JP7075849B2 - Mems静電容量型加速度センサ - Google Patents

Mems静電容量型加速度センサ Download PDF

Info

Publication number
JP7075849B2
JP7075849B2 JP2018160660A JP2018160660A JP7075849B2 JP 7075849 B2 JP7075849 B2 JP 7075849B2 JP 2018160660 A JP2018160660 A JP 2018160660A JP 2018160660 A JP2018160660 A JP 2018160660A JP 7075849 B2 JP7075849 B2 JP 7075849B2
Authority
JP
Japan
Prior art keywords
signal
mems
movable electrode
control circuit
fixed electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018160660A
Other languages
English (en)
Other versions
JP2020034397A (ja
Inventor
俊 大島
優希 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018160660A priority Critical patent/JP7075849B2/ja
Priority to US16/551,206 priority patent/US11169174B2/en
Publication of JP2020034397A publication Critical patent/JP2020034397A/ja
Application granted granted Critical
Publication of JP7075849B2 publication Critical patent/JP7075849B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/131Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electrostatic counterbalancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
    • G01P2015/0865Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system using integrated signal processing circuitry

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Description

本発明は、MEMS静電容量型加速度センサに関する。
石油や天然ガスなどを探査する反射法地震探査では、資源が埋蔵されていると予測される地層の地表面上に、多数の加速度センサが所定の2次元配置となるようにばら撒かれて設置される。その後、人工地震を起こしてその地震波が地層により反射してくる反射波を加速度として捉える。
2次元的に配置されたセンサ群で一斉に受けた加速度データを解析して、地層の状態を調べて石油や天然ガスなどの資源の有無を判定する。反射法地震探査用の加速度センサは、微弱な加速度信号を検出するために、他の分野の加速度センサと比べて桁違いに雑音が小さい必要がある。
そのため、従来、極低雑音の加速度センサとしてジオフォンが用いられてきた。しかし、ジオフォンは、数10Hz以下の低周波帯で雑音が大きくなること、原理的に入力周波数帯域幅が狭いこと、量産に不向きなことなどから、次世代の高精度な地震探査には不向きであると考えられる。
そこで、上記の問題を原理的に回避できるMEMS(Micro Electro Mechanical Systems)加速度センサが、次世代の高精度地震探査用途に期待され始めている。次世代高精度地震探査では100万台規模の加速度センサを用いる。MEMS加速度センサは、極低雑音であることに加えて低コストである必要がある。そのため、低消費電力化によるバッテリコストの低減、製造コストの低減及びバラツキ低減による歩留まりの向上が求められている。
特許文献1には、MEMS加速度センサに関連する技術が開示されている。具体的には、特許文献1では、加速度信号検出用のMEMSとサーボ力印加用のMEMSを備える。これにより、加速度信号検出とサーボ制御が同時平行で行われる。
特開2016-070815号公報
ところで、MEMS加速度センサでは、低雑音かつ低消費電力であることに加えて、MEMS素子の製造コストを低減すると共にMEMS素子の電気的及び機械的特性のバラツキを低減することが求められている。
しかし、特許文献2では、加速度信号検出とサーボ制御が同時平行で行われるため、時分割処理の場合よりもMEMS素子が大型かつ複雑な構造になる。このため、MEMS素子の製造コストを低減すると共にMEMS素子の電気的及び機械的特性のバラツキを低減することは困難である。
本発明の目的は、MEMS静電容量型加速度センサにおいて、MEMS素子の製造コストを低減すると共にMEMS素子の電気的及び機械的特性のバラツキを低減することにある。
本発明の一態様のMEMS静電容量型加速度センサは、可動電極と第1の固定電及び第2の固定電極とを備えたMEMS容量対と、前記可動電極に接続された検出回路と、前記検出回路に接続された復調回路と、前記復調回路に接続され、2値のサーボ信号を出力する制御回路とを有し、前記制御回路が出力する前記サーボ信号に基づく電圧信号が前記第1の固定電極に印加され、前記サーボ信号を論理反転した信号に基づく電圧信号が前記第2の固定電極に印加され、加速度信号の印加により前記可動電極上に生じる慣性力とバランスする逆向きの静電気力が前記可動電極上に生成されるMEMS静電容量型加速度センサであって、前記検出回路は、前記MEMS容量対の2つの容量値の差と前記サーボ信号の積に対応する電圧信号を生成し、前記復調回路は、前記サーボ信号を用いて前記容量値の差に対応する信号を出力し、前記制御回路は、前記容量値の差に対応する信号に基づいて前記サーボ信号を出力することを特徴とする。
本発明の一態様のMEMS静電容量型加速度センサは、可動電極と第1の固定電極及び第2の固定電極とを備えた第1のMEMS容量対と、前記可動電極と第3の固定電極及び第4の固定電極を備えた第2のMEMS容量対と、前記可動電極に接続された検出回路と、前記検出回路に接続された第1の復調回路と、前記検出回路に接続された第2の復調回路と、前記第1の復調回路に接続され、2値の第1のサーボ信号を出力する第1の制御回路と、前記第2の復調回路に接続され、2値の第2のサーボ信号を出力する第2の制御回路とを有し、前記第1の制御回路が出力する前記第1のサーボ信号に基づく電圧信号が前記第1の固定電極に印加され、前記第1のサーボ信号を論理反転した信号に基づく電圧信号が前記第2の固定電極に印加され、第1の軸方向の加速度信号の印加により前記可動電極上に生じる慣性力とバランスする逆向きの静電気力が前記可動電極上に生成され、前記第2の制御回路が出力する前記第2のサーボ信号に基づく電圧信号が前記第3の固定電極に印加され、前記第2のサーボ信号を論理反転した信号に基づく電圧信号が前記第4の固定電極に印加され、前記第1の軸方向と異なる第2の軸方向の加速度信号の印加により前記可動電極上に生じる慣性力とバランスする逆向きの静電気力が前記可動電極上に生成されるMEMS静電容量型加速度センサであって、前記検出回路は、前記第1のMEMS容量対の2つの第1の容量値の差と前記第1のサーボ信号の積に対応する第1の電圧信号と、前記第2のMEMS容量対の2つの第2の容量値の差と前記第2のサーボ信号の積に対応する第2の電圧信号を生成し、前記第1の復調回路は、前記第1のサーボ信号を用いて前記第1のMEMS容量対の前記第1の容量値の差に対応する信号を出力し、前記第2の復調回路は、前記第2のサーボ信号を用いて前記第2のMEMS容量対の前記第2の容量値の差に対応する信号を出力し、前記第1の制御回路は、前記第1のMEMS容量対の前記第1の容量値の差に対応する信号に基づいて前記第1のサーボ信号を出力し、前記第2の制御回路は、前記第2のMEMS容量対の前記第2の容量値の差に対応する信号に基づいて前記第2のサーボ信号を出力することを特徴とする。
本発明の一態様によれば、MEMS静電容量型加速度センサにおいて、MEMS素子の製造コストを低減すると共にMEMS素子の電気的及び機械的特性のバラツキを低減することができる。
関連技術1のMEMS静電容量型加速度センサを説明する図である。 関連技術2のMEMS静電容量型加速度センサを説明する図である。 関連技術1のMEMS静電容量型加速度センサの動作タイムチャートである。 関連技術2のMEMS静電容量型加速度センサの動作タイムチャートである。 実施例1のMEMS静電容量型加速度センサを説明する図である。 実施例1のMEMS静電容量型加速度センサの動作タイムチャートである。 実施例2のMEMS静電容量型加速度センサを説明する図である。 実施例2を補足説明する図である。 実施例3のMEMS静電容量型加速度センサを説明する図である。 実施例4のMEMS静電容量型加速度センサを説明する図である。 実施例5のMEMS静電容量型加速度センサを説明する図である。 実施例5を補足説明する図である。 実施例5を補足説明する図である。 実施例5を補足説明する図である。 実施例5を補足説明する図である。 実施例5を補足説明する図である。 実施例6のMEMS静電容量型加速度センサを説明する図である。 実施例7のMEMS静電容量型加速度センサを説明する図ある。 実施例8のMEMS静電容量型加速度センサを説明する図である。 実施例9のMEMS静電容量型加速度センサを説明する図である。 実施例10のMEMS静電容量型加速度センサを説明する図である。 実施例11のMEMS静電容量型加速度センサを説明する図である。 実施例11のMEMS静電容量型加速度センサ動作タイムチャートである。 実施例12のMEMS静電容量型加速度センサを説明する図である。
以下、図面を用いて説明する。
最初に、図1を参照して、関連技術1のMEMS静電容量型加速度センサについて説明する。
図1に示すように、MEMS静電容量型加速度センサは、機械的におもりの役割を兼ねている可動電極11、固定電極12及び固定電極13で構成される一つのMEMS容量対を備える。すなわち、可動電極11と固定電極12の間に容量値C+ΔCの容量が形成され、可動電極11と固定電極13の間に容量値C-ΔCの容量が形成される。可動電極11が固定電極12と固定電極13の中央に位置する時、容量変化ΔCはゼロとなり、可動電極11が中央より上に位置する時、ΔCは正の値、可動電極11が中央より下に位置する時、ΔCは負の値となる。
さらに、可動電極11とフレーム16の間にはバネ14が、可動電極11とフレーム17の間にはバネ15が接続されている。可動電極11が固定電極12と固定電極13の中央に位置する時、バネ14もバネ15も自然長となっており、それらの及ぼす弾性力はゼロである。可動電極11が中央より上に位置する時、バネ14は縮むため、可動電極11に対して下向きに弾性力を及ぼす。
また、バネ15は伸びるため、可動電極11に対して、やはり下向きの弾性力を及ぼす。したがって、これらの合力である下向きの力が可動電極11に及ぼされる。一方、可動電極11が中央より下に位置する時、バネ14は伸びるため、可動電極11に対して上向きに弾性力を及ぼす。また、バネ15は縮むため、可動電極11に対して、やはり上向きの弾性力を及ぼす。したがって、これらの合力である上向きの力が可動電極11に及ぼされる。
可動電極11は検出回路18に接続され、検出回路18の出力は復調器19に接続され、復調器19の出力には容量変化ΔCに対応する信号が得られる。復調器19の出力は制御回路110に接続され、制御回路110は前記ΔCに対応する信号にもとづいて、1ビット(2値)のサーボ信号を生成する。また、制御回路110は容量変化ΔCの検出に必要なキャリア信号も生成する。キャリア信号は一定周波数のパルス信号である。キャリア信号は復調でも必要になるため、遅延器111を経て、復調器19に印加される。さらに、制御回路110は、サーボ制御と加速度信号検出の相互干渉を抑制するために、リセット信号も生成する。リセット信号、キャリア信号、サーボ信号はそれぞれ、スイッチ113、112、114により時分割で交互に、バッファ115および反転バッファ116に入力される。バッファ115は、この時分割信号を期間に応じて適切な電圧レベルの電圧信号VPに変換する。
図3の動作タイムチャートに示すように、加速度信号検出期間はキャリア信号として必要な電圧レベルに、サーボ制御期間はサーボ信号として必要な電圧レベルに変換する。また、リセット期間は、例えばグランド電位に変換する。一方、反転バッファ116は前記時分割信号を論理反転し、バッファ115と同様に、期間に応じて適切な電圧レベルの電圧信号VNに変換する。なお、リセット期間はVPと同じ電位、例えば、グランド電位に変換する。バッファ115の出力電圧信号VPは固定電極12に印加され、反転バッファ116の出力電圧信号VNは固定電極13に印加される。
このMEMS静電容量型加速度センサのフレーム16、17などは、加速度を測定したい対象の物体と一体となって運動するように、測定対象の物体の面上に固定される。振動などにより、前記測定対象の物体と前記フレームに加速度信号「a」が印加されると、おもりでもある可動電極11には、前記加速度信号と逆向きの方向で、かつ、可動電極11の質量と前記加速度信号の大きさとの積の大きさの慣性力「-m*a」が印加される。
さらに、可動電極11には重力「m*g*cosθ」も印加される。ここで、mは可動電極11の質量、gは重力加速度である9.8m/s、θは可動電極11の振動方向(図1における上下方向)と鉛直方向の間のなす角度である。ここで、可動電極11に印加される前記慣性力と重力の和、すなわち、「m*(-a+g*cosθ」を「外部力」と呼ぶ。
上記の通り、MEMS静電容量型加速度センサに加速度信号が印加されると、可動電極11に外部力が印加され、可動電極11が変位して前記容量変化ΔCが生じる。前記変位は、バネ14、15による弾性力と外部力がバランスするように生じる。検出回路18は容量変化ΔCを検出し、制御回路110は、その検出結果にもとづいて、容量変化ΔCがゼロに近づくようにサーボ信号を生成し、固定電極12と固定電極13に印加して可動電極11に静電気力を及ぼす。これにより、可動電極11には、前記可動電極11に印加された外部力とともに、それをキャンセルしようとする前記静電気力も印加される。
この静電気力がまだ前記可動電極11に印加された外部力と等しくなっていない場合は、両者の力の差分とバネ14、15による弾性力がバランスするように、可動電極11の変位と容量変化ΔCが生じる。以下、同様に、この容量変化ΔCの検出とサーボ信号の生成、印加が繰り返されることで、可動電極11に印加された外部力と前記静電気力がバランスする定常状態に至る。この時、弾性力はゼロでよいため、可動電極11の変位はゼロ、すなわち、可動電極11は固定電極12と固定電極13の中央の位置に維持される。
前記の通り、定常状態では、入力加速度信号に対応する前記可動電極11に印加された外部力は、前記静電気力とバランスしているため、その静電気力を生成しているサーボ信号は入力加速度信号に対応している。そのため、サーボ信号をMEMS静電容量型加速度センサの出力信号とみなすことができる。なお、サーボ信号は入力加速度信号成分以外の不要成分も含むため、図示していないデジタルフィルタにより不要成分を抑圧した後、最終的な出力となる。
このMEMS静電容量型加速度センサは、一対の固定電極12、13しか備えていないため、前記説明や図3の動作タイムチャートに示した通り、リセット、加速度信号検出、サーボ制御が時分割で行われる。加速度信号検出期間は、前記電圧信号VP、VNは差動キャリア信号として機能する。すなわち、この差動キャリア信号を固定電極12、13に印加することで、前記容量変化ΔCとキャリア信号の積に相当する電荷信号が可動電極11上に生成され、検出回路18は、この電荷信号に対して増幅などの処理を行う。
前記電荷信号はキャリア信号周波数近傍の周波数帯域に局在するため、検出回路18内で低周波の1/f雑音や直流オフセット電圧が加わっても影響を受けない。復調器19は、前記電荷信号をキャリア信号と乗算することで、元の容量変化・Cに対応する信号に戻している。また、復調器19で乗算されるキャリア信号を、前記電荷信号が検出回路18により受ける遅延時間と等しい時間だけ、遅延器111により遅延させることで、タイミングの同期を取っている。
なお、復調器19では、前記乗算後にフィルタにより不要成分が抑圧される。制御回路110は、前記容量変化ΔCに対応する信号にもとづいて、前記1ビットのサーボ信号を生成し、続くサーボ制御期間において、固定電極12、13に印加する。以上の加速度信号検出、サーボ制御がリセット動作をはさんで交互に繰り返される。
しかしながら、このMEMS静電容量型加速度センサでは、図3の動作タイムチャートに示された「T/3」の通り、加速度信号検出期間、サーボ制御期間とも1/3に短縮されてしまう。なお、Tはサーボ信号の更新間隔として定義されている。そのため、検出回路18や制御回路110を3倍高速に動作させる必要があり、検出回路18や制御回路110の消費電力が増大する。さらに、短い期間の電圧印加で所定の静電気力を確保するために、図3の通り、サーボ制御期間中の電圧信号VP、VNの電圧レベルをより高くする必要がある。そのため、MEMS容量対や寄生容量に対する充放電電力が増大する。
以上の通り、関連技術1のMEMS静電容量型加速度センサでは消費電力が大きくなってしまうという問題がる。
図2を参照して、関連技術2のMEMS静電容量型加速度センサについて説明する。
関連技術2のMEMS静電容量型加速度センサの可動電極11は、挿入された絶縁層25により左右に分断されている。前記可動電極11の左側の部分、および、固定電極12、固定電極13で構成される第一のMEMS容量対と、前記可動電極11の右側の部分、および、固定電極21、固定電極22で構成される第二のMEMS容量対をともに備えている。可動電極11の右側の部分と固定電極21の間に容量値C+ΔCの容量が形成され、可動電極11の右側の部分と固定電極22の間に容量値C-ΔCの容量が形成される。
可動電極11が固定電極21と固定電極22の中央に位置する時、容量変化ΔCはゼロとなり、可動電極11が中央より上に位置する時、ΔCは正の値、可動電極11が中央より下に位置する時、ΔCは負の値となる。さらに、可動電極11とフレーム16の間にはバネ14が、可動電極11とフレーム17の間にはバネ15が接続されている。
可動電極11が固定電極21と固定電極22の中央に位置する時、バネ14もバネ15も自然長となっており、それらの及ぼす弾性力はゼロである。可動電極11が中央より上に位置する時はバネ14は縮むため、可動電極11に対して下向きに弾性力を及ぼす。また、バネ15は伸びるため、可動電極11に対して、やはり下向きの弾性力を及ぼす。
したがって、これらの合力である下向きの力が可動電極11に及ぼされる。一方、可動電極11が中央より下に位置する時はバネ14は伸びるため、可動電極11に対して上向きに弾性力を及ぼす。また、バネ15は縮むため、可動電極11に対して、やはり上向きの弾性力を及ぼす。したがって、これらの合力である上向きの力が可動電極11に及ぼされる。
可動電極11の右側の部分は検出回路18に接続され、検出回路18の出力は復調器19に接続され、復調器19の出力には容量変化ΔCに対応する信号が得られる。復調器19の出力は制御回路110に接続され、制御回路110は前記・Cに対応する信号にもとづいて、1ビット(2値)のサーボ信号を生成する。また、制御回路110は容量変化ΔCの検出に必要なキャリア信号も生成する。キャリア信号は一定周波数のパルス信号である。キャリア信号は復調でも必要になるため、遅延器111を経て、復調器19に印加される。
サーボ信号はバッファ115および反転バッファ116に入力される。バッファ115は前記1ビットのサーボ信号を、サーボ信号として適切な電圧レベルの1ビット電圧信号VPに変換して、固定電極12に印加する。また、反転バッファ116は前記1ビットのサーボ信号を論理反転し、バッファ115と同様に、サーボ信号として適切な電圧レベルの1ビット電圧信号VNに変換して、固定電極13に印加する。
なお、前記可動電極11の左側の部分は固定電位、例えば、グランド電位に接続されている。一方、キャリア信号はバッファ23および反転バッファ24に入力される。バッファ23は前記キャリア信号を、キャリア信号として適切な電圧レベルのパルス電圧信号VDPに変換して、固定電極21に印加する。また、反転バッファ24は前記キャリア信号を論理反転し、バッファ23と同様、キャリア信号として適切な電圧レベルのパルス電圧信号VDNに変換して、固定電極22に印加する。
図1の関連技術1と同様に、この関連技術2のMEMS静電容量型加速度センサに加速度信号が印加されると、可動電極11に外部力が印加され、可動電極11が変位して、第二のMEMS容量対に前記容量変化ΔCが生じる。前記変位は、前記バネ14、15による弾性力と前記外部力がバランスするように生じる。検出回路18は容量変化ΔCを検出する。制御回路110は、その検出結果にもとづいて、容量変化ΔCがゼロに近づくようにサーボ信号を生成し、固定電極12と固定電極13に印加して可動電極11に静電気力を及ぼす。これにより、可動電極11には、可動電極11に印加された外部力とともに、それをキャンセルしようとする前記静電気力も印加される。
この静電気力がまだ可動電極11に印加された外部力と等しくなっていない場合は、両者の力の差分とバネ14、15による弾性力がバランスするように、可動電極11の変位と容量変化ΔCが生じる。以下、同様に、この容量変化ΔCの検出とサーボ信号の生成、印加が繰り返されることで、可動電極11に印加された外部力と前記静電気力がバランスする定常状態に至る。この時、弾性力はゼロでよいため、可動電極11の変位はゼロ、すなわち、可動電極11は固定電極21と固定電極22の中央の位置に維持される。
前記の通り、定常状態では、入力加速度信号に対応する前記可動電極11に印加された外部力は、前記静電気力とバランスしているため、その静電気力を生成しているサーボ信号は入力加速度信号に対応している。そのため、サーボ信号をMEMS加速度センサの出力信号とみなすことができる。なお、サーボ信号は入力加速度信号成分以外の不要成分も含むため、図示していないデジタルフィルタにより不要成分を抑圧した後、最終的な出力となる。
この関連技術2のMEMS静電容量型加速度センサは、固定電極21、22の追加により、第二のMEMS容量対を備えるため、前記の通り、サーボ制御用に第一のMEMS容量対を、加速度信号検出のためのキャリア信号印加用に第二のMEMS容量対を用いることができる。そのため、図4の動作タイムチャートに示した通り、加速度信号検出とサーボ制御を同時平行で実施できる。
すなわち、差動キャリア信号VDP、VDNを固定電極21、22に印加することで、前記容量変化ΔCとキャリア信号の積に相当する電荷信号が前記可動電極11の右側の部分に生成され、検出回路18は、この電荷信号に対して増幅などの処理を行う。前記電荷信号はキャリア信号周波数近傍の周波数帯域に局在するため、検出回路18内で低周波の1/f雑音や直流オフセット電圧が加わっても影響を受けない。復調器19は、前記電荷信号をキャリア信号と乗算することで、元の容量変化・Cに対応する信号に戻している。
また、復調器19で乗算されるキャリア信号を、前記電荷信号が検出回路18により受ける遅延時間と等しい時間だけ、遅延器111により遅延させることで、タイミングの同期を取っている。なお、復調器19では、前記乗算後にフィルタにより不要成分が抑圧される。制御回路110は、前記容量変化・Cに対応する信号にもとづいて、前記1ビットのサーボ信号を生成し、固定電極12、13に印加する。以上の動作において、前記絶縁層25は、サーボ信号が前記可動電極11の右側の部分に混入して前記電荷信号に干渉するのを防止する役割を果たしている。
この関連技術2のMEMS静電容量型加速度センサは、加速度信号検出とサーボ制御を同時平行で実施できるため、図4の動作タイムチャートに示された「T」の通り、加速度信号検出期間もサーボ制御期間も短縮されない。そのため、検出回路18や制御回路110を低速で動作させることができ、これらの消費電力を低減できる。また、サーボ信号を常時印加できるため、図4の通り、1ビット電圧信号VP、VNの電圧レベルをより低くしても、所定の静電気力を確保できる。そのため、MEMS容量対や寄生容量に対する充放電電力を低減できる。
しかしながら、この関連技術2のMEMS静電容量型加速度センサでは、MEMS素子が大型かつ複雑な構造になるため、MEMS素子の製造コストの低減や電気的及び機械的な特性バラツキの低減に問題がある。
以上の関連技術1、2の問題を踏まえて、本発明の実施例のMEMS静電容量型加速度センサでは、1ビットのサーボ信号をキャリア信号としても流用することで、一つのMEMS容量対だけを用いながら、加速度信号検出とサーボ制御を同時平行で実施する。
これにより、実施例のMEMS静電容量型加速度センサでは、低雑音かつ低消費電力であることに加えて、MEMS素子の製造コストを低減すると共にMEMS素子の電気的及び機械的特性のバラツキを低減することが可能になる。
以下、図面を用いて、本発明の実施例について説明する。
図5を参照して、実施例1のMEMS静電容量型加速度センサの構成について説明する。
図5の通り、実施例1のMEMS静電容量型加速度センサMEMSは、機械的におもりの役割を兼ねている可動電極11、および、固定電極12、固定電極13で構成される一つのMEMS容量対を備える。すなわち、可動電極11と固定電極12の間に容量値C+ΔCの容量が形成され、可動電極11と固定電極13の間に容量値C-ΔCの容量が形成される。
可動電極11が固定電極12と固定電極13の中央に位置する時、容量変化ΔCはゼロとなり、可動電極11が中央より上に位置する時、ΔCは正の値、可動電極11が中央より下に位置する時、ΔCは負の値となる。さらに、可動電極11とフレーム16の間にはバネ14が、可動電極11とフレーム17の間にはバネ15が接続されている。可動電極11が固定電極12と固定電極13の中央に位置する時、バネ14もバネ15も自然長となっており、それらの及ぼす弾性力はゼロである。可動電極11が中央より上に位置する時、バネ14は縮むため、可動電極11に対して下向きに弾性力を及ぼす。
また、バネ15は伸びるため、可動電極11に対して、やはり下向きの弾性力を及ぼす。したがって、これらの合力である下向きの力が可動電極11に及ぼされる。一方、可動電極11が中央より下に位置する時、バネ14は伸びるため、可動電極11に対して上向きに弾性力を及ぼす。また、バネ15は縮むため、可動電極11に対して、やはり上向きの弾性力を及ぼす。したがって、これらの合力である上向きの力が可動電極11に及ぼされる。
可動電極11は検出回路18に接続され、検出回路18の出力は復調器19に接続され、復調器19の出力には容量変化ΔCに対応する信号が得られる。復調器19の出力は制御回路110に接続され、制御回路110は前記ΔCに対応する信号にもとづいて、1ビット(2値)のサーボ信号を生成する。前記1ビットのサーボ信号は、バッファ115および反転バッファ116に入力される。さらに、前記1ビットのサーボ信号は遅延器111を経て、復調器19にも印加される。
バッファ115は前記1ビットのサーボ信号を、サーボ信号として、かつ、キャリア信号として適切な電圧レベルの電圧信号VPに変換する。一方、反転バッファ116は前記1ビットのサーボ信号を論理反転し、バッファ115と同様に、サーボ信号として、かつ、キャリア信号として適切な電圧レベルの電圧信号VNに変換する。バッファ115の出力電圧信号VPは固定電極12に印加され、反転バッファ116の出力電圧信号VNは固定電極13に印加される。
図1の関連技術1と同様に、この実施例1のMEMS静電容量型加速度センサに加速度信号が印加されると、可動電極11に外部力が印加され、可動電極11が変位して前記容量変化ΔCが生じる。前記変位は、前記バネ14、15による弾性力と前記外部力がバランスするように生じる。検出回路18は容量変化ΔCを検出し、制御回路110は、その検出結果にもとづいて、容量変化・Cがゼロに近づくようにサーボ信号を生成し、固定電極12と固定電極13に印加して可動電極11に静電気力を及ぼす。これにより、可動電極11には、前記可動電極11に印加された外部力とともに、それをキャンセルしようとする前記静電気力も印加される。
この静電気力がまだ前記可動電極11に印加された外部力と等しくなっていない場合は、両者の力の差分とバネ14、15による弾性力がバランスするように、可動電極11の変位と容量変化ΔCが生じる。以下、同様に、この容量変化ΔCの検出とサーボ信号の生成、印加が繰り返されることで、前記可動電極11に印加された外部力と前記静電気力がバランスする定常状態に至る。この時、弾性力はゼロでよいため、可動電極11の変位はゼロ、すなわち、可動電極11は固定電極12と固定電極13の中央の位置に維持される。
前記の通り、定常状態では、入力加速度信号に対応する前記可動電極11に印加された外部力は、前記静電気力とバランスしているため、その静電気力を生成しているサーボ信号は入力加速度信号に相当している。そのため、サーボ信号をMEMS加速度センサの出力信号とみなすことができる。なお、サーボ信号は入力加速度信号成分以外の不要成分も含むため、図示していないデジタルフィルタにより不要成分を抑圧した後、最終的な出力となる。
この実施例1のMEMS静電容量型加速度センサは、図1や図2の関連技術1、2とは異なり、1ビットのサーボ信号をキャリア信号としても流用している。一対の固定電極12、13しか備えていないため、前記の通り、これらの電極には差動のサーボ電圧信号VP、VNを印加している。この時に、可動電極11上に、前記容量変化ΔCと1ビットのサーボ信号の積に相当する電荷信号が生成される点に着眼している。検出回路18は、この電荷信号に対して増幅などの処理を行う。1ビットのサーボ信号は、1ビット量子化に起因する高周波成分を十分に多く含むため、前記電荷信号は高周波成分に十分な情報を含んでいる。そのため、検出回路18内で低周波の1/f雑音や直流オフセット電圧が加わっても影響を受けにくい。復調器19は、前記電荷信号をサーボ信号と乗算することで相関を取り、元の容量変化ΔCに対応する信号に戻している。
例えば、サーボ信号が「1 -1 1 1 -1 1 -1 -1 1 …」である場合、前記電荷信号は「ΔC -ΔC ΔC ΔC -ΔC ΔC -ΔC -ΔC ΔC …」であり、復調器19で前記サーボ信号「1 -1 1 1 -1 1 -1 -1 1 …」と乗算され、「ΔC -ΔC ΔC ΔC -ΔC ΔC -ΔC -ΔC ΔC …」となる。
なお、復調器19で乗算されるサーボ信号を、前記電荷信号が検出回路18により受ける遅延時間と等しい時間だけ、遅延器111により遅延させることで、タイミングの同期を取っている。また、復調器19では、前記乗算後にフィルタにより不要成分が抑圧される。制御回路110は、前記容量変化・Cに対応する信号にもとづいて、前記1ビットのサーボ信号を生成し、固定電極12、13に印加する。
図6を参照して、実施例1のMEMS静電容量型加速度センサの動作について説明する。
加速度信号検出とサーボ制御を同時平行で実施できるため、図6の動作タイムチャートに示された「T」の通り、加速度信号検出期間もサーボ制御期間も短縮されない。そのため、検出回路18や制御回路110を低速で動作させることができ、これらの消費電力を低減できる。また、サーボ信号を常時印加できるため、図6の通り、1ビット電圧信号VP、VNの電圧レベルをより低くしても、所定の静電気力を確保できる。そのため、MEMS容量対や寄生容量に対する充放電電力を低減できる。さらに、MEMS素子を小型かつ単純な構造にすることができるため、MEMS素子の製造コストの低減と電気的、機械的特性バラツキの低減をともに実現することができる。
図7を参照して、実施例2のMEMS静電容量型加速度センサの構成について説明する。
実施例2では、実施例1における検出回路18と制御回路110の具体例を開示している。動作の方法と効果は実施例1と同様であるため、その説明は省略する。
実施例2では、検出回路18は、オペアンプ71、容量素子72、抵抗素子73で構成されるC/V変換アンプと、その出力に接続されたローパスフィルタ74と、その出力に接続されたA/D変換器75を備えている。前記C/V変換アンプは、いわゆるオペアンプ負帰還型の反転増幅器の構成であり、帰還容量である前記容量素子72を用いて、前記電荷信号を電圧信号に変換する。
なお、高抵抗値の前記抵抗素子73を容量素子72に並列に挿入している。これにより、オペアンプ71の反転入力ノード上のリーク電流を補償する電流フィード経路を確保して、C/V変換アンプの出力直流電位を最適値に維持している。これに対して、抵抗素子73に代わりスイッチを用いる回路も従来知られているが、その場合、スイッチによるサンプリング雑音のため、前記抵抗素子73を用いる場合よりも雑音が大きくなる。
高抵抗値の抵抗素子73が発生する熱雑音は、抵抗素子73と容量素子72によるローパスフィルタ特性により抑圧されるため、本発明のMEMS加速度センサにおいて重要な前記電荷信号の高周波成分には影響を与えない。前記A/D変換器75は、前記C/V変換アンプから出力される前記電圧信号をデジタル値に変換する目的で挿入されている。これにより、復調器19における乗算器とフィルタ、および、制御回路110をデジタル回路で実現できるため、PVT(プロセス、電源電圧、温度)変動の影響を受けにくいロバストな動作を実現できる。
ローパスフィルタ74は、A/D変換器75によるサンプリング折返し雑音を抑制するためのアンチエリアスフィルタとして、A/D変換器75の前に挿入されている。図6の動作タイムチャートの例では、A/D変換器75は変換速度1/Tでデジタル値への変換を行い、復調器19と制御回路110は動作速度1/Tで動作する。また、ローパスフィルタ74のカットオフ周波数は、例えば、1/(2T)に設定される。なお、C/V変換アンプとローパスフィルタ74の間や、ローパスフィルタ74とA/D変換器75の間に、追加のアンプを挿入してもよい。A/D変換器75の変換誤差の影響は、C/V変換アンプや追加のアンプによるA/D変換器75の前のトータル利得が大きいほど緩和される。
実施例2の制御回路110は、PID制御回路76と、その出力に接続された1ビット量子化器77を備えている。PID制御回路76は、復調器19の出力に得られる前記容量変化・Cに対応する信号にもとづいて、積分などのPID(Proportional-Integral-Differential)制御の演算を行い、サーボ制御値を算出する。前記1ビット量子化器77は前記サーボ制御値が正(あるいは、非負)であれば+1を、負であれば-1を出力する。
また、前記バッファ115の出力電圧信号VPは、前記1ビット量子化器77の出力が+1の時に、図6の動作タイムチャートにおけるH(High)電圧に、-1の時にL(Low)電圧になる。一方、前記反転バッファ116の出力電圧信号VNは、前記1ビット量子化器77の出力が+1の時に、図6の動作タイムチャートにおけるL(Low)電圧に、-1の時にH(High)電圧になる。上記の1ビット量子化器77の動作にともなう量子化誤差が前記1ビットのサーボ信号の高周波成分となり、本発明の動作原理を支えている。
図8により、PID制御回路76の構成と動作を説明する。
加算器811の出力が1サンプル遅延器812により1クロック周期分だけ遅延された後、前記加算器811により入力と加算される構成で、遅延無し積分器81を形成している。また、ゼロ点生成器82は、入力がデジタル利得821により増幅された信号と、入力が1サンプル遅延器822により1クロック周期分だけ遅延され、デジタル利得823により増幅された信号との差分を減算器824において算出する。ゼロ点生成器82において、利得a倍、ゼロ点周波数fを実現するために、すなわち、連続時間表現相当で、a*{1+s/(2π*f)}の伝達関数を実現するために、デジタル利得821の利得は、a*{1+1/(2π*f*T)}に、デジタル利得823の利得は、a/(2π*f*T)に設定される。
遅延無し積分器はPID制御の中心となる積分動作を与える。また、ゼロ点生成器はPID制御の安定化に必要である。図8の通り、遅延無し積分器をn段直列接続することでn回積分を行ない、それによりn次のPID制御を実現する。また、ゼロ点生成器も複数段、直列接続してPID制御の安定性を確保する。なお、ゼロ点生成器の段数は遅延無し積分器の段数と等しくなくてもよい。さらに、デジタル利得を含むことで、サーボ制御のループゲインを適切に調整してもよい。
図9を参照して、実施例3のMEMS静電容量型加速度センサの構成について説明する。
実施例3では、実施例1において、検出回路18内にアナログハイパスフィルタ91を挿入している。前記電荷信号がC/V変換アンプやその他のアンプにより増幅され、A/D変換器75によりデジタル値に変換された信号と前記1ビットのサーボ信号は、復調器19において乗算されるが、その際に、検出回路18内で前記電荷信号に加わった1/f雑音と直流オフセット電圧も前記1ビットのサーボ信号と乗算されてしまう。
前記1ビットのサーボ信号は、高周波の量子化誤差成分だけでなく、入力加速度信号に相当する直流成分や低周波成分も含んでいるため、前記1/f雑音と直流オフセット電圧と、前記直流成分や低周波成分とが復調器19において乗算され、復調器19の出力に低周波の雑音成分が生じてしまう。
そこで、実施例3では、C/V変換アンプにおいて発生し、前記電荷信号に加わった1/f雑音と直流オフセット電圧を、C/V変換アンプの後段に挿入したアナログハイパスフィルタ91により抑圧することで、前記低周波の雑音成分の生成を抑制している。なお、アナログハイパスフィルタ91は任意の箇所に挿入してよく、例えば、A/D変換器75の後段に挿入してもよい。その場合、C/V変換アンプ、ローパスフィルタ74、A/D変換器75において発生し、前記電荷信号に加わった1/f雑音と直流オフセット電圧を抑圧し、前記低周波の雑音成分の生成を抑制できる。
また、アナログハイパスフィルタを検出回路18内の複数の箇所に挿入してもよい。さらに、C/V変換アンプとローパスフィルタ74の間や、ローパスフィルタ74とA/D変換器75の間に、追加のアンプを挿入し、それらの任意の段間にアナログハイパスフィルタを挿入してもよい。
図10を参照して、実施例4のMEMS静電容量型加速度センサの構成について説明する。
実施例4では、実施例3のようにハイパスフィルタを検出回路内に挿入する代わりに、復調器19で乗算されるサーボ信号をハイパスフィルタで処理している。
前記電荷信号がC/V変換アンプやその他のアンプにより増幅され、A/D変換器75によりデジタル値に変換された信号と前記1ビットのサーボ信号は、復調器19において乗算されるが、その際に、検出回路18内で前記電荷信号に加わった1/f雑音と直流オフセット電圧も前記1ビットのサーボ信号と乗算されてしまう。前記1ビットのサーボ信号は、高周波の量子化誤差成分だけでなく、入力加速度信号に相当する直流成分や低周波成分も含んでいるため、前記1/f雑音と直流オフセット電圧と、前記直流成分や低周波成分とが復調器19において乗算され、復調器19の出力に低周波の雑音成分が生じてしまう。
そこで、実施例4では、デジタルハイパスフィルタ101により、前記1ビットのサーボ信号に含まれる前記入力加速度信号に相当する直流成分や低周波成分を抑圧することで、前記低周波の雑音成分の生成を抑制している。なお、デジタルハイパスフィルタ101を遅延器111の後段に挿入してもよい。
図11を参照して、実施例5のMEMS静電容量型加速度センサの構成について説明する。
実施例5は、実施例2において、1ビット量子化器77をデルタシグマ変調器1101に置換した構成である。
デルタシグマ変調器1101は、前記PID制御回路76が出力する前記サーボ制御値を、パルス密度変調された+1または-1の2値の信号に変換する。前記バッファ115の出力電圧信号VPは、前記デルタシグマ変調器1101の出力が+1の時に、図6の動作タイムチャートにおけるH(High)電圧に、-1の時にL(Low)電圧になる。一方、前記反転バッファ116の出力電圧信号VNは、前記デルタシグマ変調器1101の出力が+1の時に、図6の動作タイムチャートにおけるL(Low)電圧に、-1の時にH(High)電圧になる。
実施例2で適用されている1ビット量子化器77も、実施例5で適用されているデルタシグマ変調器1101も、ともに、高周波成分を十分に含む1ビットのサーボ信号を生成するが、後者が生成するサーボ信号のほうが、より多くの高周波成分を含むため、本発明の動作に一層、適している。実施例5の動作と効果は、実施例1と同様であるため、その説明は省略する。
図12により、デルタシグマ変調器1101の一例として、1次デルタシグマ変調器の構成と動作の一例を説明する。
加算器1221の出力が1サンプル遅延器1222により1クロック周期分だけ遅延された後、前記加算器1221により入力と加算される構成で、遅延無し積分器122を形成している。遅延無し積分器122で積分された信号は1ビット量子化器123に入力され、その正負に応じて、+1または-1に2値化される。前記1ビット量子化器123の出力は、1次デルタシグマ変調器としての出力になる。また、1ビット量子化器123の出力は、1サンプル遅延器124により1クロック周期分だけ遅延された後、デジタル利得125によりM倍に増幅される。
前記M倍に増幅された信号が減算器121において入力信号から減算されることにより、負帰還制御ループが形成される。前記負帰還制御により、1次デルタシグマ変調器の出力は、入力信号をパルス密度変調した+1または-1の2値信号となる。2値化は上記の通り1ビット量子化器123において行われ、その際に量子化誤差が生じる。遅延無し積分器122による前記1回の積分と前記負帰還制御のはたらきにより、前記量子化誤差に起因する成分は1次デルタシグマ変調器の出力において、ナイキスト周波数(=1/(2T))に近い高周波領域で大きく現れる。
そのため、1次デルタシグマ変調器の出力は1ビット(2値)かつ、高周波成分を十分多く含んでおり、本発明の動作に適している。なお、図12のM倍のデジタル利得125により、1次デルタシグマ変調器の扱える入力信号範囲は±M程度となる。そのため、Mの値は、PID制御回路76が出力する前記サーボ制御値の振幅範囲を考慮して適切に設定される。
図13により、デルタシグマ変調器1101の一例として、2次デルタシグマ変調器の構成と動作の一例を説明する。
加算器1311の出力が1サンプル遅延器1312により1クロック周期分だけ遅延された後、前記加算器1311により入力と加算される構成で、遅延無し積分器131を形成している。同様に、加算器1331の出力が1サンプル遅延器1332により1クロック周期分だけ遅延された後、前記加算器1331により入力と加算される構成で、第二の遅延無し積分器133を形成している。遅延無し積分器131で積分された信号は、減算器132を経て、遅延無し積分器133において更に2回目の積分が行なわれる。
前記2回目の積分が行なわれた信号は、1ビット量子化器123において、その正負に応じて、+1または-1に2値化される。前記1ビット量子化器123の出力は2次デルタシグマ変調器としての出力になる。また、1ビット量子化器123の出力は、1サンプル遅延器124により1クロック周期分だけ遅延された後、デジタル利得125によりM倍に増幅される。前記M倍に増幅された信号が減算器121において入力信号から減算されることにより、負帰還制御ループが形成される。
また、前記M倍に増幅された信号は、減算器132により、遅延無し積分器131の出力からも減算される。前記負帰還制御により、2次デルタシグマ変調器の出力は、入力信号をパルス密度変調した+1または-1の2値信号となる。2値化は1ビット量子化器123において行われ、その際に量子化誤差が生じる。前記2回の積分と前記負帰還制御のはたらきにより、前記量子化誤差に起因する成分は2次デルタシグマ変調器の出力において、ナイキスト周波数(=1/(2T))に近い高周波領域で、1次デルタシグマ変調器の場合よりもさらに大きく現れる。そのため、2次デルタシグマ変調器の出力は1ビット(2値)かつ、高周波成分を十分多く含んでおり、本発明の動作に適している。
なお、図13のM倍のデジタル利得125により、2次デルタシグマ変調器の扱える入力信号範囲は±M程度となる。そのため、Mの値は、PID制御回路76が出力する前記サーボ制御値の振幅範囲を考慮して適切に設定される。
図14に、デルタシグマ変調器1101の一例として、2次デルタシグマ変調器の別の一例を示す。
2つの遅延あり積分器141、142を適用している。これらは図13の遅延無し積分器131、133と構成要素や動作は同じであるが、1サンプル遅延器1412、1422が信号経路に入っているため、積分と同時に1クロック周期分の遅延を受ける。また、デジタル利得125の出力は、デジタル利得143により2倍されてから、減算器132において減算される。図13における1サンプル遅延器124は不要である。これらの構成変更により、図13の2次デルタシグマ変調器と同様な出力が得られる。
図15に、デルタシグマ変調器1101の一例として、2次デルタシグマ変調器のさらに別の一例を示す。これはフィードフォワード型と呼ばれる構成である。
図14と同様に、2つの遅延あり積分器141、142を適用している。図13、図14における減算器132は不要であり、また、図13における1サンプル遅延器124も不要である。代わって、遅延あり積分器142と1ビット量子化器123の間に加算器152が挿入されている。前記加算器152は、入力信号と、遅延あり積分器141の出力信号をデジタル利得151により2倍に増幅した信号と、遅延あり積分器142の出力とを加算する。この構成により、図13の2次デルタシグマ変調器と同様な出力が得られる。
図16により、デルタシグマ変調器1101の一例として、BP(バンドパス)デルタシグマ変調器の構成と動作の一例を説明する。この構成は、図13の2次デルタシグマ変調器の構成に対して、G倍のデジタル利得162と減算器161によるローカルな負帰還を加えた構成である。加算器1311の出力が1サンプル遅延器1312により1クロック周期分だけ遅延された後、前記加算器1311により入力と加算される構成で、遅延無し積分器131を形成している。同様に、加算器1331の出力が1サンプル遅延器1332により1クロック周期分だけ遅延された後、前記加算器1331により加算される構成で、第二の遅延無し積分器133を形成している。
遅延無し積分器131で積分された信号は、減算器132を経て、遅延無し積分器133において更に2回目の積分が行なわれる。一方、1サンプル遅延器1332の出力信号、すなわち、遅延無し積分器133の出力を1クロック周期分だけ遅延した信号は、デジタル利得162によりG倍に増幅され、遅延無し積分器131の前に位置する減算器161において減算される。これによりローカル帰還制御ループが形成される。また、遅延無し積分器133の出力は、1ビット量子化器123において、その正負に応じて、+1または-1に2値化される。前記1ビット量子化器123の出力は、BPデルタシグマ変調器としての出力になる。
さらに、1ビット量子化器123の出力は、1サンプル遅延器124により1クロック周期分だけ遅延された後、デジタル利得125によりM倍に増幅される。前記M倍に増幅された信号が減算器121において入力信号から減算されることにより、負帰還制御ループが形成される。また、前記M倍に増幅された信号は、減算器132により、遅延無し積分器131の出力からも減算される。前記負帰還制御により、BPデルタシグマ変調器の出力は、入力信号をパルス密度変調した+1または-1の2値信号となる。2値化は1ビット量子化器123において行われ、その際に量子化誤差が生じる。前記2回の積分と前記ローカル帰還制御と前記負帰還制御のはたらきにより、前記量子化誤差に起因する成分はBPデルタシグマ変調器の出力において、ナイキスト周波数(=1/(2T))に近い高周波領域で大きく現れ、かつ、前記G倍のデジタル利得162に応じた周波数位置の近傍では抑圧されている。
そのため、BPデルタシグマ変調器の出力は1ビット(2値)かつ、高周波成分を十分多く含んでおり、本発明の動作に適している。なお、図16のM倍のデジタル利得125により、BPデルタシグマ変調器の扱える入力信号範囲は±M程度となる。そのため、Mの値は、PID制御回路76が出力する前記サーボ制御値の振幅範囲を考慮して適切に設定される。
図17を参照して、実施例6のMEMS静電容量型加速度センサの構成について説明する。実施例6は、実施例5において、MEMS容量対に非対称性を持たせることで、重力による影響を軽減している。
このMEMS加速度センサは、可動電極11の振動方向(図17における上下方向)が鉛直方向となるように設置される。すなわち、図17において重力が印加される方向は下向きである。
実施例6では、図17のように、バネ14とバネ15が自然長となる位置に可動電極11がある時に、可動電極11と固定電極171の間に形成される容量値C1が、可動電極11と固定電極172の間に形成される容量値C2よりも大きくなるように、固定電極171を可動電極11に近づけて、また、固定電極172を可動電極11から遠ざけて配置している。なお、固定電極171の面積と固定電極172の面積は等しくしている。
このMEMS静電容量型加速度センサを上記のように設置すると、可動電極11に下向きの重力が印加されるため、可動電極11は下方向に変位する。前記変位は、バネ14とバネ15が可動電極11に及ぼす上向きの弾性力と下向きの重力とがバランスするように生じる。この変位により、可動電極11と固定電極171の間に形成される前記容量値C1は小さくなり、また、可動電極11と固定電極172の間に形成される前記容量値C2は大きくなる。このため、固定電極171の前記配置と固定電極172の前記配置を適切に調整することで、重力印加時の容量値C1と容量値C2を等しくすることができる。
これにより、実施例6のMEMS静電容量型加速度センサの動作は、実施例5のMEMS加速度センサにおける重力が印加されていない場合(θ=90度)の動作と等価になる。重力が印加されている場合(θ=0度)、実施例5のMEMS静電容量型加速度センサでは、入力加速度信号と重力加速度の和に対応する静電気力を生成する必要であるが、実施例6のMEMS静電容量型加速度センサでは、入力加速度信号に対応する静電気力を生成できればよい。そのため、後者のほうが前記サーボ電圧信号VP、VNの電圧レベルを低減でき、その結果、MEMS容量対や寄生容量に対する充放電電力を低減できる。
図18を参照して、実施例7のMEMS静電容量型加速度センサの構成について説明する。実施例7は、実施例6と同様に、MEMS容量対に非対称性を持たせることで、重力による影響を軽減している。
このMEMS静電容量型加速度センサは、可動電極11の振動方向(図18における上下方向)が鉛直方向となるように設置される。すなわち、図18において重力が印加される方向は下向きである。
実施例7では、図18のように、バネ14とバネ15が自然長となる位置に可動電極11がある時に、可動電極11と固定電極181の間に形成される容量値C1が、可動電極11と固定電極182の間に形成される容量値C2よりも大きくなるように、固定電極181の面積を固定電極182の面積よりも大きくしている。なお、可動電極11と固定電極181の間の距離と可動電極11と固定電極182の間の距離は等しくなるように配置されている。
この静電容量型加速度センサを上記のように設置すると、可動電極11に下向きの重力が印加されるため、可動電極11は下方向に変位する。前記変位は、バネ14とバネ15が可動電極11に及ぼす上向きの弾性力と下向きの重力とがバランスするように生じる。この変位により、可動電極11と固定電極181の間に形成される前記容量値C1は小さくなり、また、可動電極11と固定電極182の間に形成される前記容量値C2は大きくなるため、固定電極181の前記面積と固定電極182の前記面積を適切に調整することで、重力印加時の容量値C1と容量値C2を等しくすることができる。
これにより、実施例7の静電容量型加速度センサの動作は、実施例5のMEMS加速度センサにおける重力が印加されていない場合(θ=90度)の動作と等価になる。重力が印加されている場合(θ=0度)、実施例5の静電容量型加速度センサでは、入力加速度信号と重力加速度の和に対応する静電気力を生成する必要であるが、実施例7の静電容量型加速度センサでは、入力加速度信号に対応する静電気力を生成できればよい。そのため、後者のほうが前記サーボ電圧信号VP、VNの電圧レベルを低減でき、その結果、MEMS容量対や寄生容量に対する充放電電力を低減できる。
図19を参照して、実施例8のMEMS静電容量型加速度センサの構成について説明する。
実施例8は、実施例5において、復調器19とPID制御回路76の間に加算器191を挿入している。
上記の通り、可動電極11の振動方向(図19における上下方向)と鉛直方向の間のなす角度をθとすると、可動電極11には図19の下向きにm*g*cosθの重力が印加される。その結果、可動電極11は下方向に変位する。前記変位は、バネ14とバネ15が可動電極11に及ぼす上向きの弾性力と下向きの前記m*g*cosθとがバランスするように生じる。前記下方向の変位に対応して、前記容量変化・Cには負の直流成分が生じる。そのため、前記負の直流成分に対応する直流信号「-ΔCg」が、復調器19の出力に含まれている。検出回路18内のC/V変換アンプなどの利得は既知であるため、前記θが既知である場合は、前記「-ΔCg」の値も既知である。
そこで、実施例8では、復調器19の後段に挿入した加算器191において、既知の「ΔCg」を加算して前記直流信号「-ΔCg」をキャンセルすることで、PID制御回路76の入力に重力の影響を伝達しない構成としている。これにより、サーボ電圧信号VP、VNが生成する静電気力は、入力加速度信号による慣性力のみとバランスすればよくなる。
したがって、重力印加状況下では、実施例8のMEMS静電容量型加速度センサのほうが、実施例5のMEMS静電容量型加速度センサよりも、前記サーボ電圧信号VP、VNの電圧レベルを低減できる。その結果、MEMS容量対や寄生容量に対する充放電電力を低減できる。なお、実施例8では、可動電極11は、前記下方向に変位した状態に維持される。
図20を参照して、実施例9のMEMS静電容量型加速度センサの構成について説明する。
実施例で9は、実施例5において、さらに、固定電極201と固定電極202を追加することで、固定電極201と可動電極11で形成される容量素子と、固定電極202と可動電極11で形成される容量素子とによる第二のMEMS容量対を備えている。ただし、前記第二のMEMS容量対は、図2の関連技術2のように、キャリア信号印加のために使用されるのではなく、重力の影響をキャンセルする直流の静電気力を印加するために使用される。
上記の通り、可動電極11の振動方向(図20における上下方向)と鉛直方向の間のなす角度をθとすると、可動電極11には図20の下向きにm*g*cosθの重力が印加される。
そこで、前記θが既知の場合、重力補償部203は、前記m*g*cosθと大きさが等しく、かつ上向きの静電気力を可動電極11に印加するために必要な直流電圧VDCP、VDCNを決定し、それぞれ、前記固定電極201、前記固定電極202に印加する。これにより、重力の影響はキャンセルされるため、本実施例のMEMS加速度センサの動作は、第五の実施例のMEMS加速度センサにおける重力が印加されていない場合の動作と等価になる。
そのため、実施例9のMEMS静電容量型加速度センサでは、サーボ電圧信号VP、VNは、入力加速度信号に対応する静電気力を生成できればよい。そのため、前記サーボ電圧信号VP、VNの電圧レベルを低減できる。その結果、MEMS容量対や寄生容量に対する充放電電力を低減できる。
図21を参照して、実施例10のMEMS静電容量型加速度センサの構成について説明する。
実施例10は、実施例3に対して、初期制御部211と、制御部として初期制御部211と制御回路110を切り換えるためのスイッチ213、スイッチ212を追加している。
まず、最初に、スイッチ213をオンにし、スイッチ212をオフにすることで、初期制御部211の出力をバッファ115、および、反転バッファ116を介して、固定電極12、13に印加する。初期制御部211は2つのフェーズ、すなわち、重力成分の見積もりを行う第一のフェーズ、および、初期サーボ信号を生成、印加する第二のフェーズで動作する。
前記第一のフェーズでは、初期制御部211は、例えば、一定周波数かつデューティ50%のパルス信号をキャリア信号として出力し、固定電極12、13に差動キャリア信号として印加する。これにより、実施例9で説明したm*g*cosθの重力成分を検出し見積もる。
すなわち、前記重力成分により可動電極11に変位が生じ、さらに、前記変位に比例した容量変化ΔCが生じる。前記キャリア信号を固定電極12、13に印加することで、前記容量変化ΔCと前記キャリア信号の積に相当する電荷信号が可動電極11上に生成される。前記電荷信号は、検出回路のC/V変換アンプにより電圧信号に変換された後、A/D変換器75によりデジタル値に変換される。
前記デジタル値に変換された信号は、復調器19において、初期制御部211から出力される前記キャリア信号と乗算され、これにより、復調器19の出力にはΔCに比例した信号が得られる。前記ΔCに比例した信号に、前記固定電極12、13の面積や前記固定電極12、13と前記可動電極11の間の距離の設計値で決まる設計パラメータで決まる既知の所定値を乗算することで、前記変位を見積もることができ、さらに、前記変位の見積もり値にバネ14、15のバネ定数を乗算することで、前記重力成分を見積もることができる。
前記第二のフェーズでは、初期制御部211は、前記重力成分の見積もり値にもとづき、前記重力成分をキャンセルする1ビットの前記初期サーボ信号を生成する。例えば、前記重力成分の見積もり値を、1ビット出力型のデジタルデルタシグマ変調器に入力することで、その出力に1ビットの初期サーボ信号を得ることができる。
以上のようにして得られる初期サーボ信号を、バッファ115、および、反転バッファ116を介して、固定電極12、13にしばらく印加し続けることで、前記重力成分と前記初期サーボ信号による静電気力が等しくなり、その結果、前記可動電極11の変位がゼロ付近に設定される。
前記変位がゼロ付近に設定された状態において、次に、スイッチ212をオンにし、スイッチ213をオフにすることで、制御回路110の出力をバッファ115、および、反転バッファ116を介して、固定電極12、13に印加する。これにより、他の実施例で説明した構成および動作に移行して、可動電極11に印加された外部力と、制御回路110が出力するサーボ信号による静電気力とがバランスする定常状態に至る。
実施例10のように、初期制御部211を用いてあらかじめ可動電極11の変位をゼロ付近に設定しておくことで、制御回路110を用いた本動作を、可動電極11の変位がゼロ付近の状態から開始できる。このため、本動作の開始直後の信号振幅を低減できる。その結果、検出回路の飽和などによる誤動作を防止できる。
図22を参照して、実施例11のMEMS静電容量型加速度センサの構成について説明する。
実施例11では、実施例5を3軸加速度センサに拡張している。そのために、X軸方向の加速度に対する処理には固定電極12A、13Aを、Y軸方向の加速度に対する処理には固定電極12B、13Bを、Z軸方向の加速度に対する処理には固定電極12C、13Cを用いる。可動電極11上には、X軸方向に対する電荷信号X、Y軸方向に対する電荷信号Y、Z軸方向に対する電荷信号Zが重畳する。
前記電荷信号X、Y、Zは図22のように、共通の検出回路で処理された後、復調器19A、19B、19Cにより、それぞれの1ビットのサーボ信号と乗算されて、それぞれの容量変化ΔC、ΔC、ΔCに対応する信号が得られる。前記それぞれの容量変化に対応する信号にもとづき、それぞれのPID制御回路76A、76B、76Cがそれぞれのサーボ制御値を求め、前記それぞれのサーボ制御値を入力とし、それぞれのデルタシグマ変調器1101A、1101B、1101Cが、前記それぞれの1ビットのサーボ信号を生成する。
さらに、前記それぞれの1ビットのサーボ信号とそれぞれのその反転信号が、それぞれのバッファ、反転バッファによって電圧信号として、前記固定電極12A、13A、12B、13B、12C、13Cに印加される。
図23に実施例11の動作タイムチャートを示す。実施例11は、各軸のサーボ信号が互いに無相関であるため、単一の可動電極と共通の検出回路を用いても、復調器19A、19B、19Cにより各軸の容量変化信号を分離可能できることに着眼している。
実施例5で開示した加速度センサの動作を3軸平行で実施している。これにより、最も単純な構成で3軸加速度センサを実現できるため、MEMS素子の製造コストの低減と電気的、機械的特性バラツキの低減を実現することができる。加速度信号検出とサーボ制御を同時平行で実施できるため、回路の高速動作や高電圧が不要となり、消費電力を低減できる。さらに、MEMS素子を小型かつ単純な構造にすることができるため、MEMS素子の製造コストの低減と電気的、機械的特性バラツキの低減を実現することができる。
上記実施例11では、静電容量型MEMS加速度センサにおいて、MEMS素子をサーボ制御するためのサーボ信号を、MEMS素子の容量変化を検出するためのキャリア信号として流用する。これにより、一つのMEMS容量対だけを用いながら、加速度信号検出とサーボ制御を同時平行で実施できる。
この結果、加速度信号検出とサーボ制御を同時平行で実施できるため、回路の高速動作や高電圧が不要となり消費電力を低減できる。さらに、MEMS素子を小型かつ単純な構造にすることができるため、MEMS素子の製造コストの低減と電気的及び機械的特性バラツキの低減を実現することができる。
図24を参照して、実施例12のMEMS静電容量型加速度センサの構成について説明する。
実施例12は、実施例5(図11参照)において、MEMS容量素子の固定電極と可動電極の役割を交換しているが、それ以外に関しては、実施例5と同様の構成、動作及び効果を有する。
実施例5では、可動電極11が検出回路の入力、すなわち、オペアンプ71の反転入力ノードに接続されているが、実施例12では、固定電極13が前記反転入力ノードに接続されている。また、もう一方の固定電極12には、直流電圧VBHが印加されている。
また、実施例5では、1ビットのサーボ信号が、それぞれバッファ115及び反転バッファ116を介して2つの固定電極12、13に印加されているが、実施例12では、バッファ252を介して可動電極11に印加され、反転バッファ253を介して容量素子251に印加されている。ここで、容量素子251の容量値はCと等しく選ぶ。
ここで、バッファ252および反転バッファ253は、H電圧としては固定電極12の直流電位と等しいVBHを出力し、L電圧としては固定電極13の直流電位と等しいV(オペアンプ71の仮想接地動作による)を出力する。
上記の構成において、静電気力は、固定電極12と可動電極11により形成される容量素子と、固定電極13と可動電極11により形成される容量素子との容量対により生成される。静電気力は、前記1ビットのサーボ信号と(VBH-V)の積に比例する。したがって、実施例5と同様に、1ビットのサーボ信号に比例した静電気力を可動電極11に印加することができる。例えば、VBHを高電圧とし、Vはオペアンプ71の出力振幅範囲が適切になるように、オペアンプ71の電源電圧の1/2としてもよい。
実施例12では、実施例5と異なり、容量変化ΔCの検出は、固定電極13と可動電極11により形成される容量素子のみにより行われる。すなわち、容量素子の容量値である(C-ΔC)とバッファ252の出力の交流成分との積に相当する電荷が、つまり、(C-ΔC)と前記1ビットのサーボ信号との積に比例した電荷信号が、オペアンプ71の反転入力ノードに注入される。
一方、容量素子251からは、その容量値Cと前記反転バッファ253の出力の交流成分との積に相当する電荷が、つまり、Cと前記1ビットのサーボ信号の反転信号との積に比例した参照電荷信号が、オペアンプ71の反転入力ノードに注入される。
したがって、オペアンプ71の反転入力ノードには、前記電荷信号と前記参照電荷信号の和が注入される。これにより、前記電荷信号に含まれる、Cと前記1ビットのサーボ信号の積に比例した成分が、前記参照電荷信号によりキャンセルされる。このため、オペアンプ71の反転入力ノードには、正味の電荷として、ΔCと前記1ビットのサーボ信号の積に比例した成分だけが注入される。
以上の通り、実施例12においても、実施例5と同様に、静電気力の印加およびΔCの検出を行うことができる。このため、実施例5と同様に、1ビットのサーボ信号にもとづく信号を用いて、復調器19において復調を行うことで、復調器19の出力にΔCに比例した信号を得ることができる。
実施例12では、1ビットのサーボ信号の反転信号を用いず、1ビットのサーボ信号のみにより静電気力を生成できる。このため、これらの信号間のスキューが大きい場合でも雑音の劣化が生じにくい利点がある。他方で、容量素子251の容量値をCと等しくする必要があるため、例えば、そのための調整機構を別途設けてもよい。
11 可動電極
12 固定電極
13 固定電極
14 バネ
15 バネ
16 フレーム
17 フレーム
18 検出回路
19 復調器
110 制御回路
111 遅延器
115 バッファ
116 反転バッファ

Claims (14)

  1. 可動電極と第1の固定電及び第2の固定電極とを備えたMEMS容量対と、
    前記可動電極に接続された検出回路と、
    前記検出回路に接続された復調回路と、
    前記復調回路に接続され、2値のサーボ信号を出力する制御回路と、を有し、
    前記制御回路が出力する前記サーボ信号に基づく電圧信号が前記第1の固定電極に印加され、前記サーボ信号を論理反転した信号に基づく電圧信号が前記第2の固定電極に印加され、加速度信号の印加により前記可動電極上に生じる慣性力とバランスする逆向きの静電気力が前記可動電極上に生成されるMEMS静電容量型加速度センサであって、
    前記検出回路は、
    前記MEMS容量対の2つの容量値の差と前記サーボ信号の積に対応する電圧信号を生成し、
    前記復調回路は、
    前記サーボ信号を用いて前記容量値の差に対応する信号を出力し、
    前記制御回路は、
    前記容量値の差に対応する信号に基づいて前記サーボ信号を出力することを特徴とするMEMS静電容量型加速度センサ。
  2. 前記復調回路は、乗算を行うことを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  3. 前記復調回路は、相関演算を行うことを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  4. 前記制御回路と前記復調回路との間に設けられた遅延器を更に有し、
    前記制御回路が出力した前記サーボ信号は、前記遅延器を経て前記復調回路に印加されることを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  5. 前記制御回路は、
    PID制御回路と、
    前記PID制御回路に接続された1ビット量子化器を有し、
    前記1ビット量子化器は、前記サーボ信号を出力することを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  6. 前記制御回路は、
    PID制御回路と、
    前記PID制御回路に接続されたデルタシグマ変調器と、を有し、
    前記デルタシグマ変調器は、前記サーボ信号を出力することを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  7. 前記復調回路と前記PID制御回路の間に設けられた加算器を更に有することを特徴とする請求項6に記載のMEMS静電容量型加速度センサ。
  8. 前記検出回路は、
    オペアンプと、
    容量素子と抵抗素子で構成されるC/V変換アンプと、
    前記オペアンプ及び前記C/V変換アンプの出力に接続されたローパスフィルタと、
    前記ローパスフィルタの出力に接続されたA/D変換器と、
    を有することを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  9. 前記検出回路は、
    オペアンプと、
    容量素子と抵抗素子で構成されるC/V変換アンプと、
    前記オペアンプ及び前記C/V変換アンプの出力に接続されたハイパスフィルタと、
    前記ハイパスフィルタの出力に接続されたA/D変換器と、
    を有することを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  10. 前記制御回路に接続されたハイパスフィルタを更に有し、
    前記復調回路は、前記サーボ信号を前記ハイパスフィルタで処理した信号を用いて、前記容量値の差に対応する信号を出力することを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  11. 第3及び第4の固定電極を更に有し、
    前記第3の固定電極に第1の直流電位を印加し、前記第4の固定電極に第2の直流電位を印加して、前記可動電極上に重力と逆向きの静電気力を発生させることを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  12. 重力が前記可動電極に印加されていない状態で、前記第1の固定電極と前記可動電極の間の第1の距離が、前記第2の固定電極と前記可動電極の間の第2の距離とは異なることを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  13. 前記第1の固定電極の第1の面積と前記第2の固定電極の第2の面積が異なることを特徴とする請求項1に記載のMEMS静電容量型加速度センサ。
  14. 可動電極と第1の固定電極及び第2の固定電極とを備えた第1のMEMS容量対と、
    前記可動電極と第3の固定電極及び第4の固定電極を備えた第2のMEMS容量対と、
    前記可動電極に接続された検出回路と、
    前記検出回路に接続された第1の復調回路と、
    前記検出回路に接続された第2の復調回路と、
    前記第1の復調回路に接続され、2値の第1のサーボ信号を出力する第1の制御回路と、
    前記第2の復調回路に接続され、2値の第2のサーボ信号を出力する第2の制御回路と、を有し、
    前記第1の制御回路が出力する前記第1のサーボ信号に基づく電圧信号が前記第1の固定電極に印加され、前記第1のサーボ信号を論理反転した信号に基づく電圧信号が前記第2の固定電極に印加され、第1の軸方向の加速度信号の印加により前記可動電極上に生じる慣性力とバランスする逆向きの静電気力が前記可動電極上に生成され、
    前記第2の制御回路が出力する前記第2のサーボ信号に基づく電圧信号が前記第3の固定電極に印加され、前記第2のサーボ信号を論理反転した信号に基づく電圧信号が前記第4の固定電極に印加され、前記第1の軸方向と異なる第2の軸方向の加速度信号の印加により前記可動電極上に生じる慣性力とバランスする逆向きの静電気力が前記可動電極上に生成されるMEMS静電容量型加速度センサであって、
    前記検出回路は、
    前記第1のMEMS容量対の2つの第1の容量値の差と前記第1のサーボ信号の積に対応する第1の電圧信号と、前記第2のMEMS容量対の2つの第2の容量値の差と前記第2のサーボ信号の積に対応する第2の電圧信号を生成し、
    前記第1の復調回路は、
    前記第1のサーボ信号を用いて前記第1のMEMS容量対の前記第1の容量値の差に対応する信号を出力し、
    前記第2の復調回路は、
    前記第2のサーボ信号を用いて前記第2のMEMS容量対の前記第2の容量値の差に対応する信号を出力し、
    前記第1の制御回路は、
    前記第1のMEMS容量対の前記第1の容量値の差に対応する信号に基づいて前記第1のサーボ信号を出力し、
    前記第2の制御回路は、
    前記第2のMEMS容量対の前記第2の容量値の差に対応する信号に基づいて前記第2のサーボ信号を出力することを特徴とするMEMS静電容量型加速度センサ。
JP2018160660A 2018-08-29 2018-08-29 Mems静電容量型加速度センサ Active JP7075849B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018160660A JP7075849B2 (ja) 2018-08-29 2018-08-29 Mems静電容量型加速度センサ
US16/551,206 US11169174B2 (en) 2018-08-29 2019-08-26 MEMS electrostatic capacitor type acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160660A JP7075849B2 (ja) 2018-08-29 2018-08-29 Mems静電容量型加速度センサ

Publications (2)

Publication Number Publication Date
JP2020034397A JP2020034397A (ja) 2020-03-05
JP7075849B2 true JP7075849B2 (ja) 2022-05-26

Family

ID=69639802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160660A Active JP7075849B2 (ja) 2018-08-29 2018-08-29 Mems静電容量型加速度センサ

Country Status (2)

Country Link
US (1) US11169174B2 (ja)
JP (1) JP7075849B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944428B2 (ja) * 2018-09-14 2021-10-06 株式会社日立製作所 センサ
EP4150921A1 (en) * 2020-05-12 2023-03-22 Vesper Technologies Inc. Transducer system with three decibel feedback loop
US11879906B2 (en) 2021-11-18 2024-01-23 Invensense, Inc. Inertial sensor sensing of vibration frequency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114237A (ja) 2013-12-12 2015-06-22 三菱電機株式会社 加速度センサ
US20160003865A1 (en) 2013-02-19 2016-01-07 Sagem Defense Securite Sensor with electrostatic pendular accelerometer and method of controlling such a sensor
WO2016132447A1 (ja) 2015-02-17 2016-08-25 株式会社日立製作所 加速度センサ
JP2016188793A (ja) 2015-03-30 2016-11-04 日立オートモティブシステムズ株式会社 容量検出型センサの信号検出方法、容量検出型センサ、およびシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852242A (en) * 1995-12-04 1998-12-22 I/O Sensors, Inc. Apparatus with mechanical and electric springs and method for its manufacture
JPH09196680A (ja) * 1996-01-16 1997-07-31 Tokimec Inc ジャイロ装置及びその製造方法
FR2769369B1 (fr) * 1997-10-08 1999-12-24 Sercel Rech Const Elect Accelerometre a plaque mobile, avec moteur electrostatique de contre-reaction
US7562573B2 (en) * 2005-07-21 2009-07-21 Evigia Systems, Inc. Integrated sensor and circuitry and process therefor
JP6140919B2 (ja) * 2011-09-30 2017-06-07 曙ブレーキ工業株式会社 加速度センサ回路
JP6262629B2 (ja) * 2014-09-30 2018-01-17 株式会社日立製作所 慣性センサ
JP6358913B2 (ja) 2014-09-30 2018-07-18 株式会社日立製作所 加速度センサ
JP6944428B2 (ja) * 2018-09-14 2021-10-06 株式会社日立製作所 センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160003865A1 (en) 2013-02-19 2016-01-07 Sagem Defense Securite Sensor with electrostatic pendular accelerometer and method of controlling such a sensor
JP2015114237A (ja) 2013-12-12 2015-06-22 三菱電機株式会社 加速度センサ
WO2016132447A1 (ja) 2015-02-17 2016-08-25 株式会社日立製作所 加速度センサ
JP2016188793A (ja) 2015-03-30 2016-11-04 日立オートモティブシステムズ株式会社 容量検出型センサの信号検出方法、容量検出型センサ、およびシステム

Also Published As

Publication number Publication date
JP2020034397A (ja) 2020-03-05
US20200072865A1 (en) 2020-03-05
US11169174B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
JP6397115B2 (ja) 加速度センサ
JP7075849B2 (ja) Mems静電容量型加速度センサ
CA2366317C (en) Sensor
KR102045784B1 (ko) 병합된 미세 전자기계 가속도계 센서에 대한 초핑을 이용하는 노이즈 감소 방법
JP6895397B2 (ja) 加速度センサ
JP6358913B2 (ja) 加速度センサ
Wu et al. Electromechanical/spl Delta//spl Sigma/modulation with high-Q micromechanical accelerometers and pulse density modulated force feedback
US9462375B2 (en) Feedback delay reduction in force feedback devices
JP6446579B2 (ja) 加速度センサ
JP6475332B2 (ja) 慣性センサ
US11035876B2 (en) Sensor with servo noise reduction
Soen et al. Controller design for a closed-loop micromachined accelerometer
Almutairi et al. Multi stage noise shaping sigma–delta modulator (MASH) for capacitive MEMS accelerometers
Almutairi et al. Experimental study of single loop sigma-delta and multi stage noise shaping (MASH) modulators for MEMS accelerometer
WO2020195606A1 (ja) 加速度センサ、出力信号制御方法
EP2730928A1 (en) Physical quantity sensor and physical quantity detection method
Saxena et al. Modeling and simulation of high performance sixth order sigma-delta MEMS accelerometer
Sarraf et al. Design and implementation of a novel sliding mode sensing architecture for capacitive MEMS accelerometers
Lavinia et al. 3-axis high Q MEMS accelerometer with simultaneous damping control
Lanniel et al. Tackling sdm feedback coefficient modulation in area optimized frontend readout circuit for high performance mems accelerometers
Almutairi Multi stage noise shaping (MASH) sigma delta modulator for capacitive MEMS inertial sensors
Chatterjee et al. Design methodology of closed loop MEMS capacitive accelerometers based on ΣΔ modulation technique
Woestyn et al. A dual-mass capacitive-readout accelerometer operated near pull-in
Jiang et al. A continuous-time closed-loop interface with an innovative C/V converter for gyroscopes
Ye et al. Electromechanical closed-loop with high-Q capacitive micro-accelerometers and pulse width modulation force feedback

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220516

R150 Certificate of patent or registration of utility model

Ref document number: 7075849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150