JP2020046191A - センサ - Google Patents

センサ Download PDF

Info

Publication number
JP2020046191A
JP2020046191A JP2018172202A JP2018172202A JP2020046191A JP 2020046191 A JP2020046191 A JP 2020046191A JP 2018172202 A JP2018172202 A JP 2018172202A JP 2018172202 A JP2018172202 A JP 2018172202A JP 2020046191 A JP2020046191 A JP 2020046191A
Authority
JP
Japan
Prior art keywords
signal
sensor
servo
detection
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018172202A
Other languages
English (en)
Other versions
JP6944428B2 (ja
Inventor
俊 大島
Takashi Oshima
俊 大島
優希 古林
Yuki Furubayashi
優希 古林
啓二朗 森
Keijiro Mori
啓二朗 森
森 直樹
Naoki Mori
直樹 森
松本 晃
Akira Matsumoto
晃 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018172202A priority Critical patent/JP6944428B2/ja
Priority to US16/458,903 priority patent/US11035876B2/en
Publication of JP2020046191A publication Critical patent/JP2020046191A/ja
Application granted granted Critical
Publication of JP6944428B2 publication Critical patent/JP6944428B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/131Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electrostatic counterbalancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
    • G01P2015/0865Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system using integrated signal processing circuitry

Abstract

【課題】消費電力の低減を図りながら、高精度のセンサを提供する。【解決手段】センサ1は、センサ素子と、センサ素子からのセンサ信号とサーボ信号Vsに基づくノイズとを含む波形をフィルタリングするアナログフィルタ110bと、アナログフィルタ110bでフィルタリングした波形を第1のデジタル信号に変換するA/D変換器110cと、デジタルフィルタ119を含む電子回路であり、サーボ信号Vsに対して、少なくともデジタルフィルタ119を用いたフィルタリング処理を含む信号処理を行い、第2のデジタル信号を取得する第1の電子回路と、第1のデジタル信号から第2のデジタル信号を差し引いて、第3のデジタル信号を取得する第2の電子回路を備える。第2のデジタル信号を取得する信号処理の設定が、少なくとも第3のデジタル信号に基づいて変更される。【選択図】図1

Description

本発明は、センサに関し、特に、MEMS(Micro Electro Mechanical System)静電容量型の加速度センサに関する。
加速度センサは、例えば石油・天然ガス等を探査するために用いられる。例えば、石油・天然ガスなどを探査する反射法地震探査では、資源が埋蔵されていると予測される地層の地表面上に、多数の加速度センサが所定の2次元配置となるように設置される。人工地震を起こしてその地震波が地層により反射してくる反射波を、加速度センサで加速度として捉える。2次元的に配置された加速度センサ群で一斉に受けた加速度データを解析することで、地層の状態を把握し、石油・天然ガスなどの資源の有無を判定する。
反射法地震探査用の加速度センサは、微弱な加速度信号を検出するために、他の分野の加速度センサと比べて桁違いに雑音(ノイズ)を小さくすることが要求される。また、加速度センサを含む装置の低コスト化を図る上で、加速度センサに給電を行うバッテリのコストを低減することが要求される。そのため、加速度センサの低消費電力化も同時に求められている。
従来の反射法地震探査では、極低雑音の加速度センサとしてジオフォンが用いられてきた。しかし、ジオフォンは、数10Hz以下の低周波帯で雑音が大きくなること、原理的に入力周波数帯域幅が狭いこと、量産に不向きなことなどから、次世代の高精度な地震探査には不向きであると考えられる。そこで、上記の問題を原理的に回避でき、高感度かつ低消費電力のMEMS加速度センサが、次世代の高精度地震探査用途に期待され始めている。
MEMS加速度センサは、例えば非特許文献1および特許文献1、2に開示されている。
特開2016−070815号公報 国際公開第2016/132447号
M.Pastre, M.Kayal,H.Schmid, A.Huber, P.Zwahlen, A.Nguyen and Y.Fong, "A 300Hz 19b DR capacitive acceletometer based on a versatile front and in a 5th−order ΔΣ loop," 2009IEEE European Solid−state Circuits Conference, pp.288−291, Sep.2009. T.Oshima, K.Maio, Hioe et al., "Novel automatic tuning method of RC filters using a digital−DLL technique" IEEE Jounal of Solid−State Circuits(JSSC), pp.2052−2054(2004).
非特許文献1には、MEMS加速度センサとして、MEMS静電容量型の加速度センサが開示されている。非特許文献1では、安定的に低雑音を実現するために、サーボ制御が用いられている。非特許文献1においては、加速度信号検出用とサーボ制御のための静電気力印加用にMEMS容量素子が共用され、時分割処理で、加速度信号検出とサーボ制御とが交互に実施される。時分割処理のため、加速度信号検出とサーボ制御の各々の動作期間が短くなる。そのため、内部の回路をより高速に動作させたり、より高い電圧を静電気力印加用に生成したりする必要があり、消費電力が増加する。
特許文献1においては、加速度信号検出用のMEMS容量素子と、サーボ制御のための静電気力印加用のMEMS容量素子とが、ともに設けられている。そのため、加速度信号検出とサーボ制御とを同時平行で行えるため、内部の高速動作や高電圧生成が不要となり、消費電力を低減することができる。しかしながら、加速度信号検出とサーボ制御の同時動作に起因して、サーボ信号がリークして検出信号に重畳し、雑音を増加させてしまうという課題がある。次世代の高精度地震探査等で要求される極低雑音の加速度センサを実現するためには、サーボ信号のリーク成分を極めて高い精度でキャンセルすることが必要である。
特許文献2には、サーボ信号のリーク成分(サーボリーク信号)を、チャージアンプの入力に接続した可変容量回路を用いてキャンセルする技術が開示されている。この技術は有効であるが、サーボリーク信号をキャンセルする際の精度を十分に高めるためには、十分に小さな一様の刻み幅で、可変容量回路の容量値を可変にできるようにすることが要求される。しかしながら、半導体製造プロセスの制約、すなわち、製造可能な最小の容量値、容量値の製造ばらつき、寄生容量の影響などにより、そのような可変容量回路を実現するのは容易ではない。
なお、非特許文献2には、MEMS静電容量型の加速度センサは開示されていないが、アナログフィルタとチューニング回路に関する技術が開示されている。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
すなわち、センサは、センサ素子と、センサ素子からのセンサ信号とサーボ信号に基づくノイズとを含む波形をフィルタリングするアナログフィルタと、アナログフィルタでフィルタリングした波形を第1のデジタル信号に変換するA/D変換器と、デジタルフィルタを含む電子回路であり、サーボ信号に対して、少なくともデジタルフィルタを用いたフィルタリング処理を含む信号処理を行い、第2のデジタル信号を取得する第1の電子回路と、第1のデジタル信号から第2のデジタル信号を差し引いて、第3のデジタル信号を取得する第2の電子回路とを備える。第2のデジタル信号を取得する信号処理の設定が、少なくとも第3のデジタル信号に基づいて変更される。
アナログフィルタでフィルタリングされた波形に含まれるノイズの波形に対応した波形が、デジタルフィルタでサーボ信号をフィルタリングすることにより生成される。第1のデジタル信号から第2のデジタル信号を差し引くことにより取得した第3のデジタル信号に基づいて、フィルタリングの処理を含む信号処理の設定を変更することで、第3のデジタル信号に含まれるノイズ成分を、より低減するような第2のデジタル信号が適応制御によって取得され、第1のデジタル信号から差し引かれる。これにより、第1のデジタル信号に含まれるノイズ成分を高い精度でキャンセル(相殺)することが可能となり、精度の向上を図ることが可能となる。また、センサ素子を用いた検出とサーボ制御とが、時分割処理ではなく、平行して実行されるため、消費電力の低減を図ることができる。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。
消費電力の低減を図りながら、高精度のセンサを提供する。
上記した以外の課題、構成および効果は、以下の発明を実施するための形態の説明により明らかにされる。
実施の形態1に係わるセンサの構成を示すブロック図である。 実施の形態2に係わるセンサの構成を示すブロック図である。 実施の形態3に係わるセンサの構成を示すブロック図である。 実施の形態4に係わるセンサの構成を示すブロック図である。 実施の形態5に係わるセンサの構成を示すブロック図である。 実施の形態6に係わるセンサの構成を示すブロック図である。 実施の形態6に係わるFIRフィルタの構成を示す図である。 実施の形態1に係わる探索部の構成を示すブロック図である。 実施の形態1に係わるセンサの動作を示すタイムチャート図である。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下で説明する実施の形態では、加速度センサをセンサの例として説明するが、種々のセンサに適用可能である。
(実施の形態1)
図1は、実施の形態1に係わる加速度センサの構成を示すブロック図である。図1において、1は加速度センサを示している。以下、特に加速度センサであることを明示する必要がない場合、加速度センサは、単にセンサと称する。実施の形態1に係わるセンサ1は、特に制限されないが、3つの半導体装置を備えている。ここでは、説明の都合上、センサ1が備える3つの半導体装置を、センサ用半導体装置IC_S、ドライブ用半導体装置IC_Dおよび検出・制御用半導体装置IC_DCとして説明する。センサ用半導体装置IC_Sは、加速度センサ素子(以下、センサ素子と称する)が集積化された半導体装置である。ドライブ用半導体装置IC_Dは、サーボ信号Vsおよびキャリア信号Vに基づいて、センサ素子をドライブする半導体装置である。また、検出・制御用半導体装置IC_DCは、センサ素子からのセンス信号に基づいたセンス出力を出力するとともに、センサ素子を制御するサーボ信号Vsを出力する半導体装置である。
同図において、一点鎖線11Pは、センサ用半導体装置IC_Sのパッケージを示している。パッケージ11P内にセンサ素子が内蔵されている。図面が複雑になるのを避けるために、ドライブ用半導体装置IC_Dおよび検出・制御用半導体装置IC_DCのパッケージは、同図には明示されていない。
<センサ素子>
センサ素子は、MEMS容量素子によって構成されている。MEMS容量素子は、第1検出用可動電極11aと、第1検出用固定電極12、13と、サーボ制御用可動電極11bと、サーボ制御用固定電極14、15と、絶縁部11cとによって構成されている。第1検出用固定電極12、13のそれぞれは、第1検出用可動電極11aと対向するように配置され、第1検出用固定電極12、13と第1検出用可動電極11aとの間で検出用容量が形成されている。すなわち、第1検出用可動電極11aと一対の第1検出用固定電極12、13とによって、検出用容量対が形成されている。
サーボ制御用固定電極14、15のそれぞれは、サーボ制御用可動電極11bと対向するように配置され、サーボ制御用固定電極14、15とサーボ制御用可動電極11bとの間でサーボ制御用容量が形成されている。すなわち、サーボ制御用可動電極11bと一対のサーボ制御用固定電極14、15とによって、サーボ制御用容量対が形成されている。
検出用容量対とサーボ制御用容量対との間を電気的に絶縁するために、第1検出用可動電極11aとサーボ制御用可動電極11bとの間には、絶縁部11cが介在している。すなわち、絶縁部11cによって、第1検出用可動電極11aとサーボ制御用可動電極11bとは連結し、サーボ制御用可動電極11bの位置の変化(変位)に連動して、第1検出用可動電極11aの位置も変化する。例えば、図1の紙面において、サーボ制御用可動電極11bの位置がサーボ制御用固定電極14側(以下、上側とも称する)に向かって変位した場合、これに連動して、第1検出用可動電極11aの位置も上側に変位する。サーボ制御用可動電極11bの位置が、逆にサーボ制御用固定電極15側(以下、下側とも称する)に向かって変位した場合、これに連動して、第1検出用可動電極11aの位置も下側に変位する。すなわち、サーボ制御用可動電極11bの上側、下側への変位変化に連動して、第1検出用可動電極11aも上側、下側へ変位する。第1検出用可動電極11aとサーボ制御用可動電極11bと絶縁部11cは、センサ素子において、機械的には錘(おもり)の役割も担っており、一体となって運動する。
上記した検出用容量対は、第1検出用可動電極11aと第1検出用固定電極12との間に形成される容量値C+ΔCの容量と、第1検出用可動電極11aと第1検出用固定電極13との間に形成される容量値C−ΔCの容量の対である。ここで、容量値Cは、錘が第1検出用固定電極12と第1検出用固定電極13との間の中央に位置しているときの検出用容量対のそれぞれの容量値を表している。錘が、第1検出用固定電極12と第1検出用固定電極13との間の中央の位置に存在するとき、上記した容量ΔCはゼロとなる。これに対して、錘が中央より上に位置するときには、容量ΔCは正の値に変化し、錘が中央より下に位置する時、容量ΔCは負の値に変化する。すなわち、検出用容量対は、錘の位置に応じて、相補的に変化する。言い換えるならば、検出用容量対は、第1検出用固定電極12、13と錘との間の距離に応じて、相補的に変化する。
サーボ制御用可動電極11bにおいて、サーボ制御用固定電極14と対向する部分は、バネ16によって、センサ1のフレーム部18に接続され、サーボ制御用固定電極15と対向する部分は、バネ17によって、センサ1のフレーム部18に接続されている。錘を構成する第1検出用可動電極11aが、第1検出用固定電極12と13との間の中央に位置しているとき、バネ16および17は、自然長となっている。そのため、このとき、バネ16および17によって、錘に作用する弾性力はゼロとなっている。
これに対して、錘が第1検出用固定電極12と13との間の中央よりも上側に位置しているときには、バネ16が縮み、錘に対して下向きの弾性力が作用する。また、このとき、バネ17は伸びるため、錘に対して、同様に下向きの弾性力が作用することになる。従って、これらの合力である下向きの力が、錘に作用することになる。一方、錘が中央よりも下側に位置しているときには、バネ16が伸び、バネ17が縮むため、バネ16および17は、錘に対して、上向きの弾性力を発生し、これらの合力である上向きの力が錘に作用することになる。
上記したようにサーボ制御用可動電極11bは、バネ16、17によってフレーム(16、17)に接続されているのに対して、サーボ制御用固定電極14、15および第1検出用固定電極12、13は、センサ1のフレーム(18、19)に固定されている。
同図において、PT11a、PT11b、PT12〜PT15は、パッケージ11Pに設けられたセンサ用半導体装置IC_Sの端子(ピン)を示している。第1検出用可動電極11a、サーボ制御用可変電極11b、第1検出用固定電極12、13およびサーボ制御用固定電極14、15は、例えば対応する半導体チップ上の対応するパッド電極に接続されている。それぞれのパッド電極と、対応するリードフレームとの間がボンディングワイヤ等によって接続されている。このリードフレームの一部分が、端子PT11a、PT11b、PT12〜PT15として、パッケージ11Pから露出している。例えば、第1検出用可動電極11aは、対応するパッド電極に接続され、このパッド電極が端子PT11aに対応するリードフレームに、ボンディングワイヤで接続されている。同様にして、サーボ制御用可変電極11b、第1検出用固定電極12、13およびサーボ制御用固定電極14、15は、対応する端子11b、PT12〜PT15のリードフレームに接続されている。
<検出・制御用半導体装置>
検出・制御用半導体装置IC_DCは、検出回路110、減算器123、復調器111、制御回路112、ローパスフィルタ124および遅延回路125を備えている。さらに、検出・制御用半導体装置IC_DCは、後で説明するアップサンプラー118、デジタルフィルタ119、ダウンサンプラー120、乗算器121、サーボ信号リーク量探索部(以下、探索部と称する)122を備えている。
先ず、アップサンプラー118、デジタルフィルタ119、ダウンサンプラー120、乗算器121および探索部122を除いた基本的な構成を説明する。
第1検出用可動電極11aは、端子PT11aを介して配線SNL(第2の配線)に接続され、配線SNLに検出回路110が接続されている。検出回路110は、容量/電圧(以下、C/Vと称する)変換アンプ110a、アナログフィルタ110bおよびアナログ/デジタル(以下、A/Dと称する)変換器110cを備えている。C/V変換アンプ110a、アナログフィルタ110bおよびA/D変換器110cは、直列接続され、初段のC/V変換アンプ110aが、配線SNLに接続されている。
C/V変換アンプ110aには、配線SNLを介して、錘の位置が変化することにより生じる容量変化ΔCに応じた電荷量の変化(ΔC*V)が伝えられる。C/V変換アンプ110aは、この電荷量の変化に対応した電圧信号を生成する。なお、ここで電圧Vは、後で説明するキャリア信号Vの電圧である。
C/V変換アンプ110aによって生成された電圧信号は、アナログフィルタ110bに供給され、このアナログフィルタ110bによって信号帯域外の雑音が抑圧され、後続のA/D変換器110bに供給される。このように、アナログフィルタ110bで、供給された電圧信号をフィルタリングすることにより、A/D変換器110cにおけるA/D変換の際に生じる折返し雑音を低減する。A/D変換器110cは、アナログフィルタ110bからのフィルタリングされたアナログ電圧をデジタル信号に変換して、検出回路110の出力信号として出力する。なお、C/V変換アンプ110aとアナログフィルタ110bとの間にアンプを挿入してもよい。また、アナログフィルタ110bを複数段に分割し、分割されたアナログフィルタ間にアンプを配置して、アナログフィルタとアンプが交互に配置されるようにしてもよい。
検出回路110から出力されたデジタル信号は、減算器123に入力される。C/V変換アンプ110aが接続された配線SNLには、後で説明するが、サーボ信号Vsが等価寄生容量113を介してリークし、伝播する。すなわち、C/V変換アンプ110aには、電荷量の変化(ΔC*V)に対応した信号に、サーボ信号Vsに基づいた電荷量の変化(同図では、Cp*Vs)に対応したノイズが重畳して供給されることになる。後で説明するが、Cpは等価寄生容量113を示し、Vsはサーボ信号Vsの電圧を示している。
そのため、サーボ信号Vsに基づいたノイズを含んだ波形が、アナログフィルタ110bでフィルタリングされ、A/D変換されることになる。減算器123は、検出回路110からのデジタル信号から、サーボ信号Vsのリーク成分に対応したノイズを減算することにより、デジタル信号からサーボ信号Vsのリーク成分をキャンセルするように機能する。減算器123の出力であるデジタル信号は、復調器111に供給される。また、復調器111には、遅延回路125によって所定量だけ遅延されたキャリア信号Vsが供給される。復調器111においては、供給されたデジタル信号と遅延されたキャリア信号Vとの乗算が行われ、容量変化ΔCに比例したデジタル信号が取得される。この復調器111の出力は、制御回路112に供給される。
制御回路112は、供給された容量変化ΔCに比例したデジタル信号に基づいて、1ビット(2値)のサーボ信号を生成する。具体的に述べると、制御回路112は、PID(Proportional−Integral−Differential)制御部112aと、1ビット変換器112bとを備えている。PID制御部112aは、PID制御の手法によって、容量変化ΔCに比例したデジタル信号から、多値の制御信号を生成する。次に、1ビット変換器112bによって、多値の制御信号を1ビットのサーボ信号Vsに変換する。1ビット変換器112bとしては、例えば、1ビット量子化器や1ビット出力型のデジタルデルタシグマ変換器を用いる。1ビット量子化器で1ビット変換器112bを構成する場合、多値の制御信号によって表される入力が、非負であれば、“1”のサーボ信号に変換し、入力が負であれば、“−1”のサーボ信号Vsに変換する。
制御回路112から出力されたサーボ信号Vsは、ローパスフィルタ124によって、高い周波数成分が取り除かれ、センサ1のセンサ出力として出力される。また、制御回路112から出力されたサーボ信号Vsは、配線SBL(第1の配線)に供給される。配線SBLは、ドライバ用半導体装置IC_Dと検出・制御用半導体IC_DC間を接続する配線である。
<ドライバ用半導体装置>
ドライバ用半導体装置IC_Dは、サーボ制御用バッファ116、サーボ制御用反転バッファ117、検出用バッファ114および検出用反転バッファ115を備えている。
サーボ制御用バッファ116およびサーボ制御用反転バッファ117の入力は、配線SBLに接続されている。また、サーボ制御用バッファ116の出力は、端子PT14を介してサーボ制御用固定電極14に接続され、サーボ制御用反転バッファ117の出力は、端子PT15を介してサーボ制御用固定電極15に接続されている。
サーボ制御用バッファ116およびサーボ制御用反転バッファ117には、サーボ制御に適した電圧が給電され、サーボ制御用バッファ116およびサーボ制御用反転バッファ117は、給電された電圧を電源電圧として動作する。これにより、サーボ制御用バッファ116は、配線SBLを介して供給された1ビットのサーボ信号を、サーボ信号として適切な電圧レベルの1ビット電圧信号VP(後述の図9参照)に変換する。また、サーボ制御用反転バッファ117は、配線SBLを介して供給された1ビットのサーボ信号を論理反転(位相反転)し、サーボ信号として適切な電圧レベルの1ビット電圧信号VN(後述の図9参照)に変換する。変換により生成された1ビット電圧信号VPは、サーボ制御用固定電極14に印加され、1ビット電圧信号VNは、サーボ制御用固定電極15に印加される。なお、サーボ制御用可動電極11bは、対応する端子PT11bを介して固定電位、例えば、グランド電位に接続されている。
検出用バッファ114および検出用反転バッファ115の入力には、配線CRLを介してキャリア信号Vが供給される。キャリア信号Vは、所定の一定の周波数のパルス信号である。検出用バッファ114および検出用反転バッファ115には、検出に適した電圧が給電され、検出用バッファ114および検出用反転バッファ115は、給電された電圧を電源電圧として動作する。これにより、検出用バッファ114は、配線CRLを介して供給されたキャリア信号を、キャリア信号として適切な電圧レベルのパルス電圧信号VDP(後述の図9参照)に変換する。また、検出用反転バッファ115は、配線CRLを介して供給されたキャリア信号を論理反転(位相反転)し、キャリア信号として適切な電圧レベルのパルス電圧信号VDN(後述の図9参照)に変換する。変換により生成されたパルス電圧信号VDPは、検出用固定電極12に印加され、パルス電圧信号VDNは、検出用固定電極13に印加される。
なお、特に制限されないが、サーボ制御用バッファ116、サーボ制御用反転バッファ117、検出用バッファ114および検出用反転バッファ115に給電される電源電圧は、検出・制御用半導体装置IC_DCにおける回路ブロックに給電される電源電圧よりも高い電圧である。そのため、実施の形態1では、ドライブ用半導体装置IC_Dが、検出・制御用半導体装置IC_DCとは別の半導体装置で構成されている。しかしながら、ドライブ用半導体装置IC_Dと検出・制御用半導体装置IC_DCは、1つの半導体装置によって構成してもよい。
<キャリア信号とサーボ信号>
図9は、実施の形態1に係わるセンサの動作を示すタイムチャート図である。図9では、キャリア信号として、検出用バッファ114および検出用反転バッファ115から出力されるパルス電圧信号が描かれている。配線CRLおよび遅延回路125に供給されるキャリア信号は、検出用バッファ114から出力されるパルス電圧信号と同相の信号である。また、サーボ信号としては、サーボ制御用バッファ116およびサーボ制御用反転バッファ117から出力される1ビット電圧信号が描かれている。制御回路112から出力されるサーボ信号Vsは、サーボ制御用バッファ116から出力される1ビット電圧信号と同相の信号である。
ここでは、キャリア信号Vは、デューティ比が50%で、周波数が1/(2T)のパルス信号であるとする。キャリア信号Vの電圧は、周期Tで電圧が変わる一定の周波数の信号である。一方、サーボ信号Vsは、制御回路112から、1/Tのレートで出力される。制御回路112は、例えば“1”または“−1”の時間的に連続したサーボ信号Vsを出力するため、サーボ信号Vsは、期間Tの間隔で出力されることになる。ここで、fsを1/Tと定義すると、キャリア信号Vの周波数は、fs/2、サーボ信号Vsの出力レートは、fsとなる。実施の形態1において、A/D変換器110c、減算器123、復調器111、PID制御部112aおよび1ビット変換部112bの動作レートはfsである。言い換えるならば、これらの回路ブロックの出力は、期間Tの間隔で確定する。
<センサの動作>
センサ素子において、第1検出用固定電極12、13およびサーボ用固定電極14、15は、上記したように、フレーム18、19に対して固定されている。センサ1のフレーム18、19は、加速度を測定したい対象の物体と一体となって運動するように、測定対象の物体の面上に固定される。振動などにより、測定対象の物体とフレーム18、19に加速度信号aが印加されると、錘には、加速度信号aと逆向きの方向で、かつ、錘の質量と加速度信号aの大きさとの積の大きさの慣性力「−m*a」が印加されることになる。さらに、錘には重力「m*g*COSθ」も印加される。ここで、mは錘の質量、すなわち、第1検出用可動電極11aとサーボ制御用可動電極11bと絶縁部11cの質量の総和である。また、gは重力加速度である9.8m/s、θは錘の振動方向(図1における上下方向)と鉛直方向の間のなす角度である。本明細書では、錘に印加される慣性力と重力の和、すなわち、「m*(−a+g*cosθ)」を,以下、外部力と称する。
センサ1に加速度信号aが印加されると、錘に外部力が印加され、錘の位置が変位して、上記した検出容量対に容量変化ΔCが生じる。錘の変位は、バネ16、17による弾性力と外部力がバランスするように生じる。
検出回路110および復調器111はセンサ素子からのセンサ信号に基づいて、上記したように容量変化ΔCを検出し、容量変化ΔCに比例した信号を、制御回路112に出力する。制御回路112は、容量変化ΔCに比例した信号に基づいて、容量変化ΔCがゼロに近づくようなサーボ信号Vsを生成し、サーボ信号Vsに基づいた1ビット信号電圧がサーボ制御用固定電極14、15に印加される。サーボ制御用固定電極14、15にサーボ信号Vsに基づいた1ビット信号電圧が印加されることにより、サーボ制御用固定電極14、15とサーボ制御用可動電極11bとの間で、サーボ信号Vsに比例した静電気力が発生し、静電気力が錘に作用する。これにより、錘には、外部力とともに、それをキャンセルしようとする静電気力も印加されることになる。
サーボ信号Vsに比例して発生している静電気力が、まだ外部力と等しくなっていない場合、両者の力の差分と、バネ16、17による弾性力がバランスするように、錘の変位と容量変化ΔCが生じる。以下、同様にして、容量変化ΔCの検出、サーボ信号Vsの生成、サーボ信号Vsの印加が繰り返されることで、錘に印加された外部力と静電気力がバランスする定常状態に至る。定常状態では、弾性力はゼロでよいため、錘の変位はゼロ、すなわち、錘は、第1検出用固定電極12と第1検出用固定電極13との間の中央の位置に維持されることになる。
また、定常状態では、静電気力が、加速度信号aに対応する外部力とバランスしているため、その静電気力を発生させているサーボ信号Vsは入力加速度信号aに対応している。そのため、サーボ信号Vsをセンサ1の出力信号とみなすことができる。サーボ信号Vsは、1ビット変換部112bで生じる量子化誤差に起因する雑音を高周波領域に多く含むため、上記したようにローパスフィルタ124によって、高周波成分を抑圧して、センサ出力として出力される。なお、このローパスフィルタ124は、デジタルフィルタによって構成されている。
第1検出用固定電極12、13には、上記したようにキャリア信号Vに基づいたパルス信号が印加されることで、第1検出用可動電極11aには、上記した容量変化ΔCとキャリア信号Vとの積に相当する電荷量(ΔC*V)の電荷信号が生成される。この電荷信号が、センサ信号として、検出回路110の初段に設けられたC/V変換アンプ110aに供給され、電圧信号に変換される。キャリア信号Vの周波数は、上記したようにfs/2である。錘が変位することにより生じる容量変化ΔCの変化は、キャリア信号Vの電圧変化に比べて遅いため、遅く変化する容量変化ΔC、言い換えるならば低周波の容量変化ΔC信号が、キャリア信号Vの周波数fs/2付近の周波数に変換されて、電荷信号としてC/V変換アンプ110aに供給されていることになる。言い換えるならば、電荷信号は、低周波の容量変化ΔC信号が、搬送波であるキャリア信号Vに重畳されて、形成された信号である。
そのため、検出回路110aにおいて、低周波の1/f雑音や直流オフセット電圧が、電荷信号に加わっても、容量変化ΔC信号に対しては雑音とならない。すなわち、検出回路110aにおいて、低周波の1/f雑音や直流オフセット電圧が発生しても、センサ1の雑音とはならない。
電荷信号は、復調器111において、遅延回路125からのキャリア信号Vと再び乗算されることで、容量変化ΔC信号に比例した低周波信号に再び変換される。すなわち、復調器111の出力は、ΔC*Vに比例するが、Vであるキャリア信号は、パルス信号であるため、2乗することで、一定値となる。そのため、復調器111の出力は、容量変化ΔCだけに比例することになる。電荷信号は、検出回路110によって遅延する。そのため、検出回路110により受ける遅延時間と等しい遅延時間だけ、キャリア信号Vを遅延回路125で遅延させて、キャリア信号Vを、復調器111での乗算において、電荷信号のタイミングに合わせるようにしている。なお、復調器111において、上記した乗算器による乗算の後にフィルタを設け、フィルタで不要成分を抑圧するようにしてもよい。
<アップサンプラー、デジタルフィルタ、ダウンサンプラー、乗算器、探索部>
サーボ制御用容量対の2つの容量値、すなわち、サーボ制御用可動電極11bとサーボ制御用固定電極14との間に形成される容量値と、サーボ制御用可動電極11bとサーボ制御用固定電極15との間に形成される容量値との間にミスマッチがあると、サーボ信号Vsに比例した電荷がサーボ制御用可動電極11b上に生成されることになる。しかしながら、絶縁部11cが、サーボ制御用可動電極11bと第1検出用可動電極11aとの間に介在しているため、ミスマッチにより生成されるサーボ制御用可動電極11b上の電荷は、絶縁部11cでブロックされる。その結果として、ミスマッチによって、サーボ信号Vsに比例した電荷が生成されても、この電荷は検出用可動電極11aには伝達されない。
しかしながら、実際には、例えば、センサ用半導体装置IC_S、ドライバ用半導体装置IC_D等において、サーボ信号やその反転信号を伝達する各配線間、センサ半導体装置IC_Sのパッケージ11Pに設けられた端子間および/または半導体装置間を接続する配線間には、寄生容量が存在する。
例えば、ドライバ用半導体装置IC_Dにおいては、検出用バッファ114、検出用反転バッファ115、サーボ制御用バッファ116、サーボ制御用反転バッファ117の出力配線間には、寄生容量が存在することが考えられる。また、センサ用半導体装置IC_Sにおいては、パッケージ11Pの端子PT11a、PT12〜PT15間にも、寄生容量が存在することが考えられる。さらに、センサ用半導体装置IC_Sにおいては、各電極と対応する端子とを接続するボンディングワイヤ間、リードフレーム間にも、寄生容量が存在することが考えられる。半導体装置間を接続する配線間を考えると、例えば配線SNLとSBLとの間にも、寄生容量が存在することが考えられる。
これらの寄生容量は、等価的には、配線SNLとSBLとの間に接続された等価寄生容量113として集約することができる。ここでは、等価寄生容量113の容量値をCとして、説明する。正相のサーボ信号(例えば、図9のVP)に付随する寄生容量に比べて、反転相のサーボ信号Vs(例えば、図9のVN)に付随する寄生容量が大きい場合、等価容量値Cは負の値となる。
等価的に示した等価寄生容量113が存在することによって、サーボ信号Vsの変化に応答して、等価寄生容量113を介して、サーボ信号Vsの変化がノイズとして、配線SNLに伝達する。すなわち、サーボ信号Vsと等価寄生容量113の容量値Cとの積に比例したサーボ信号のリーク電荷成分C*Vsが、配線SNLに供給され、配線SNLにおいて電荷信号ΔC*Vに重畳されることになる。このリーク電荷成分C*Vsは、1ビット変換部112bで生じた量子化誤差に起因する雑音成分を、周波数fs/2付近の周波数領域で多く含んでいる。すなわち、量子化誤差に起因する雑音成分は、搬送波であるキャリア信号Vsの周波数fs/2に変換されていることになる。そのため、リーク電荷成分C*Vsは、同じ周波数fs/2付近の周波数領域に周波数変換されている電荷信号ΔC*Vに対して影響を与えることになり、結果としてセンサ1におけるノイズを上昇させることになる。
実施の形態1においては、サーボ信号のリーク電荷成分C*Vsを、A/D変換器110cの後のデジタル信号領域においてキャンセルする。サーボ信号のリーク電荷成分C*Vsは、検出回路110内のアナログフィルタ110bの周波数特性によって(フィルタリングによって)波形が変化し、さらに、A/D変換器110cによってサンプリングされた離散時間波形の状態で、キャンセルされる必要がある。そこで、実施の形態1においては、制御回路112から出力されているサーボ信号Vsに対して、デジタルフィルタ等によりフィルタリングの処理を行い、A/D変換器110cによって得られた上記の離散時間波形に対応する離散時間波形を生成する。さらに、生成した離散時間波形に、上記した容量値Cに対応するサーボ信号のリーク量の推定値を乗算することで、キャンセル信号を生成する。最後に、減算器123において、A/D変換器110cの出力から、生成したキャンセル信号を減算することで、サーボ信号のリーク電荷成分C*Vsのキャンセルを行う。
次に、より具体的に説明する。制御回路112から出力されたサーボ信号Vsは、アップサンプラー118に供給され、アップサンプラー118のデジタル出力がデジタルフィルタ119に供給される。デジタルフィルタ119によってフィルタリングされたデジタル信号は、ダウンサンプラー120に供給される。ダウンサンプラー120のデジタル出力は、乗算器121と、探索部122に供給される。乗算器121は、ダウンサンプラー120からのデジタル出力と、探索部122からのデジタル出力とを乗算し、乗算により得られたデジタル信号をキャンセル信号として、減算器123に供給する。また、減算器123から出力されたデジタル信号が、探索部122と上記したように復調器111に供給される。
実施の形態1では、連続時間動作を行うアナログフィルタ110bの周波数特性を模擬するために、アップサンプラー118、デジタルフィルタ119およびダウンサンプラー120が組み合わせられている。すなわち、信号レートがfsのサーボ信号Vsに対して、この順番で処理を実施する。1ビット変換部112bの動作レートは、前記したようにfsである。そのため、サーボ信号Vsの信号レートもfsとなる。アップサンプラー118は、供給されているサーボ信号Vsの信号レートをfsからM*fsにして、信号レートをM倍に上昇させる。アップサンプラー118は、例えば、期間Tにおいて、サーボ信号Vsが“1”であった場合、期間Tにおいて、“1”の数をM倍にし、サーボ信号Vsの信号レートをM倍にする。これにより、アナログフィルタ110bの連続時間動作に近づけている。デジタルフィルタ119は、M*fsの動作レートで動作させる。このデジタルフィルタ119の特性は、アナログフィルタ110bの伝達関数に基づいて、アナログフィルタ110bの周波数特性と一致させるように設定する。このようなデジタルフィルタ119は、アナログフィルタ110bの伝達関数に基づいて、双一次変換などの既知の手法を用いることにより、IIRフィルタとして実現できる。また、近似展開してFIRフィルタとして実現してもよい。
ダウンサンプラー120は、A/D変換器110cのサンプリング動作を模擬する。すなわち、デジタルフィルタ119から出力される信号レートがM×fsのデジタル信号を、A/D変換器110cのサンプリングタイミングに位相同期させて、M回に1回の割合で間引いて、出力する。これにより、ダウンサンプラー120の出力レートはfsとなる。
探索部122は、減算器123の出力信号とダウンダンプラー120の出力信号とに基づいて、LMSアルゴリズム等の適応制御により、サーボ信号Vsのリーク量(ノイズ量)の推定値を探索して、導出する。
<探索部>
図8は、実施の形態1に係わる探索部の構成を示すブロック図である。探索部122は、乗算器81と、利得器82と、積分器83を備えている。乗算器81は、減算器123の出力信号とダウンサンプラー120の出力信号との積を求める。乗算器121、減算器123および探索部122により構成される負帰還の適応制御のループ利得を決めるステップサイズ「+μ」が、利得器82によって、乗算器81の出力に乗算後、利得器82の出力信号は、積分器83で積分され、乗算器121に供給されている。
乗算器81によって、減算器123の出力信号とダウンサンプラー120の出力信号との積を求めることにより、サーボ信号Vsに基づく成分は、2乗となり、一定値となる。これにより、減算器123の出力信号に含まれるサーボ信号Vsのリーク量に相当する成分が、利得器82で乗算され、積分器83で積分され、サーボ信号Vsのリーク量の推定値が生成される。ダウンサンプラー120の出力信号である離散的時間波形と、推定されたサーボ信号Vsのリーク量とを、乗算器121において乗算することにより、キャンセル信号が生成される。すなわち、A/D変換器110cから出力されるアナログフィルタ110bの出力信号の波形を模擬したダウンサンプラー120からの離散的時間波形に、推定されたリーク量が重畳され、キャンセル信号が生成される。減算器123において、A/D変換器110cからの出力信号から、キャンセル信号が減算されることにより、A/D変換器110cの出力信号から、推定したリーク量が減算されることになる。上記した負帰還の適応制御は、A/D変換器110cからの出力信号に含まれるリーク量を低減するように機能する。
リーク量をキャンセルするキャンセル精度を希望する精度にするためには、デジタルフィルタ119、乗算器121、探索部122および減算器123等の演算語長を、A/D変換器110cの変換語長と同じか、大きくなるように確保する。
図8では、乗算器81にダウンサンプラー120の出力信号を供給する例を示したが、これに限定されるものではない。例えば、図1において、二点鎖線126で示したように、サーボ信号Vsを探索部122に供給し、探索部122において、ダウンサンプラー120の出力信号の代わりに、制御回路112からのサーボ信号Vsが、直接、乗算器81に供給されるようにしてもよい。このようにしても、乗算器81によって、サーボ信号Vsの成分を一定値にすることが可能である。
実施の形態1に係わるセンサ1においては、サーボ信号Vsによってセンサ素子のサーボ制御が行われているときに、センサ素子からのセンサ信号に基づいた加速度信号検出が行われる。すなわち、時分割的に、センサ素子のサーボ制御と加速度信号検出が行われるのではなく、サーボ制御と加速度信号検出は、同時平行的に行われる。そのため、サーボ制御および加速度信号検出を高速に行わなくても済む。また、強い静電気力を発生するための高電圧も必要としない。その結果、センサ1の消費電力を低減することが可能である。また、センサ素子のサーボ制御と加速度信号検出が同時平行的に行われるため、サーボ信号Vsに基づくノイズが発生するが、キャンセル信号によって、サーボ信号のリーク成分を高い精度でキャンセルすることができるため、ノイズを低減して、高精度のセンサを提供することが可能である。
(実施の形態2)
図2は、実施の形態2に係わるセンサの構成を示すブロック図である。図2は、図1と類似しているため、相異点を主に説明する。図1との相異点は、図2では、検出回路110が変更されていることである。図2において、検出回路110は、さらにチューニング回路110dを備えている。アナログフィルタ110bは、チューニング回路110dに接続されている。アナログフィルタ110bは、チューニング回路110dによって、その周波数特性が所望の特性となるように設定され。このようなアナログフィルタ110bおよびチューニング回路110dは、例えば非特許文献2に示されているような技術によって実現することが可能である。
実施の形態2においては、アップサンプラー118、デジタルフィルタ119およびダウンサンプラー120により実現されるフィルタの周波数特性に、検出回路110内のアナログフィルタ110bの周波数特性をマッチングさせるように、チューニング回路110dによってアナログフィルタ110bを設定することが可能である。これにより、上記したサーボ信号のリーク量を、高精度でキャンセルすることが可能となる。
(実施の形態3)
図3は、実施の形態3に係わるセンサの構成を示すブロック図である。図3は、図1に類似しているので、主に相異点を説明する。図3では、図1に示したC/V変換アンプ110aの構成が詳しく示されている。
C/V変換回路110aは、所謂オペアンプによって構成された増幅器1101aと、容量素子1102aと、抵抗素子1103aを備えている。増幅器1101aの正相入力ノード+には、所定の電圧Vbが供給され、反転入力ノード(−)は、配線SNLに接続され、出力ノードは、アナログフィルタ110bの入力に接続されている。増幅器1101aの反転入力ノード(−)と出力端子との間には、容量素子1102aと抵抗素子1103aとが並列的に接続されている。これにより、所謂、負帰還型の反転増幅器が構成されている。この構成では、帰還容量として作用する容量素子1102aによって、配線SNLにおける電荷信号(ΔC*V)が電圧信号に変換される。
抵抗素子1103aは、比較的高抵抗の抵抗素子によって構成されている。この抵抗素子1103aによって、増幅器1101aの反転入力ノード(−)上のリーク電流を補償する電流フィードバック経路が構成され、増幅器1101aの出力ノードにおける直流電位を最適値に維持している。
高抵抗の抵抗素子1103aの代わりに、スイッチを用いることも可能である。しかしながら、この場合には、スイッチのオン/オフによって、サンプリング雑音が発生するため、抵抗素子1103aを用いる場合に比べて雑音が大きくなる。高抵抗の抵抗素子1103aが発生する熱雑音は、抵抗素子1103aと容量素子1102aによるローパスフィルタ特性により抑圧されるため、電荷信号におけるfs/2付近の周波数領域の成分には影響を与えず、センサ1の雑音にも影響しない。
(実施の形態4)
図4は、実施の形態4に係わるセンサの構成を示すブロック図である。実施の形態4においては、センサ素子から出力されるセンサ信号が差動のセンサ信号に変更され、検出回路も差動回路によって構成される。これにより、例えば電源配線やグランド配線における同相の雑音に対する耐性を高め、センサの低雑音化を図ることが可能である。
図4は、図1と類似している部分が多いので、図1との相異点を主に説明する。
<センサ用半導体装置およびドライバ用半導体装置>
センサ用半導体装置IC_Sには、第2検出用可動電極11eと、絶縁部11dと、第2検出用固定電極41、42と、端子PT11e、TP41、TP42とが追加されている。
特に制限されないが、第2検出用可動電極11eは、サーボ制御用可動電極11bにおいて第1検出用可動電極11aが連結されていない端部側に、絶縁部11dを介して連結されている。第1検出用可動電極11aと同様に、第2検出用可動電極11eも。サーボ制御用可動電極11bと連動して、サーボ制御用可動電極11bが変位すると、同じ方向に変位する。この第2検出可動電極11eは、パッケージ11Pの端子PT11eに接続されている。第2検出用固定電極41は、フレーム18と対向する方向に配置された第2検出可動電極11eの部分(面)と、対向するように配置され、パッケージ11Pの端子PT41に接続されている。また、第2検出用可動電極42は、フレーム19と対向する方向に配置された第2検出可動電極11eの部分と、対向するように配置され、パッケージ11Pの端子PT42に接続されている。第2検出用固定電極41、42は、第1検出用固定電極12、13と同様に、センサ1のフレーム18、19に固定されている。
ドライバ用半導体装置IC_Dには、検出用バッファ44および検出用反転バッファ43が追加されている。図4に示すように、フレーム18に対向する方向に配置された第1検出可動電極11aの部分と対向する第1検出用固定電極12には、検出用バッファ114を介して位相反転されていないキャリア信号が供給される。これに対して、同じフレーム18に対向する第2検出可動電極11eの部分に対向する第2検出用固定電極41には、検出用反転バッファ43で位相反転されたキャリア信号が供給される。同様に、フレーム19に対向する方向に配置された第1検出可動電極11aの部分と対向する第1検出用固定電極13には、検出用反転バッファ115によって位相反転されたキャリア信号が供給される。これに対して、同じフレーム19に対向する第2検出可動電極11eの部分に対向する第2検出用固定電極42には、検出用バッファ44を介して、位相反転されていないキャリア信号が供給される。
これにより、第1検出用可動電極11aと第2検出用可動電極11eから出力される一対のセンサ信号を差動信号とすることができる。すなわち、第1検出用固定電極12、13と第1検出用可動電極11aとの間に形成される第1の検出用容量対と、第2検出用固定電極41、42と第2検出用可動電極11eとの間に形成される第2の検出用容量対とには、逆相でキャリア信号が印加されることになる。その結果、電荷信号ΔC*Vに比例した正相電荷信号が、正相センサ信号として、第1検出用固定電極11aから配線SNLに出力される。これに対して、電荷信号−ΔC*Vに比例した逆相電荷信号が、逆相センサ信号として、第2検出用固定電極11eから配線/SNL(第2の配線)に出力される。
<検出・制御用半導体装置>
検出・制御用半導体装置IC_DCにおいては、検出回路110が変更されている。すなわち、検出回路110は、正相電荷信号を正相電圧信号に変換する第1C/V変換アンプと、逆相電荷信号を逆相電圧信号に変換する第2C/V変換アンプと、差動のアナログフィルタ110bと、差動のA/D変換器110cを備えている。第1C/V変換アンプは、配線SNLに接続され、増幅器1101aと、容量素子1102aと、抵抗素子1103aを備えている。また、第2C/V変換アンプは、配線/SNLに接続され、増幅器1104aと、容量素子1105aと、抵抗素子1106aを備えている。第1C/V変換アンプおよび第2C/V変換アンプの構成および動作は、実施の形態3で説明したC/V変換アンプと同じであるため、説明は省略する。
差動のアナログフィルタ110bは、第1C/V変換アンプおよび第2C/V変換アンプからの正相電圧信号と逆相電圧信号との間の差電圧をフィルタリングして、差動信号を出力する。この差動信号が、差動のA/D変換器110cによって、デジタル信号に変換され、減算器123へ供給される。なお、図4では、図1〜図3に示した等価寄生容量は省略されているが、配線SBLと配線SNL間および配線SBLと配線/SNL間に等価寄生容量が接続されている。
センサ素子からのセンサ信号が差動のセンサ信号(正相センサ信号と逆相センサ信号)であり、検出回路110も差動回路によって構成されているため、同相の雑音に対する耐性を向上させることが可能である。
(実施の形態5)
図5は、実施の形態5に係わるセンサの構成を示すブロック図である。図5は、図4と類似しているため、相異点を主に説明する。図4においては、第1C/V変換アンプおよび第2C/V変換アンプは、オペアンプ2つを独立に用いる疑似差動型のアンプによって構成されていた。これに対して、実施の形態5においては、増幅器として完全差動オペアンプ51が用いられている。すなわち、完全差動オペアンプ51の反転入力ノード(−)が、配線/SNLに接続され、この反転入力ノード−と正相出力ノード(+)との間に容量素子1105aと抵抗素子1106aとが並列に接続されている。また、完全差動オペアンプ51の正相入力ノード(+)が、配線SNLに接続され、この正相入力ノード(+)と反転出力ノード(−)との間に容量素子1102aと抵抗素子1103aとが並列に接続されている。正相出力ノード(+)と反転出力ノード(−)における差動信号が、次段のアナログフィルタ110bに供給される。実施の形態5によれば、雑音、消費電力および回路面積を低減することができる。しかしながら、実施の形態4の方が回路設計は容易である。
(実施の形態6)
図6は、実施の形態6に係わるセンサの構成を示すブロック図である。図6は、図4と類似しているため、主に相異点を説明する。実施の形態6においては、図4に示したデジタルフィルタ119がFIRフィルタにより構成され、さらに図4に示した乗算器121がFIRフィルタに融合されている。
一般にFIRフィルタは、入力信号と、入力信号を順次クロック周期分遅延して得た信号とを、重み付け加算して出力する。すなわち、FIRフィルタは、入力信号と、入力信号を1クロック周期分遅延した信号と、入力信号を2クロック周期分遅延した信号と、・・・入力信号をNクロック周期分遅延した信号とを、重み付け加算して出力する。それぞれの信号に乗算される重み係数は、FIRフィルタのタップ係数と呼ばれ、それらの比率によって、FIRフィルタ周波数特性が設定される。
実施の形態6においては、上記したサーボ信号Vsのリーク量の推定値が、重み付け係数値に乗算され、乗算により得られた重み付け係数値が、FIRフィルタのタップ係数として用いられる。これにより、図4に示した乗算器121は不要となり、FIRフィルタのみとすることが可能である。図6において、61はFIRフィルタを示しており、FIRフィルタ61は、FIRフィルタと、そのタップ係数を探索するタップ係数探索部とを備えている。
図7は、実施の形態6に係わるFIRフィルタの構成を示す図である。図7において、符号Z−1は、1クロック周期分の遅延器を示している。アップサンプラー118からの入力信号は、同図において、左側に配置された遅延器列D_CLにおいて、順次1クロック周期分遅延する。遅延器列D_CLからの入力信号および各遅延信号は、同図において右側に示されている乗算器列S_CLにおいて、対応する乗算器S7_2によって、対応するタップ係数と乗算される。対応するタップ係数は、同図において中央部付近に示されている積分器列I_CLにおいて生成される。積分器列I_CLにおける各積分器は、中央部付近に示されている遅延器(Z−1)と加算器A7_1のループにより構成され、その出力は、対応する乗算器S7_2に供給される。
減算器123の出力は、乗算器A7_3によってパラメータμが乗算され、乗算器A7_3の出力は、遅延器列D_CLからの各遅延信号との間で、乗算器S7_1によって乗算され、対応する積分器の入力となる。
図7において、OL1〜OLnは、入力信号または遅延器(Z−1)によって遅延された遅延信号と、乗算器A7_3からの減算器123の出力との間で演算を行う演算行を示している。例えば、演算行OL1は、入力信号と乗算器A7_3からの減算器123の出力との間で演算を行う演算行を示し、演算行OL2は、初段の遅延器(Z−1)からの遅延信号と乗算器A7_3からの減算器123の出力との間で演算を行う演算行を示している。演算行OL1に設けられている乗算器S7_1、S7_2、加算器A7_1および遅延器(Z−1)が、遅延器列D_CLからの入力信号(アップサンプラー118からの信号)に対応する。また、演算行OL2に設けられている乗算器S7_1、S7_2、加算器A7_1および遅延器(Z−1)が、初段の遅延器(Z−1)からの遅延信号に対応している。以下、同様にして、演算行OLnまでの各演算行は、演算行OL2と同様に、対応する遅延器(Z−1)からの遅延信号と減算器123からの出力との間で演算を行う。演算行OL1〜OLnでの演算結果が、加算器列A_CLに配置された加算器A7_2によって加算され、ダウンサンプラー120への出力が生成される。
これにより、演算行OL1〜OLnにおいて、積分器列I_CLにおける各積分器の出力には、適切なタップ係数値が探索される。例えば、現在のタップ係数値が未だ適切でない場合、すなわち、アナログフィルタ110bとFIRフィルタ61との間でアンマッチがある場合、減算器123の出力には、遅延器列D_CLにおいて生成される遅延信号のうち、アンマッチに対応する遅延信号の成分が残存することになる。
例えば、アンマッチにより、減算器123の出力に、初段の遅延器(Z−1)の遅延信号の成分が残存していた場合、残存する遅延信号の成分は、初段の遅延器(Z−1)の遅延信号に対応する演算行OL2に設けられている積分器により積分され、直流成分が生成され、タップ係数として積分器から対応する乗算器S7_2へ出力されることになる。これにより、タップ係数値は、より適切な方向へ更新される。
減算器123からの出力を用いた負帰還制御により、各積分器の出力として生成される各タップ係数値は、アナログフィルタ110bの周波数特性を近似する周波数特性が得られるような比率で、かつ、サーボ信号Vsのリーク量の推定値が乗算された値に自動的に収束する。そのため、実施の形態6においては、アナログフィルタ110bの周波数特性が製造バラツキや温度変化により変動しても、タップ係数値がそれに応じた値に自動的に調整されるため、高精度なキャンセルを維持できる。つまり、実施の形態6では、デジタルのFIRフィルタ61の特性が、アナログフィルタ110bの特性に自動的に合わせられる。
なお、図7において、右側に示した加算器列A_CLは、タップ係数値が乗算された各遅延信号を加算する加算器A7_2の列を示している。すなわち、加算器列A_CLは、FIRフィルタ61の重み付け加算機能の加算器部を示している。乗算器121がFIRフィルタ61に融合されているため、このFIRフィルタ61の出力は、ダウンサンプラー120に供給され、ダウンサンプラー120の出力がキャンセル信号として、減算器123に供給される。
実施の形態1〜6で説明したA/D変換器110cは、アナログフィルタ110bによるフィルタリングにより生成された波形を、第1のデジタル信号に変換していると見なすことができる。
また、実施の形態1〜5で説明したアップサンプラー118、デジタルフィルタ119、ダウンサンプラー120、探索部122および乗算器121は、デジタルフィルタ119を含み、フィルタリング処理を含む信号処理を行い、乗算器121から減算器123へキャンセル信号である第2のデジタル信号を出力する第1の電子回路と見なすことができる。実施の形態6では、アップサンプラー118、FIRフィルタ61およびダウンサンプラー120が、デジタルフィルタを含む第1の電子回路に該当し、ダウンサンプラー120から減算器123に供給するキャンセル信号が第2のデジタル信号に該当する。
実施の形態1〜6では、減算器123が、第1のデジタル信号から第2のデジタル信号を差し引き、減算の結果を第3のデジタル信号として出力する第2の電子回路と見なすことができる。
実施の形態1〜5においては、第3のデジタル信号に基づいた探索部122の出力に従って、乗算器121が、デジタルフィルタ119によるフィルタリングにより得られる波形に対して変更を行う。一方、実施の形態6においては、第3のデジタル信号に基づいて、FIRフィルタ61のタップ係数値が変更される。すなわち、実施の形態1〜6のいずれにおいても、第3のデジタル信号に基づいて、第2のデジタル信号を取得する信号処理の設定が変更される。
また、実施の形態1〜6に示した制御回路112は、第3のデジタル信号に基づいて、サーボ信号Vsである第4のデジタル信号を生成していると見なすことができる。
なお、以上の各実施の形態1〜6においては、連続時間動作を行うアナログフィルタ110bの周波数特性を模擬するための一つの方法として、アップサンプラー118を適用し、デジタルフィルタ119は、それに応じた高速な動作レートで動作しているが、他の方法として、アップサンプラー118とダウンサンプラー120を取り除き、デジタルフィルタ119を、サーボ信号Vsの出力レートと等しいfsの動作レートで動作させてもよい。その場合、各実施の形態1〜5において、デジタルフィルタ119の各タップ係数の値は、アナログフィルタ110bのインパルス応答に、離散時間/連続時間変換に相当する所定の演算を施すことで導出し、適用すればよい。また、実施の形態6の場合は、前記所定の演算が施された各タップ係数の値が、前記の構成により自動的に探索される。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、センサ1が3つの半導体装置を備えている例を説明したが、この数に限定されるものではない。例えば、ドライブ用半導体装置と検出・制御用半導体装置を、1つの半導体装置で構成し、センサ1が2つの半導体装置を備えるようにしてもよい。
1 センサ
11a 第1検出用可動電極
11b サーボ制御用可動電極
12、13 第1検出用固定電極
14、15 サーボ制御用固定電極
110 検出回路
110b アナログフィルタ
110c A/D変換器
111 復調器
112 制御回路
113 等価寄生容量
119 デジタルフィルタ
121 乗算器
122 探索部
123 減算器
V キャリア信号
Vs サーボ信号

Claims (14)

  1. センサ素子と、
    前記センサ素子からのセンサ信号と、サーボ信号に基づくノイズとを含む波形をフィルタリングするアナログフィルタと、
    前記アナログフィルタでフィルタリングした波形を第1のデジタル信号に変換するA/D変換器と、
    デジタルフィルタを含む電子回路であり、前記サーボ信号に対して、少なくとも前記デジタルフィルタを用いたフィルタリング処理を含む信号処理を行い、第2のデジタル信号を取得する第1の電子回路と、
    前記第1のデジタル信号から前記第2のデジタル信号を差し引いて、第3のデジタル信号を取得する第2の電子回路と、
    を備え、
    前記第1の電子回路は、少なくとも前記第3のデジタル信号に基づいて、前記第2のデジタル信号を取得する前記信号処理の設定を変更し、前記第2のデジタル信号を変更する、センサ。
  2. 請求項1に記載のセンサにおいて、
    前記サーボ信号により、前記センサ素子を制御する制御回路と、
    前記制御回路と前記センサ素子とを結合する第1の配線と、
    前記センサ素子と前記アナログフィルタとを結合する第2の配線と、
    を、さらに備え、
    前記サーボ信号に基づくノイズは、前記第1の配線と前記第2の配線との間の寄生容量によって伝達される前記サーボ信号によるノイズを少なくとも含む、センサ。
  3. 請求項1に記載のセンサにおいて、
    前記サーボ信号に基づくノイズは、前記サーボ信号の変化に応答して、変化する、センサ。
  4. 請求項1に記載のセンサにおいて、
    前記センサ素子は、加速度センサのセンサ素子であって、加速度の変化を容量変化に変換し、前記サーボ信号とは異なる信号であるキャリア信号と前記容量変化に基づいて、前記センサ信号を生成する、センサ。
  5. 請求項1に記載のセンサにおいて、
    前記第2のデジタル信号は、前記サーボ信号に基づくノイズを、前記アナログフィルタによるフィルタリングで取得した波形を模擬した信号である、センサ。
  6. 請求項2に記載のセンサにおいて、
    前記サーボ信号は、前記第3のデジタル信号に基づいたデジタル信号であり、
    前記サーボ信号が、ローパスフィルタを介して、センサ出力として出力される、センサ。
  7. 請求項4に記載のセンサにおいて、
    前記キャリア信号は、所定の周波数の信号であり、前記キャリア信号に、前記容量変化が重畳され、前記センサ信号として生成される、センサ。
  8. 請求項7に記載のセンサにおいて、
    前記センサ素子は、加速度の変化に応じて位置が変化する第1検出用可動電極と、前記第1検出用可動電極と対向し、前記キャリア信号に基づいた信号が供給される第1検出用固定電極とを備え、前記第1検出用可動電極と前記第1検出用固定電極との間の距離の変化が、前記容量変化となる、センサ。
  9. 請求項8に記載のセンサにおいて、
    前記センサ素子は、前記第1検出用可動電極と連結されたサーボ制御用可動電極と、前記サーボ制御用可動電極に結合されたバネと、前記サーボ信号に基づいた信号が供給されるサーボ制御用固定電極とを、さらに備え、
    前記サーボ制御用可動電極には、前記バネの弾性力と、前記サーボ制御用固定電極と前記サーボ制御用可動電極との間で生じる静電気力とが加わる、センサ。
  10. 請求項1に記載のセンサにおいて、
    前記第1の電子回路は、アップサンプラーと、ダウンサンプラーと、演算器と、前記第3のデジタル信号と前記サーボ信号に基づいたデジタル信号とに基づいてノイズ量を探索する探索部とを、さらに備え、
    前記サーボ信号は、前記アップサンプラーによってアップサンプルされ、前記デジタルフィルタには、前記アップサンプラーによってアップサンプルされたデジタル信号が供給され、前記デジタルフィルタの出力は、前記ダウンサンプラーによってダウンサンプルされ、
    前記演算器は、前記ダウンサンプラーによってダウンサンプルされたデジタル信号と、前記探索部の出力とに基づいて、前記第2のデジタル信号を生成する、センサ。
  11. 請求項10に記載のセンサにおいて、
    前記探索部は、前記ダウンサンプルにより取得されたデジタル信号と前記第3のデジタル信号とに基づいて、ノイズ量を探索する、センサ。
  12. 請求項1に記載のセンサにおいて、
    前記センサ素子は、前記サーボ制御用可動電極と連結された第2検出用可動電極と、前記第2検出用可動電極と対向し、前記キャリア信号とは反転位相のキャリア信号が供給される第2検出用固定電極とを備え、
    前記アナログフィルタには、前記第1検出用可動電極からのセンサ信号と、前記第2検出用可動電極からのセンサ信号が供給される、センサ。
  13. 請求項1に記載のセンサにおいて、
    前記デジタルフィルタの特性は、タップ係数によって設定され、
    前記第3デジタル信号に基づいて、前記タップ係数が変更される、センサ。
  14. 請求項13に記載のセンサにおいて、
    前記デジタルフィルタは、FIRフィルタである、センサ。


JP2018172202A 2018-09-14 2018-09-14 センサ Active JP6944428B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018172202A JP6944428B2 (ja) 2018-09-14 2018-09-14 センサ
US16/458,903 US11035876B2 (en) 2018-09-14 2019-07-01 Sensor with servo noise reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172202A JP6944428B2 (ja) 2018-09-14 2018-09-14 センサ

Publications (2)

Publication Number Publication Date
JP2020046191A true JP2020046191A (ja) 2020-03-26
JP6944428B2 JP6944428B2 (ja) 2021-10-06

Family

ID=69774031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172202A Active JP6944428B2 (ja) 2018-09-14 2018-09-14 センサ

Country Status (2)

Country Link
US (1) US11035876B2 (ja)
JP (1) JP6944428B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188653A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 加速度センサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075849B2 (ja) * 2018-08-29 2022-05-26 株式会社日立製作所 Mems静電容量型加速度センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358913B2 (ja) 2014-09-30 2018-07-18 株式会社日立製作所 加速度センサ
JP6262629B2 (ja) * 2014-09-30 2018-01-17 株式会社日立製作所 慣性センサ
US10585112B2 (en) * 2015-02-17 2020-03-10 Hitachi, Ltd. Acceleration sensor
US10816568B2 (en) * 2017-12-26 2020-10-27 Physical Logic Ltd. Closed loop accelerometer
JP6895397B2 (ja) * 2018-01-09 2021-06-30 株式会社日立製作所 加速度センサ
JP7075849B2 (ja) * 2018-08-29 2022-05-26 株式会社日立製作所 Mems静電容量型加速度センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188653A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 加速度センサ

Also Published As

Publication number Publication date
US11035876B2 (en) 2021-06-15
US20200088759A1 (en) 2020-03-19
JP6944428B2 (ja) 2021-10-06

Similar Documents

Publication Publication Date Title
CA2366317C (en) Sensor
Lemkin et al. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics
JP6373786B2 (ja) 容量検出型センサの信号検出方法、容量検出型センサ、およびシステム
JP6397115B2 (ja) 加速度センサ
US6386032B1 (en) Micro-machined accelerometer with improved transfer characteristics
Fedder et al. Multimode digital control of a suspended polysilicon microstructure
JP6895397B2 (ja) 加速度センサ
CN106066218A (zh) 用于电容传感器的系统和方法
JP6944428B2 (ja) センサ
JP7075849B2 (ja) Mems静電容量型加速度センサ
WO2013047787A1 (ja) 加速度センサ回路
JP6446579B2 (ja) 加速度センサ
Soen et al. Controller design for a closed-loop micromachined accelerometer
US7114366B1 (en) Sensor
Lei et al. An oversampled capacitance-to-voltage converter IC with application to time-domain characterization of MEMS resonators
Saxena et al. Modeling and simulation of high performance sixth order sigma-delta MEMS accelerometer
WO2020195606A1 (ja) 加速度センサ、出力信号制御方法
EP2730928B1 (en) Physical quantity sensor and physical quantity detection method
Lavinia et al. 3-axis high Q MEMS accelerometer with simultaneous damping control
Petkov et al. Capacitive interfaces for MEMS
JP6809201B2 (ja) サンプリングレート変換回路、レシプロカルカウント値生成回路および物理量センサー
Hons et al. MEMS for the masses part 1: comparison to geophones in theory
Aykutlu 5th order sigma delta MEMS accelerometer system with enhanced linearity
Chatterjee et al. Design methodology of closed loop MEMS capacitive accelerometers based on ΣΔ modulation technique
Haze et al. ADC position-sense interface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6944428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150