control device 5, and a photocatalyst 7. Among these, the ultraviolet sensor 3 and the storage/control device 5 perform water treatment. A deterioration detection device for an ultraviolet lamp for equipment (hereinafter referred to as the detection device main body 6) is constructed.

この装置本体1において、反応槽2には、被処理水に紫外線を照射する紫外線照射部となる紫外線ランプ10が内蔵され、反応槽2内部には光触媒7が設けられる。反応槽2の一次側には入口側接続口11、二次側には出口側接続口12がそれぞれ設けられ、入口側接続口11にオゾン供給部4が接続され、このオゾン供給部4の一次側に流入流路15、反応槽2の出口側接続口12に流出流路16がそれぞれ接続されることで循環流路の一部に配置される。この構成により、装置本体1は、オゾン供給部4によるオゾン供給機能と、紫外線ランプ10による紫外線照射機能と、光触媒7による光触媒作用機能とを有し、これらを有機的に結合した三位一体の機能により被処理水を効果的に除菌浄化処理するようになっている。 In this apparatus main body 1, a reaction tank 2 has a built-in ultraviolet lamp 10 serving as an ultraviolet irradiation unit that irradiates the water to be treated with ultraviolet rays, and a photocatalyst 7 is provided inside the reaction tank 2. An inlet side connection port 11 is provided on the primary side of the reaction tank 2, and an outlet side connection port 12 is provided on the secondary side, and an ozone supply section 4 is connected to the inlet side connection port 11. The inflow channel 15 is connected to the side, and the outflow channel 16 is connected to the outlet side connection port 12 of the reaction tank 2, so that it is disposed in a part of the circulation channel. With this configuration, the device main body 1 has an ozone supply function by the ozone supply unit 4, an ultraviolet irradiation function by the ultraviolet lamp 10, and a photocatalytic function by the photocatalyst 7, and has a trinity function that organically combines these functions. The water to be treated is effectively sterilized and purified.

図3において、紫外線ランプ10は反応槽2の中央部に配置され、この紫外線ランプ10の外周側に保護用の内ガラス管20が設けられ、この内ガラス管20の外周側に外ガラス管21が配置される。内ガラス管20と外ガラス管21との間には被処理水の略円筒形状の流路22が形成され、この流路22内の内周側、外周側に沿うようして長さ方向に光触媒7が配置される。このように、紫外線ランプ10が反応槽2の中央部に配置されていることで、反応槽2全体がコンパクト化され、かつ紫外線ランプ10から被処理水に向けて放射状に紫外線が照射されることで、被処理水を効率的に除菌浄化する。 In FIG. 3, an ultraviolet lamp 10 is placed in the center of a reaction tank 2, an inner glass tube 20 for protection is provided on the outer circumference of the ultraviolet lamp 10, and an outer glass tube 21 is provided on the outer circumference of the inner glass tube 20. is placed. A substantially cylindrical flow path 22 for water to be treated is formed between the inner glass tube 20 and the outer glass tube 21, and a flow path 22 is formed in the length direction along the inner and outer circumferential sides of the flow path 22. A photocatalyst 7 is arranged. In this way, by arranging the ultraviolet lamp 10 in the center of the reaction tank 2, the entire reaction tank 2 can be made compact, and ultraviolet rays can be irradiated radially from the ultraviolet lamp 10 toward the water to be treated. This effectively sterilizes and purifies the water to be treated.

ここで、紫外線とは、可視光線の波長よりも短くX線の波長よりも長い不可視光線の電磁波であり、一般的にはおよそ100~400nmの波長の光を表している。このうち、特に250~270nmの波長の紫外線の殺菌性が強いといわれており、さらには波長254nm近傍の紫外線は殺菌性がより高く、殺菌線(殺菌放射)と呼ばれている。 Here, ultraviolet rays are invisible electromagnetic waves that are shorter than the wavelength of visible light and longer than the wavelength of X-rays, and generally represent light with a wavelength of about 100 to 400 nm. Among these, ultraviolet rays with a wavelength of 250 to 270 nm are said to have particularly strong bactericidal properties, and ultraviolet rays with a wavelength of around 254 nm have even higher bactericidal properties and are called germicidal radiation (sterilizing radiation).

本実施形態における紫外線ランプ10は、略254nm近傍の波長の紫外線を中心に発光するものが用いられる。これにより、後述のオゾン供給部4によりオゾンが含有された被処理水に略254nmの波長の紫外線が照射されたときに、促進酸化作用によりオゾンが活性酸素と酸素とに分解され、活性酸素により様々な活性酸素種がつくられる。このとき生成されるヒドロキシラジカルは、オゾンよりも酸化力が強く、オゾンに抵抗性のある微生物もより効果的に殺菌可能になる。 The ultraviolet lamp 10 in this embodiment is one that emits mainly ultraviolet light with a wavelength around 254 nm. As a result, when the ozone-containing water to be treated is irradiated with ultraviolet rays with a wavelength of approximately 254 nm by the ozone supply section 4 described later, ozone is decomposed into active oxygen and oxygen due to accelerated oxidation, and the active oxygen Various reactive oxygen species are created. The hydroxyl radicals generated at this time have stronger oxidizing power than ozone, and can more effectively kill microorganisms that are resistant to ozone.

さらに、紫外線ランプ10は、略254nm近傍の波長の紫外線以外の光、具体的には波長略400nm近傍やそれ以上の波長の紫外線も含んでいる。このうち略254nm近傍の波長の紫外線は、紫外線センサ3で検知することが難しいが、略400nm近傍の波長及びそれ以上の波長の光は、紫外線センサ3で検知可能になっている。
ここでいう略400nm近傍とは、350nm±50nmを意味する。ただし、この値は紫外線ランプ10が有する分光分布により異なるが、少なくとも254nmよりも長い波長の紫外線が好ましい。
Furthermore, the ultraviolet lamp 10 also contains light other than ultraviolet light with a wavelength of about 254 nm, specifically, ultraviolet light with a wavelength of about 400 nm or more. Among these, it is difficult for the ultraviolet sensor 3 to detect ultraviolet light with a wavelength around 254 nm, but the ultraviolet sensor 3 can detect light with a wavelength around around 400 nm and more.
The approximately 400 nm vicinity herein means 350 nm±50 nm. However, although this value varies depending on the spectral distribution of the ultraviolet lamp 10, ultraviolet rays with a wavelength longer than at least 254 nm are preferable.

紫外線ランプ10は、略400nmの波長の光を有する蛍光ランプや、LEDを複数個並べたランプであってもよい。さらに、紫外線ランプ10は、反応槽2の形状や内部構造に応じて直線形、円筒形、螺旋形、波形などの各種形状のものを用いることもできる。 The ultraviolet lamp 10 may be a fluorescent lamp that emits light with a wavelength of approximately 400 nm, or a lamp in which a plurality of LEDs are arranged. Further, the ultraviolet lamp 10 may have various shapes such as a linear shape, a cylindrical shape, a spiral shape, and a wave shape depending on the shape and internal structure of the reaction tank 2.

図4(a)、図4(b)において、内ガラス管20は、紫外線透過率、耐熱性、強度等の理由から、例えば石英ガラスにより設けられ、紫外線ランプ10から少なくとも距離Lが4~5mm程度離れるような内径に形成される。内ガラス管20を石英ガラスで形成した場合、紫外線のうちの略254nm近傍から略400nm程度の波長の光を透過可能になる。内ガラス管20を前記の寸法で形成する理由としては、紫外線ランプ10からの距離が4mmよりも小さいと加工精度等によって上端側と下端側とで歪みが生じたときに長尺状の端部同士の歪みが増大し、紫外線ランプ10に接触して適切に組付けできない可能性があるためである。一方、距離が5mmよりも大きいと、距離が増すにつれて減衰率が激しくなる略254nmの波長の紫外線を、被処理水に十分に照射できなくなる。 In FIGS. 4(a) and 4(b), the inner glass tube 20 is made of, for example, quartz glass for reasons such as ultraviolet transmittance, heat resistance, and strength, and is at least a distance L from the ultraviolet lamp 10 of 4 to 5 mm. They are formed with inner diameters that are separated by a certain degree. When the inner glass tube 20 is made of quartz glass, it becomes possible to transmit ultraviolet light having wavelengths from about 254 nm to about 400 nm. The reason why the inner glass tube 20 is formed with the above-mentioned dimensions is that if the distance from the ultraviolet lamp 10 is less than 4 mm, the elongated end may be distorted due to processing precision or the like. This is because the distortion between them will increase, and there is a possibility that they will come into contact with the ultraviolet lamp 10 and cannot be properly assembled. On the other hand, if the distance is greater than 5 mm, the water to be treated cannot be sufficiently irradiated with ultraviolet rays having a wavelength of approximately 254 nm, the attenuation rate of which increases as the distance increases.

反応槽2の外表面側の外ガラス管(透過部)21は、略254nmよりも波長の長い紫外線を透過可能な特性を有するガラスにより設けられる。このため、外ガラス管21は、例えばホウケイ酸ガラスにより設けられ、このホウケイ酸ガラスは、紫外線のうち略400nm近傍の波長の光のみを透過し、略254nm近傍の波長の殺菌線を透過することはできない。 The outer glass tube (transmission part) 21 on the outer surface side of the reaction tank 2 is made of glass that has the property of being able to transmit ultraviolet rays having a wavelength longer than about 254 nm. For this reason, the outer glass tube 21 is made of, for example, borosilicate glass, and this borosilicate glass only transmits ultraviolet light with a wavelength around 400 nm, and transmits germicidal radiation with a wavelength around 254 nm. I can't.

上記の材料で内ガラス管20、外ガラス管21をそれぞれ形成しているため、紫外線ランプ10から紫外線が照射されたときには、図4(b)に示すように、波長略254nm近傍の光が内ガラス管20を透過し、この光が被処理水に達すると大きく照度が減少し、内ガラス管20の外周面から長さXが数mm程度の位置で照度がゼロになる。この場合、この長さX内に内周側の光触媒7が入っているため、略254nmの波長の紫外線が光触媒に作用するようになっている。一方、紫外線帯域の中で長波長成分である波長370~400nm近傍の光は、徐々に照度が低下しつつ内ガラス管20、流路22、外ガラス管21を透過する。 Since the inner glass tube 20 and the outer glass tube 21 are each made of the above materials, when the ultraviolet rays are irradiated from the ultraviolet lamp 10, as shown in FIG. 4(b), light with a wavelength of about 254 nm is internalized. When this light passes through the glass tube 20 and reaches the water to be treated, the illumination intensity decreases significantly and becomes zero at a position where the length X is about several mm from the outer peripheral surface of the inner glass tube 20. In this case, since the photocatalyst 7 on the inner peripheral side is within this length X, ultraviolet rays with a wavelength of approximately 254 nm act on the photocatalyst. On the other hand, light having a wavelength of around 370 to 400 nm, which is a long wavelength component in the ultraviolet band, passes through the inner glass tube 20, the flow path 22, and the outer glass tube 21 while the illuminance gradually decreases.

図4(a)に示すように、紫外線センサ3は、外ガラス管(透過部)21の外側に近接状態で配置され、この紫外線センサ3により、被処理水が反応槽2内を通過するときの内ガラス管20、流路22、外ガラス管(透過部)21を透過する紫外線ランプ10の紫外線の照度を計測可能になっている。紫外線センサ3は、略254nmよりも波長の長い紫外線照度を検知することが可能なセンサであり、図4(b)において、外ガラス管(透過部)21の外側に透過した略400nm近傍の波長の紫外線の照度を計測し、その照度の大きさにより後述の記憶・制御装置5を介して紫外線ランプ10の劣化診断を可能としている。 As shown in FIG. 4(a), the ultraviolet sensor 3 is placed close to the outside of the outer glass tube (transmission part) 21, and the ultraviolet sensor 3 detects when the water to be treated passes through the reaction tank 2. The illuminance of the ultraviolet rays from the ultraviolet lamp 10 that passes through the inner glass tube 20, flow path 22, and outer glass tube (transmission section) 21 can be measured. The ultraviolet sensor 3 is a sensor capable of detecting ultraviolet illuminance with a wavelength longer than about 254 nm, and in FIG. The illuminance of the ultraviolet rays is measured, and the deterioration of the ultraviolet lamp 10 can be diagnosed based on the magnitude of the illuminance via the storage/control device 5, which will be described later.

紫外線センサ3の受光側には、略400nmよりも長い波長の可視光をカットするフィルタ25が設けられる。このフィルタ25により可視光をカットして紫外線センサ3への悪影響を抑え、紫外線センサ3で略400nm近傍の波長のみの照度を計測可能に設けている。フィルタ25は、略400nm近傍未満の紫外線をカットする性質を有している必要はない。これは前述したように、略400nm未満の紫外線は、紫外線センサ3に到達するまでに照度0%に減衰するためである。 A filter 25 is provided on the light receiving side of the ultraviolet sensor 3 to cut off visible light having a wavelength longer than approximately 400 nm. This filter 25 cuts visible light to suppress its adverse effect on the ultraviolet sensor 3, and is provided so that the ultraviolet sensor 3 can measure only the illuminance of wavelengths around approximately 400 nm. The filter 25 does not need to have the property of cutting ultraviolet rays of less than about 400 nm. This is because, as described above, ultraviolet rays with a wavelength of less than approximately 400 nm attenuate to 0% illuminance before reaching the ultraviolet sensor 3.

光触媒7は、金属チタン基材の表面を酸化させて酸化チタンを生成することで剥離しにくい構成に設けられ、例えば、網やチタン線、繊維状チタン材料の集合体、或は多孔性チタン材料等からなるチタン又はチタン合金などの材料の表面側に二酸化チタンを被覆して設けられる。金属チタン基材を細状に形成した場合には反応面積が大きくなり、オゾンとの反応性が良くなる。金属チタン基材は、チタンやチタン合金以外の材料であってもよく、例えばガラスやシリカゲル等を材料としてこの材料の表面に酸化チタンを形成するようにしてもよいが、耐久性を考えた場合、チタン基材に生成したものが望ましい。光触媒7は、略250~350nmの波長の紫外線光線で活性化しやすくなっている。 The photocatalyst 7 is provided in a structure that is difficult to peel off by oxidizing the surface of a metal titanium base material to generate titanium oxide, such as a net, a titanium wire, an aggregate of fibrous titanium materials, or a porous titanium material. It is provided by coating the surface side of a material such as titanium or titanium alloy with titanium dioxide. When the metal titanium base material is formed into a thin shape, the reaction area becomes larger and the reactivity with ozone becomes better. The metal titanium base material may be a material other than titanium or titanium alloy, for example, glass or silica gel may be used as a material and titanium oxide may be formed on the surface of this material, but in consideration of durability. , those formed on a titanium base material are desirable. The photocatalyst 7 is easily activated by ultraviolet light having a wavelength of about 250 to 350 nm.

図1の装置本体において、オゾン供給部4は、前述のように反応槽2の一次側に接続され、反応槽2側に流れる被処理水にオゾンを供給可能に設けられる。オゾン供給部4は、オゾナイザ30、エジェクタ31、オゾン供給管32、逆止弁33を備えている。 In the apparatus main body of FIG. 1, the ozone supply section 4 is connected to the primary side of the reaction tank 2 as described above, and is provided so as to be able to supply ozone to the water to be treated flowing toward the reaction tank 2 side. The ozone supply section 4 includes an ozonizer 30, an ejector 31, an ozone supply pipe 32, and a check valve 33.

オゾナイザ30は、アース電極41と高圧電極を貼りつけた誘電体42との間に放電空隙を有する構造を成し、アース電極41と誘電体42との間に高電圧を印加して放電させ、放電空隙を流れる空気を原料としてオゾンを生成するものである。空気は、図示しないポンプによりオゾナイザ30の放電空隙に連続的に供給され、生成されたオゾン(及び溶存酸素)は、オゾナイザ30に接続されたオゾン供給管32を介してエジェクタ31に供給可能に設けられる。 The ozonizer 30 has a structure having a discharge gap between an earth electrode 41 and a dielectric 42 to which a high voltage electrode is attached, and applies a high voltage between the earth electrode 41 and the dielectric 42 to cause a discharge. Ozone is generated using the air flowing through the discharge gap as a raw material. Air is continuously supplied to the discharge gap of the ozonizer 30 by a pump (not shown), and the generated ozone (and dissolved oxygen) is provided so as to be supplied to the ejector 31 via an ozone supply pipe 32 connected to the ozonizer 30. It will be done.

エジェクタ31は、例えば、フッ素樹脂等の樹脂、或はセラミックや金属を材料として形成され、流入流路15に設けられることによりこの流入流路15を流れる被処理水にオゾナイザ30により生成されたオゾンを混合可能になっている。エジェクタ31とオゾナイザ30との間には、逆流防止用の逆止弁33が設けられ、この逆止弁33を通過したオゾンと溶存酸素は、エジェクタ31内部の図示しない通路を通過することで流速が速められながら気泡状態で被処理水に溶け込み、微細気泡状の混合液(オゾン水)を生成して反応槽2側に供給可能になっている。 The ejector 31 is made of a resin such as fluororesin, or ceramic or metal, and is provided in the inflow channel 15 to inject ozone generated by the ozonizer 30 into the water to be treated flowing through the inflow channel 15. It is possible to mix. A check valve 33 for backflow prevention is provided between the ejector 31 and the ozonizer 30, and the ozone and dissolved oxygen that have passed through the check valve 33 pass through a passage (not shown) inside the ejector 31, thereby increasing the flow rate. The ozone water dissolves into the water to be treated in the form of bubbles while being accelerated, producing a mixed liquid (ozone water) in the form of fine bubbles, which can be supplied to the reaction tank 2 side.

図2において、記憶・制御装置5は、反応槽2、紫外線センサ3、オゾン供給部4に電気的に接続され、紫外線センサ3で計測された略400nm近傍の波長の紫外線照度から、特定の波長の紫外線照度に換算する機能を有している。装置本体1は、この特定の波長の紫外線照度から、紫外線ランプ10の消灯又は劣化状態を検知する機能を有する。 In FIG. 2, the storage/control device 5 is electrically connected to the reaction tank 2, the ultraviolet sensor 3, and the ozone supply section 4, and selects a specific wavelength from the ultraviolet illuminance at a wavelength near approximately 400 nm measured by the ultraviolet sensor 3. It has the function of converting into ultraviolet irradiance. The device main body 1 has a function of detecting whether the ultraviolet lamp 10 is turned off or deteriorated from the ultraviolet illuminance of this specific wavelength.

この場合、図5の時間経過に対する紫外線ランプ10の略400nm近傍の波長の照度変化を示すグラフにおいて、記憶・制御装置5は、紫外線照度がゼロのときに紫外線ランプ10が消灯状態にあることを検知し、又は、紫外線照度が予め設定した処理の値以下に低下したときに、寿命時期であることを検知する機能を備えている。 In this case, in the graph of FIG. 5 showing the change in illuminance of the ultraviolet lamp 10 at wavelengths around 400 nm over time, the storage/control device 5 can detect that the ultraviolet lamp 10 is in the off state when the ultraviolet illuminance is zero. It has a function of detecting that it is at the end of its life when the ultraviolet illuminance falls below a preset processing value.

本実施形態において、特定の波長の紫外線照度とは、被処理水をラジカル反応させる前述した略254nmの波長の紫外線照度であり、被処理水への除菌浄化性の低い前述の略400nmの波長の紫外線照度を計測することで、最も除菌浄化性に優れた略254nmの波長の紫外線照度を認識可能になっている。 In this embodiment, the ultraviolet irradiance at a specific wavelength is the above-mentioned ultraviolet irradiance at a wavelength of about 254 nm that causes a radical reaction in the water to be treated, and the above-mentioned ultraviolet irradiance at a wavelength of about 400 nm, which has a low sterilization and purification effect on the water to be treated. By measuring the ultraviolet irradiance of 254 nm, it is possible to recognize the ultraviolet irradiance with a wavelength of about 254 nm, which has the best sterilization and purification properties.

記憶・制御装置5は、各種データを記憶するための記憶部50と、装置本体1の動作状態を検知可能な制御部51とを有している。
記憶部50には、照度減衰特性データ55や、紫外線センサ3による紫外線照度の計測結果などが記憶される。照度減衰特性データ55は、紫外線センサ3で計測される紫外線ランプ10の紫外線照度から特定の波長の紫外線照度への換算用として、被処理水の種類ごとに記憶部50に記憶される。
The storage/control device 5 includes a storage section 50 for storing various data, and a control section 51 capable of detecting the operating state of the device main body 1.
The storage unit 50 stores illuminance attenuation characteristic data 55, measurement results of ultraviolet illuminance by the ultraviolet sensor 3, and the like. The illuminance attenuation characteristic data 55 is stored in the storage unit 50 for each type of water to be treated for conversion from the ultraviolet illuminance of the ultraviolet lamp 10 measured by the ultraviolet sensor 3 to the ultraviolet illuminance of a specific wavelength.

本例における照度減衰特性データ55は、図6に示す半導体製造用途で使用される純水、及び図7に示す農業用途で使用される(培)養液の2つの被処理水に対応したグラフを備える。各グラフにおいて、実線の曲線は、紫外線ランプ10照射時に発光する紫外線(100~400nmの波長の光)の特性を示し、グラフ中の2つの縦軸にその単位を示している。破線の曲線は、紫外線の特性と比較するために、紫外線ランプ10照射時に発光する可視光(略400~略780nmの波長の光)の特性を示したものであり、グラフ中の左側の縦軸にその単位を示している。 The illuminance attenuation characteristic data 55 in this example is a graph corresponding to two types of water to be treated: pure water used in semiconductor manufacturing applications shown in FIG. 6, and (culture) solution used in agricultural applications shown in FIG. Equipped with In each graph, the solid curve shows the characteristics of ultraviolet light (light with a wavelength of 100 to 400 nm) emitted when the ultraviolet lamp 10 is irradiated, and the units are shown on the two vertical axes in the graph. The broken line curve shows the characteristics of visible light (light with a wavelength of approximately 400 to approximately 780 nm) emitted when irradiated with an ultraviolet lamp 10 in order to compare with the characteristics of ultraviolet light, and the vertical axis on the left side of the graph The unit is shown in .

これらの照度減衰特性データ55より、紫外線センサ3で計測した略400nm近傍の波長の紫外線照度(400nm照度とする:単位mW/cm)を、略254nm近傍の波長の紫外線照度(254nm照度とする:単位mW/cm)に変換する際には、記憶・制御装置5により以下のようにおこなわれる。
なお、紫外線ランプ10は一般的には254nm近傍の波長の紫外線照度が新品時のこの照度の70%以下になった際、寿命と見做している。ただし、あくまでこの寿命は一般的な話であるから、この寿命は紫外線ランプを製造するメーカー等によって異なる。
Based on these illuminance attenuation characteristic data 55, the ultraviolet illuminance at a wavelength around approximately 400 nm measured by the ultraviolet sensor 3 (400 nm illuminance: unit mW/cm 2 ) is changed from the ultraviolet illuminance at a wavelength around approximately 254 nm (254 nm illuminance). : unit: mW/cm 2 ), the storage/control device 5 performs the conversion as follows.
It should be noted that the ultraviolet lamp 10 is generally considered to have reached the end of its lifespan when the ultraviolet illuminance at a wavelength around 254 nm becomes 70% or less of the illuminance when new. However, this lifespan is just a general story, and this lifespan varies depending on the manufacturer of the ultraviolet lamp.

図6の純水の場合、グラフから例えば、400nm照度が初期値Bの0.02mW/cmのときに254nm照度が略8mW/cm、400nm照度が0.018mW/cmのときに254nm照度が略5.75mW/cm、400nm照度が0.017mW/cmのときに254nm照度が略4.5mW/cmにそれぞれ変換される。 In the case of pure water in Figure 6, the graph shows that, for example, when the 400 nm illuminance is the initial value B of 0.02 mW/cm 2 , the 254 nm illuminance is approximately 8 mW/cm 2 , and when the 400 nm illuminance is 0.018 mW/cm 2 , the 254 nm illuminance is approximately 8 mW/cm 2 . When the illuminance is approximately 5.75 mW/cm 2 and the 400 nm illuminance is 0.017 mW/cm 2 , the 254 nm illuminance is converted to approximately 4.5 mW/cm 2 .

一方、グラフ中の可視光の場合、例えば、この可視光の照度(可視光照度とする:単位LX)が初期値Bの280LXのときに254nm照度が略8mW/cmであり、この可視光照度は、254nm照度が略4.5W/cmまで低下した場合にもほとんど変わらない。すなわち、仮に可視光の照度を計測したとしても、その計測値が略4.5W/cmよりも小さくなるまで変わることがないため、その段階まで254nm照度の低下を確認することはできない。 On the other hand, in the case of visible light in the graph, for example, when the illuminance of this visible light (visible light illuminance: unit LX) is the initial value B of 280LX, the 254 nm illuminance is approximately 8 mW/ cm2 , and this visible light illuminance is , there is almost no change even when the 254 nm illuminance is reduced to approximately 4.5 W/cm 2 . That is, even if visible light illuminance were measured, it would not change until the measured value became smaller than about 4.5 W/cm 2 , so it would not be possible to confirm a decrease in 254 nm illuminance until that stage.

図7の養液の場合も同様であり、グラフから例えば、400nm照度が初期値Bの0.01mW/cmのときに254nm照度が略8mW/cm、400nm照度が略0.0095mW/cmのときに254nm照度が略5.6mW/cmにそれぞれ変換される。 The same is true for the nutrient solution in FIG. 7, and from the graph, for example, when the 400 nm illuminance is the initial value B of 0.01 mW/cm 2 , the 254 nm illuminance is approximately 8 mW/cm 2 , and the 400 nm illuminance is approximately 0.0095 mW/cm 2 2 , the 254 nm illuminance is converted to approximately 5.6 mW/cm 2 .

図7における可視光の場合、例えば、可視光照度が初期値Bの270LXのときに254nm照度が略8mW/cmであり、この可視光照度は、254nm照度が略5.6W/cmまで低下したときに反対に上昇する傾向にある。これにより、可視光の照度を計測したとしても、254nm照度の低下を確認することはできない。
上記のように、400nm照度を計測し、その計測結果を254nm照度に変換することで紫外線ランプ10の照度低下を細かく測定可能になっている。
In the case of visible light in FIG. 7, for example, when the visible light illuminance is 270LX, which is the initial value B, the 254 nm illuminance is approximately 8 mW/ cm2 , and this visible light illuminance has decreased to approximately 5.6 W/ cm2 . Sometimes it tends to go up. As a result, even if visible light illuminance is measured, a decrease in 254 nm illuminance cannot be confirmed.
As described above, by measuring 400 nm illuminance and converting the measurement result to 254 nm illuminance, it is possible to precisely measure the decrease in illuminance of the ultraviolet lamp 10.

図6、図7において、一点鎖線は、254nm照度の寿命となる基準を表している。紫外線ランプ10の寿命としては、初期値Bの照度から例えば70%の照度まで低下した場合を一つの基準として交換するとよく、この場合、図6の純水、図7の養液ともに254nm照度が5.6mW/cmになった場合となる。より好ましくは、初期値Bの照度から90%の照度まで254nm照度が低下した場合を寿命とするのがよい。
なお、図6の純水の場合、55%の照度まで低下したときにも可視光の照度が変わらないため、可視光センサの計測により紫外線ランプ10の寿命を判断することは難しい。
つまり、254nmの紫外線照度の初期値の70%が400nm近傍の紫外線照度の初期値の90%であるから、400nm近傍の紫外線照度をこの紫外線センサ3で測定することにより、紫外線ランプ3の寿命を診断することができる。
In FIGS. 6 and 7, the dashed-dotted line represents the lifespan standard of 254 nm illuminance. As for the lifespan of the ultraviolet lamp 10, it is recommended to replace it when the illuminance decreases from the initial value B to, for example, 70%. This is the case when it becomes 5.6mW/ cm2 . More preferably, the life span is determined when the 254 nm illuminance decreases from the initial value B illuminance to 90% illuminance.
Note that in the case of pure water in FIG. 6, the illuminance of visible light does not change even when the illuminance decreases to 55%, so it is difficult to judge the lifespan of the ultraviolet lamp 10 by measurement with a visible light sensor.
In other words, 70% of the initial value of the UV illuminance at 254 nm is 90% of the initial value of the UV illuminance near 400 nm, so by measuring the UV illuminance around 400 nm with this UV sensor 3, the life of the UV lamp 3 can be determined. can be diagnosed.

一方において、記憶・制御装置5における制御部51は、紫外線センサ3で計測された紫外線照度を、照度減衰特性データ55を介して特定の波長の紫外線照度、すなわち略254nmの波長の紫外線照度に換算し、この換算値から紫外線ランプ10の消灯又は劣化状態を検知する機能を有している。 On the other hand, the control unit 51 in the storage/control device 5 converts the ultraviolet illuminance measured by the ultraviolet sensor 3 into the ultraviolet illuminance of a specific wavelength, that is, the ultraviolet illuminance of a wavelength of approximately 254 nm, via the illuminance attenuation characteristic data 55. However, it has a function of detecting whether the ultraviolet lamp 10 is turned off or deteriorated from this converted value.

そして、制御部51は、略254nmの波長の紫外線照度の結果に基づいて、紫外線ランプ10の要交換時期、反応槽2の要掃除時期、紫外線ランプ10の消耗或は故障による消灯の各状態を知らせる所定の信号を発する機能を有し、この信号を確認することで紫外線ランプ10の状況に応じた所定の処置を施すことが可能になっている。 Based on the results of the UV illuminance at a wavelength of about 254 nm, the control unit 51 determines when the UV lamp 10 needs to be replaced, when the reaction tank 2 needs to be cleaned, and whether the UV lamp 10 is turned off due to wear or failure. It has a function of emitting a predetermined signal to notify the user, and by checking this signal, it is possible to take a predetermined action depending on the status of the ultraviolet lamp 10.

なお、本実施形態において、被処理水が反応槽2を通過するときの紫外線照度から換算する特定の波長の紫外線照度として、略254nmの波長の紫外線照度としているが、この特定の波長の紫外線照度は、被処理流体の種類等に応じて異なる波長の紫外線照度とすることもできる。 In this embodiment, the ultraviolet irradiance at a specific wavelength, which is calculated from the ultraviolet irradiance when the water to be treated passes through the reaction tank 2, is the ultraviolet irradiance at a wavelength of approximately 254 nm. The ultraviolet irradiance can also be set to different wavelengths depending on the type of fluid to be treated.

紫外線センサ3で紫外線ランプ10からの略400nm近傍の波長の紫外線照度を計測しているが、異なる波長の紫外線照度を計測してもよく、紫外線ランプ10の種類などにより外ガラス管21を透過する波長が異なる場合、その紫外線ランプ10に応じた適宜の紫外線センサ3を用いることができる。
紫外線を照射可能であれば、紫外線ランプ10の代わりに、例えば低圧又は高圧水銀ランプなどのランプを用いることもできる。
Although the ultraviolet sensor 3 measures the ultraviolet irradiance at a wavelength around 400 nm from the ultraviolet lamp 10, it is also possible to measure the ultraviolet irradiance at a different wavelength, and depending on the type of the ultraviolet lamp 10, etc. When the wavelengths are different, an appropriate ultraviolet sensor 3 can be used depending on the ultraviolet lamp 10.
A lamp such as a low-pressure or high-pressure mercury lamp may be used instead of the ultraviolet lamp 10 as long as it can emit ultraviolet rays.

また、被処理水は、純水や養液以外であってもよく、例えば、養殖用の培養液を被処理水とすることもできる。この場合、被処理水に応じた照度減衰特性データ55を記憶部50に記憶することでその被処理水に応じた紫外線ランプ10の消灯又は劣化状態などを検知可能になる。 Moreover, the water to be treated may be other than pure water or a nutrient solution, and for example, a culture solution for aquaculture may be used as the water to be treated. In this case, by storing the illuminance attenuation characteristic data 55 corresponding to the water to be treated in the storage unit 50, it becomes possible to detect whether the ultraviolet lamp 10 is turned off or deteriorated depending on the water to be treated.

続いて、上述した水処理装置の動作並びにこの動作中に紫外線ランプの消灯又は劣化状態を検知するときの制御例を説明する。
図1において、図示しないポンプにより被処理水が装置本体1側に送水されると、この被処理水は流入流路15よりオゾン供給部4に流入する。
Next, an example of the operation of the water treatment apparatus described above and a control example for detecting whether the ultraviolet lamp is turned off or deteriorated during this operation will be described.
In FIG. 1, when water to be treated is sent to the apparatus main body 1 side by a pump (not shown), this water to be treated flows into the ozone supply section 4 through the inflow channel 15.

このとき、被処理水には、流入流路15に設けたエジェクタ31を介してオゾナイザ30により生成されたオゾン(及び溶存酸素)が混合され、微細気泡状のオゾンが気泡状態で被処理水中に溶け込んだ混合液(オゾン水)が生成される。この場合に供給されるオゾンの濃度は、低濃度であると細菌の殺菌と有機物の分解ができず、高濃度であると下流側の機器や部品の寿命を短くするおそれがある。そのため、水処理する被処理水の総量、被処理水の送水量、効果的なオゾン処理を行うためのオゾン濃度の下限値と上限値を総合的に判断し、本実施形態では、オゾン供給部4で供給するオゾン量を0.05~2.0(g/H)に調整している。 At this time, the ozone (and dissolved oxygen) generated by the ozonizer 30 is mixed with the water to be treated via the ejector 31 provided in the inflow channel 15, and the ozone in the form of microbubbles is mixed into the water to be treated in the form of bubbles. A dissolved mixed liquid (ozone water) is generated. In this case, if the concentration of ozone supplied is low, bacteria cannot be sterilized and organic matter cannot be decomposed, and if the ozone is high concentration, there is a risk of shortening the lifespan of equipment and parts on the downstream side. Therefore, the total amount of water to be treated, the amount of water to be treated, and the lower and upper limits of ozone concentration for effective ozone treatment are comprehensively determined. The amount of ozone supplied in step 4 is adjusted to 0.05 to 2.0 (g/H).

供給されたオゾンの殺菌効果により被処理水中の細菌の多くは殺菌され、殺菌された細菌の死骸を含む有機物の多くは分解処理される。 Most of the bacteria in the water to be treated are sterilized by the sterilizing effect of the supplied ozone, and most of the organic matter including the dead bodies of the sterilized bacteria is decomposed.

続いて、オゾンを含んだ被処理水が入口側接続口11から反応槽2に流入すると、流路22内の紫外線ランプ10と光触媒7とを通過し、オゾンが溶け込んだ被処理水に紫外線ランプから紫外線が照射されることにより、・OH(ヒドロキシラジカル又はOHラジカル)といわれるラジカル(不対電子を持つ化学種で活性化が強い物質)が生成される。 Next, when the water to be treated containing ozone flows into the reaction tank 2 from the inlet side connection port 11, it passes through the ultraviolet lamp 10 and the photocatalyst 7 in the flow path 22, and the water to be treated containing ozone is exposed to the ultraviolet lamp. By being irradiated with ultraviolet rays, a radical called .OH (hydroxy radical or OH radical) (a chemical species with unpaired electrons and highly activated) is generated.

この・OHは活性化が強いため、オゾン供給部4でオゾン処理した際に殺菌されずに被処理水中に残留している細菌をほぼ殺菌することができると共に、分解されずに被処理水中に残留している有機物をほぼ分解処理できる。 Since this OH is highly activated, it can almost sterilize bacteria that remain in the water to be treated without being sterilized when ozone treatment is performed in the ozone supply unit 4, and it can also sterilize bacteria that remain in the water to be treated without being decomposed. Most of the remaining organic matter can be decomposed.

以上のように、反応槽2では、紫外線ランプ10と光触媒7によりOHラジカルが生成されることと、低濃度のオゾンとの組合せ、即ち有機的結合により残留している細菌・有機物を確実に除菌浄化する。
反応槽2で除菌浄化処理された被処理水は、出口側接続口12から流出流路16を介して循環流路に戻される。
As described above, in the reaction tank 2, the combination of the generation of OH radicals by the ultraviolet lamp 10 and the photocatalyst 7 and the low concentration of ozone, that is, the organic bond, ensures that residual bacteria and organic matter are removed. Purify bacteria.
The water to be treated that has been sterilized and purified in the reaction tank 2 is returned to the circulation channel from the outlet side connection port 12 via the outflow channel 16.

上記の装置本体1の動作中に紫外線ランプ10の照射状態を確認する場合、反応槽2内に被処理水が流れている状態で紫外線ランプ10の400nmの波長の紫外線照度を紫外線センサ3で計測し、この計測結果を記憶・制御装置5の照度減衰特性データ55を介して略254nm近傍の波長の紫外線照度に換算することで、この紫外線照度から紫外線ランプ10の消灯又は劣化状態を検知可能になっている。 When checking the irradiation state of the ultraviolet lamp 10 while the apparatus body 1 described above is in operation, the ultraviolet light intensity of the ultraviolet lamp 10 at a wavelength of 400 nm is measured with the ultraviolet sensor 3 while the water to be treated is flowing in the reaction tank 2. By converting this measurement result into ultraviolet illuminance with a wavelength around 254 nm via the illuminance attenuation characteristic data 55 of the storage/control device 5, it is possible to detect whether the ultraviolet lamp 10 is turned off or deteriorated from this ultraviolet illuminance. It has become.

具体的には、例えば、以下の手順により紫外線ランプ10の状態を確認するようにする。ここで、図5は、被処理水に応じた紫外線ランプ10の寿命曲線を示し、時間の経過に対する略400nm近傍の波長の光の照度の減衰の基準となる曲線を表している。この基準となる紫外線ランプの寿命曲線のデータも記憶部50に記憶されている。 Specifically, for example, the state of the ultraviolet lamp 10 is checked by the following procedure. Here, FIG. 5 shows a lifespan curve of the ultraviolet lamp 10 depending on the water to be treated, and represents a curve that serves as a reference for the attenuation of the illuminance of light with a wavelength near 400 nm over time. Data on the life curve of the ultraviolet lamp, which serves as this reference, is also stored in the storage unit 50.

水処理装置の運転を開始した場合、図5のグラフにおいて、水処理を開始してからの運転の総時間(以下、総時間という)が所定時間Aに達したか否かが記憶・制御装置5で判定される。この「所定時間A」とは、新品の紫外線ランプ10が初めて点灯してから照度が安定するまでの時間に基づいて設定される。所定時間Aを経過させる理由としては、図の二点鎖線に示すように、新品の紫外線ランプ10の初期点灯時には照度が安定しにくく、時間の経過と共に徐々に照度が高まって安定した照度となるためである。所定時間Aは、例えば約900秒程度とするとよく、紫外線ランプ10の種類や個体差により適宜設定するようにする。 When the operation of the water treatment equipment is started, the storage/control device determines whether the total operating time (hereinafter referred to as total time) has reached the predetermined time A in the graph of FIG. It is judged as 5. This "predetermined time A" is set based on the time from when the new ultraviolet lamp 10 is turned on for the first time until the illuminance becomes stable. The reason for allowing the predetermined time A to elapse is that, as shown by the two-dot chain line in the figure, the illuminance is difficult to stabilize when a new ultraviolet lamp 10 is initially turned on, and as time passes, the illuminance gradually increases and becomes stable. It's for a reason. The predetermined time A is preferably about 900 seconds, for example, and is set as appropriate depending on the type of ultraviolet lamp 10 and individual differences.

総時間が所定時間A(例えば900秒)に達した場合、その段階で外ガラス管21を透過する略400nm近傍の紫外線照度(400nm照度)を制御部51の制御により紫外線センサ3で計測し、その計測結果を紫外線照度の初期値B(以下、初期値Bという)として記憶部50に記憶する。 When the total time reaches a predetermined time A (for example, 900 seconds), at that stage, the ultraviolet light intensity near 400 nm (400 nm illuminance) transmitted through the outer glass tube 21 is measured by the ultraviolet sensor 3 under the control of the control unit 51, The measurement result is stored in the storage unit 50 as an initial value B of ultraviolet illuminance (hereinafter referred to as initial value B).

この段階から装置本体1による被処理水の実用的な除菌浄化が可能になるため、オゾン供給部4に被処理水を供給し、このオゾン供給部4、反応槽2の紫外線ランプ10、光触媒7により除菌浄化をおこなうようにする。 From this stage, the water to be treated can be practically sterilized and purified by the main body 1 of the apparatus, so the water to be treated is supplied to the ozone supply section 4, the ultraviolet lamp 10 of the reaction tank 2, the photocatalyst 7 to perform sterilization and purification.

この水処理過程において、図5の一定時間である時間ΔTにおける実測した400nm照度の傾きと、基準となるデータの寿命曲線の傾きとを制御部51により比較する。この場合、減少方向の傾きを正の値とする。 In this water treatment process, the control unit 51 compares the slope of the actually measured 400 nm illuminance at time ΔT, which is a certain period of time in FIG. 5, with the slope of the life curve of reference data. In this case, the slope in the decreasing direction is assumed to be a positive value.

その際、時間ΔTにおける400nm照度の傾きが、寿命曲線の傾きよりも大きいときには、続けて紫外線ランプ10の照度が初期値Bの90%未満であるか否かを制御部51で判定する。 At this time, when the slope of the 400 nm illuminance at time ΔT is larger than the slope of the life curve, the controller 51 subsequently determines whether the illuminance of the ultraviolet lamp 10 is less than 90% of the initial value B.

紫外線ランプ10の紫外線照度が所定の値以下に低下したとき、例えば初期値Bの90%未満であるときには、紫外線照度が不足であると判定し、制御部51により紫外線ランプ10が寿命時期であることを検知する。その後、紫外線ランプ10の交換が必要であることを図示しないランプや警告音により発報し、この発報により、紫外線ランプ10の寿命を装置本体の外部の記憶・制御装置5から速やかに確認することができる。そして、この結果より紫外線ランプ10を交換するようにすれば、装置本体1の処理能力を維持して安定した稼働を継続できる。 When the ultraviolet illuminance of the ultraviolet lamp 10 falls below a predetermined value, for example, when it is less than 90% of the initial value B, it is determined that the ultraviolet illuminance is insufficient, and the control unit 51 determines that the ultraviolet lamp 10 is at the end of its life. Detect that. Thereafter, a notification that the ultraviolet lamp 10 needs to be replaced is issued by a lamp (not shown) or a warning sound, and by this notification, the lifespan of the ultraviolet lamp 10 is promptly confirmed from the storage/control device 5 external to the main body of the apparatus. be able to. If the ultraviolet lamp 10 is replaced based on this result, the processing capacity of the apparatus main body 1 can be maintained and stable operation can be continued.

一方、紫外線ランプ10の照度が初期値Bの90%以上であるときには、寿命に達していないと制御部51で判定し、引き続き照度の検知処理を継続する。 On the other hand, when the illuminance of the ultraviolet lamp 10 is 90% or more of the initial value B, the control unit 51 determines that the lamp has not reached the end of its life, and continues the illuminance detection process.

図5の二点鎖線に示すように、時間ΔTの400nm照度の傾きが、寿命曲線の傾きよりも大きい値になったときには、少なくとも、(a)反応槽2内部のうち、被処理水が通過する部位に析出物等が付着しているか、或いは(b)何らかの理由で想定より早く紫外線ランプ10が劣化していることが原因と考えられる。この場合、反応槽2の掃除が必要であることをランプや警告音により発報する。 As shown by the two-dot chain line in FIG. 5, when the slope of the 400 nm illuminance at time ΔT becomes larger than the slope of the life curve, at least (a) the water to be treated inside the reaction tank 2 passes through. This is thought to be due to precipitates or the like adhering to the area where the UV rays are exposed, or (b) the ultraviolet lamp 10 deteriorating earlier than expected for some reason. In this case, a lamp or a warning sound is used to notify that the reaction tank 2 needs to be cleaned.

反応槽2の掃除後には、図示しないリセットボタンを押すようにし、このリセットボタンが押されたか否かの判定が制御部51によりおこなわれる。リセットボタンが押されていない場合、再度反応槽2の掃除が必要であることを発報する。このように、リセットボタンは、反応槽の掃除の有無を確認するために設けられる。 After cleaning the reaction tank 2, a reset button (not shown) is pressed, and the control unit 51 determines whether or not this reset button has been pressed. If the reset button is not pressed, a notification is issued that the reaction tank 2 needs to be cleaned again. In this way, the reset button is provided to confirm whether or not the reaction tank has been cleaned.

リセットボタンが押された後には、寿命曲線のそれまでの経過時間Tに対する紫外線照度の値Dよりも、実際に計測した400nm照度の値が大きいか否かを制御部51が判定する。この判定結果により、計測した400nm照度の数値が寿命曲線の紫外線照度D以上であるときには、引き続き紫外線照度の判定が継続される。一方、400nm照度の数値が紫外線照度D未満であるときには、前述の(b)何らかの理由による想定よりも早い紫外線ランプ10の劣化であるとみなし、紫外線ランプ10が異常であることを外部に発報する。 After the reset button is pressed, the control unit 51 determines whether the actually measured value of the 400 nm illuminance is larger than the value D of the ultraviolet illuminance for the elapsed time T of the life curve up to that point. As a result of this determination, when the value of the measured 400 nm illuminance is equal to or higher than the ultraviolet illuminance D of the life curve, the determination of the ultraviolet illuminance is continued. On the other hand, if the value of the 400 nm illuminance is less than the ultraviolet illuminance D, it is assumed that the ultraviolet lamp 10 is deteriorating faster than expected due to the above-mentioned (b) reason, and the abnormality of the ultraviolet lamp 10 is notified to the outside. do.

上記の装置本体1の動作中には、制御部51によるインタラプト(割り込み)制御がおこなわれる。このインタラプト制御において、紫外線照度がゼロであるか否かが判定され、これがゼロであるときには、紫外線ランプ10が消灯状態にあると検知し、ランプや警告音により発報する。一方、これらの値がゼロよりも大きい場合には、引き続き検知処理が継続される。 During the operation of the apparatus main body 1 described above, interrupt control is performed by the control section 51. In this interrupt control, it is determined whether or not the ultraviolet illuminance is zero, and when it is zero, it is detected that the ultraviolet lamp 10 is in the off state, and an alarm is issued by a lamp or a warning sound. On the other hand, if these values are greater than zero, the detection process continues.

一方、上記の紫外線ランプ10の紫外線照度がゼロか否かの判定は、インタラプト制御以外によりおこなわれてもよい。この場合、上記した時間ΔTにおける400nm照度の傾きと、基準となる寿命曲線との比較の手順の後に、紫外線照度がゼロであるか否かが判定される。これがゼロであるときには、紫外線ランプ10が消灯状態であると検知し、ランプや警告音により発報する手順を実施し、続いて、上述の手順と同様に紫外線ランプ10の紫外線照度が所定の値以下に低下したか否かを判断する手順以降を実施するようにする。 On the other hand, the determination as to whether the ultraviolet illuminance of the ultraviolet lamp 10 is zero may be performed by other than interrupt control. In this case, after the procedure of comparing the slope of the 400 nm illuminance at the time ΔT described above with the reference life curve, it is determined whether the ultraviolet illuminance is zero. When this is zero, it is detected that the ultraviolet lamp 10 is in the off state, and a procedure is carried out to issue an alarm with a lamp or an alarm sound.Subsequently, the ultraviolet illuminance of the ultraviolet lamp 10 is set to a predetermined value in the same manner as in the above-mentioned procedure. The procedure for determining whether the level has decreased below or below should be carried out.

また、一定の時間ΔTにおける400nm照度の傾きと、寿命曲線の傾きとを比較する手順を省略してもよく、この場合には、紫外線ランプ10の紫外線照度が初期値Bの90%未満に達したことのみにより、紫外線ランプ10の寿命時期を検知する。このため、制御手順を簡略化できる。 Further, the step of comparing the slope of the 400 nm illuminance at a certain time ΔT and the slope of the life curve may be omitted; in this case, the ultraviolet illuminance of the ultraviolet lamp 10 reaches less than 90% of the initial value B. The end of the life of the ultraviolet lamp 10 can be detected based only on this. Therefore, the control procedure can be simplified.

次に、本発明の水処理装置と水処理装置用紫外線ランプの劣化検知装置の上記実施形態における作用を説明する。
装置本体1は、紫外線ランプ10を内蔵した反応槽2と、光触媒7と、オゾン供給部4とを有し、反応槽2の外側に紫外線センサ3を配置し、この紫外線センサ3で計測した紫外線照度の換算結果から紫外線ランプ10の特定の波長の照度を記憶・制御装置5で検知しているため、大量の水処理が必要であって装置本体1の数が増加する場合にも、紫外線センサ3の計測結果をもとにして、全ての紫外線ランプ10の点灯や消灯状態、及び劣化状態を記憶・制御装置5を介して集中的に監視できる。
Next, the operation of the above-described embodiments of the water treatment equipment and the deterioration detection device for an ultraviolet lamp for water treatment equipment of the present invention will be explained.
The device main body 1 includes a reaction tank 2 containing an ultraviolet lamp 10, a photocatalyst 7, and an ozone supply section 4. An ultraviolet sensor 3 is disposed outside the reaction tank 2, and the ultraviolet rays measured by the ultraviolet sensor 3 are The storage/control device 5 detects the illuminance of a specific wavelength of the ultraviolet lamp 10 based on the illuminance conversion result, so even if a large amount of water treatment is required and the number of device bodies 1 increases, the ultraviolet sensor Based on the measurement results in step 3, the on/off states and deterioration states of all the ultraviolet lamps 10 can be centrally monitored via the storage/control device 5.

この場合、紫外線センサ3を外ガラス管21の外側に近接状態で配置し、この紫外線センサ3により略400nm近傍の波長の紫外線照度を検知しているので、外ガラス管21を、略254nmの波長の紫外線を遮断するホウケイ酸ガラス等で設けることができる。これにより、外ガラス管21の内側の流路22では、略254nmの波長の紫外線によるラジカル反応によって被処理水に優れた除菌浄化機能を施しつつ、部品に悪影響を及ぼすこの略254nmの波長の紫外線の外ガラス管21から外側への漏れを防ぎ、この紫外線による紫外線センサ3やその他の部品への悪影響を阻止して劣化を防止する。 In this case, the ultraviolet sensor 3 is placed close to the outside of the outer glass tube 21, and the ultraviolet sensor 3 detects the ultraviolet illuminance at a wavelength of approximately 400 nm. It can be made of borosilicate glass or the like that blocks ultraviolet rays. As a result, in the flow path 22 inside the outer glass tube 21, while providing an excellent sterilization and purification function to the water to be treated through a radical reaction caused by ultraviolet rays with a wavelength of approximately 254 nm, the ultraviolet rays with a wavelength of approximately 254 nm have a negative effect on components. This prevents ultraviolet rays from leaking to the outside from the outer glass tube 21, prevents the harmful effects of the ultraviolet rays on the ultraviolet sensor 3 and other parts, and prevents deterioration.

しかも、ホウケイ酸ガラス21を透過する略400nmの波長の紫外線照度を紫外線センサ3により計測し、その紫外線照度の計測結果から記憶部50内の照度減衰特性データ55を介して略254nmの波長の紫外線照度に換算した照度を確認できるため、被処理水の除菌浄化に最も効果的な略254nmの紫外線照度を正確に把握できる。そのため、高い水処理制度が要求される半導体製造工程などで装置本体1を使用する場合にも、各装置本体1の紫外線照度を高い状態に保って高品質な製品を製造可能になる。 In addition, the ultraviolet light intensity with a wavelength of about 400 nm transmitted through the borosilicate glass 21 is measured by the ultraviolet sensor 3, and from the measurement result of the ultraviolet light intensity, the ultraviolet light intensity with a wavelength of about 254 nm is transmitted through the illuminance attenuation characteristic data 55 in the storage unit 50. Since the illuminance can be confirmed in terms of illuminance, it is possible to accurately grasp the ultraviolet illuminance of approximately 254 nm, which is most effective for sterilization and purification of water to be treated. Therefore, even when the device main body 1 is used in a semiconductor manufacturing process that requires a high water treatment system, it is possible to maintain the ultraviolet illuminance of each device main body 1 at a high level and manufacture high-quality products.

記憶・制御装置5内に、半導体製造用途で使用される純水、農業用途で使用される養液の2つの被処理水の種類ごとの照度減衰特性データ55を記憶しているので、何れの被処理水を水処理する場合にも、紫外線照度のわずかな減衰も計測して劣化状態を詳細に確認できる。 The storage/control device 5 stores illuminance attenuation characteristic data 55 for each type of water to be treated, such as pure water used in semiconductor manufacturing applications and nutrient solution used in agricultural applications. When treating water, even the slightest attenuation of ultraviolet light can be measured to check the state of deterioration in detail.

また、紫外線ランプ10の劣化検知用の検知装置本体6は、紫外線センサ3と記憶・制御装置5を水処理装置に容易に取り付けて紫外線ランプ10の消灯状態や劣化状態を正確に検知でき、反応槽2やオゾン供給部4による水処理性能に悪影響を及ぼすこともない。 In addition, the detection device main body 6 for detecting deterioration of the ultraviolet lamp 10 can easily attach the ultraviolet sensor 3 and the storage/control device 5 to the water treatment equipment to accurately detect the extinguished state or deterioration state of the ultraviolet lamp 10, and react. There is no adverse effect on the water treatment performance of the tank 2 or the ozone supply section 4.

以上、本発明の実施の形態について詳述したが、本発明は、前記実施の形態記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で、種々の変更ができるものである。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the embodiments described above, and the present invention is not limited to the scope of the invention described in the claims of the present invention. It is possible to make various changes.

1 装置本体
2 反応槽
3 紫外線センサ
4 オゾン供給部
5 記憶・制御装置
6 検知装置本体
7 光触媒
10 紫外線ランプ
21 外ガラス管(透過部)
50 記憶部
51 制御部
55 照度減衰特性データ
1 Apparatus main body 2 Reaction tank 3 Ultraviolet sensor 4 Ozone supply section 5 Memory/control device 6 Detection device main body 7 Photocatalyst 10 Ultraviolet lamp 21 Outer glass tube (transmission section)
50 Storage unit 51 Control unit
55 Illuminance attenuation characteristic data

Claims (3)

被処理水に殺菌線を含む紫外線を照射する紫外線ランプと、前記紫外線ランプを内蔵し前記被処理水が通水する反応槽と、前記反応槽の外側には前記被処理水を通過した紫外線のうち殺菌線より長波長帯域の紫外線を透過可能な透過部と、前記透過部を透過した殺菌線より長波長帯域の紫外線の紫外線照度を計測する紫外線センサを配置し、
前記紫外線センサの紫外線照度の計測値に基づいて、殺菌線より長波長帯域の紫外線照度の所定値以下への低下をもって紫外線ランプの寿命とみなし、前記紫外線ランプの劣化状態を検知する制御部を備えたことを特徴とする水処理装置。
An ultraviolet lamp that irradiates ultraviolet rays containing germicidal radiation to the water to be treated; a reaction tank that contains the ultraviolet lamp and through which the water to be treated flows ; A transmitting part that can transmit ultraviolet rays in a wavelength band longer than the germicidal radiation, and an ultraviolet sensor that measures the ultraviolet irradiance of the ultraviolet rays in a wavelength band longer than the germicidal radiation transmitted through the transmitting part ,
A control unit that detects a deterioration state of the ultraviolet lamp by determining that the ultraviolet lamp has reached the end of its life when the ultraviolet illuminance in a wavelength range longer than the germicidal line falls below a predetermined value based on the ultraviolet illuminance measurement value of the ultraviolet sensor. A water treatment device characterized by comprising:
前記紫外線センサに到達される紫外線は、300~400nmである請求項1に記載の水処理装置。The water treatment device according to claim 1, wherein the ultraviolet light that reaches the ultraviolet sensor has a wavelength of 300 to 400 nm. 前記被処理水にオゾンを供給するオゾン供給部を有する請求項1又は2に記載の水処理装置。The water treatment device according to claim 1 or 2, further comprising an ozone supply section that supplies ozone to the water to be treated.
JP2022192548A 2018-09-26 2022-12-01 water treatment equipment Active JP7411770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022192548A JP7411770B2 (en) 2018-09-26 2022-12-01 water treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018179612A JP7188952B2 (en) 2018-09-26 2018-09-26 Deterioration detector for water treatment equipment and UV lamps for water treatment equipment
JP2022192548A JP7411770B2 (en) 2018-09-26 2022-12-01 water treatment equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018179612A Division JP7188952B2 (en) 2018-09-26 2018-09-26 Deterioration detector for water treatment equipment and UV lamps for water treatment equipment

Publications (2)

Publication Number Publication Date
JP2023014285A JP2023014285A (en) 2023-01-26
JP7411770B2 true JP7411770B2 (en) 2024-01-11

Family

ID=69995021

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018179612A Active JP7188952B2 (en) 2018-09-26 2018-09-26 Deterioration detector for water treatment equipment and UV lamps for water treatment equipment
JP2022192548A Active JP7411770B2 (en) 2018-09-26 2022-12-01 water treatment equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018179612A Active JP7188952B2 (en) 2018-09-26 2018-09-26 Deterioration detector for water treatment equipment and UV lamps for water treatment equipment

Country Status (1)

Country Link
JP (2) JP7188952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813020B (en) * 2023-06-21 2024-03-12 惠州市泓利实业有限公司 Intelligent water purifying device and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154742A (en) 2002-11-08 2004-06-03 Masao Tsuchiya Water treatment apparatus and water treatment method
JP2004160437A (en) 2002-09-26 2004-06-10 Nippon Yuusen Kk Method and apparatus for water cleaning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352686A (en) * 1989-07-19 1991-03-06 Matsushita Electric Works Ltd Uv-sterilization water purifier
JPH10296246A (en) * 1997-04-25 1998-11-10 Bridgestone Corp Bathwater circulation device
JP3940685B2 (en) * 2002-09-30 2007-07-04 宏 林 Ultraviolet sterilization and purification device with detection / determination function such as ultraviolet rays and cracks
SE0203470L (en) * 2002-11-22 2004-04-27 Dometic Ab Method and device for liquid purification with UV light
JP5318713B2 (en) * 2009-09-14 2013-10-16 株式会社キッツ Water quality adjustment system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160437A (en) 2002-09-26 2004-06-10 Nippon Yuusen Kk Method and apparatus for water cleaning
JP2004154742A (en) 2002-11-08 2004-06-03 Masao Tsuchiya Water treatment apparatus and water treatment method

Also Published As

Publication number Publication date
JP2023014285A (en) 2023-01-26
JP2020049408A (en) 2020-04-02
JP7188952B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
JP4355315B2 (en) Fluid purification device
US3182193A (en) Electronically monitored liquid purification or sterilizing system
US8552395B2 (en) Ultraviolet irradiation system
US20110150708A1 (en) Ultraviolet irradiation device
JP4901250B2 (en) UV disinfection equipment
JP7411770B2 (en) water treatment equipment
US20140014853A1 (en) Ultraviolet irradiation device
JP2012115601A (en) Simultaneous purification treatment device of gas and liquid
JP2012061413A (en) Ultraviolet irradiation device
JP2008136940A (en) Ultraviolet disinfection instrument
JP6058262B2 (en) UV treatment equipment
US20160214076A1 (en) Gas and water sanitizing system and method
JP6422900B2 (en) Liquid processing apparatus and liquid processing system
JP2013075271A (en) Water treatment method and water treatment apparatus
KR102263914B1 (en) Water purifying device
JP6382714B2 (en) Pure water production equipment
JP2011161443A (en) Ultraviolet disinfection instrument
JP2008142593A (en) Inactivation treatment method by ultraviolet light
KR100877562B1 (en) Non contacting ultraviolet liquid treatment apparatus and method using the same
JP2004223345A (en) Method and apparatus for purifying fluid
KR101303081B1 (en) Cooling tower system
JP2008068203A (en) Ultraviolet sterilization system
KR20090071797A (en) Sterilizing water apparatus using the ultra-violet ray lamp
RU2144002C1 (en) Liquid sterilizer
CN218202290U (en) Ultraviolet sterilizer for secondary water supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7411770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150