JP2020037828A - Pentagon rigid-frame structure - Google Patents

Pentagon rigid-frame structure Download PDF

Info

Publication number
JP2020037828A
JP2020037828A JP2018166117A JP2018166117A JP2020037828A JP 2020037828 A JP2020037828 A JP 2020037828A JP 2018166117 A JP2018166117 A JP 2018166117A JP 2018166117 A JP2018166117 A JP 2018166117A JP 2020037828 A JP2020037828 A JP 2020037828A
Authority
JP
Japan
Prior art keywords
span
slope
oblique beam
comparative example
frame structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018166117A
Other languages
Japanese (ja)
Other versions
JP6476367B1 (en
Inventor
正尚 磯▲崎▼
Masanao Isozaki
正尚 磯▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018166117A priority Critical patent/JP6476367B1/en
Application granted granted Critical
Publication of JP6476367B1 publication Critical patent/JP6476367B1/en
Publication of JP2020037828A publication Critical patent/JP2020037828A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

To provide a rigid-frame structure which can be used irrespective of the size of a span, and can further reduce a material cost and a construction cost with a large span (80 m or more).SOLUTION: In a pentagon rigid-frame structure 1, lower diagonal beams 14 having relatively high gradients and upper diagonal beams 15 having relatively lower gradients extend in this order from a column head of supports 11 erected with a constant span and the upper diagonal beams 15 are made to abut on each other at an apex of a span center, and diagonal tension materials 12 are installed between the lower end and the column head at a position lower than the column head of a compressive material 13 suspended from the apex.SELECTED DRAWING: Figure 1

Description

本発明は、屋根が五角形である五角形ラーメン構造物に関する。   The present invention relates to a pentagonal ramen structure having a pentagonal roof.

支柱と梁とを剛接合するラーメン構造物は、そのまま支柱の間隔(軸芯線距離=スパン)を大きくしようとすると、鉛直荷重により発生する応力に耐える支柱又は梁を構成するには、それぞれに使用する鋼材(主にH型綱)の規格を大きくしなければならず、全体的に材料コストが嵩んでしまい、実用的に大スパンの建物を構築できない。そこで、大スパンの建物を構築するため、斜梁が構成する山形屋根を押し上げる圧縮材を追加した山形ラーメン構造物が提案されている(特許文献1及び特許文献2)。   The rigid frame structure that rigidly connects the column and the beam is used to construct a column or a beam that can withstand the stress generated by the vertical load when the spacing between the columns (axial line distance = span) is to be increased as it is. Steel materials (mainly H-type ropes) have to be increased in standard, resulting in an overall increase in material costs, making it impossible to construct a large span building practically. Then, in order to construct a building with a large span, a mountain-shaped ramen structure has been proposed in which a compression material is added to push up a mountain-shaped roof formed by a diagonal beam (Patent Documents 1 and 2).

特許文献1は、支柱の柱頭から延ばした斜梁を突き合わせて山形屋根を構成し、前記斜梁を突き合わせた頂点から垂下した圧縮材下端と、柱頭又は柱頭から頂点に向かって一定距離の斜梁上の点との間に傾斜引張材を架設した山形ラーメン構造物を開示する(特許文献1・[請求項1])。傾斜引張材を架設する際、柱頭に内向きのプリテンションを懸けてもよい(特許文献1・[請求項5])。これにより、使用する鋼材の規格を下げても鉛直荷重により発生する応力に耐えることができるようになり、材料コストや施工コストを低減できる(最大15%程度、プリテンション有で最大30%程度)(特許文献1・[0039])。   Patent Document 1 discloses a mountain-shaped roof formed by abutting sloping beams extending from a capital of a support column, a compressed material lower end hanging from a vertex where the sloping beams are abutted, and a sloping beam having a fixed distance from the capital or the capital to the apex. Disclosed is a mountain-shaped frame structure in which an inclined tensile member is installed between the upper point and the upper point (Patent Document 1 [Claim 1]). When installing the inclined tensile member, an inward pretension may be hung on the capital (Patent Document 1 [Claim 5]). This makes it possible to withstand the stress generated by the vertical load even if the standard of the steel material used is reduced, reducing the material cost and construction cost (up to about 15%, up to about 30% with pretension) (Patent Document 1 [0039]).

特許文献2は、支柱の柱頭から延ばした斜梁を突き合わせて山形屋根を構成し、支柱上の点と斜梁上の点とに方杖を架設し、前記斜梁を突き合わせた頂点から垂下した圧縮材下端と、方杖を架設した斜梁上の点又は前記点から頂点に向かった斜梁上の点との間に傾斜引張材を架設した山形ラーメン構造物を開示する(特許文献2・[請求項1])。支柱又は斜梁の一方又は双方は、トラス構造材が好ましい(特許文献2・[請求項4])。これにより、支柱や斜梁の剛性を高め、スパンを120mまで広げながら、材料コストや施工コストを低減させることができる(特許文献2・[0010])。   Patent Literature 2 configures a mountain-shaped roof by abutting a diagonal beam extending from a capital of a column, erection a bridge at a point on a column and a point on a diagonal beam, and suspends from a vertex at which the diagonal beam is abutted. Disclosed is a mountain-shaped rigid frame structure in which an inclined tensile member is installed between a lower end of a compression member and a point on the diagonal bridge on which the brace is installed or a point on the diagonal bridge from the point to the vertex (Patent Document 2). [Claim 1]). One or both of the columns and the diagonal beams are preferably truss structural materials (Patent Document 2 [Claim 4]). As a result, it is possible to reduce the material cost and the construction cost while increasing the rigidity of the columns and the diagonal beams and widening the span to 120 m (Patent Document 2, [0010]).

特開平08-189081号公報JP 08-189081 A 特開2014-139372公報JP 2014-139372 Gazette

特許文献1が開示する山形ラーメン構造物は、スパンが80m未満の建物に利用できるものの、斜梁や支柱の規格が大きくなりすぎて、それ以上の大スパンの建物に利用し難い。このため、スパンが80m以上の建物は、特許文献2が開示する山形ラーメン構造物を利用する。特許文献2が開示する山形ラーメン構造物は、鉛直荷重による応力に対抗するため、規格外となるビルドH型綱を使う必要のあるところ、材料コストや施工コストの高いビルドH型綱に代えて、トラス構造の斜梁や支柱の利用を提案する。しかし、トラス構造の斜梁や支柱も材料コストや施工コストが掛かる。このように、大スパンの建物において、なお材料コストや施工コストを低減させる余地がある。   Although the mountain-shaped ramen structure disclosed in Patent Document 1 can be used for a building having a span of less than 80 m, it is difficult to use it for a building having a large span of more than that because the specifications of the diagonal beams and columns are too large. For this reason, a building having a span of 80 m or more uses a mountain-shaped ramen structure disclosed in Patent Document 2. The Yamagata ramen structure disclosed in Patent Literature 2 needs to use a non-standard build H-type rope in order to resist stress due to a vertical load. We propose the use of truss-structured beams and columns. However, truss-structured diagonal beams and columns also require material costs and construction costs. Thus, there is still room for reducing material costs and construction costs in large span buildings.

また、特許文献2が開示する山形ラーメン構造物をスパン80m未満の建物に利用できるものの、過剰性能になるほか、特許文献1が開示する山形ラーメン構造物に比べて材料コストや施工コストが高くつく。これから、スパンに応じて、特許文献1が開示する山形ラーメン構造物と特許文献2が開示する山形ラーメン構造物とを使い分けることになる。しかし、スパンに応じたラーメン構造物の使い分けは、境界となるスパンの設定が難しく、実用的ではない。そこで、スパンの大小に関係なく利用でき、大スパン(80m以上)で更に材料コストや施工コストを低減させるラーメン構造物を検討した。   Further, although the Yamagata ramen structure disclosed in Patent Document 2 can be used for a building with a span of less than 80 m, the performance is excessive, and the material cost and the construction cost are higher than the Yamagata ramen structure disclosed in Patent Document 1. . From now on, the angle-shaped ramen structure disclosed in Patent Document 1 and the angle-shaped ramen structure disclosed in Patent Document 2 will be selectively used according to the span. However, it is not practical to properly use the ramen structure according to the span because it is difficult to set the span as the boundary. Therefore, a ramen structure that can be used regardless of the size of the span and that further reduces material costs and construction costs with a large span (80 m or more) was studied.

検討の結果開発したものが、一定距離のスパンで立設した支柱の柱頭から、相対的に高勾配の下斜梁と相対的に低勾配の上斜梁とを前記記載順に延ばして前記上斜梁をスパン中央の頂点で突き合わせ、頂点から垂下した圧縮材の柱頭より低い位置にある下端と柱頭との間に傾斜引張材を架設してなる五角形ラーメン構造物である。各部に利用される部材は限定されないが、支柱、下斜梁及び上斜梁はH型綱、圧縮材は丸パイプ、傾斜引張材は丸パイプ又はアングル材を用いる構成を例示できる。   As a result of the examination, the thing developed as a result of extending the lower slope beam with a relatively high slope and the upper slope beam with a relatively low slope from the capital of a column erected at a span This is a pentagonal rigid frame structure in which beams are abutted at the top of the center of the span, and an inclined tensile member is erected between the lower end of the compressed material hanging down from the top and the lower end of the lower part of the capital and the capital. Although the members used for each part are not limited, a configuration using an H-shaped rope for the column, the lower oblique beam and the upper oblique beam, a round pipe for the compression material, and a round pipe or an angle material for the inclined tension material can be exemplified.

発明の五角形ラーメン構造物は、特許文献1又は特許文献2記載の発明同様、鉛直荷重による下斜梁及び上斜梁の応力を受けた傾斜引張材が圧縮材を持ち上げ、逆向きの応力を前記下斜梁及び上斜梁に発生させて前記応力を相殺し、建物の構造強度を向上させる。本発明の五角形ラーメン構造物は、下斜梁及び上斜梁が全体として上方に凸な斜梁となり、鉛直荷重に対抗して斜梁に発生する応力を低減し、建物の構造強度を更に向上させる。また、下斜梁及び上斜梁と傾斜引張材との距離が、特許文献1又は特許文献2記載の斜梁と傾斜引張材との距離に比べて大きくなり、傾斜引張材の作用(応力の相殺)をより強く発揮させ、建物の構造強度を更に向上させる。   The pentagonal rigid frame structure according to the invention is, as in the invention described in Patent Document 1 or Patent Document 2, in which the inclined tensile material subjected to the stress of the lower and upper diagonal beams due to the vertical load lifts the compressed material and reduces the stress in the opposite direction. The stresses generated in the lower and upper sloping beams cancel each other out and improve the structural strength of the building. In the pentagonal rigid frame structure of the present invention, the lower oblique beam and the upper oblique beam as a whole are upwardly projecting oblique beams, reducing the stress generated in the oblique beams against vertical loads, further improving the structural strength of the building. Let it. Further, the distance between the lower and upper oblique beams and the inclined tensile member is larger than the distance between the inclined beam and the inclined tensile member described in Patent Document 1 or Patent Document 2, and the action of the inclined tensile member (stress Offset) to further enhance the structural strength of the building.

柱頭は、支柱の軸芯線と下斜梁の軸芯線との交点である。頂点は、対となる上斜梁の軸芯線の交点である。傾斜引張材は、圧縮材下端と柱頭とを軸芯線で結び、架設される。「相対的に高勾配の下斜梁」と「相対的に低勾配の上斜梁」とは、それぞれの勾配を比較した場合、下斜梁の勾配が上斜梁の勾配より大きいことを意味する。これにより、下斜梁及び上斜梁で構成される斜梁は、必ず上方に向けて凸となる。   The capital is the intersection of the axis of the column and the axis of the lower oblique beam. The vertices are the intersections of the axes of the upper oblique beams that form a pair. The inclined tensile member is erected by connecting the lower end of the compressed material and the capital by an axis. "Relatively high slope lower slope" and "relatively lower slope upper slope" mean that the slope of the lower slope is greater than the slope of the upper slope when comparing the respective slopes I do. As a result, the oblique beam formed by the lower oblique beam and the upper oblique beam always protrudes upward.

下斜梁及び上斜梁は、長さが異なってもよく、全体として一体の斜梁と見る観点から、それぞれの水平長さが1/4スパンであること望ましい。水平長さは、軸芯線の水平長さである。下斜梁及び上斜梁の材長(軸芯線の長さ)は、水平長さが同じであっても、相対的に高勾配の下斜梁が相対的に低勾配の上斜梁より若干長くなる(スパン60mで数10cm以下の差)。しかし、水平長さの等しい下斜梁及び上斜梁は、鉛直荷重を均等に受けることにより、応力の偏在を回避する。   The lower oblique beam and the upper oblique beam may have different lengths, and it is preferable that the horizontal length of each of the lower oblique beam and the upper oblique beam is / span from the viewpoint of being viewed as an integral oblique beam as a whole. The horizontal length is the horizontal length of the axis. The material length (length of the axis) of the lower and upper diagonal beams is slightly higher than that of the lower and upper diagonal beams, even if the horizontal length is the same. Longer (differences of less than several tens of centimeters with a span of 60m). However, the lower oblique beam and the upper oblique beam having the same horizontal length receive the vertical load evenly to avoid uneven distribution of stress.

下斜梁は、17/100勾配以上、30/100勾配以下であるとよい。下斜梁が17/100勾配未満であると、風の影響により下斜梁が持ち上げられて傾斜引張材が圧縮される虞がある。また、下斜梁が30/100勾配を越えると、大スパンの建物の屋根を過剰に高くし、審美性も大きく低下する。上斜梁は、3/100勾配以上、10/100勾配以下であるとよい。上斜梁が3/100勾配未満であると、自然流水による雨水の排水ができなくなる。また、上斜梁が10/100勾配を越えると、下斜梁の勾配と差が小さくなり、本発明の効果(建物の構造強度の向上)があまり発揮されない。   The lower diagonal beam may have a slope of 17/100 or more and 30/100 or less. If the slope of the lower slope is less than 17/100, there is a possibility that the lower slope is lifted by the influence of wind and the inclined tensile material is compressed. In addition, when the lower slope crosses the slope of 30/100, the roof of a large span building becomes excessively high, and the aesthetics are greatly reduced. The upper diagonal beam should have a gradient of 3/100 or more and 10/100 or less. If the upper slope is less than 3/100 slope, drainage of rainwater by natural running water will not be possible. Further, when the upper slope exceeds the 10/100 slope, the difference from the slope of the lower slope becomes small, and the effect of the present invention (improvement of the structural strength of the building) is not sufficiently exhibited.

本発明の五角形ラーメン構造物は、建物の構造強度を向上させるので、利用する部材の規格を抑えることができ、部材の規格が大きくなりがちな大スパン(80m以上)の建物にも利用できる。これにより、スパンの大小に関係なく、同一構造で設計ができるようになり、設計コストが低減できる。また、部材の規格が抑えられるので、当然に材料コストや施工コストも低減でき、特に大スパンでの低減効果が大きい。   The pentagonal rigid frame structure of the present invention improves the structural strength of the building, so that it is possible to suppress the specifications of the members to be used, and it can also be used for buildings with a large span (80 m or more) where the standards of the members tend to be large. Thus, regardless of the size of the span, the design can be performed with the same structure, and the design cost can be reduced. Further, since the specification of the members is suppressed, the material cost and the construction cost can be naturally reduced, and the reduction effect is particularly large in a large span.

下斜梁及び上斜梁は、それぞれの水平長さが1/4スパンであると、応力の偏在を回避でき、本発明の効果(建物の構造強度の向上)がよりよく発揮される。17/100勾配以上、30/100勾配以下の下斜梁と、3/100勾配以上、10/100以下である上斜梁とを組み合わせて用いると、本発明の効果を享受しながら、風の影響による傾斜引張材の圧縮を回避し、勾配差が小さくなることによる構造強度の低下を抑制又は防止し、かつ雨水の排水を確保して、審美性にも優れた実用的な建物の提供ができる。   When the horizontal length of each of the lower and upper diagonal beams is 1/4 span, uneven distribution of stress can be avoided, and the effect of the present invention (improvement of structural strength of the building) is more effectively exhibited. 17/100 slope or more, 30/100 slope or less lower slope, and 3/100 slope or more, when used in combination with the upper slope which is 10/100 or less, while enjoying the effects of the present invention, the wind It is possible to provide a practical building with excellent aesthetics by avoiding compression of the inclined tensile material due to the influence, suppressing or preventing a decrease in structural strength due to a smaller gradient difference, and securing drainage of rainwater. it can.

下斜梁を30/100勾配、上斜梁を10/100勾配とした本発明の五角形ラーメン構造物の一例を表した正面図である。It is a front view showing an example of the pentagonal rigid frame structure of the present invention in which the lower oblique beam has a 30/100 gradient and the upper oblique beam has a 10/100 gradient. 本例のラーメン構造物を構成するフレームの模式図である。It is a schematic diagram of the frame which comprises the ramen structure of this example. 下斜梁を17/100勾配、上斜梁を3/100勾配とした本発明の五角形ラーメン構造物の別例を表した正面図である。It is a front view showing another example of the pentagonal rigid frame structure of the present invention in which the lower oblique beam has a 17/100 gradient and the upper oblique beam has a 3/100 gradient. 別例のラーメン構造物を構成するフレームの模式図である。It is a schematic diagram of the frame which comprises the ramen structure of another example. 斜梁を15/100勾配とした特許文献1記載の発明の山形ラーメン構造物の比較例を構成するフレームの模式図である。It is a schematic diagram of the frame which comprises the comparative example of the mountain-shaped rigid-frame-structure of the invention of patent document 1 which made the slope a 15/100 slope. 斜梁を15/100勾配とした特許文献2記載の発明の山形ラーメン構造物の比較例を構成するフレームの模式図である。It is a schematic diagram of the frame which comprises the comparative example of the mountain-shaped ramen structure of the invention of patent document 2 which made the inclined beam 15/100 slope.

以下、本発明を実施するための形態について図を参照しながら説明する。本発明の五角形ラーメン構造物1は、図1に見られるように、一定距離のスパンで立設した支柱11の柱頭から、相対的に高勾配の下斜梁14と相対的に低勾配の上斜梁15とを前記記載順に延ばして前記上斜梁15をスパン中央の頂点で突き合わせ、頂点から垂下した圧縮材13の柱頭より低い位置にある下端と柱頭との間に傾斜引張材12を架設して構成される。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the pentagonal rigid frame structure 1 of the present invention has a relatively high gradient lower slope 14 and a relatively lower gradient from the capital of a column 11 erected at a fixed distance span. Extend the diagonal beams 15 in the stated order and abut the upper diagonal beams 15 at the apex of the center of the span, and install the inclined tensile material 12 between the lower end and the capital of the compressed material 13 hanging down from the apex. It is composed.

本例の五角形ラーメン構造物1は、支柱11、下斜梁14及び上斜梁15が同規格のH型綱、圧縮材13が丸パイプ、傾斜引張材12がアングル材であり、図2に見られるように、支柱11、下斜梁14及び上斜梁15が剛接合、傾斜引張材12同士が剛接合、柱頭に対する傾斜引張材12がピン接合で、頂点及び傾斜引張材12に対する圧縮材13がピン接合である。本例の五角形ラーメン構造物1は、下斜梁14の勾配が30/100、上斜梁15の勾配が10/100で、下斜梁14及び上斜梁15が1/4スパンの同じ水平長さである。   In the pentagonal rigid frame structure 1 of this example, the strut 11, the lower oblique beam 14 and the upper oblique beam 15 are H-shaped ropes of the same standard, the compressed material 13 is a round pipe, and the inclined tensile material 12 is an angle material. As can be seen, the strut 11, the lower oblique beam 14 and the upper oblique beam 15 are rigidly joined, the inclined tension members 12 are rigidly joined to each other, the inclined tension members 12 for the capital are pin joints, and the compression members for the top and inclined tension members 12 are connected. 13 is a pin connection. In the pentagonal rigid frame structure 1 of this example, the slope of the lower oblique beam 14 is 30/100, the slope of the upper oblique beam 15 is 10/100, and the lower oblique beam 14 and the upper oblique beam 15 have the same horizontal width of 1/4 span. Length.

ここで、下斜梁14の勾配が17/100、上斜梁15の勾配が3/100とした別例の五角形ラーメン構造物1は、図3に見られるように、屋根が低く構成される。別例1の五角形ラーメン構造物1も、下斜梁14及び上斜梁15が1/4スパンの同じ水平長さである。本例(図1)及び別例(図3)の五角形ラーメン構造物1は、支柱11のスパンと天井高さ(圧縮材13の下端からマージン高さを挟んだ地上までの距離)を同じにしている。このように、本発明の五角形ラーメン構造物1は、下斜梁14及び上斜梁15の勾配の組み合わせが、天井高さを左右しない。   Here, as another example of the pentagonal rigid frame structure 1 in which the slope of the lower oblique beam 14 is 17/100 and the slope of the upper oblique beam 15 is 3/100, as shown in FIG. . In the pentagonal rigid frame structure 1 of another example 1, the lower and upper oblique beams 14 and 15 have the same horizontal length of 1/4 span. The pentagonal rigid frame structure 1 of this example (FIG. 1) and another example (FIG. 3) have the same span and the ceiling height (the distance from the lower end of the compressed material 13 to the ground across the margin height) of the support 11. ing. As described above, in the pentagonal rigid frame structure 1 of the present invention, the combination of the slopes of the lower oblique beam 14 and the upper oblique beam 15 does not affect the ceiling height.

別例の五角形ラーメン構造物1は、支柱11、下斜梁14及び上斜梁15が同規格のH型綱、圧縮材13が丸パイプ、傾斜引張材12がアングル材で、図4に見られるように、支柱11、下斜梁14及び上斜梁15が剛接合、傾斜引張材12同士が剛接合、柱頭に対する傾斜引張材12がピン接合で、頂点及び傾斜引張材12に対する圧縮材13がピン接合である。別例の五角形ラーメン構造物1は、本発明の効果が本例より若干低く、利用するH型綱、丸パイプ又はアングル材の規格が一段高くなる。   In another example of the pentagonal rigid frame structure 1, the strut 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped ropes of the same standard, the compressed material 13 is a round pipe, and the inclined tensile material 12 is an angle material. As can be seen, the support 11, the lower oblique beam 14 and the upper oblique beam 15 are rigidly connected, the inclined tensile members 12 are rigidly connected to each other, the inclined tensile members 12 for the capital are pin joints, and the compressed members 13 for the top and inclined tensile members 12 Is a pin connection. In the pentagonal rigid frame structure 1 of another example, the effect of the present invention is slightly lower than that of the present example, and the specification of the H-shaped rope, round pipe or angle material to be used is further increased.

本例の五角形ラーメン構造物1と、特許文献1記載又は特許文献2記載の山形ラーメン構造物2とを比較する。特許文献1記載の山形ラーメン構造物2は、図5に見られるように、一定距離のスパンで立設した支柱21の柱頭から斜梁24を延ばしてスパン中央の頂点で突き合わせ、頂点から垂下した圧縮材23の柱頭より低い位置にある下端と、柱頭から頂点に向かってLだけ離れた斜梁24上の点との間に傾斜引張材22を架設して構成される。支柱21、斜梁24が剛接合、傾斜引張材22同士が剛接合、斜梁に対する傾斜引張材22がピン接合で、頂点及び傾斜引張材22に対する圧縮材23がピン接合である。   The pentagonal rigid frame structure 1 of this example is compared with the mountain-shaped rigid frame structure 2 described in Patent Document 1 or Patent Document 2. As shown in FIG. 5, in the mountain-shaped ramen structure 2 described in Patent Literature 1, a diagonal beam 24 is extended from the capital of a column 21 erected at a span of a fixed distance, butted at a vertex at the center of the span, and hangs down from the vertex. The inclined tension member 22 is provided between the lower end of the compression member 23 at a position lower than the capital and a point on the diagonal beam 24 separated by L from the capital to the vertex. The strut 21 and the inclined beam 24 are rigidly joined, the inclined tensile members 22 are rigidly joined to each other, the inclined tensile member 22 for the inclined beam is a pin joint, and the compressed material 23 for the vertex and the inclined tensile member 22 is a pin joint.

特許文献2記載の山形ラーメン構造物3は、図6に見られるように、一定距離のスパンで立設した支柱31の柱頭から斜梁34を延ばしてスパン中央の頂点で突き合わせ、各柱頭からΔH下った支柱31上の点と、前記各柱頭から頂点に向かって水平にΔS離れた斜梁34上の点とに方杖35を架設し、頂点から垂下した圧縮材33の柱頭より低い位置にある下端と、方杖35を架設した斜梁34上の点とに傾斜引張材32を架設して構成される。支柱31、斜梁34が剛接合、傾斜引張材32同士が剛接合、支柱31及び斜梁34に対する方杖35がピン接合、斜梁に対する傾斜引張材32がピン接合で、頂点及び傾斜引張材32に対する圧縮材33がピン接合である。   As shown in FIG. 6, in a mountain-shaped ramen structure 3 described in Patent Document 2, a diagonal bridge 34 is extended from a capital of a support 31 erected at a span of a fixed distance, and butted at a vertex at the center of the span. A brace 35 is erected at a point on the lowered strut 31 and a point on the diagonal beam 34 that is separated by ΔS horizontally from each of the capitals toward the vertex, and at a position lower than the capital of the compressed material 33 hanging from the vertex. The inclined tension member 32 is provided at a certain lower end and a point on the diagonal beam 34 where the brace 35 is provided. The strut 31 and the inclined beam 34 are rigidly joined, the inclined tensile members 32 are rigidly joined to each other, the brace 35 for the column 31 and the inclined beam 34 is pin-joined, the inclined tensile member 32 for the oblique beam is pin-joined, The compression member 33 with respect to 32 is a pin joint.

スパン40mにおける本発明の五角形ラーメン構造物1(実施例1、図1及び図2に準拠)と特許文献1記載の山形ラーメン構造物2(比較例1、図5準拠)とを比較する。参考例1として、通常の山形ラーメン構造物も挙げる。実施例1及び比較例1は、圧縮材13,23の下端が柱頭から1m下方まで降り、更に30cmのマージンを挟んで天井高さ10mを設定している。参考例1は、柱頭までの高さを天井高さ10mとしている。実施例1は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例1及び参考例1は、斜梁14が15/100勾配である。   A pentagonal rigid frame structure 1 (according to Example 1, FIGS. 1 and 2) of the present invention in a span of 40 m is compared with a mountain-shaped rigid frame structure 2 described in Patent Document 1 (comparative example 1, conforming to FIG. 5). As Reference Example 1, a normal Yamagata ramen structure is also given. In Example 1 and Comparative Example 1, the lower ends of the compressed members 13 and 23 descend 1 m below the capital, and the ceiling height is set to 10 m with a margin of 30 cm therebetween. In Reference Example 1, the height up to the capital is set to a ceiling height of 10 m. In the first embodiment, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 1 and Reference Example 1, the slope 14 has a 15/100 gradient.

スパン40mの実施例1、比較例1及び参考例1に鉛直荷重7.5kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表1に示す。実施例1は、支柱11、下斜梁14及び上斜梁15が350×175×7×11のH型綱、傾斜引張材12が75×75×9のアングル材、圧縮材13がφ101.6×3.5の丸パイプである。比較例1は、支柱21及び斜梁24が400×200×8×13のH型綱、傾斜引張材22がφ165.2×4.5の丸パイプ、圧縮材23がφ101.6×3.5の丸パイプであり、Lを0.5mとしている。参考例1は、比較例1から傾斜引張材22及び圧縮材23を取り除いた構成(図5参照)で、支柱及び斜梁が588×300×8×13のH型綱である。   Total weight of one frame (excluding gusset plates, bolts and nuts) and maximum stress with a maximum stress of less than 1 when a vertical load of 7.5 kN / m is applied to Example 1, Comparative Example 1 and Reference Example 1 with a span of 40 m The degrees are shown in Table 1. In Example 1, the support 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped ropes of 350 × 175 × 7 × 11, the inclined tensile material 12 is an angle material of 75 × 75 × 9, and the compressed material 13 is φ101. 6 × 3.5 round pipe. Comparative Example 1 is an H-shaped rope of 400 × 200 × 8 × 13 in which the support 21 and the diagonal beam 24 are used, a round pipe of φ165.2 × 4.5 for the inclined tensile member 22, and a circular pipe of φ101.6 × 3.5 for the compression member 23. And L is 0.5 m. Reference Example 1 is a configuration in which the inclined tension member 22 and the compression member 23 are removed from Comparative Example 1 (see FIG. 5), and is a 588 × 300 × 8 × 13 H-shaped rope with columns and diagonal beams.

Figure 2020037828
Figure 2020037828

実施例1の総重量が3.970t(重量比=100%)、最大応力度が0.60であったのに対し、比較例1の総重量が4.848t(重量比=122%)、最大応力度が0.86であり、参考例1の総重量が9.278t(重量比=233%)、最大応力度が0.70であった。実施例1は、参考例1の半分、比較例1に対しても20%強減の総重量でありながら、最大応力度が最も低く抑えられている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 1 was 3.970 t (weight ratio = 100%) and the maximum stress was 0.60, the total weight of Comparative Example 1 was 4.848 t (weight ratio = 122%) and the maximum stress was The total weight of Reference Example 1 was 9.278 t (weight ratio = 233%), and the maximum stress was 0.70. In Example 1, the maximum stress was suppressed to be the lowest while the total weight was slightly reduced by 20% compared to Comparative Example 1 which is half of Reference Example 1. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

スパン60mにおける本発明の五角形ラーメン構造物1(実施例2-1、図1及び図2に準拠)と特許文献1記載の山形ラーメン構造物2(比較例2、図5準拠)とを比較する。参考例2として、通常の山形ラーメン構造物も挙げる。実施例2-1及び比較例2は、圧縮材13,23の下端が柱頭から2m下方まで降り、更に30cmのマージンを挟んで天井高さ10mを設定している。参考例2は、柱頭までの高さを天井高さ10mとしている。実施例2-1は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例2及び参考例1は、斜梁14が15/100勾配である。   The pentagonal rigid frame structure 1 of the present invention (based on Example 2-1 and FIGS. 1 and 2) at a span of 60 m is compared with the mountain-shaped rigid frame structure 2 described in Patent Document 1 (Comparative Example 2 and FIG. 5). . As Reference Example 2, a normal Yamagata ramen structure is also given. In Example 2-1 and Comparative Example 2, the lower ends of the compression members 13 and 23 descend 2 m below the capital, and the ceiling height is set to 10 m with a margin of 30 cm therebetween. In Reference Example 2, the height up to the capital is a ceiling height of 10 m. In Example 2-1, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 2 and Reference Example 1, the slope 14 has a 15/100 gradient.

スパン60mの実施例2-1、比較例2及び参考例2に鉛直荷重7.5kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表2に示す。実施例2-1は、支柱11、下斜梁14及び上斜梁15が450×200×9×14のH型綱、傾斜引張材12が90×90×10のアングル材、圧縮材13がφ114.3×4.5の丸パイプである。比較例2は、支柱21及び斜梁24が488×300×11×18のH型綱、傾斜引張材22がφ190.7×5.3の丸パイプ、圧縮材23がφ114.3×4.5の丸パイプであり、Lを0.5mとしている。参考例2は、比較例2から傾斜引張材22及び圧縮材23を取り除いた構成(図5参照)で、支柱及び斜梁が800×300×14×26のH型綱である。   The total weight of one frame (excluding gusset plates, bolts and nuts) where the maximum stress is less than 1 when a vertical load of 7.5 kN / m is applied to Example 2-1 and Comparative Example 2 and Reference Example 2 having a span of 60 m. Table 2 shows the maximum stress degree. In Example 2-1, the support 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped ropes of 450 × 200 × 9 × 14, the inclined tensile material 12 is an angle material of 90 × 90 × 10, and the compressed material 13 is φ114.3 × 4.5 round pipe. In Comparative Example 2, the strut 21 and the inclined beam 24 were H-shaped ropes of 488 × 300 × 11 × 18, the inclined tensile member 22 was a round pipe of φ190.7 × 5.3, and the compression member 23 was a round pipe of φ114.3 × 4.5. And L is 0.5 m. Reference Example 2 has a configuration in which the inclined tensile member 22 and the compressive member 23 are removed from Comparative Example 2 (see FIG. 5), and is a H-type rope having 800 × 300 × 14 × 26 columns and diagonal beams.

Figure 2020037828
Figure 2020037828

実施例2-1の総重量が7.328t(重量比=100%)、最大応力度が0.70であったのに対し、比較例2の総重量が12.168t(重量比=166%)、最大応力度が0.80であり、参考例1の総重量が22.281t(重量比=304%)、最大応力度が0.79であった。実施例2-1は、参考例2の1/3ほど、比較例2に対しても60%強減の総重量でありながら、最大応力度が最も低く抑えられている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 2-1 was 7.328 t (weight ratio = 100%) and the maximum stress was 0.70, the total weight of Comparative Example 2 was 12.168 t (weight ratio = 166%) and the maximum stress The degree was 0.80, the total weight of Reference Example 1 was 22.281 t (weight ratio = 304%), and the maximum stress degree was 0.79. In Example 2-1, the maximum stress was suppressed to be the lowest, although the total weight was about 60% smaller than that of Comparative Example 2 as compared with Reference Example 2 as much as 1/3. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

ここで、スパン60mにおいて、下斜梁14が17/100勾配、上斜梁15が3/100勾配である本発明の五角形ラーメン構造物1(実施例2-2、図3及び図4に準拠)と比較例2及び参考例2とを比較する。実施例2-2は、下斜梁14及び上斜梁15の勾配が異なるほか、実施例2-1と設定を同じにしている。スパン60mの実施例2-2、比較例2及び参考例2に鉛直荷重7.5kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表3に示す。実施例2-2は、支柱11、下斜梁14及び上斜梁15(表1中は合わせて斜梁)が600×200×11×17のH型綱、傾斜引張材12が100×100×13のアングル材、圧縮材13がφ114.3×4.5の丸パイプである。   Here, at a span of 60 m, the pentagonal rigid frame structure 1 of the present invention in which the lower oblique beam 14 has a 17/100 gradient and the upper oblique beam 15 has a 3/100 gradient (according to Examples 2-2, 3 and 4). ) Is compared with Comparative Example 2 and Reference Example 2. The embodiment 2-2 is different from the embodiment 2-1 in that the lower oblique beam 14 and the upper oblique beam 15 have different slopes. The total weight of one frame (excluding gusset plates, bolts, and nuts) where the maximum stress is less than 1 when a vertical load of 7.5 kN / m is applied to Example 2-2, Comparative Example 2, and Reference Example 2 having a span of 60 m. Table 3 shows the maximum stress degree. In Example 2-2, the strut 11, the lower sloping beam 14, and the upper sloping beam 15 (the sloping beam in Table 1) are 600 × 200 × 11 × 17 H-shaped ropes, and the inclined tensile material 12 is 100 × 100 The × 13 angle material and the compression material 13 are φ114.3 × 4.5 round pipes.

Figure 2020037828
Figure 2020037828

実施例2-2の総重量が9.642t(重量比=100%)、最大応力度が0.97であったのに対し、比較例1の総重量が12.168t(重量比=126%)、最大応力度が0.80であり、参考例1の総重量が22.281t(重量比=231%)、最大応力度が0.80であった。実施例2-2は、屋根の高さを低くできるが、実施例2-1に比べて2つ上の規格の部材が必要となる。それでも、実施例2-2は、参考例2の1/2以下、比較例2に対しても30%弱減の総重量でありながら、最大応力度が許容範囲(最大1.0)に収められている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 2-2 was 9.642 t (weight ratio = 100%) and the maximum stress was 0.97, the total weight of Comparative Example 1 was 12.168 t (weight ratio = 126%) and the maximum stress The degree was 0.80, the total weight of Reference Example 1 was 22.281 t (weight ratio = 231%), and the maximum stress degree was 0.80. In Example 2-2, the height of the roof can be reduced, but members of two standards higher than those in Example 2-1 are required. Nevertheless, while the total weight of Example 2-2 is less than 1/2 of that of Reference Example 2 and less than 30% of that of Comparative Example 2, the maximum stress is within the allowable range (maximum 1.0). I have. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

スパン80mにおける本発明の五角形ラーメン構造物1(実施例3、図1及び図2に準拠)と特許文献2記載の山形ラーメン構造物2(比較例3、図6準拠)とを比較する。参考例3として、通常の山形ラーメン構造物も挙げる。実施例3及び比較例3は、圧縮材13,23の下端が柱頭から3m下方まで降り、更に50cmのマージンを挟んで天井高さ10mを設定している。参考例3は、柱頭までの高さを天井高さ10mとしている。実施例3は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例3及び参考例3は、斜梁14が15/100勾配である。   The pentagonal rigid frame structure 1 (according to Example 3, FIGS. 1 and 2) of the present invention and a mountain-shaped rigid frame structure 2 described in Patent Document 2 (comparative example 3, conforming to FIG. 6) at a span of 80 m are compared. As Reference Example 3, a normal Yamagata ramen structure is also given. In Example 3 and Comparative Example 3, the lower ends of the compressed members 13 and 23 descended 3 m below the capital, and the ceiling height was set to 10 m with a margin of 50 cm. In Reference Example 3, the height up to the capital is 10 m in ceiling height. In the third embodiment, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 3 and Reference Example 3, the slope 14 has a 15/100 gradient.

スパン80mの実施例3、比較例3及び参考例3に鉛直荷重10kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表4に示す。実施例3は、支柱11、下斜梁14及び上斜梁15が488×300×11×18のH型綱、傾斜引張材12が130×130×12のアングル材、圧縮材13がφ165.5×5.5の丸パイプである。比較例3は、支柱31及び斜梁34がh=200cmのトラス構造で、上下弦材が250×250×9×14のH型綱、ラチスが150×150×7×10のH型綱、傾斜引張材32がφ190.7×5.3の丸パイプ、圧縮材33がφ114.3×4.5の丸パイプ、方杖35がφ267.4×8の丸パイプであり、ΔSを8m、ΔHを5mとしている。参考例3は、比較例3から傾斜引張材32、圧縮材33及び方杖35を取り除いた構成(図6参照)で、支柱及び斜梁がh=300cmのトラス構造で、上下弦材が250×250×9×14のH型綱、ラチスが175×175×7.5×11のH型綱である。   The total weight of one frame (excluding gusset plates, bolts and nuts) and the maximum stress level where the maximum stress level is less than 1 when a vertical load of 10 kN / m is applied to Example 3, Comparative Example 3 and Reference Example 3 with a span of 80 m. Are shown in Table 4. In Example 3, the support 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped ropes of 488 × 300 × 11 × 18, the inclined tensile material 12 is an angle material of 130 × 130 × 12, and the compressed material 13 is φ165. 5 × 5.5 round pipe. Comparative Example 3 is a truss structure in which the support 31 and the diagonal beams 34 are h = 200 cm, the upper and lower chord members are 250 × 250 × 9 × 14 H-shaped ropes, and the lattices are 150 × 150 × 7 × 10 H-shaped ropes. The inclined tension member 32 is a round pipe of φ190.7 × 5.3, the compression member 33 is a round pipe of φ114.3 × 4.5, and the brace 35 is a round pipe of φ267.4 × 8. I have. Reference Example 3 has a configuration in which the inclined tension member 32, the compression member 33, and the brace 35 are removed from Comparative Example 3 (see FIG. 6). The strut and the diagonal beam have a truss structure of h = 300 cm. It is an H-shaped class of × 250 × 9 × 14 and a lattice of 175 × 175 × 7.5 × 11.

Figure 2020037828
Figure 2020037828

実施例3の総重量が13.229t(重量比=100%)、最大応力度が0.86であったのに対し、比較例3の総重量が21.336t(重量比=161%))、最大応力度が0.53であり、参考例1の総重量が19.921t(重量比=151%)、最大応力度が0.66であった。実施例3は、最大応力度こそ比較例2及び参考例2に劣っているものの、なお許容範囲に収まっており、1フレームの総重量が比較例2及び参考例2の50%〜60%減になっている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 3 was 13.229 t (weight ratio = 100%) and the maximum stress was 0.86, the total weight of Comparative Example 3 was 21.336 t (weight ratio = 161%) and the maximum stress was Was 0.53, the total weight of Reference Example 1 was 19.921 t (weight ratio = 151%), and the maximum stress was 0.66. In Example 3, although the maximum stress degree was inferior to Comparative Example 2 and Reference Example 2, it was still within the allowable range, and the total weight of one frame was reduced by 50% to 60% of Comparative Example 2 and Reference Example 2. It has become. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

スパン100mにおける本発明の五角形ラーメン構造物1(実施例4、図1及び図2に準拠)と特許文献2記載の山形ラーメン構造物2(比較例4、図6準拠)とを比較する。参考例4として、通常の山形ラーメン構造物も挙げる。実施例4及び比較例4は、圧縮材13,23の下端が柱頭から4m下方まで降り、更に50cmのマージンを挟んで天井高さ10mを設定している。参考例3は、柱頭までの高さを天井高さ10mとしている。実施例4は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例4及び参考例4は、斜梁14が15/100勾配である。   The pentagonal rigid frame structure 1 (according to Example 4, FIGS. 1 and 2) of the present invention in a span of 100 m is compared with the mountain-shaped rigid frame structure 2 described in Patent Document 2 (comparative example 4, conforming to FIG. 6). As Reference Example 4, an ordinary Yamagata ramen structure is also given. In Example 4 and Comparative Example 4, the lower ends of the compression members 13 and 23 descend 4 m below the capital, and the ceiling height is set to 10 m with a margin of 50 cm therebetween. In Reference Example 3, the height up to the capital is 10 m in ceiling height. In the fourth embodiment, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 4 and Reference Example 4, the slope 14 has a 15/100 gradient.

スパン100mの実施例4、比較例4及び参考例4に鉛直荷重10kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表5に示す。実施例4は、支柱11、下斜梁14及び上斜梁15が700×300×12×28のH型綱、傾斜引張材12が130×130×12のアングル材、圧縮材13がφ216.3×5.8の丸パイプである。比較例4は、支柱31及び斜梁34がh=300cmのトラス構造で、上下弦材が300×300×10×15のH型綱、支柱21のラチスが200×200×8×12のH型綱、斜梁34のラチスが150×150×7×10のH型綱、傾斜引張材32がφ216.3×8.2の丸パイプ、圧縮材33がφ190.7×7の丸パイプ、方杖35がφ318.5×9の丸パイプで、ΔSを10m、ΔHを5mとしている。参考例4は、比較例4から傾斜引張材32、圧縮材33及び方杖35を取り除いた構成(図6参照)で、支柱及び斜梁がh=300cmのトラス構造で、上下弦材が300×300×10×15のH型綱、支柱のラチスが200×200×8×12のH型綱、斜梁のラチスが175×175×7,5×11のH型綱である。   The total weight of one frame (excluding gusset plates, bolts and nuts) and the maximum stress when the maximum stress is less than 1 when a vertical load of 10 kN / m is applied to Example 4, Comparative 4 and Reference 4 with a span of 100 m Are shown in Table 5. In Example 4, the support 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped ropes of 700 × 300 × 12 × 28, the inclined tensile material 12 is an angle material of 130 × 130 × 12, and the compressed material 13 is φ216. It is a 3 × 5.8 round pipe. Comparative Example 4 is a truss structure in which the support 31 and the diagonal beams 34 are h = 300 cm, the upper and lower chord members are H-shaped ropes of 300 × 300 × 10 × 15, and the lattice of the support 21 is 200 × 200 × 8 × 12 H. H-shaped rope with a lattice of 150 × 150 × 7 × 10, a circular pipe of φ216.3 × 8.2 with inclined tensile material 32, a circular pipe of φ190.7 × 7 with compressed material 33 A round pipe 35 of φ318.5 × 9 has ΔS of 10 m and ΔH of 5 m. Reference Example 4 has a configuration in which the inclined tension member 32, the compression member 33, and the brace 35 are removed from Comparative Example 4 (see FIG. 6). The H-type rope of × 300 × 10 × 15, the lattice of the pillar is H-type of 200 × 200 × 8 × 12, and the lattice of the diagonal beam is the H-type of lattice of 175 × 175 × 7.5,5 × 11.

Figure 2020037828
Figure 2020037828

実施例4の総重量が28.569t(重量比=100%)、最大応力度が0.75であったのに対し、比較例2の総重量が40.109t(重量比=140%)、最大応力度が0.47であり、参考例1の総重量が34.219t(重量比=120%)、最大応力度が0.72であった。実施例4は、比較例4に比べて最大応力度が高いものの、参考例4と同等であり、1フレームの総重量が比較例2に対して40%減、参考例4に対して20%減と低く抑えられている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 4 was 28.569 t (weight ratio = 100%) and the maximum stress was 0.75, the total weight of Comparative Example 2 was 40.109 t (weight ratio = 140%) and the maximum stress was The total weight of Reference Example 1 was 34.219 t (weight ratio = 120%), and the maximum stress was 0.72. Example 4 has a higher maximum stress than Comparative Example 4, but is equivalent to Reference Example 4. The total weight of one frame is reduced by 40% with respect to Comparative Example 2, and 20% with respect to Reference Example 4. It is kept low and low. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

スパン120mにおける本発明の五角形ラーメン構造物1(実施例5、図1及び図2に準拠)と特許文献2記載の山形ラーメン構造物2(比較例5、図6準拠)とを比較する。参考例5として、通常の山形ラーメン構造物も挙げる。実施例5及び比較例5は、圧縮材13,23の下端が柱頭から5m下方まで降り、更に50cmのマージンを挟んで天井高さ10mを設定している。参考例5は、柱頭までの高さを天井高さ10mとしている。実施例5は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例5及び参考例5は、斜梁14が15/100勾配である。   The pentagonal rigid frame structure 1 of the present invention (based on Example 5, FIG. 1 and FIG. 2) at a span of 120 m is compared with the mountain-shaped rigid frame structure 2 described in Patent Document 2 (Comparative Example 5, based on FIG. 6). As Reference Example 5, a normal Yamagata ramen structure is also given. In Example 5 and Comparative Example 5, the lower ends of the compressed members 13 and 23 descend 5 m below the capital, and the ceiling height is set to 10 m with a margin of 50 cm therebetween. In Reference Example 5, the height up to the capital is set to a ceiling height of 10 m. In the fifth embodiment, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 5 and Reference Example 5, the slope 14 has a 15/100 gradient.

スパン120mの実施例5、比較例5及び参考例5に鉛直荷重10kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表6に示す。実施例5は、支柱11、下斜梁14及び上斜梁15が800×300×14×26のH型綱、傾斜引張材12が150×150×12のアングル材、圧縮材13がφ267.4×6.6の丸パイプである。比較例5は、支柱31及び斜梁34がh=300cmのトラス構造で、上下弦材が350×350×12×19のH型綱、支柱31のラチスが200×200×8×12のH型綱、斜梁34のラチスが175×175×7,5×11のH型綱、傾斜引張材32がφ216.3×8.2の丸パイプ、圧縮材33がφ190.7×7の丸パイプ、方杖35がφ355.6×12の丸パイプで、ΔSを12m、ΔHを5mとしている。参考例5は、比較例5から傾斜引張材32、圧縮材33及び方杖35を取り除いた構成(図6参照)で、支柱及び斜梁がh=300cmのトラス構造で、上下弦材が350×350×12×19のH型綱、支柱のラチスが200×200×8×12のH型綱、斜梁のラチスが175×175×7,5×11のH型綱である。   Total weight of one frame (excluding gusset plates, bolts and nuts) and maximum stress when the maximum stress is less than 1 when a vertical load of 10 kN / m is applied to Example 5, Comparative 5 and Reference 5 with a span of 120 m. Are shown in Table 6. In Example 5, the strut 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped ropes of 800 × 300 × 14 × 26, the inclined tensile material 12 is an angle material of 150 × 150 × 12, and the compressed material 13 is φ267. It is a 4 × 6.6 round pipe. Comparative Example 5 is a truss structure in which the support 31 and the diagonal beams 34 are h = 300 cm, the upper and lower chords are 350 × 350 × 12 × 19 H-shaped ropes, and the support 31 is 200 × 200 × 8 × 12 H lattice. H-shaped rope with 175 x 175 x 7.5,5 x 11 lattices, diagonal tension member 32 with φ216.3 x 8.2 round pipe, compression material 33 with φ190.7 x 7 round pipe, The brace 35 is a φ355.6 × 12 round pipe with ΔS of 12 m and ΔH of 5 m. Reference Example 5 has a configuration in which the inclined tension member 32, the compression member 33, and the brace 35 are removed from Comparative Example 5 (see FIG. 6). The strut and the diagonal beam have a truss structure of h = 300 cm. It is an H-shaped rope of × 350 × 12 × 19, a lattice of pillars is 200 × 200 × 8 × 12, and a lattice of diagonal beams is 175 × 175 × 7,5 × 11.

Figure 2020037828
Figure 2020037828

実施例5の総重量が35.869t(重量比=100%)、最大応力度が0.74であったのに対し、比較例2の総重量が56.124t(重量比=156%)、最大応力度が0.45であり、参考例1の総重量が54.972t(重量比=153%)、最大応力度が0.67であった。実施例5は、比較例5に比べて最大応力度が高いものの、参考例5と同等であり、1フレームの総重量が比較例5及び参考例5に対していずれも60%弱減と低く抑えられている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 5 was 35.869 t (weight ratio = 100%) and the maximum stress was 0.74, the total weight of Comparative Example 2 was 56.124 t (weight ratio = 156%) and the maximum stress was The total weight of Reference Example 1 was 54.972 t (weight ratio = 153%), and the maximum stress was 0.67. Example 5 has the same maximum stress as Comparative Example 5, but is equivalent to Reference example 5. The total weight of one frame is as low as 60% less than Comparative example 5 and Reference example 5. It is suppressed. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

1 五角形ラーメン構造物
11 支柱
12 傾斜引張材
13 圧縮材
14 下斜梁
15 上斜梁
2 山形ラーメン構造物
21 支柱
22 傾斜引張材
23 圧縮材
24 斜梁
3 山形ラーメン構造物
31 支柱
32 傾斜引張材
33 圧縮材
34 斜梁
35 方杖

1 Pentagonal ramen structure
11 props
12 Inclined tensile material
13 Compressed material
14 Lower beam
15 Upper Oblique Beam 2 Yamagata Ramen Structure
21 props
22 Inclined tensile material
23 Compressed material
24 Oblique Beam 3 Yamagata Ramen Structure
31 props
32 Inclined tensile material
33 Compressed material
34 Beam
35 cane

検討の結果開発したものが、一定距離のスパンで立設した支柱の柱頭から、相対的に高勾配の下斜梁と相対的に低勾配の上斜梁とを前記記載順に延ばして前記上斜梁をスパン中央の頂点で突き合わせ、頂点から垂下した圧縮材の柱頭より低い位置にある下端と柱頭との間に傾斜引張材を架設してなる五角形ラーメン構造物である。ここにいう、「圧縮材の 柱頭より低い位置にある下端と柱頭との間に傾斜引張材を架設」とは、設計的に左右の傾 斜引張材をほぼ水平に架設したとしても、上下斜梁の自重により、施工時には圧縮材の下 端が柱頭よりも低い位置になるから、このような設計も本発明に含まれる。各部に利用される部材は限定されないが、支柱、下斜梁及び上斜梁はH型綱、圧縮材は丸パイプ、傾斜引張材は丸パイプ又はアングル材を用いる構成を例示できる。
As a result of the examination, the thing developed as a result of extending the lower slope beam with a relatively high slope and the upper slope beam with a relatively low slope from the capital of a column erected at a span This is a pentagonal rigid frame structure in which beams are abutted at the top of the center of the span, and an inclined tensile member is erected between the lower end of the compressed material hanging down from the top and the lower end of the lower part of the capital and the capital. It referred to herein, a "bridged inclined tension members between the lower end and capitals in a position lower than the stigma of struts" also designed to the left and right inclined diagonal tension member as was laid substantially horizontally, vertically oblique by the weight of the beams, since the lower end of the compression member is at a position lower than the stigma during construction, such design is also included in the present invention. Although the members used for each part are not limited, a configuration using an H-shaped rope for the column, the lower oblique beam and the upper oblique beam, a round pipe for the compression material, and a round pipe or an angle material for the inclined tension material can be exemplified.

本発明は、屋根が五角形である五角形ラーメン構造物に関する。   The present invention relates to a pentagonal ramen structure having a pentagonal roof.

支柱と梁とを剛接合するラーメン構造物は、そのまま支柱の間隔(軸芯線距離=スパン)を大きくしようとすると、鉛直荷重により発生する応力に耐える支柱又は梁を構成するには、それぞれに使用する鋼材(主にH型)の規格を大きくしなければならず、全体的に材料コストが嵩んでしまい、実用的に大スパンの建物を構築できない。そこで、大スパンの建物を構築するため、斜梁が構成する山形屋根を押し上げる圧縮材を追加した山形ラーメン構造物が提案されている(特許文献1及び特許文献2)。 The rigid frame structure that rigidly connects the column and the beam is used to construct a column or a beam that can withstand the stress generated by the vertical load when the spacing between the columns (axial line distance = span) is to be increased as it is. It is necessary to increase the standard of the steel material (mainly H-shaped steel ) to be used, and the material cost is increased as a whole, so that a building with a large span cannot be constructed practically. Then, in order to construct a building with a large span, a mountain-shaped ramen structure has been proposed in which a compression material is added to push up a mountain-shaped roof formed by a diagonal beam (Patent Documents 1 and 2).

特許文献1は、支柱の柱頭から延ばした斜梁を突き合わせて山形屋根を構成し、前記斜梁を突き合わせた頂点から垂下した圧縮材下端と、柱頭又は柱頭から頂点に向かって一定距離の斜梁上の点との間に傾斜引張材を架設した山形ラーメン構造物を開示する(特許文献1・[請求項1])。傾斜引張材を架設する際、柱頭に内向きのプリテンションを懸けてもよい(特許文献1・[請求項5])。これにより、使用する鋼材の規格を下げても鉛直荷重により発生する応力に耐えることができるようになり、材料コストや施工コストを低減できる(最大15%程度、プリテンション有で最大30%程度)(特許文献1・[0039])。   Patent Document 1 discloses a mountain-shaped roof formed by abutting sloping beams extending from a capital of a support column, a compressed material lower end hanging from a vertex where the sloping beams are abutted, and a sloping beam having a fixed distance from the capital or the capital to the apex. Disclosed is a mountain-shaped frame structure in which an inclined tensile member is installed between the upper point and the upper point (Patent Document 1 [Claim 1]). When installing the inclined tensile member, an inward pretension may be hung on the capital (Patent Document 1 [Claim 5]). This makes it possible to withstand the stress generated by the vertical load even if the standard of the steel material used is reduced, reducing the material cost and construction cost (up to about 15%, up to about 30% with pretension) (Patent Document 1 [0039]).

特許文献2は、支柱の柱頭から延ばした斜梁を突き合わせて山形屋根を構成し、支柱上の点と斜梁上の点とに方杖を架設し、前記斜梁を突き合わせた頂点から垂下した圧縮材下端と、方杖を架設した斜梁上の点又は前記点から頂点に向かった斜梁上の点との間に傾斜引張材を架設した山形ラーメン構造物を開示する(特許文献2・[請求項1])。支柱又は斜梁の一方又は双方は、トラス構造材が好ましい(特許文献2・[請求項4])。これにより、支柱や斜梁の剛性を高め、スパンを120mまで広げながら、材料コストや施工コストを低減させることができる(特許文献2・[0010])。   Patent Literature 2 configures a mountain-shaped roof by abutting a diagonal beam extending from a capital of a column, erection a bridge at a point on a column and a point on a diagonal beam, and suspends from a vertex at which the diagonal beam is abutted. Disclosed is a mountain-shaped rigid frame structure in which an inclined tensile member is installed between a lower end of a compression member and a point on the diagonal bridge on which the brace is installed or a point on the diagonal bridge from the point to the vertex (Patent Document 2). [Claim 1]). One or both of the columns and the diagonal beams are preferably truss structural materials (Patent Document 2 [Claim 4]). As a result, it is possible to reduce the material cost and the construction cost while increasing the rigidity of the columns and the diagonal beams and widening the span to 120 m (Patent Document 2, [0010]).

特開平08-189081号公報JP 08-189081 A 特開2014-139372公報JP 2014-139372 Gazette

特許文献1が開示する山形ラーメン構造物は、スパンが80m未満の建物に利用できるものの、斜梁や支柱の規格が大きくなりすぎて、それ以上の大スパンの建物に利用し難い。このため、スパンが80m以上の建物は、特許文献2が開示する山形ラーメン構造物を利用する。特許文献2が開示する山形ラーメン構造物は、鉛直荷重による応力に対抗するため、規格外となるビルドH型を使う必要のあるところ、材料コストや施工コストの高いビルドH型に代えて、トラス構造の斜梁や支柱の利用を提案する。しかし、トラス構造の斜梁や支柱も材料コストや施工コストが掛かる。このように、大スパンの建物において、なお材料コストや施工コストを低減させる余地がある。 Although the mountain-shaped ramen structure disclosed in Patent Document 1 can be used for a building having a span of less than 80 m, it is difficult to use it for a building having a large span of more than that because the specifications of the diagonal beams and columns are too large. For this reason, a building having a span of 80 m or more uses a mountain-shaped ramen structure disclosed in Patent Document 2. Yamagata rigid frame structure Patent Document 2 disclose, in order to counteract the stresses due to vertical load, where there is need to use a build H-section steel as a nonstandard instead of high material cost and construction cost build H-type steel We propose the use of truss-structured beams and columns. However, truss-structured diagonal beams and columns also require material costs and construction costs. Thus, there is still room for reducing material costs and construction costs in large span buildings.

また、特許文献2が開示する山形ラーメン構造物をスパン80m未満の建物に利用できるものの、過剰性能になるほか、特許文献1が開示する山形ラーメン構造物に比べて材料コストや施工コストが高くつく。これから、スパンに応じて、特許文献1が開示する山形ラーメン構造物と特許文献2が開示する山形ラーメン構造物とを使い分けることになる。しかし、スパンに応じたラーメン構造物の使い分けは、境界となるスパンの設定が難しく、実用的ではない。そこで、スパンの大小に関係なく利用でき、大スパン(80m以上)で更に材料コストや施工コストを低減させるラーメン構造物を検討した。   Further, although the Yamagata ramen structure disclosed in Patent Document 2 can be used for a building with a span of less than 80 m, the performance is excessive, and the material cost and the construction cost are higher than the Yamagata ramen structure disclosed in Patent Document 1. . From now on, the angle-shaped ramen structure disclosed in Patent Document 1 and the angle-shaped ramen structure disclosed in Patent Document 2 will be selectively used according to the span. However, it is not practical to properly use the ramen structure according to the span because it is difficult to set the span as the boundary. Therefore, a ramen structure that can be used regardless of the size of the span and that further reduces material costs and construction costs with a large span (80 m or more) was studied.

検討の結果開発したものが、支柱間の距離が40m〜120mのスパンで立設した支柱の柱頭から、相対的に高勾配の下斜梁と相対的に低勾配の上斜梁とを前記記載順に延ばして前記上斜梁スパン中央の頂点で突き合わされ、屋根が五角形で構成され、その頂点から垂下した圧縮材の柱頭より低い位置にある下端と柱頭との間に傾斜引張材を架設して構成され、支柱と梁とが剛接合されたことを特徴とする五角形ラーメン構造物である。各部に利用される部材は限定されないが、支柱、下斜梁及び上斜梁はH型、圧縮材は丸パイプ、傾斜引張材は丸パイプ又はアングル材を用いる構成を例示できる。 As a result of the examination, the distance between the columns was described as the lower slope beam with a relatively high slope and the upper slope beam with a relatively low slope from the capital of a pillar erected with a span of 40 m to 120 m. the upper Hasuhari by extending the order is match-at the apex of the midspan, the roof is composed of pentagonal, erection inclined tension members between the lower end and capitals in a position lower than the stigma of struts depending from its apex This is a pentagonal rigid frame structure in which a support and a beam are rigidly joined . Although the members used for each part are not limited, a configuration using an H-shaped steel for the column, the lower inclined beam and the upper inclined beam, a round pipe for the compression member, and a round pipe or an angle member for the inclined tension member can be exemplified.

発明の五角形ラーメン構造物は、特許文献1又は特許文献2記載の発明同様、鉛直荷重による下斜梁及び上斜梁の応力を受けた傾斜引張材が圧縮材を持ち上げ、逆向きの応力を前記下斜梁及び上斜梁に発生させて前記応力を相殺し、建物の構造強度を向上させる。本発明の五角形ラーメン構造物は、下斜梁及び上斜梁が全体として上方に凸な斜梁となり、鉛直荷重に対抗して斜梁に発生する応力を低減し、建物の構造強度を更に向上させる。また、下斜梁及び上斜梁と傾斜引張材との距離が、特許文献1又は特許文献2記載の斜梁と傾斜引張材との距離に比べて大きくなり、傾斜引張材の作用(応力の相殺)をより強く発揮させ、建物の構造強度を更に向上させる。   The pentagonal rigid frame structure according to the invention is, as in the invention described in Patent Document 1 or Patent Document 2, in which the inclined tensile material subjected to the stress of the lower and upper diagonal beams due to the vertical load lifts the compressed material and reduces the stress in the opposite direction. The stresses generated in the lower and upper sloping beams cancel each other out and improve the structural strength of the building. In the pentagonal rigid frame structure of the present invention, the lower oblique beam and the upper oblique beam as a whole are upwardly projecting oblique beams, reducing the stress generated in the oblique beams against vertical loads, further improving the structural strength of the building. Let it. Further, the distance between the lower and upper oblique beams and the inclined tensile member is larger than the distance between the inclined beam and the inclined tensile member described in Patent Document 1 or Patent Document 2, and the action of the inclined tensile member (stress Offset) to further enhance the structural strength of the building.

柱頭は、支柱の軸芯線と下斜梁の軸芯線との交点である。頂点は、対となる上斜梁の軸芯線の交点である。傾斜引張材は、圧縮材下端と柱頭とを軸芯線で結び、架設される。「相対的に高勾配の下斜梁」と「相対的に低勾配の上斜梁」とは、それぞれの勾配を比較した場合、下斜梁の勾配が上斜梁の勾配より大きいことを意味する。これにより、下斜梁及び上斜梁で構成される斜梁は、必ず上方に向けて凸となる。   The capital is the intersection of the axis of the column and the axis of the lower oblique beam. The vertices are the intersections of the axes of the upper oblique beams that form a pair. The inclined tensile member is erected by connecting the lower end of the compressed material and the capital by an axis. "Relatively high slope lower slope" and "relatively lower slope upper slope" mean that the slope of the lower slope is greater than the slope of the upper slope when comparing the respective slopes I do. As a result, the oblique beam formed by the lower oblique beam and the upper oblique beam always protrudes upward.

下斜梁及び上斜梁は、長さが異なってもよく、全体として一体の斜梁と見る観点から、それぞれの水平長さが1/4スパンであること望ましい。水平長さは、軸芯線の水平長さである。下斜梁及び上斜梁の材長(軸芯線の長さ)は、水平長さが同じであっても、相対的に高勾配の下斜梁が相対的に低勾配の上斜梁より若干長くなる(スパン60mで数10cm以下の差)。しかし、水平長さの等しい下斜梁及び上斜梁は、鉛直荷重を均等に受けることにより、応力の偏在を回避する。   The lower oblique beam and the upper oblique beam may have different lengths, and it is preferable that the horizontal length of each of the lower oblique beam and the upper oblique beam is / span from the viewpoint of being viewed as an integral oblique beam as a whole. The horizontal length is the horizontal length of the axis. The material length (length of the axis) of the lower and upper diagonal beams is slightly higher than that of the lower and upper diagonal beams, even if the horizontal length is the same. Longer (differences of less than several tens of centimeters with a span of 60m). However, the lower oblique beam and the upper oblique beam having the same horizontal length receive the vertical load evenly to avoid uneven distribution of stress.

下斜梁は、17/100勾配以上、30/100勾配以下であるとよい。下斜梁が17/100勾配未満であると、風の影響により下斜梁が持ち上げられて傾斜引張材が圧縮される虞がある。また、下斜梁が30/100勾配を越えると、大スパンの建物の屋根を過剰に高くし、審美性も大きく低下する。上斜梁は、3/100勾配以上、10/100勾配以下であるとよい。上斜梁が3/100勾配未満であると、自然流水による雨水の排水ができなくなる。また、上斜梁が10/100勾配を越えると、下斜梁の勾配と差が小さくなり、本発明の効果(建物の構造強度の向上)があまり発揮されない。   The lower diagonal beam may have a slope of 17/100 or more and 30/100 or less. If the slope of the lower slope is less than 17/100, there is a possibility that the lower slope is lifted by the influence of wind and the inclined tensile material is compressed. In addition, when the lower slope crosses the slope of 30/100, the roof of a large span building becomes excessively high, and the aesthetics are greatly reduced. The upper diagonal beam should have a gradient of 3/100 or more and 10/100 or less. If the upper slope is less than 3/100 slope, drainage of rainwater by natural running water will not be possible. Further, when the upper slope exceeds the 10/100 slope, the difference from the slope of the lower slope becomes small, and the effect of the present invention (improvement of the structural strength of the building) is not sufficiently exhibited.

本発明の五角形ラーメン構造物は、建物の構造強度を向上させるので、利用する部材の規格を抑えることができ、部材の規格が大きくなりがちな大スパン(80m以上)の建物にも利用できる。これにより、スパンの大小に関係なく、同一構造で設計ができるようになり、設計コストが低減できる。また、部材の規格が抑えられるので、当然に材料コストや施工コストも低減でき、特に大スパンでの低減効果が大きい。   The pentagonal rigid frame structure of the present invention improves the structural strength of the building, so that it is possible to suppress the specifications of the members to be used, and it can also be used for buildings with a large span (80 m or more) where the standards of the members tend to be large. Thus, regardless of the size of the span, the design can be performed with the same structure, and the design cost can be reduced. In addition, since the specification of the members is suppressed, the material cost and the construction cost can be naturally reduced.

下斜梁及び上斜梁は、それぞれの水平長さが1/4スパンであると、応力の偏在を回避でき、本発明の効果(建物の構造強度の向上)がよりよく発揮される。17/100勾配以上、30/100勾配以下の下斜梁と、3/100勾配以上、10/100以下である上斜梁とを組み合わせて用いると、本発明の効果を享受しながら、風の影響による傾斜引張材の圧縮を回避し、勾配差が小さくなることによる構造強度の低下を抑制又は防止し、かつ雨水の排水を確保して、審美性にも優れた実用的な建物の提供ができる。   When the horizontal length of each of the lower and upper diagonal beams is 1/4 span, uneven distribution of stress can be avoided, and the effect of the present invention (improvement of structural strength of the building) is more effectively exhibited. 17/100 slope or more, 30/100 slope or less lower slope, and 3/100 slope or more, when used in combination with the upper slope which is 10/100 or less, while enjoying the effects of the present invention, the wind It is possible to provide a practical building with excellent aesthetics by avoiding compression of the inclined tensile material due to the influence, suppressing or preventing a decrease in structural strength due to a smaller gradient difference, and securing drainage of rainwater. it can.

下斜梁を30/100勾配、上斜梁を10/100勾配とした本発明の五角形ラーメン構造物の一例を表した正面図である。It is a front view showing an example of the pentagonal rigid frame structure of the present invention in which the lower oblique beam has a 30/100 gradient and the upper oblique beam has a 10/100 gradient. 本例のラーメン構造物を構成するフレームの模式図である。It is a schematic diagram of the frame which comprises the ramen structure of this example. 下斜梁を17/100勾配、上斜梁を3/100勾配とした本発明の五角形ラーメン構造物の別例を表した正面図である。It is a front view showing another example of the pentagonal rigid frame structure of the present invention in which the lower oblique beam has a 17/100 gradient and the upper oblique beam has a 3/100 gradient. 別例のラーメン構造物を構成するフレームの模式図である。It is a schematic diagram of the frame which comprises the ramen structure of another example. 斜梁を15/100勾配とした特許文献1記載の発明の山形ラーメン構造物の比較例を構成するフレームの模式図である。It is a schematic diagram of the frame which comprises the comparative example of the mountain-shaped rigid-frame-structure of the invention of patent document 1 which made the slope a 15/100 slope. 斜梁を15/100勾配とした特許文献2記載の発明の山形ラーメン構造物の比較例を構成するフレームの模式図である。It is a schematic diagram of the frame which comprises the comparative example of the mountain-shaped ramen structure of the invention of patent document 2 which made the inclined beam 15/100 slope.

以下、本発明を実施するための形態について図を参照しながら説明する。本発明の五角形ラーメン構造物1は、図1に見られるように、一定距離のスパンで立設した支柱11の柱頭から、相対的に高勾配の下斜梁14と相対的に低勾配の上斜梁15とを前記記載順に延ばして前記上斜梁15をスパン中央の頂点で突き合わせ、頂点から垂下した圧縮材13の柱頭より低い位置にある下端と柱頭との間に傾斜引張材12を架設して構成される。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the pentagonal rigid frame structure 1 of the present invention has a relatively high gradient lower slope 14 and a relatively lower gradient from the capital of a column 11 erected at a fixed distance span. Extend the diagonal beams 15 in the stated order and abut the upper diagonal beams 15 at the apex of the center of the span, and install the inclined tensile material 12 between the lower end and the capital of the compressed material 13 hanging down from the apex. It is composed.

本例の五角形ラーメン構造物1は、支柱11、下斜梁14及び上斜梁15が同規格のH型、圧縮材13が丸パイプ、傾斜引張材12がアングル材であり、図2に見られるように、支柱11、下斜梁14及び上斜梁15が剛接合、傾斜引張材12同士が剛接合、柱頭に対する傾斜引張材12がピン接合で、頂点及び傾斜引張材12に対する圧縮材13がピン接合である。本例の五角形ラーメン構造物1は、下斜梁14の勾配が30/100、上斜梁15の勾配が10/100で、下斜梁14及び上斜梁15が1/4スパンの同じ水平長さである。 In the pentagonal rigid frame structure 1 of this example, the strut 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped steel of the same standard, the compressed material 13 is a round pipe, and the inclined tensile material 12 is an angle material. As can be seen, the strut 11, the lower oblique beam 14 and the upper oblique beam 15 are rigidly joined, the inclined tension members 12 are rigidly joined to each other, the inclined tension members 12 for the capital are pin joints, and the compression members for the top and inclined tension members 12 are connected. 13 is a pin connection. In the pentagonal rigid frame structure 1 of this example, the slope of the lower oblique beam 14 is 30/100, the slope of the upper oblique beam 15 is 10/100, and the lower oblique beam 14 and the upper oblique beam 15 have the same horizontal width of 1/4 span. Length.

ここで、下斜梁14の勾配が17/100、上斜梁15の勾配が3/100とした別例の五角形ラーメン構造物1は、図3に見られるように、屋根が低く構成される。別例1の五角形ラーメン構造物1も、下斜梁14及び上斜梁15が1/4スパンの同じ水平長さである。本例(図1)及び別例(図3)の五角形ラーメン構造物1は、支柱11のスパンと天井高さ(圧縮材13の下端からマージン高さを挟んだ地上までの距離)を同じにしている。このように、本発明の五角形ラーメン構造物1は、下斜梁14及び上斜梁15の勾配の組み合わせが、天井高さを左右しない。   Here, as another example of the pentagonal rigid frame structure 1 in which the slope of the lower oblique beam 14 is 17/100 and the slope of the upper oblique beam 15 is 3/100, as shown in FIG. . In the pentagonal rigid frame structure 1 of another example 1, the lower and upper oblique beams 14 and 15 have the same horizontal length of 1/4 span. The pentagonal rigid frame structure 1 of this example (FIG. 1) and another example (FIG. 3) have the same span and the ceiling height (the distance from the lower end of the compressed material 13 to the ground across the margin height) of the support 11. ing. As described above, in the pentagonal rigid frame structure 1 of the present invention, the combination of the slopes of the lower oblique beam 14 and the upper oblique beam 15 does not affect the ceiling height.

別例の五角形ラーメン構造物1は、支柱11、下斜梁14及び上斜梁15が同規格のH型、圧縮材13が丸パイプ、傾斜引張材12がアングル材で、図4に見られるように、支柱11、下斜梁14及び上斜梁15が剛接合、傾斜引張材12同士が剛接合、柱頭に対する傾斜引張材12がピン接合で、頂点及び傾斜引張材12に対する圧縮材13がピン接合である。別例の五角形ラーメン構造物1は、本発明の効果が本例より若干低く、利用するH型、丸パイプ又はアングル材の規格が一段高くなる。 In the pentagonal rigid frame structure 1 of another example, the strut 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped steel of the same standard, the compressed material 13 is a round pipe, and the inclined tensile material 12 is an angle material. As can be seen, the support 11, the lower oblique beam 14 and the upper oblique beam 15 are rigidly connected, the inclined tensile members 12 are rigidly connected to each other, the inclined tensile members 12 for the capital are pin joints, and the compressed members 13 for the apex and inclined tensile members 12 are provided. Is a pin connection. In the pentagonal rigid frame structure 1 of another example, the effect of the present invention is slightly lower than that of the present example, and the specification of the H-shaped steel , round pipe or angle material to be used is further increased.

本例の五角形ラーメン構造物1と、特許文献1記載又は特許文献2記載の山形ラーメン構造物2とを比較する。特許文献1記載の山形ラーメン構造物2は、図5に見られるように、一定距離のスパンで立設した支柱21の柱頭から斜梁24を延ばしてスパン中央の頂点で突き合わせ、頂点から垂下した圧縮材23の柱頭より低い位置にある下端と、柱頭から頂点に向かってLだけ離れた斜梁24上の点との間に傾斜引張材22を架設して構成される。支柱21、斜梁24が剛接合、傾斜引張材22同士が剛接合、斜梁に対する傾斜引張材22がピン接合で、頂点及び傾斜引張材22に対する圧縮材23がピン接合である。   The pentagonal rigid frame structure 1 of this example is compared with the mountain-shaped rigid frame structure 2 described in Patent Document 1 or Patent Document 2. As shown in FIG. 5, in the mountain-shaped ramen structure 2 described in Patent Literature 1, a diagonal beam 24 is extended from the capital of a column 21 erected at a span of a fixed distance, butted at a vertex at the center of the span, and hangs down from the vertex. The inclined tension member 22 is provided between the lower end of the compression member 23 at a position lower than the capital and a point on the diagonal beam 24 separated by L from the capital to the vertex. The strut 21 and the inclined beam 24 are rigidly joined, the inclined tensile members 22 are rigidly joined to each other, the inclined tensile member 22 for the inclined beam is a pin joint, and the compressed material 23 for the vertex and the inclined tensile member 22 is a pin joint.

特許文献2記載の山形ラーメン構造物3は、図6に見られるように、一定距離のスパンで立設した支柱31の柱頭から斜梁34を延ばしてスパン中央の頂点で突き合わせ、各柱頭からΔH下った支柱31上の点と、前記各柱頭から頂点に向かって水平にΔS離れた斜梁34上の点とに方杖35を架設し、頂点から垂下した圧縮材33の柱頭より低い位置にある下端と、方杖35を架設した斜梁34上の点とに傾斜引張材32を架設して構成される。支柱31、斜梁34が剛接合、傾斜引張材32同士が剛接合、支柱31及び斜梁34に対する方杖35がピン接合、斜梁に対する傾斜引張材32がピン接合で、頂点及び傾斜引張材32に対する圧縮材33がピン接合である。   As shown in FIG. 6, in a mountain-shaped ramen structure 3 described in Patent Document 2, a diagonal bridge 34 is extended from a capital of a support 31 erected at a span of a fixed distance, and butted at a vertex at the center of the span. A brace 35 is erected at a point on the lowered strut 31 and a point on the diagonal beam 34 that is separated by ΔS horizontally from each of the capitals toward the vertex, and at a position lower than the capital of the compressed material 33 hanging from the vertex. The inclined tension member 32 is provided at a certain lower end and a point on the diagonal beam 34 where the brace 35 is provided. The strut 31 and the inclined beam 34 are rigidly joined, the inclined tensile members 32 are rigidly joined to each other, the brace 35 for the column 31 and the inclined beam 34 is pin-joined, the inclined tensile member 32 for the oblique beam is pin-joined, The compression member 33 with respect to 32 is a pin joint.

スパン40mにおける本発明の五角形ラーメン構造物1(実施例1、図1及び図2に準拠)と特許文献1記載の山形ラーメン構造物2(比較例1、図5準拠)とを比較する。参考例1として、通常の山形ラーメン構造物も挙げる。実施例1及び比較例1は、圧縮材13,23の下端が柱頭から1m下方まで降り、更に30cmのマージンを挟んで天井高さ10mを設定している。参考例1は、柱頭までの高さを天井高さ10mとしている。実施例1は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例1及び参考例1は、斜梁14が15/100勾配である。   A pentagonal rigid frame structure 1 (according to Example 1, FIGS. 1 and 2) of the present invention in a span of 40 m is compared with a mountain-shaped rigid frame structure 2 described in Patent Document 1 (comparative example 1, conforming to FIG. 5). As Reference Example 1, a normal Yamagata ramen structure is also given. In Example 1 and Comparative Example 1, the lower ends of the compressed members 13 and 23 descend 1 m below the capital, and the ceiling height is set to 10 m with a margin of 30 cm therebetween. In Reference Example 1, the height up to the capital is set to a ceiling height of 10 m. In the first embodiment, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 1 and Reference Example 1, the slope 14 has a 15/100 gradient.

スパン40mの実施例1、比較例1及び参考例1に鉛直荷重7.5kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表1に示す。実施例1は、支柱11、下斜梁14及び上斜梁15が350×175×7×11のH型、傾斜引張材12が75×75×9のアングル材、圧縮材13がφ101.6×3.5の丸パイプである。比較例1は、支柱21及び斜梁24が400×200×8×13のH型、傾斜引張材22がφ165.2×4.5の丸パイプ、圧縮材23がφ101.6×3.5の丸パイプであり、Lを0.5mとしている。参考例1は、比較例1から傾斜引張材22及び圧縮材23を取り除いた構成(図5参照)で、支柱及び斜梁が588×300×8×13のH型である。 Total weight of one frame (excluding gusset plates, bolts and nuts) and maximum stress with a maximum stress of less than 1 when a vertical load of 7.5 kN / m is applied to Example 1, Comparative Example 1 and Reference Example 1 with a span of 40 m The degrees are shown in Table 1. In Example 1, the strut 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped steel of 350 × 175 × 7 × 11, the inclined tensile material 12 is an angle material of 75 × 75 × 9, and the compressed material 13 is φ101. 6 × 3.5 round pipe. In Comparative Example 1, the support 21 and the inclined beam 24 were H-shaped steel of 400 × 200 × 8 × 13, the inclined tensile member 22 was a round pipe of φ165.2 × 4.5, and the compressed material 23 was a round pipe of φ101.6 × 3.5. And L is 0.5 m. Reference Example 1 has a configuration in which the inclined tension member 22 and the compression member 23 are removed from Comparative Example 1 (see FIG. 5), and is a 588 × 300 × 8 × 13 H-shaped steel with columns and diagonal beams.

Figure 2020037828
Figure 2020037828

実施例1の総重量が3.970t(重量比=100%)、最大応力度が0.60であったのに対し、比較例1の総重量が4.848t(重量比=122%)、最大応力度が0.86であり、参考例1の総重量が9.278t(重量比=233%)、最大応力度が0.70であった。実施例1は、参考例1の半分、比較例1に対しても20%強減の総重量でありながら、最大応力度が最も低く抑えられている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 1 was 3.970 t (weight ratio = 100%) and the maximum stress was 0.60, the total weight of Comparative Example 1 was 4.848 t (weight ratio = 122%) and the maximum stress was The total weight of Reference Example 1 was 9.278 t (weight ratio = 233%), and the maximum stress was 0.70. In Example 1, the maximum stress was suppressed to be the lowest while the total weight was slightly reduced by 20% compared to Comparative Example 1 which is half of Reference Example 1. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

スパン60mにおける本発明の五角形ラーメン構造物1(実施例2-1、図1及び図2に準拠)と特許文献1記載の山形ラーメン構造物2(比較例2、図5準拠)とを比較する。参考例2として、通常の山形ラーメン構造物も挙げる。実施例2-1及び比較例2は、圧縮材13,23の下端が柱頭から2m下方まで降り、更に30cmのマージンを挟んで天井高さ10mを設定している。参考例2は、柱頭までの高さを天井高さ10mとしている。実施例2-1は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例2及び参考例1は、斜梁14が15/100勾配である。   The pentagonal rigid frame structure 1 of the present invention (based on Example 2-1 and FIGS. 1 and 2) at a span of 60 m is compared with the mountain-shaped rigid frame structure 2 described in Patent Document 1 (Comparative Example 2 and FIG. 5). . As Reference Example 2, a normal Yamagata ramen structure is also given. In Example 2-1 and Comparative Example 2, the lower ends of the compression members 13 and 23 descend 2 m below the capital, and the ceiling height is set to 10 m with a margin of 30 cm therebetween. In Reference Example 2, the height up to the capital is a ceiling height of 10 m. In Example 2-1, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 2 and Reference Example 1, the slope 14 has a 15/100 gradient.

スパン60mの実施例2-1、比較例2及び参考例2に鉛直荷重7.5kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表2に示す。実施例2-1は、支柱11、下斜梁14及び上斜梁15が450×200×9×14のH型、傾斜引張材12が90×90×10のアングル材、圧縮材13がφ114.3×4.5の丸パイプである。比較例2は、支柱21及び斜梁24が488×300×11×18のH型、傾斜引張材22がφ190.7×5.3の丸パイプ、圧縮材23がφ114.3×4.5の丸パイプであり、Lを0.5mとしている。参考例2は、比較例2から傾斜引張材22及び圧縮材23を取り除いた構成(図5参照)で、支柱及び斜梁が800×300×14×26のH型である。 The total weight of one frame (excluding gusset plates, bolts and nuts) where the maximum stress is less than 1 when a vertical load of 7.5 kN / m is applied to Example 2-1 and Comparative Example 2 and Reference Example 2 having a span of 60 m. Table 2 shows the maximum stress degree. In Example 2-1, the support 11, the lower oblique beam 14, and the upper oblique beam 15 are H-section steel of 450 × 200 × 9 × 14, the inclined tensile material 12 is an angle material of 90 × 90 × 10, and the compressive material 13 is φ114.3 × 4.5 round pipe. In Comparative Example 2, the strut 21 and the inclined beam 24 were H-shaped steel of 488 × 300 × 11 × 18, the inclined tensile member 22 was a round pipe of φ190.7 × 5.3, and the compressed material 23 was a round pipe of φ114.3 × 4.5. And L is 0.5 m. Reference Example 2 has a configuration in which the inclined tension member 22 and the compression member 23 are removed from Comparative Example 2 (see FIG. 5), and the columns and the inclined beams are 800 × 300 × 14 × 26 H-shaped steel .

Figure 2020037828
Figure 2020037828

実施例2-1の総重量が7.328t(重量比=100%)、最大応力度が0.70であったのに対し、比較例2の総重量が12.168t(重量比=166%)、最大応力度が0.80であり、参考例1の総重量が22.281t(重量比=304%)、最大応力度が0.79であった。実施例2-1は、参考例2の1/3ほど、比較例2に対しても60%強減の総重量でありながら、最大応力度が最も低く抑えられている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 2-1 was 7.328 t (weight ratio = 100%) and the maximum stress was 0.70, the total weight of Comparative Example 2 was 12.168 t (weight ratio = 166%) and the maximum stress The degree was 0.80, the total weight of Reference Example 1 was 22.281 t (weight ratio = 304%), and the maximum stress degree was 0.79. In Example 2-1, the maximum stress was suppressed to be the lowest, although the total weight was about 60% smaller than that of Comparative Example 2 as compared with Reference Example 2 as much as 1/3. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

ここで、スパン60mにおいて、下斜梁14が17/100勾配、上斜梁15が3/100勾配である本発明の五角形ラーメン構造物1(実施例2-2、図3及び図4に準拠)と比較例2及び参考例2とを比較する。実施例2-2は、下斜梁14及び上斜梁15の勾配が異なるほか、実施例2-1と設定を同じにしている。スパン60mの実施例2-2、比較例2及び参考例2に鉛直荷重7.5kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表3に示す。実施例2-2は、支柱11、下斜梁14及び上斜梁15(表1中は合わせて斜梁)が600×200×11×17のH型、傾斜引張材12が100×100×13のアングル材、圧縮材13がφ114.3×4.5の丸パイプである。 Here, at a span of 60 m, the pentagonal rigid frame structure 1 of the present invention in which the lower oblique beam 14 has a 17/100 gradient and the upper oblique beam 15 has a 3/100 gradient (according to Examples 2-2, 3 and 4). ) Is compared with Comparative Example 2 and Reference Example 2. In the embodiment 2-2, the slopes of the lower oblique beam 14 and the upper oblique beam 15 are different, and the setting is the same as that of the embodiment 2-1. The total weight of one frame (excluding gusset plates, bolts, and nuts) where the maximum stress is less than 1 when a vertical load of 7.5 kN / m is applied to Example 2-2, Comparative Example 2, and Reference Example 2 having a span of 60 m. Table 3 shows the maximum stress degree. In Example 2-2, the strut 11, the lower sloping beam 14, and the upper sloping beam 15 (the sloping beam in Table 1) were 600 × 200 × 11 × 17 H-shaped steel , and the inclined tensile material 12 was 100 × 100. A × 13 angle material and a compressed material 13 are φ114.3 × 4.5 round pipes.

Figure 2020037828
Figure 2020037828

実施例2-2の総重量が9.642t(重量比=100%)、最大応力度が0.97であったのに対し、比較例1の総重量が12.168t(重量比=126%)、最大応力度が0.80であり、参考例1の総重量が22.281t(重量比=231%)、最大応力度が0.80であった。実施例2-2は、屋根の高さを低くできるが、実施例2-1に比べて2つ上の規格の部材が必要となる。それでも、実施例2-2は、参考例2の1/2以下、比較例2に対しても30%弱減の総重量でありながら、最大応力度が許容範囲(最大1.0)に収められている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 2-2 was 9.642 t (weight ratio = 100%) and the maximum stress was 0.97, the total weight of Comparative Example 1 was 12.168 t (weight ratio = 126%) and the maximum stress The degree was 0.80, the total weight of Reference Example 1 was 22.281 t (weight ratio = 231%), and the maximum stress degree was 0.80. In Example 2-2, the height of the roof can be reduced, but members of two standards higher than those in Example 2-1 are required. Nevertheless, while the total weight of Example 2-2 is less than 1/2 of that of Reference Example 2 and less than 30% of that of Comparative Example 2, the maximum stress is within the allowable range (maximum 1.0). I have. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

スパン80mにおける本発明の五角形ラーメン構造物1(実施例3、図1及び図2に準拠)と特許文献2記載の山形ラーメン構造物2(比較例3、図6準拠)とを比較する。参考例3として、通常の山形ラーメン構造物も挙げる。実施例3及び比較例3は、圧縮材13,23の下端が柱頭から3m下方まで降り、更に50cmのマージンを挟んで天井高さ10mを設定している。参考例3は、柱頭までの高さを天井高さ10mとしている。実施例3は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例3及び参考例3は、斜梁14が15/100勾配である。   The pentagonal rigid frame structure 1 (according to Example 3, FIGS. 1 and 2) of the present invention and a mountain-shaped rigid frame structure 2 described in Patent Document 2 (comparative example 3, conforming to FIG. 6) at a span of 80 m are compared. As Reference Example 3, a normal Yamagata ramen structure is also given. In Example 3 and Comparative Example 3, the lower ends of the compressed members 13 and 23 descended 3 m below the capital, and the ceiling height was set to 10 m with a margin of 50 cm. In Reference Example 3, the height up to the capital is 10 m in ceiling height. In the third embodiment, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 3 and Reference Example 3, the slope 14 has a 15/100 gradient.

スパン80mの実施例3、比較例3及び参考例3に鉛直荷重10kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表4に示す。実施例3は、支柱11、下斜梁14及び上斜梁15が488×300×11×18のH型、傾斜引張材12が130×130×12のアングル材、圧縮材13がφ165.5×5.5の丸パイプである。比較例3は、支柱31及び斜梁34がh=200cmのトラス構造で、上下弦材が250×250×9×14のH型、ラチスが150×150×7×10のH型、傾斜引張材32がφ190.7×5.3の丸パイプ、圧縮材33がφ114.3×4.5の丸パイプ、方杖35がφ267.4×8の丸パイプであり、ΔSを8m、ΔHを5mとしている。参考例3は、比較例3から傾斜引張材32、圧縮材33及び方杖35を取り除いた構成(図6参照)で、支柱及び斜梁がh=300cmのトラス構造で、上下弦材が250×250×9×14のH型、ラチスが175×175×7.5×11のH型である。 The total weight (excluding gusset plates, bolts and nuts) and maximum stress of one frame where the maximum stress is less than 1 when a vertical load of 10 kN / m is applied to Example 3, Comparative Example 3 and Reference Example 3 with a span of 80 m. Are shown in Table 4. In Example 3, the support 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped steel of 488 × 300 × 11 × 18, the inclined tensile material 12 is 130 × 130 × 12 angle material, and the compressed material 13 is φ165. 5 × 5.5 round pipe. Comparative Example 3 is a truss structure in which the struts 31 and the diagonal beams 34 are h = 200 cm, the upper and lower chord members are 250 × 250 × 9 × 14 H-shaped steels , and the lattices are 150 × 150 × 7 × 10 H-shaped steels . The inclined tensile member 32 is a round pipe of φ190.7 × 5.3, the compressive member 33 is a round pipe of φ114.3 × 4.5, and the hook 35 is a round pipe of φ267.4 × 8, with ΔS of 8 m and ΔH of 5 m. I have. Reference Example 3 has a configuration in which the inclined tension member 32, the compression member 33, and the brace 35 are removed from Comparative Example 3 (see FIG. 6). The strut and the diagonal beam have a truss structure of h = 300 cm. × 250 × 9 × 14 H-shaped steel , lattice is 175 × 175 × 7.5 × 11 H-shaped steel .

Figure 2020037828
Figure 2020037828

実施例3の総重量が13.229t(重量比=100%)、最大応力度が0.86であったのに対し、比較例3の総重量が21.336t(重量比=161%))、最大応力度が0.53であり、参考例1の総重量が19.921t(重量比=151%)、最大応力度が0.66であった。実施例3は、最大応力度こそ比較例2及び参考例2に劣っているものの、なお許容範囲に収まっており、1フレームの総重量が比較例2及び参考例2の50%〜60%減になっている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 3 was 13.229 t (weight ratio = 100%) and the maximum stress was 0.86, the total weight of Comparative Example 3 was 21.336 t (weight ratio = 161%) and the maximum stress was Was 0.53, the total weight of Reference Example 1 was 19.921 t (weight ratio = 151%), and the maximum stress was 0.66. In Example 3, although the maximum stress degree was inferior to Comparative Example 2 and Reference Example 2, it was still within the allowable range, and the total weight of one frame was reduced by 50% to 60% of Comparative Example 2 and Reference Example 2. It has become. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

スパン100mにおける本発明の五角形ラーメン構造物1(実施例4、図1及び図2に準拠)と特許文献2記載の山形ラーメン構造物2(比較例4、図6準拠)とを比較する。参考例4として、通常の山形ラーメン構造物も挙げる。実施例4及び比較例4は、圧縮材13,23の下端が柱頭から4m下方まで降り、更に50cmのマージンを挟んで天井高さ10mを設定している。参考例3は、柱頭までの高さを天井高さ10mとしている。実施例4は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例4及び参考例4は、斜梁14が15/100勾配である。   The pentagonal rigid frame structure 1 (according to Example 4, FIGS. 1 and 2) of the present invention in a span of 100 m is compared with the mountain-shaped rigid frame structure 2 described in Patent Document 2 (comparative example 4, conforming to FIG. 6). As Reference Example 4, an ordinary Yamagata ramen structure is also given. In Example 4 and Comparative Example 4, the lower ends of the compression members 13 and 23 descend 4 m below the capital, and the ceiling height is set to 10 m with a margin of 50 cm therebetween. In Reference Example 3, the height up to the capital is 10 m in ceiling height. In the fourth embodiment, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 4 and Reference Example 4, the slope 14 has a 15/100 gradient.

スパン100mの実施例4、比較例4及び参考例4に鉛直荷重10kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表5に示す。実施例4は、支柱11、下斜梁14及び上斜梁15が700×300×12×28のH型、傾斜引張材12が130×130×12のアングル材、圧縮材13がφ216.3×5.8の丸パイプである。比較例4は、支柱31及び斜梁34がh=300cmのトラス構造で、上下弦材が300×300×10×15のH型、支柱21のラチスが200×200×8×12のH型、斜梁34のラチスが150×150×7×10のH型、傾斜引張材32がφ216.3×8.2の丸パイプ、圧縮材33がφ190.7×7の丸パイプ、方杖35がφ318.5×9の丸パイプで、ΔSを10m、ΔHを5mとしている。参考例4は、比較例4から傾斜引張材32、圧縮材33及び方杖35を取り除いた構成(図6参照)で、支柱及び斜梁がh=300cmのトラス構造で、上下弦材が300×300×10×15のH型、支柱のラチスが200×200×8×12のH型、斜梁のラチスが175×175×7,5×11のH型である。 The total weight of one frame (excluding gusset plates, bolts and nuts) and the maximum stress when the maximum stress is less than 1 when a vertical load of 10 kN / m is applied to Example 4, Comparative 4 and Reference 4 with a span of 100 m Are shown in Table 5. In Example 4, the column 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped steel of 700 × 300 × 12 × 28, the inclined tensile material 12 is an angle material of 130 × 130 × 12, and the compressed material 13 is φ216. It is a 3 × 5.8 round pipe. Comparative Example 4 is a truss structure in which the support 31 and the diagonal beams 34 are h = 300 cm, the upper and lower chord members are H-shaped steel of 300 × 300 × 10 × 15, and the lattice of the support 21 is 200 × 200 × 8 × 12 H. Shape steel , H-shaped steel with a lattice of 150 x 150 x 7 x 10 with a diagonal beam 34, round pipe with inclined tensile material 32 of 216.3 x 8.2, round pipe with compressed material 33 of 190.7 x 7 35 is a round pipe of φ318.5 × 9, with ΔS being 10 m and ΔH being 5 m. Reference Example 4 has a configuration in which the inclined tension member 32, the compression member 33, and the brace 35 are removed from Comparative Example 4 (see FIG. 6). × 300 × 10 × 15 H-type steel, H-section steel of lattice struts 200 × 200 × 8 × 12, an H-shaped steel lattice of Hasuhari is 175 × 175 × 7,5 × 11.

Figure 2020037828
Figure 2020037828

実施例4の総重量が28.569t(重量比=100%)、最大応力度が0.75であったのに対し、比較例2の総重量が40.109t(重量比=140%)、最大応力度が0.47であり、参考例1の総重量が34.219t(重量比=120%)、最大応力度が0.72であった。実施例4は、比較例4に比べて最大応力度が高いものの、参考例4と同等であり、1フレームの総重量が比較例2に対して40%減、参考例4に対して20%減と低く抑えられている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 4 was 28.569 t (weight ratio = 100%) and the maximum stress was 0.75, the total weight of Comparative Example 2 was 40.109 t (weight ratio = 140%) and the maximum stress was The total weight of Reference Example 1 was 34.219 t (weight ratio = 120%), and the maximum stress was 0.72. Example 4 has a higher maximum stress than Comparative Example 4, but is equivalent to Reference Example 4. The total weight of one frame is reduced by 40% with respect to Comparative Example 2, and 20% with respect to Reference Example 4. It is kept low and low. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

スパン120mにおける本発明の五角形ラーメン構造物1(実施例5、図1及び図2に準拠)と特許文献2記載の山形ラーメン構造物2(比較例5、図6準拠)とを比較する。参考例5として、通常の山形ラーメン構造物も挙げる。実施例5及び比較例5は、圧縮材13,23の下端が柱頭から5m下方まで降り、更に50cmのマージンを挟んで天井高さ10mを設定している。参考例5は、柱頭までの高さを天井高さ10mとしている。実施例5は、下斜梁14が30/100勾配、上斜梁15が10/100勾配である。比較例5及び参考例5は、斜梁14が15/100勾配である。   The pentagonal rigid frame structure 1 of the present invention (based on Example 5, FIG. 1 and FIG. 2) at a span of 120 m is compared with the mountain-shaped rigid frame structure 2 described in Patent Document 2 (Comparative Example 5, based on FIG. 6). As Reference Example 5, a normal Yamagata ramen structure is also given. In Example 5 and Comparative Example 5, the lower ends of the compressed members 13 and 23 descend 5 m below the capital, and the ceiling height is set to 10 m with a margin of 50 cm therebetween. In Reference Example 5, the height up to the capital is set to a ceiling height of 10 m. In the fifth embodiment, the lower oblique beam 14 has a 30/100 gradient, and the upper oblique beam 15 has a 10/100 gradient. In Comparative Example 5 and Reference Example 5, the slope 14 has a 15/100 gradient.

スパン120mの実施例5、比較例5及び参考例5に鉛直荷重10kN/mが加わるとして最大応力度が1未満となる1フレームの総重量(ガセットプレートやボルト及びナットを除く)と最大応力度とを表6に示す。実施例5は、支柱11、下斜梁14及び上斜梁15が800×300×14×26のH型、傾斜引張材12が150×150×12のアングル材、圧縮材13がφ267.4×6.6の丸パイプである。比較例5は、支柱31及び斜梁34がh=300cmのトラス構造で、上下弦材が350×350×12×19のH型、支柱31のラチスが200×200×8×12のH型、斜梁34のラチスが175×175×7,5×11のH型、傾斜引張材32がφ216.3×8.2の丸パイプ、圧縮材33がφ190.7×7の丸パイプ、方杖35がφ355.6×12の丸パイプで、ΔSを12m、ΔHを5mとしている。参考例5は、比較例5から傾斜引張材32、圧縮材33及び方杖35を取り除いた構成(図6参照)で、支柱及び斜梁がh=300cmのトラス構造で、上下弦材が350×350×12×19のH型、支柱のラチスが200×200×8×12のH型、斜梁のラチスが175×175×7,5×11のH型である。 Total weight of one frame (excluding gusset plates, bolts and nuts) and maximum stress when the maximum stress is less than 1 when a vertical load of 10 kN / m is applied to Example 5, Comparative 5 and Reference 5 with a span of 120 m. Are shown in Table 6. In Example 5, the column 11, the lower oblique beam 14, and the upper oblique beam 15 are H-shaped steel of 800 × 300 × 14 × 26, the inclined tensile material 12 is an angle material of 150 × 150 × 12, and the compressed material 13 is φ267. It is a 4 × 6.6 round pipe. Comparative Example 5 is a truss structure in which the support 31 and the diagonal beam 34 are h = 300 cm, the upper and lower chords are H-shaped steel of 350 × 350 × 12 × 19, and the lattice of the support 31 is 200 × 200 × 8 × 12 H. Shape steel , H-shaped steel with a lattice of 175 x 175 x 7.5,5 x 11 with diagonal beams 34, round pipe with inclined tensile material 32 of φ216.3 x 8.2, round pipe with compressed material 33 of φ190.7 x 7, The brace 35 is a φ355.6 × 12 round pipe with ΔS of 12 m and ΔH of 5 m. Reference Example 5 has a configuration in which the inclined tension member 32, the compression member 33, and the brace 35 are removed from Comparative Example 5 (see FIG. 6). The strut and the diagonal beam have a truss structure of h = 300 cm. H-type steel × 350 × 12 × 19, H-type steel lattice struts 200 × 200 × 8 × 12, an H-shaped steel lattice of Hasuhari is 175 × 175 × 7,5 × 11.

Figure 2020037828
Figure 2020037828

実施例5の総重量が35.869t(重量比=100%)、最大応力度が0.74であったのに対し、比較例2の総重量が56.124t(重量比=156%)、最大応力度が0.45であり、参考例1の総重量が54.972t(重量比=153%)、最大応力度が0.67であった。実施例5は、比較例5に比べて最大応力度が高いものの、参考例5と同等であり、1フレームの総重量が比較例5及び参考例5に対していずれも60%弱減と低く抑えられている。このことから、本発明によれば材料コスト及び施工コストを抑制しながら構造強度に優れた建物を構築できることが理解される。   While the total weight of Example 5 was 35.869 t (weight ratio = 100%) and the maximum stress was 0.74, the total weight of Comparative Example 2 was 56.124 t (weight ratio = 156%) and the maximum stress was The total weight of Reference Example 1 was 54.972 t (weight ratio = 153%), and the maximum stress was 0.67. Example 5 has the same maximum stress as Comparative Example 5, but is equivalent to Reference example 5. The total weight of one frame is as low as 60% less than Comparative example 5 and Reference example 5. It is suppressed. From this, it is understood that according to the present invention, a building having excellent structural strength can be constructed while suppressing material costs and construction costs.

1 五角形ラーメン構造物
11 支柱
12 傾斜引張材
13 圧縮材
14 下斜梁
15 上斜梁
2 山形ラーメン構造物
21 支柱
22 傾斜引張材
23 圧縮材
24 斜梁
3 山形ラーメン構造物
31 支柱
32 傾斜引張材
33 圧縮材
34 斜梁
1 Pentagonal ramen structure
11 props
12 Inclined tensile material
13 Compressed material
14 Lower beam
15 Upper Oblique Beam 2 Yamagata Ramen Structure
21 props
22 Inclined tensile material
23 Compressed material
24 Oblique Beam 3 Yamagata Ramen Structure
31 props
32 Inclined tensile material
33 Compressed material
34 Beam

Claims (4)

一定距離のスパンで立設した支柱の柱頭から、相対的に高勾配の下斜梁と相対的に低勾配の上斜梁とを前記記載順に延ばして前記上斜梁をスパン中央の頂点で突き合わせ、頂点から垂下した圧縮材の柱頭より低い位置にある下端と柱頭との間に傾斜引張材を架設してなる五角形ラーメン構造物。 From the capitals of the pillars erected at a span of a fixed distance, extend a lower slope with a relatively high slope and an upper slope with a relatively low slope in the order described above, and abut the upper slope with the vertex at the center of the span A pentagonal rigid frame structure in which an inclined tensile member is erected between a lower end of the compressed material that is suspended from the apex and lower than the capital of the compressed material and the capital. 下斜梁及び上斜梁は、それぞれの水平長さが1/4スパンである請求項1記載の五角形ラーメン構造物。 The pentagonal rigid frame structure according to claim 1, wherein each of the lower oblique beam and the upper oblique beam has a horizontal length of 1/4 span. 下斜梁は、17/100勾配より高く、30/100勾配以下である請求項1又は2いずれか記載の五角形ラーメン構造物。 The pentagonal rigid frame structure according to any one of claims 1 and 2, wherein the lower oblique beam has a gradient higher than the 17/100 gradient and not higher than the 30/100 gradient. 上斜梁は、3/100勾配以上、10/100勾配以下である請求項1〜3いずれか記載の五角形ラーメン構造物。

The pentagonal rigid frame structure according to any one of claims 1 to 3, wherein the upper oblique beam has a gradient of 3/100 or more and 10/100 or less.

JP2018166117A 2018-09-05 2018-09-05 Pentagon ramen structure Active JP6476367B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018166117A JP6476367B1 (en) 2018-09-05 2018-09-05 Pentagon ramen structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166117A JP6476367B1 (en) 2018-09-05 2018-09-05 Pentagon ramen structure

Publications (2)

Publication Number Publication Date
JP6476367B1 JP6476367B1 (en) 2019-02-27
JP2020037828A true JP2020037828A (en) 2020-03-12

Family

ID=65516996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166117A Active JP6476367B1 (en) 2018-09-05 2018-09-05 Pentagon ramen structure

Country Status (1)

Country Link
JP (1) JP6476367B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295731B2 (en) * 2019-07-23 2023-06-21 株式会社竹中工務店 Beam formation method and erection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711729A (en) * 1993-06-25 1995-01-13 Daiwa House Ind Co Ltd Roof truss structure of mansard roof and construction
JP2000297470A (en) * 1999-02-08 2000-10-24 Nippon Light Metal Co Ltd Framed structure unit and framed structure using the unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711729A (en) * 1993-06-25 1995-01-13 Daiwa House Ind Co Ltd Roof truss structure of mansard roof and construction
JP2000297470A (en) * 1999-02-08 2000-10-24 Nippon Light Metal Co Ltd Framed structure unit and framed structure using the unit

Also Published As

Publication number Publication date
JP6476367B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
CN208430687U (en) Self-anchored type suspended-cable structure support construction and system
CN101787732B (en) Cable-stayed multi-layer framework structure and construction control method thereof
CN104453197A (en) High-altitude large-cantilever concrete structure structural steel supporting platform
CN106836497A (en) A kind of pair of rope separate type truss string structure and its construction method
CN104389419A (en) Cantilevered formwork platform installation structure and construction method
CN103993728B (en) A kind of assembling shaped steel is encorbelmented protection canopy
CN214062435U (en) Support system for high-altitude ultra-long cantilever structure
CN107419893A (en) A kind of elevator steel platform and preparation method thereof
CN101503908B (en) Construction method for spacing suspension cable structural template support platform
CN106759909B (en) Bearing structure system and its construction method are hung up under one kind
CN103122691A (en) Tower crane standard knot bearing upper air supporting formwork steel platform structure and construction method
CN107268422A (en) Across the self-anchored type suspension cable arched girder co-operative system bridge such as one kind
CN205531399U (en) Interim support frame is installed in high -order steel truss segmentation
JP5301741B1 (en) Yamagata ramen structure
CN102003078A (en) Assembling method of net rack
CN204282803U (en) To encorbelment formwork structure for mounting platform
JP2020037828A (en) Pentagon rigid-frame structure
CN211736290U (en) Shell cross-section large-span cornice high-altitude formwork erecting operation platform
CN105464215A (en) Reverse construction method construction method of hanging structure incapable of being provided with vertical temporary support
CN111719699B (en) Annular large-span suspension structure capable of releasing temperature effect
CN108331172A (en) A kind of conversion beam of the unidirectional diagonal brace of setting
CN205617805U (en) Steel jig frame for daylighting roof steel structure construction
CN213014697U (en) Corner structure of encorbelmenting and building structure
CN211257757U (en) Steel truss bracing system structure that shaped steel encorbelmented
CN105220609B (en) Combined beam self-anchored suspension bridge and construction process thereof

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181002

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

R150 Certificate of patent or registration of utility model

Ref document number: 6476367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250