JP2020035859A - Cooling device for multi-stage electronic apparatus - Google Patents

Cooling device for multi-stage electronic apparatus Download PDF

Info

Publication number
JP2020035859A
JP2020035859A JP2018160371A JP2018160371A JP2020035859A JP 2020035859 A JP2020035859 A JP 2020035859A JP 2018160371 A JP2018160371 A JP 2018160371A JP 2018160371 A JP2018160371 A JP 2018160371A JP 2020035859 A JP2020035859 A JP 2020035859A
Authority
JP
Japan
Prior art keywords
header
cooling
branch
flow path
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018160371A
Other languages
Japanese (ja)
Inventor
誠 千地岩
Makoto Senjiiwa
誠 千地岩
崇弘 大黒
Takahiro Oguro
崇弘 大黒
森 浩之
Hiroyuki Mori
浩之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2018160371A priority Critical patent/JP2020035859A/en
Publication of JP2020035859A publication Critical patent/JP2020035859A/en
Pending legal-status Critical Current

Links

Abstract

To provide a cooling device for a multi-stage electronic apparatus which simultaneously achieves downsizing of the entire device and improvement in cooling efficiency by evenly distributing a cooling fluid to cooling channels of each stage of the electronic apparatus and making temperature rise of each stage of the electronic apparatus equal while keeping a size of a common header that branches and joins cooling air small.SOLUTION: The cooling device for a multi-stack electronic apparatus mounts in a branch header 4a a two-step bent inclined plate 40 whose inclination angle is changed in the middle so that a reduction rate of a flow path cross-sectional area of the branch header 4a per a parallel mounting pitch of an electronic device 1 is large in an upstream part of the branch header 4a and is small at a downstream portion of the branch header 4a.SELECTED DRAWING: Figure 1

Description

本発明は、多段積電子装置の冷却装置に係り、特に、送風機によって流入させた冷却風を多段積の電子装置の各段にほぼ等しく分配し、小型でしかも効率的に冷却できる多段積電子装置の冷却装置に関する。   The present invention relates to a cooling device for a multi-stage electronic device, and more particularly to a multi-stage electronic device capable of distributing cooling air introduced by a blower substantially equally to each stage of a multi-stage electronic device, and being small and efficiently cooling. Related to a cooling device.

[従来の技術]
電子計算機や放送システムなどの電子装置は、性能向上と大出力を得るため、半導体デバイス、FET(電界効果トランジスタ)、CPU(中央演算処理装置)、電力増幅器など高温を発する電子部品を回路基板に高密度に実装した電子装置が収納筐体の高さ方向に多段状に積層される形で実装されている。これが、多段積電子装置である。
[Conventional technology]
Electronic devices such as electronic calculators and broadcasting systems use high-temperature electronic components such as semiconductor devices, FETs (field effect transistors), CPUs (central processing units), and power amplifiers on circuit boards in order to improve performance and obtain high output. Electronic devices mounted at a high density are mounted in a form of being stacked in multiple stages in the height direction of the housing. This is a multi-stage electronic device.

下記の特許文献1に示す、多段積電子装置の収納筐体のように、従来の空冷方式の電子装置は、送風機から送られた冷却空気流が次々分岐しながら多段状に積層された電子装置の各段に流入し、電子装置を冷却した後、冷却空気流が次々合流しながら排出される構造となっている。   A conventional air-cooled electronic device is a multi-stage electronic device in which cooling air flows sent from a blower are successively branched, as in a storage case of a multi-stage electronic device described in Patent Document 1 below. After cooling into the electronic device and cooling the electronic device, the cooling air flows are sequentially merged and discharged.

特許文献1における収納筐体では、電子装置が4段に積層された図が示されているが、地上デジタルテレビ送信機では、大電力の送信出力を得るため、出力電力が小さい送信機を多数合成出力することで送信出力を高め、積層段数が10段以上のものが出現している。   In the housing of Patent Document 1, a diagram in which electronic devices are stacked in four layers is shown. However, in a terrestrial digital television transmitter, a large number of transmitters with small output power are required to obtain a large power transmission output. The transmission output is increased by combining and outputting, and the number of stacked layers is 10 or more.

このように多数積層した電子装置は、各電子装置の冷却流路を分岐ヘッダーと合流ヘッダーに並列状につなぎ、冷却流体を分岐と合流によって電子装置の冷却流路各段に導いて冷却している。   In the electronic device having such a large number of layers, the cooling flow paths of the electronic devices are connected in parallel to the branch header and the merge header, and the cooling fluid is guided to each stage of the cooling flow path of the electronic device by the branch and merge to cool. I have.

しかし、電子装置の積層段数が多くなるほど、各段の冷却流量が均一にならず、温度の一様化は困難だと言われている。たとえ電子装置の発熱量が同じでも、また各段の流入冷却流温度が同一であっても、冷却流量が電子装置各段に均一に流れないと、多数積層した電子装置の温度は一様(一定)にならない。   However, it is said that as the number of layers of the electronic device increases, the cooling flow rate of each stage becomes more uneven, and it is difficult to make the temperature uniform. Even if the heat value of the electronic devices is the same, and even if the inflow cooling flow temperature of each stage is the same, if the cooling flow rate does not flow uniformly to each stage of the electronic device, the temperature of the many stacked electronic devices will be uniform ( Not constant).

例えば、日本機械学会編 技術資料「管路・ダクトの流体抵抗」1979年1月丸善発行 第4章99頁、図4・122及び図4・123(非特許文献1)を参照すると、特許文献1記載のように同じサイズの支管を多数の並列に並べてZ字型状の流れを行う場合に、下流の支管に行くほど、支管流路の出入口の圧力差が大きくなり、下流の支管流路に流れる流量が多くなることが示されている。   For example, referring to the technical material “Fluid Resistance of Pipes and Ducts” edited by The Japan Society of Mechanical Engineers, Jan. 1979, Maruzen, Chapter 4, page 99, FIGS. 4 and 122, and FIG. As described in 1, when a plurality of branch pipes of the same size are arranged in parallel to perform a Z-shaped flow, the pressure difference between the inlet and outlet of the branch pipe flow becomes larger toward the downstream branch pipe, and the downstream branch pipe flow path increases. It is shown that the flow rate flowing through the air increases.

この現象をもっと物理的に説明すると、分岐ヘッダーを流れる流体は、各段の支管の流路に次々流入して行くことで、分岐ヘッダー内を流れる流量が減少するので、流体流速は低下し、分岐ヘッダー内の冷却流体圧力は増大して行く。更に、流量減少のため、分岐ヘッダー内の流体圧力損失も下流に行くほど低下するので、分岐ヘッダーの総入口から各段の支管の流路流入口までの分岐ヘッダー内流体圧力損失はわずかしか増大しない。   To explain this phenomenon more physically, the fluid flowing through the branch header flows into the branch pipe flow path of each stage one after another, so that the flow rate flowing through the branch header decreases, so the fluid flow velocity decreases, The cooling fluid pressure in the branch header increases. Furthermore, the fluid pressure loss in the branch header from the total inlet of the branch header to the flow channel inlet of each branch pipe increases only slightly because the fluid pressure loss in the branch header decreases downstream as the flow rate decreases. do not do.

一方、各段の支管を流入した流体が合流ヘッダーに流出して行く際、上流の支管流路から流出する流体は、下流の支管並列流路から流出する流体を次々押しのけ、かつ流出流体の増加による合流ヘッダー内の流体流速が次々増加して行く中を合流ヘッダーの総排出口まで流れて行かなければならない。   On the other hand, when the fluid flowing into the branch pipes of each stage flows out to the merge header, the fluid flowing out of the upstream branch flow path pushes the fluid flowing out of the downstream branch pipe parallel flow path one after another, and the outflow fluid increases. Must flow to the total outlet of the merging header while the fluid velocity in the merging header increases one after another.

従って、合流ヘッダー内の冷却流体の圧力は上流程高く、総排出口に近づく下流ほど低下する。そして、分岐ヘッダーの総入口から各段の支管流路流出口から合流ヘッダーの総出口までの合流ヘッダー内流体圧力損失は上流程大きく、総排出口に近づく下流ほど急激に減少して行く。   Therefore, the pressure of the cooling fluid in the merge header is higher at the upstream side and decreases at the downstream side closer to the total discharge port. The fluid pressure loss in the merge header from the total inlet of the branch header to the branch pipe flow outlet of each stage to the general outlet of the merge header is larger toward the upstream side, and rapidly decreases toward the downstream side toward the total discharge port.

よって、上記分岐ヘッダー内の冷却流体の圧力増大と合流ヘッダー内の冷却流体の圧力減少により、各段の支管流路の出入口間にかかる圧力差は下流に行くほど大きくなるので、冷却流路を流れる冷却流量は下流程多くなる特性となる。   Therefore, the pressure difference between the entrance and exit of the branch pipe flow path at each stage increases with the pressure of the cooling fluid in the branch header and the pressure decrease of the cooling fluid in the junction header, and the pressure difference increases toward the downstream. The flowing cooling flow rate has a characteristic that it increases as it goes downstream.

[第1の従来装置(比較例1):図13]
そこで、多段積の電子装置の冷却流路に冷却流体が流れた場合に、分岐合流で生ずる圧力損失と各電子装置の通過風量特性について、流れのシミュレーションによってもっと詳細に明らかにする。そのため、最初に従来の多段積の電子装置の冷却流路構成について図13(比較例1)を用いて説明する。比較例1を第1の従来装置としている。同図で矢印は、冷却風の流れを示す。図13は、第1の従来装置の断面説明図である。
[First Conventional Device (Comparative Example 1): FIG. 13]
Therefore, when a cooling fluid flows through a cooling flow path of a multi-stage electronic device, the pressure loss caused by branching and merging and the airflow characteristics of each electronic device will be clarified in more detail by flow simulation. Therefore, first, the configuration of the cooling channel of the conventional multi-stage electronic device will be described with reference to FIG. 13 (Comparative Example 1). Comparative Example 1 is a first conventional device. In the same figure, the arrows indicate the flow of the cooling air. FIG. 13 is an explanatory sectional view of a first conventional device.

図13に示すように、電子装置1(PA1,PA2,PA3,PA4,PA5,PA6,PA7,PA8,PA9,PA10)は、10段並列して段積実装されている。その際、電子装置1(PA1,PA2,PA3,PA4,PA5,PA6,PA7,PA8,PA9,PA10)を総称する場合、電子装置1(以降PAと略記する)と呼び、また、10段同じ構成になっている部品は、以降項番を付けないこととする。   As shown in FIG. 13, the electronic devices 1 (PA1, PA2, PA3, PA4, PA5, PA6, PA7, PA8, PA9, PA10) are mounted in a stack of 10 stages in parallel. At this time, when the electronic devices 1 (PA1, PA2, PA3, PA4, PA5, PA6, PA7, PA8, PA9, PA10) are collectively referred to as the electronic device 1 (hereinafter abbreviated as PA), the same applies to 10 stages. The components of the configuration will not be numbered hereafter.

PAの下層部には、冷却フィン2が実装され、冷却流路3が構成されている。上記PAの冷却流路3は、冷却流体流入口3aが分岐導入流路6を介して分岐ヘッダー4につながり、冷却流体流出口3bが合流導入流路7を介して、合流ヘッダー5につながっている。
そして、冷却風は別筐体(図示せず)内の送風機20から分岐ヘッダー4を介して、各PAを冷却した後、合流ヘッダー5から筐体100の外に排気される。
The cooling fins 2 are mounted in the lower layer of the PA, and the cooling channels 3 are configured. In the cooling passage 3 of the PA, the cooling fluid inlet 3a is connected to the branch header 4 via the branch introduction passage 6, and the cooling fluid outlet 3b is connected to the junction header 5 via the merge introduction passage 7. I have.
Then, the cooling air is cooled from the blower 20 in another housing (not shown) via the branch header 4 to cool each PA, and then exhausted from the merging header 5 to the outside of the housing 100.

送風機20から出た冷却風がどの位置のPAに流れるルートをとっても、各ルートを流れる冷却風は、分岐ヘッダー4の総入口(A点)から合流ヘッダー5の総出口(B点)に至るまでの総圧損が全て等しくなるように流れる原理により、流れのシミュレーションでは、各PAを通過する冷却風量と冷却流路3の分岐合流で生ずる圧力損失値等が求められる。   Regardless of the route where the cooling air flowing from the blower 20 flows to the PA at any position, the cooling air flowing through each route extends from the total entrance (point A) of the branch header 4 to the total exit (point B) of the merging header 5. In the flow simulation, the amount of cooling air passing through each PA and the pressure loss value generated at the junction of the cooling flow paths 3 and the like are determined by the flow principle such that the total pressure losses of all the cooling air flows are equal.

図13の各PAは100mmピッチで積層実装され、分岐ヘッダー4と合流ヘッダー5は、共に横幅が100mm、奥行が650mmとし、分岐導入流路6と合流導入路7は、高さが36mm、長さが40mmとしている。そして、総送風量が30m3/minとする一般的な条件下で、流れのシミュレーションを行った。 13 are stacked and mounted at a pitch of 100 mm, the branch header 4 and the merge header 5 both have a width of 100 mm and a depth of 650 mm, and the branch introduction flow path 6 and the merge introduction path 7 have a height of 36 mm and a long length. Is 40 mm. Then, a simulation of the flow was performed under a general condition that the total air flow rate was 30 m 3 / min.

[分岐合流での圧力損失分布:図14/冷却流体の風量分布:図15]
その結果を図14に示す。図14では、分岐ヘッダー4の総入口(A点)から各PA1の冷却流体流入口3aに至る分岐ヘッダー4内の圧損ΔPhi、分岐導入流路6内の圧損ΔPbi、合流導入路7内の圧損ΔPbo、各PAの冷却流体流出口3bから合流ヘッダー5の総出口(B点)に至る合流ヘッダー5内の圧損ΔPhoなどを、冷却流路の分岐合流で生ずる圧力損失分布としてPA段毎に示している。尚、PA内の冷却流路圧損は図示していない。図15では、PA内の冷却流路内を通過する冷却流体の風量分布を示している。
[Pressure loss distribution at branching junction: FIG. 14 / air flow distribution of cooling fluid: FIG. 15]
The result is shown in FIG. In FIG. 14, the pressure loss ΔPhi in the branch header 4 from the total inlet (point A) of the branch header 4 to the cooling fluid inlet 3a of each PA 1, the pressure loss ΔPbi in the branch introduction flow path 6, and the pressure loss in the merge introduction path 7. ΔPbo, pressure loss ΔPho in the junction header 5 from the cooling fluid outlet 3b of each PA to the total exit (point B) of the junction header 5 and the like are shown for each PA stage as a pressure loss distribution generated at the branching junction of the cooling flow path. ing. The pressure loss in the cooling passage in the PA is not shown. FIG. 15 shows an air volume distribution of the cooling fluid passing through the cooling flow path in the PA.

これら図14、図15の結果から上記圧損和(ΔPhi+ΔPbi+ΔPbo+ΔPho)は、最下段のPA10が最大で、最上段PA1が最小となり、風量は逆に最下段のPA10が最小で、最上段PA1が最大となり、平均風量(一点鎖線で示す)に対する偏差は+23%〜−12%と大きく偏流していることが分る。   From the results shown in FIGS. 14 and 15, the sum of the pressure losses (ΔPhi + ΔPbi + ΔPbo + ΔPho) is largest in the lowermost stage PA10, smallest in the uppermost stage PA1, and conversely, the airflow is smallest in the lowermost stage PA10 and largest in the uppermost stage PA1. It can be seen that the deviation from the average airflow (indicated by the dashed line) is greatly deviated from + 23% to -12%.

上記シュミュレーションで示したように、限られた大きさの分岐ヘッダー4と合流ヘッダー5を有する段積実装した従来の冷却流路構造では、各段のPAに流れる冷却風量を一様にすることは困難であった。   As shown in the above simulation, in the conventional cooling channel structure in which the branch headers 4 and the junction headers 5 of limited size are mounted in a stacked manner, the amount of cooling air flowing to the PA in each stage is made uniform. Was difficult.

[第2の従来装置(比較例2):図16]
一方、特許文献2に示されるように、分岐ヘッダー4と合流ヘッダー5内の流れを制御するため、分岐ヘッダー4と合流ヘッダー5の側壁を傾斜させて、段積実装したPAの並列冷却流路に流入する冷却風量を均一化する考えがある。
例えば、特許文献2で示される構造例を第2の従来装置(比較例2)として図16に示す。図16は、第2の従来装置の断面説明図である。
第2の従来装置(比較例2)の構造は、分岐ヘッダー4cの側壁が分岐ヘッダー4cの流れ方向に流路断面積が一定割合で減少するように傾斜し、一方、合流ヘッダー5cの側壁は、合流ヘッダー5cの流れ方向に流路断面積が一定割合で増大するように傾斜した形をしている。これ以外の構造は先の図13と同じなので、同じ番号を付けて、説明を省略する。
[Second Conventional Device (Comparative Example 2): FIG. 16]
On the other hand, as shown in Patent Document 2, in order to control the flow in the branch header 4 and the merge header 5, the side walls of the branch header 4 and the merge header 5 are inclined, and the parallel cooling flow paths of the PA mounted in a stack are mounted. There is a idea to make the amount of cooling air flowing into the air uniform.
For example, an example of the structure disclosed in Patent Document 2 is shown in FIG. 16 as a second conventional device (Comparative Example 2). FIG. 16 is an explanatory sectional view of a second conventional device.
The structure of the second conventional device (Comparative Example 2) is such that the side wall of the branch header 4c is inclined in the flow direction of the branch header 4c so that the flow path cross-sectional area decreases at a constant rate, while the side wall of the merge header 5c is The flow path is inclined so that the cross-sectional area of the flow path increases at a constant rate in the flow direction of the merge header 5c. The other structure is the same as that of FIG. 13 described above.

分岐ヘッダー4cの側壁の傾斜は、傾斜壁と分岐導入流路6の入口とのPA流入口の間隙がPA実装ピッチ毎に10mm小さくなる傾斜角度を持ち、合流ヘッダー5cの側壁の傾斜は、傾斜壁と合流導入流路7の出口との間隙であるPA流出口の幅が、PA実装ピッチ毎に5mm大きくなる傾斜角度を持っている。
但し、分岐ヘッダー4cと合流ヘッダー5cの最大幅は100mmと同じであり、その他の条件は、先と同じとする段積実装条件で、流れのシミュレーションによって、各PAを通過する冷却風量と冷却流路の分岐合流で生ずる圧力損失を求めた。
The inclination of the side wall of the branch header 4c is such that the gap between the inclined wall and the inlet of the branch introduction flow path 6 becomes smaller by 10 mm for each PA mounting pitch, and the inclination of the side wall of the merge header 5c is The width of the PA outlet, which is the gap between the wall and the outlet of the merging introduction channel 7, has an inclination angle that increases by 5 mm for each PA mounting pitch.
However, the maximum width of the branch header 4c and the merging header 5c is the same as 100 mm, and the other conditions are the same as the above-described step-and-stack mounting conditions. The pressure loss generated at the junction of the roads was determined.

[分岐合流での圧力損失分布:図17、冷却流体の風量分布:図18]
シミュレーションの結果を図17、図18に示す。圧損和(ΔPhi+ΔPbi+ΔPbo+ΔPho)は、第1の従来装置(図13)の圧損和(図14)とほとんど変化がなく、通過風量も第1の従来装置(図13)の図15と比較しても、平均風量に対する偏差は+20%〜−17%と大きく偏流し、わずかしか改善されていないことが分る。
[Pressure loss distribution at branch junction: FIG. 17, cooling air flow distribution: FIG. 18]
The results of the simulation are shown in FIGS. The pressure loss sum (ΔPhi + ΔPbi + ΔPbo + ΔPho) is almost the same as the pressure loss sum (FIG. 14) of the first conventional device (FIG. 13), and the passing air volume is also compared with FIG. 15 of the first conventional device (FIG. 13). It can be seen that the deviation from the average airflow is large, from + 20% to -17%, and is slightly improved.

この原因は、出口側の合流ヘッダー5cの最大幅が100mmと小さいためである。そこで、図16に示す構造(比較例2)に対して合流ヘッダー5cの最大幅を200mmと2倍に大幅に大きくした構造を比較例3(第3の従来装置)として調べた。なお、比較例3は合流ヘッダー5cの傾斜角度は同じであり、合流ヘッダー5cの幅だけが大きくしただけなので、断面構造は図示していない。   This is because the maximum width of the merging header 5c on the outlet side is as small as 100 mm. Therefore, a structure in which the maximum width of the merge header 5c was greatly increased to 200 mm, which is twice as large as the structure shown in FIG. 16 (Comparative Example 2), was examined as Comparative Example 3 (third conventional device). The cross-sectional structure of Comparative Example 3 is not shown because the merge header 5c has the same inclination angle and only the width of the merge header 5c is increased.

[第3の従来装置(比較例3)における分岐合流での圧力損失分布:図19、冷却流体の風量分布:図20]
上記条件のシミュレーション結果のみ表示すると、図19、図20に示すように、圧損和(ΔPhi+ΔPbi+ΔPbo+ΔPho)は、上下段での差が共に小さくなり、偏流率も±1%以内に収まる。しかしながら、出口側の合流ヘッダー5cの幅が200mmと2倍と大幅に大きくなり、比較例3の流路構造を小形筐体に収納することは難しい。
更に、多段積電子装置を筐体に収納する際、筐体に対して偏心して実装しなければならず、筐体のデザインが悪くなり、また、多段積電子装置を筐体中心に実装すれば、筐体の横幅は更に大きくなってしまう課題がある。
[Pressure loss distribution at branching junction in third conventional apparatus (Comparative Example 3): FIG. 19, air flow distribution of cooling fluid: FIG. 20]
When only the simulation results under the above conditions are displayed, as shown in FIGS. 19 and 20, the difference between the upper and lower stages of the pressure loss sum (ΔPhi + ΔPbi + ΔPbo + ΔPho) becomes small, and the drift rate falls within ± 1%. However, the width of the merging header 5c on the outlet side is twice as large as 200 mm, which is twice as large, and it is difficult to house the flow path structure of Comparative Example 3 in a small casing.
Furthermore, when storing the multi-stack electronic device in the housing, it must be mounted eccentrically with respect to the housing, and the design of the housing is deteriorated. However, there is a problem that the width of the housing is further increased.

[第4の従来装置(比較例4):図21]
一方、小形筐体の実現と冷却風量の均一化の要求を同時に満たす試みとして、特許文献3で示されるように、分岐ヘッダーのみ流れ方向に沿って流路断面積が一定割合で減少する構造が提案されている。この考えに沿って先と同じ条件でシミュレーションした冷却流路構造を第4の従来装置として図21(比較例4)に示している。図21でも図13及び図16と同じものは同一の符号を付け、説明を省略する。
[Fourth Conventional Device (Comparative Example 4): FIG. 21]
On the other hand, as an attempt to simultaneously satisfy the demand for realizing a small housing and equalizing the cooling air volume, as shown in Patent Document 3, a structure in which the cross-sectional area of the flow passage only decreases in the branch direction at a fixed rate only in the branch header is disclosed. Proposed. FIG. 21 (Comparative Example 4) shows a cooling channel structure simulated under the same conditions as above in accordance with this idea as a fourth conventional apparatus. In FIG. 21, the same components as those in FIGS. 13 and 16 are denoted by the same reference numerals, and description thereof will be omitted.

[分岐合流での圧力損失分布:図22、冷却流体の風量分布:図23]
その結果、出口側の合流ヘッダー5の幅を入口側の分岐ヘッダー4cの最大幅と同じにして、筐体に入る小さな100mm幅に抑えたが、シミュレーション結果、図22、図23に示すように、圧損和(ΔPhi+ΔPbi+ΔPbo+ΔPho)は上下段での差が大きく、偏流率も+16%〜−9%と第1の従来装置の構造(図13)に比較しても若干小さくなる程度であった。
[Pressure loss distribution at branching junction: FIG. 22, distribution of air flow of cooling fluid: FIG. 23]
As a result, the width of the merging header 5 on the outlet side was set to be the same as the maximum width of the branch header 4c on the inlet side, and was suppressed to a small 100 mm width that entered the housing. As shown in the simulation results, as shown in FIGS. The sum of the pressure losses (ΔPhi + ΔPbi + ΔPbo + ΔPho) has a large difference between the upper and lower stages, and the drift ratio is + 16% to −9%, which is slightly smaller than the structure of the first conventional device (FIG. 13).

[関連技術]
尚、上述した先行技術は、特許第5496018号公報「多段積電子装置用冷却装置」(特許文献1)、特開2012−150977号公報「電池冷却構造」(特許文献2)、特開2012−221621号公報「光照射装置」(特許文献3)である。
また、日本機械学会編 技術資料「管路・ダクトの流体抵抗」1979年1月丸善発行 第4章99頁、図4・122及び図4・123(非特許文献1)がある。
[Related technology]
The above-mentioned prior arts are disclosed in Japanese Patent No. 5496018, “Cooling Device for Multi-Stage Electronic Devices” (Patent Document 1), Japanese Patent Application Laid-Open No. 2012-150977, “Battery Cooling Structure” (Patent Document 2), No. 221621, “Light irradiation device” (Patent Document 3).
Further, there is a technical document “Fluid Resistance of Pipes and Ducts” edited by The Japan Society of Mechanical Engineers, Jan. 1979, Maruzen, Chapter 4, page 99, FIGS. 4 and 122, and FIGS.

特許第5496018号公報Japanese Patent No. 5496018 特開2012−150977号公報JP 2012-150977 A 特開2012−221621号公報JP 2012-221621 A

日本機械学会編 技術資料「管路・ダクトの流体抵抗」1979年1月丸善発行 第4章99頁、図4・122及び図4・123Japan Society of Mechanical Engineers Technical Data “Fluid Resistance of Pipelines and Ducts” published by Maruzen, January 1979, Chapter 4, page 99, FIGS.

しかしながら、従来の多段積電子装置の冷却装置では、上述したとおり、全体の装置の小型化を図りつつ、同時に電子装置の各段の冷却流路に冷却流体を均一に分配して各段の電子装置の温度上昇を同等にし、冷却効率を向上させるものとはなっていないという問題点があった。   However, in the conventional cooling device for a multi-stage electronic device, as described above, while reducing the size of the entire device, at the same time, the cooling fluid is uniformly distributed to the cooling passages of each stage of the electronic device, and the electronic devices of each stage are cooled. There is a problem that the temperature rise of the apparatus is not made equal and the cooling efficiency is not improved.

本発明は上記実情に鑑みて為されたもので、送風機から送られる冷却空気風を多段積した電子装置に並列分配する際に、冷却風を分岐・合流させる共通ヘッダーの寸法を小さく抑えながら、かつ、電子装置の各段の冷却流路に冷却流体を均一に分配し、各段の電子装置の温度上昇を同等にして、全体の装置の小型化と冷却効率向上とを同時に達成する多段積電子装置の冷却装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and when the cooling air blown from a blower is distributed in parallel to electronic devices stacked in multiple stages, while suppressing the size of a common header for branching and merging the cooling wind, In addition, a multi-stage product that evenly distributes the cooling fluid to the cooling passages of each stage of the electronic device, equalizes the temperature rise of the electronic device of each stage, and simultaneously achieves miniaturization of the entire device and improvement of cooling efficiency. An object of the present invention is to provide a cooling device for an electronic device.

上記従来例の問題点を解決するための本発明は、収納筐体内に複数の電子装置が多段積されている多段積電子装置の冷却装置であって、分岐導入流路を装着した分岐ヘッダーと、合流導入流路を装着した合流ヘッダーとを備え、冷却流体が分岐ヘッダーの下部から流入して、並列に設けられた電子装置の冷却流路を流れ、合流ヘッダーの上部から流出するものであり、電子装置の並列実装ピッチ当りの分岐ヘッダーの流路断面積の減少率を分岐ヘッダーの上流部で大きく、分岐ヘッダーの下流部で小さくする傾斜板を分岐ヘッダー内に装着したことを特徴とする。   The present invention for solving the problems of the above conventional example is a cooling device of a multi-stack electronic device in which a plurality of electronic devices are stacked in a storage case, and a branch header equipped with a branch introduction flow path. A cooling header is provided with a merging introduction flow path, and the cooling fluid flows in from the lower part of the branch header, flows through the cooling flow path of the electronic device provided in parallel, and flows out from the upper part of the merging header. An inclined plate is mounted in the branch header so that the reduction rate of the flow path cross-sectional area of the branch header per parallel mounting pitch of the electronic device is increased in the upstream part of the branch header and reduced in the downstream part of the branch header. .

本発明は、上記多段積電子装置の冷却装置において、傾斜板を途中で少なくとも2箇所以上屈曲させたことを特徴とする。   The present invention is characterized in that in the cooling device for the multi-stack electronic device, the inclined plate is bent at at least two places in the middle.

本発明は、収納筐体内に複数の電子装置が多段積されている多段積電子装置の冷却装置であって、分岐導入流路を装着した分岐ヘッダーと、合流導入流路を装着した合流ヘッダーとを備え、冷却流体が分岐ヘッダーの下部から流入して、並列に設けられた電子装置の冷却流路を流れ、合流ヘッダーの上部から流出するものであり、電子装置の並列実装ピッチ当りの分岐ヘッダーの流路断面積の減少率が分岐ヘッダーの上流部で大きく、分岐ヘッダーの下流部で小さくする流路壁を分岐ヘッダーの側壁としたことを特徴とする。   The present invention is a cooling device for a multi-stack electronic device in which a plurality of electronic devices are stacked in a storage housing, wherein a branch header equipped with a branch introduction flow path, and a merge header mounted with a merge introduction flow path. The cooling fluid flows from the lower part of the branch header, flows through the cooling passage of the electronic device provided in parallel, and flows out from the upper part of the merge header, and the branch header per parallel mounting pitch of the electronic device. Is characterized in that the side wall of the branch header has a passage wall whose reduction rate of the flow path cross-sectional area is large in the upstream part of the branch header and small in the downstream part of the branch header.

本発明は、上記多段積電子装置の冷却装置において、流路壁を途中で少なくとも2箇所以上屈曲させたことを特徴とする。   The present invention is characterized in that in the cooling device for a multi-stage electronic device, the flow path wall is bent at least two places in the middle.

本発明によれば、電子装置の並列実装ピッチ当りの分岐ヘッダーの流路断面積減少率が分岐ヘッダーの上流部で大きく、かつ、分岐ヘッダーの下流部で小さい傾斜板を分岐ヘッダー内に装着し、若しくは、電子装置の並列実装ピッチ当りの分岐ヘッダーの流路断面積減少率が分岐ヘッダーの上流部で大きく、かつ、分岐ヘッダーの下流部で小さくなるように、分岐ヘッダーの側壁を滑らかに屈曲させた多段積電子装置の冷却装置としているので、並列実装した電子装置に流入する冷却流体の流量を均一に制御し、装置の小型化と冷却効率向上を同時に達成することができる効果がある。   According to the present invention, an inclination plate in which the flow path cross-sectional area reduction rate of the branch header per parallel mounting pitch of the electronic device is large in the upstream part of the branch header and small in the downstream part of the branch header is mounted in the branch header. Or, the side wall of the branch header is smoothly bent so that the flow path cross-sectional area reduction rate of the branch header per parallel mounting pitch of the electronic device is large at the upstream part of the branch header and small at the downstream part of the branch header. Since the cooling device of the multi-stage electronic device is used, the flow rate of the cooling fluid flowing into the electronic devices mounted in parallel can be controlled uniformly, so that the device can be reduced in size and the cooling efficiency can be improved at the same time.

第1の装置の断面説明図である。FIG. 3 is an explanatory cross-sectional view of the first device. 第1の装置における二段屈曲傾斜板と流路幅の関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a two-step bent inclined plate and a channel width in the first device. 第1の装置における分岐合流での圧力損失分布を示す図である。FIG. 4 is a diagram illustrating a pressure loss distribution at a branching junction in the first device. 第1の装置における冷却流体の風量分布を示す図である。FIG. 4 is a diagram illustrating an air volume distribution of a cooling fluid in the first device. 第2の装置の断面説明図である。FIG. 5 is an explanatory sectional view of a second device. 第2の装置における三段屈曲傾斜板と流路幅の関係を示す図である。It is a figure which shows the relationship between the three-step bending inclined plate and flow path width in a 2nd apparatus. 第2の装置における分岐合流での圧力損失分布を示す図である。It is a figure which shows the pressure loss distribution in the branch junction in a 2nd apparatus. 第2の装置における冷却流体の風量分布を示す図である。FIG. 9 is a diagram illustrating an air volume distribution of a cooling fluid in the second device. 第3の装置の断面説明図である。It is sectional explanatory drawing of a 3rd apparatus. 第3の装置における二段屈曲傾斜壁と流路幅の関係を示す図である。FIG. 13 is a diagram illustrating a relationship between a two-step bent inclined wall and a channel width in the third device. 第4の装置の断面説明図である。It is sectional explanatory drawing of a 4th apparatus. 第4の装置における三段屈曲傾斜壁と流路幅の関係を示す図である。FIG. 14 is a diagram illustrating a relationship between a three-step bent inclined wall and a channel width in a fourth device. 第1の従来装置の断面説明図である。It is sectional explanatory drawing of the 1st conventional apparatus. 第1の従来装置における分岐合流での圧力損失分布をしめす図である。FIG. 9 is a diagram showing a pressure loss distribution at a branching junction in the first conventional device. 第1の従来装置における冷却流体の風量分布を示す図である。FIG. 8 is a diagram illustrating an air volume distribution of a cooling fluid in the first conventional device. 第2の従来装置の断面説明図である。It is sectional explanatory drawing of the 2nd conventional apparatus. 第2の従来装置における分岐合流での圧力損失分布を示す図である。FIG. 11 is a diagram showing a pressure loss distribution at a branching junction in the second conventional device. 第2の従来装置における冷却流体の風量分布を示す図である。FIG. 9 is a diagram showing an air volume distribution of a cooling fluid in a second conventional device. 第3の従来装置における分岐合流での圧力損失分布を示す図である。It is a figure which shows the pressure loss distribution at the branch junction in the 3rd conventional apparatus. 第3の従来装置における冷却流体の風量分布を示す図である。It is a figure showing distribution of air volume of a cooling fluid in the 3rd conventional device. 第4の従来装置の断面説明図である。It is sectional explanatory drawing of the 4th conventional apparatus. 第4の従来装置における分岐合流での圧力損失分布を示す図である。It is a figure which shows the pressure loss distribution at the branch junction in the 4th conventional apparatus. 第4の従来装置における冷却流体の風量分布を示す図である。FIG. 11 is a diagram illustrating an air volume distribution of a cooling fluid in a fourth conventional device.

本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
本発明の実施の形態に係る多段積電子装置の冷却装置(本冷却装置)は、分岐導入流路を装着した分岐ヘッダーと、合流導入流路を装着した合流ヘッダーとに対して多段積した電子装置の冷却流路を並列状につなぎ、冷却流体が分岐ヘッダーの下部から流入し、電子装置の冷却流路を流れ、合流ヘッダーの上部から流出する冷却流路構造において、電子装置の並列実装ピッチ当りの分岐ヘッダーにおける流路の断面積減少率が分岐ヘッダーの上流部で大きく、かつ、分岐ヘッダーの下流部で小さくする傾斜板を分岐ヘッダー内に装着することにより、分岐ヘッダーと合流ヘッダーの寸法を大きくせず、多段積の電子装置の冷却流路にほぼ均一の冷却風を流し、各段の電子装置の温度上昇を一様(均一)にして適正な温度範囲に収まるようにし、全体の装置の小型化と冷却効率向上を同時に達成するものである。
An embodiment of the present invention will be described with reference to the drawings.
[Summary of Embodiment]
A cooling device (main cooling device) for a multi-stage electronic device according to an embodiment of the present invention includes an electronic device in which a branch header provided with a branch introduction flow channel and a merge header mounted with a merge introduction flow channel are multi-stage stacked. In the cooling channel structure in which the cooling channels of the devices are connected in parallel, the cooling fluid flows in from the lower part of the branch header, flows through the cooling channel of the electronic device, and flows out of the upper portion of the merging header. The cross-sectional area reduction rate of the flow path at the branch header is large at the upstream part of the branch header and small at the downstream part of the branch header. Without increasing the size, let the cooling air flow through the cooling passages of the multi-stage electronic device to be almost uniform, and make the temperature rise of the electronic devices in each stage uniform (uniform) so that they fall within the appropriate temperature range. It is intended to achieve the miniaturization and the cooling efficiency of the overall system at the same time.

また、本冷却装置は、分岐導入流路を装着した分岐ヘッダーと合流導入流路を装着した合流ヘッダーとに対して、多段積した電子装置の冷却流路を並列状につなぎ、冷却流体が分岐ヘッダーの下部から流入し、電子装置の冷却流路を流れ、合流ヘッダーの上部から流出する冷却流路構造において、電子装置の並列実装ピッチ当りの分岐ヘッダーにおける流路の断面積減少率が分岐ヘッダーの上流部で大きく、かつ、分岐ヘッダーの下流部で小さくなるように、分岐ヘッダーの側壁を滑らかに屈曲させることにより、分岐ヘッダーと合流ヘッダーの寸法を大きくせずに、多段積の電子装置の冷却流路にほぼ均一の冷却風を流し、各段の電子装置の温度上昇を一様(均一)にして適正な温度範囲に収まるようにし、全体の装置の小型化と冷却効率向上を同時に達成するものである。   In addition, the cooling device connects the cooling flow paths of the multi-stacked electronic devices in parallel to the branch header having the branch introduction flow path and the merge header having the merge introduction flow path, and the cooling fluid is branched. In a cooling flow channel structure that flows in from the lower part of the header, flows through the cooling flow path of the electronic device, and flows out of the upper part of the merging header, the cross-sectional area reduction rate of the flow path in the branch header per parallel mounting pitch of the electronic device is determined by the branch header. By smoothly bending the side wall of the branch header so that it is larger at the upstream part and smaller at the downstream part of the branch header, the size of the branch header and the merge header can be increased without increasing the size of the multi-stage electronic device. An almost uniform cooling air is flowed through the cooling channel to make the temperature rise of the electronic devices in each stage uniform (uniform) so that they fall within an appropriate temperature range. It is intended to achieve the above at the same time.

[第1の実施の形態]
本冷却装置における第1の実施の形態に係る多段積電子装置の冷却装置は、分岐導入流路を装着した分岐ヘッダーと、合流導入流路を装着した合流ヘッダーとに対して多段積した電子装置の冷却流路を並列状につなぎ、冷却流体が分岐ヘッダーの下部から流入し、電子装置の冷却流路を流れ、合流ヘッダーの上部から流出する冷却流路構造において、電子装置の並列実装ピッチ当りの分岐ヘッダーの流路断面積減少率が分岐ヘッダーの上流部で大きく、かつ、分岐ヘッダーの下流部で小さくなるよう傾斜角を途中で変更した傾斜板を分岐ヘッダー内に装着することにより、分岐ヘッダーと合流ヘッダーの寸法を大きくせず、多段積の電子装置の冷却流路にほぼ均一の冷却風を流し、各段の電子装置の温度上昇を一様にして適正な温度範囲に収まるようにし、装置全体の小型化と冷却効率向上を同時に達成することができるものである。
[First Embodiment]
The cooling device for a multi-stage electronic device according to the first embodiment of the present cooling device is an electronic device in which a branch header provided with a branch introduction flow channel and a merge header mounted with a merge introduction flow channel are multi-stage stacked. In the cooling flow path structure, the cooling fluid flows in from the lower part of the branch header, flows through the cooling flow path of the electronic device, and flows out from the upper part of the merging header. By installing an inclined plate whose inclination angle has been changed in the middle so that the cross-sectional area reduction rate of the branch header is large at the upstream part of the branch header and small at the downstream part of the branch header, the branch is branched. Without increasing the dimensions of the header and the merged header, a substantially uniform cooling air is flowed through the cooling passages of the multi-stage electronic device, and the temperature rise of the electronic devices in each stage is made uniform and within the appropriate temperature range. To so that is what can be achieved miniaturization of the entire device and the cooling efficiency at the same time.

[第1の装置:図1]
第1の実施の形態に係る多段積電子装置の冷却装置の1例である第1の装置について図1を参照しながら説明する。図1は、第1の装置の断面説明図である。
第1の装置は、図1に示すように、筐体100内に、複数の電子装置1(PA1〜PA10)が複数段に段積され、筐体100の下部の冷却風流入口に送風機20が接続され、送風機20とは反対側の筐体100の上部に排気口が設けられている。
図1における矢印は、冷却風の流れを示すもので、A点から流入し、B点から排出(流出)するようになっている。
[First device: FIG. 1]
A first device, which is an example of a cooling device for a multi-stack electronic device according to the first embodiment, will be described with reference to FIG. FIG. 1 is an explanatory cross-sectional view of the first device.
In the first device, as shown in FIG. 1, a plurality of electronic devices 1 (PA1 to PA10) are stacked in a plurality of stages in a housing 100, and a blower 20 is provided at a cooling air inlet at a lower portion of the housing 100. An exhaust port is provided at the top of the case 100 that is connected and opposite to the blower 20.
The arrow in FIG. 1 indicates the flow of the cooling air, and flows in from point A and discharges (outflow) from point B.

第1の装置の特徴としては、分岐ヘッダー4a内に二段屈曲傾斜板40が設けられている。
その二段屈曲傾斜板40は、PAの積層方向を示す垂直面に対する傾斜角が途中で変更されており、上流部(下側)では傾斜角度が大きく、下流部(上側)では傾斜角度が小さくなる構成となっている。
これによって、二段屈曲傾斜板40の下側(上流部)では流路断面積が減少していく割合(流路断面積減少率)が大きく、上側(下流部)では流路断面積が減少していく割合が小さいものとなっている。つまり、二段屈曲傾斜板40が途中で折り曲がっているため、直線の板のように、流路断面積減少が一定とならないものである。
分岐ヘッダー4aの詳細については、後述する。
As a feature of the first device, a two-step bent inclined plate 40 is provided in the branch header 4a.
The inclination angle of the two-step bent inclined plate 40 with respect to the vertical plane indicating the stacking direction of the PA is changed in the middle, and the inclination angle is large in the upstream part (lower side) and small in the downstream part (upper side). Configuration.
As a result, the rate at which the flow path cross-sectional area decreases (flow path cross-sectional area reduction rate) is large at the lower side (upstream portion) of the two-step bent inclined plate 40, and the flow path cross-sectional area decreases at the upper side (downstream portion). The rate of progress is small. That is, since the two-step bent inclined plate 40 is bent in the middle, the decrease in the flow path cross-sectional area is not constant as in a straight plate.
Details of the branch header 4a will be described later.

[第1の装置の各部]
第1の装置の各部を具体的に説明する。
[電子装置1]
電子装置1(PA1,PA2,PA3,PA4,PA5,PA6,PA7,PA8,PA9,PA10)は、10段並列して段積実装されている。その際、電子装置1(PA1,PA2,PA3,PA4,PA5,PA6,PA7,PA8,PA9,PA10)を総称する場合に、電子装置1(以降PAと略記する)と呼び、また、10段同じ構成になっている部品は、以降項番を付けないこととする。
ここで、電子装置1は、半導体デバイス、FET、CPU、電力増幅器など高温を発する電子部品を回路基板に高密度に実装した電子装置である。
[Each part of the first device]
Each part of the first device will be specifically described.
[Electronic device 1]
The electronic devices 1 (PA1, PA2, PA3, PA4, PA5, PA6, PA7, PA8, PA9, PA10) are mounted in a stack of 10 stages in parallel. At this time, when the electronic devices 1 (PA1, PA2, PA3, PA4, PA5, PA6, PA7, PA8, PA9, PA10) are collectively referred to, the electronic devices 1 (hereinafter abbreviated as PA) are referred to. Parts having the same configuration will not be numbered hereafter.
Here, the electronic device 1 is an electronic device in which high-temperature electronic components such as a semiconductor device, an FET, a CPU, and a power amplifier are mounted on a circuit board at a high density.

[冷却流路3、分岐ヘッダー4a、合流ヘッダー5等]
PAの下層部には、冷却フィン2が実装され、冷却流路3が構成されている。上記PAの冷却流路3は、冷却流体流入口3aが分岐導入流路6を介して分岐ヘッダー4aにつながり、冷却流体流出口3bが合流導入流路7を介して、合流ヘッダー5につながっている。
そして、冷却風は別筐体(図示せず)内の送風機20から分岐ヘッダー4aを介して、各PAを冷却した後、合流ヘッダー5から筐体100の外に排気される。
[Cooling channel 3, branch header 4a, merge header 5, etc.]
The cooling fins 2 are mounted in the lower layer of the PA, and the cooling channels 3 are configured. In the cooling passage 3 of the PA, the cooling fluid inlet 3a is connected to the branch header 4a via the branch introduction passage 6, and the cooling fluid outlet 3b is connected to the junction header 5 via the merge introduction passage 7. I have.
Then, the cooling air is cooled from the blower 20 in another housing (not shown) via the branch header 4a to each PA, and then exhausted from the merging header 5 to the outside of the housing 100.

[分岐ヘッダー4aの構造:図2]
分岐ヘッダー4aについて図2を参照しながら説明する。図2は、第1の装置における二段屈曲傾斜板と流路幅の関係を示す図である。
図1,2に示すように、分岐ヘッダー4aの流路内部に二段屈曲傾斜板40を装着することにより、分岐ヘッダー4aの流路内部は、冷却流体が流れない領域60と、冷却流体が流れる領域61とに分けられる。
[Structure of branch header 4a: FIG. 2]
The branch header 4a will be described with reference to FIG. FIG. 2 is a diagram illustrating a relationship between a two-step bent inclined plate and a channel width in the first device.
As shown in FIGS. 1 and 2, by mounting the two-step bent inclined plate 40 inside the flow path of the branch header 4 a, the inside of the flow path of the branch header 4 a becomes a region 60 where the cooling fluid does not flow, It is divided into a flowing area 61.

冷却流体が流れない領域60は、分岐ヘッダー4aと二段屈曲傾斜板40とで囲まれた領域で、図1では網掛け表示している。
そして、冷却流体が流れる領域61は、分岐ヘッダー4aの流路断面積が下流方向(図1では上側方向)に向かって減少するが、分岐ヘッダー4aの流路断面積が減少する割合が分岐ヘッダー4aの上流部(下側)で大きく、かつ、分岐ヘッダー4aの下流部(上側)で小さくなるように形成されている。
一方、合流ヘッダー5は、分岐ヘッダー4aと同等な大きさに抑え、装置全体の小形化を実現している。
An area 60 where the cooling fluid does not flow is an area surrounded by the branch header 4a and the two-step bent inclined plate 40, and is shaded in FIG.
In the region 61 in which the cooling fluid flows, the flow path cross-sectional area of the branch header 4a decreases in the downstream direction (upward direction in FIG. 1), but the rate at which the flow path cross-sectional area of the branch header 4a decreases depends on the branch header. The branch header 4a is formed to be large at the upstream part (lower side) and small at the downstream part (upper part) of the branch header 4a.
On the other hand, the merge header 5 is suppressed to the same size as the branch header 4a, thereby realizing the miniaturization of the entire apparatus.

第1の装置のような構成にすれば、二段屈曲傾斜板40によって分岐ヘッダー4aの流路断面積が減少する割合を調整することにより、合流ヘッダー5内で生ずる圧力損失に対して、分岐ヘッダー4aの下流側で分岐ヘッダー4a内に生ずる圧力損失を増大させることができる。これにより、多段積電子装置の冷却流路のどの流路を通っても総圧力損失をほぼ等しくすることができ、分岐ヘッダー4aと合流ヘッダー5を横方向に大きくせずに多段積電子装置の冷却流路に均一の流量を流すことができる。   According to the configuration of the first device, by adjusting the rate at which the cross-sectional area of the flow path of the branch header 4a is reduced by the two-step bending inclined plate 40, the pressure loss generated in the merge header 5 can be reduced. The pressure loss generated in the branch header 4a downstream of the header 4a can be increased. Thus, the total pressure loss can be made substantially equal regardless of the flow path of the cooling passage of the multi-stage electronic device, and the branch header 4a and the merge header 5 can be increased without increasing the width in the lateral direction. A uniform flow rate can be passed through the cooling flow path.

この動作を詳細に説明するため、図13と同じ段積実装条件、PAは100mmピッチで積層実装され、分岐ヘッダー4aと合流ヘッダー5は、共に最大の厚さが100mm、奥行が650mm、分岐導入流路6と合流導入路7は、高さが36mm、長さが40mmとし、総送風量が30m3/minとする一般的な条件下で、流れのシミュレーションを行い、各PAを通過する冷却風量と冷却流路の分岐合流で生ずる圧力損失を求めた。 In order to explain this operation in detail, the same stacking mounting conditions as in FIG. 13, PA is stacked and mounted at a pitch of 100 mm, the branch header 4a and the junction header 5 both have a maximum thickness of 100 mm, a depth of 650 mm, and a branch introduction. The flow path 6 and the merging introduction path 7 simulate the flow under the general condition that the height is 36 mm, the length is 40 mm, and the total air flow is 30 m 3 / min, and the cooling passing through each PA is performed. The air volume and the pressure loss caused by the branching and joining of the cooling channels were determined.

そして、二段屈曲傾斜板40の条件は、図2に示すように、PA10(最下段PA)からPA7までは、二段屈曲傾斜板40と分岐導入流路6との間隙である分岐ヘッダー4aの流路幅が、PA実装ピッチ毎に17mm小さくなる傾斜角度を持っている。
また、PA6からPA1(最上段PA)までは、二段屈曲傾斜板40と分岐導入流路6との間隙である分岐ヘッダー4aの流路幅が、PA実装ピッチ毎に4.25mm小さくなる傾斜角度を持っている。
As shown in FIG. 2, the condition of the two-step bent inclined plate 40 is as follows: from PA10 (lowest step PA) to PA7, the branch header 4a which is the gap between the two-step bent inclined plate 40 and the branch introduction flow path 6; Has a slant angle that decreases by 17 mm for each PA mounting pitch.
Also, from PA6 to PA1 (the uppermost PA), the inclination of the passage width of the branch header 4a, which is the gap between the two-step bent inclined plate 40 and the branch introduction passage 6, becomes smaller by 4.25 mm for each PA mounting pitch. Have an angle.

[分岐合流での圧力損失分布:図3、冷却流体の風量分布:図4]
第1の装置におけるシミュレーションの結果について、図3及び図4を参照しながら説明する。図3は、第1の装置における分岐合流での圧力損失分布を示す図であり、図4は、第1の装置における冷却流体の風量分布を示す図である。
図3では、分岐ヘッダー4aの総入口(A点)から各PAの冷却流体流入口3aに至る分岐ヘッダー4a内の圧損ΔPhi、分岐導入流路6内の圧損ΔPbi、合流導入路7内の圧損ΔPbo、各PAの冷却流体流出口3bから合流ヘッダー5の総出口(B点)に至る合流ヘッダー5内の圧損ΔPhoなどを、冷却流路の分岐合流で生ずる圧力損失分布としてPA段毎に示したものである。
[Pressure loss distribution at branching junction: FIG. 3, cooling air flow distribution: FIG. 4]
The result of the simulation in the first device will be described with reference to FIGS. FIG. 3 is a diagram illustrating a pressure loss distribution at a branching junction in the first device, and FIG. 4 is a diagram illustrating a flow rate distribution of a cooling fluid in the first device.
In FIG. 3, the pressure loss ΔPhi in the branch header 4a from the total inlet (point A) of the branch header 4a to the cooling fluid inlet 3a of each PA, the pressure loss ΔPbi in the branch introduction flow path 6, and the pressure loss in the merge introduction path 7 ΔPbo, pressure loss ΔPho in the junction header 5 from the cooling fluid outlet 3b of each PA to the total exit (point B) of the junction header 5 and the like are shown for each PA stage as a pressure loss distribution generated at the branching junction of the cooling flow path. It is a thing.

図4では、PA内で冷却流路を通過する冷却流体風量の分布を示すものであり、上記圧損和((ΔPhi+ΔPbi+ΔPbo+ΔPho)を示し、PAを通過する圧損は各PA共にほぼ同じなので圧損和に加えなかった)は、平均圧損値に対する偏差が全PA間で+4%〜−3%、風量は、平均風量に対しする偏差が全PA間で±2%と大幅に小さくできることが分った。   FIG. 4 shows the distribution of the flow rate of the cooling fluid passing through the cooling flow path in the PA. The sum of the pressure losses ((ΔPhi + ΔPbi + ΔPbo + ΔPho)) is shown. It was found that the deviation from the average pressure loss value was + 4% to -3% between all PAs, and the deviation from the average air volume could be significantly reduced to ± 2% between all PAs.

[第1の実施の形態の効果]
上述したように、第1の実施形態に係る多段積電子装置の冷却装置によれば、分岐ヘッダーと合流ヘッダーの寸法を大きくせず、多段積の電子装置の冷却流路にほぼ均一の冷却風が流れるので、各段の電子装置の温度上昇が一様(均一)にして適正な温度範囲に収まり、装置全体の小型化と冷却効率向上を同時に達成することができる効果がある。
[Effect of First Embodiment]
As described above, according to the cooling device for a multi-stage electronic device according to the first embodiment, the dimensions of the branch header and the merge header are not increased, and the cooling air flow in the cooling passage of the multi-stage electronic device is substantially uniform. Flows, the temperature rise of the electronic devices in each stage is uniform (uniform) and falls within an appropriate temperature range, so that there is an effect that the entire device can be reduced in size and the cooling efficiency can be improved at the same time.

[第2の実施の形態]
本冷却装置における第2の実施の形態に係る多段積電子装置の冷却装置は、傾斜角を変更する点を2箇所として、傾斜板の構造を三段屈曲にし、圧力損失を微妙に調整可能としたものである。
傾斜板の傾斜角の変更点は、3箇所以上であってもよく、更に、滑らかな曲面であってもよい。
[Second embodiment]
The cooling device of the multi-stage electronic device according to the second embodiment of the present cooling device has a structure in which the inclination angle is changed to two points, the structure of the inclined plate is bent in three steps, and the pressure loss can be finely adjusted. It was done.
The change point of the inclination angle of the inclined plate may be three or more, and may be a smooth curved surface.

[第2の装置:図5,図6]
第2の実施の形態に係る多段積電子装置の冷却装置の1例である第2の装置について図5、図6を参照しながら説明する。図5は、第2の装置の断面説明図であり、図6は、第2の装置における三段屈曲傾斜板と流路幅の関係を示す図である。尚、第1の装置と同じ構成には同じ符号を付して説明を省略する。
第2の装置は、図5に示すように、分岐ヘッダー4bの流路内部に図6に示す形状のように三段屈曲傾斜板41が装着されている。
分岐ヘッダー4bの内部は、冷却流体が流れない領域62と、冷却流体が流れる領域63とに分けられる。
[Second device: FIGS. 5 and 6]
A second device which is an example of a cooling device for a multi-stack electronic device according to a second embodiment will be described with reference to FIGS. FIG. 5 is an explanatory cross-sectional view of the second device, and FIG. 6 is a diagram showing a relationship between the three-step bent inclined plate and the flow channel width in the second device. The same components as those of the first device are denoted by the same reference numerals, and description thereof will be omitted.
In the second device, as shown in FIG. 5, a three-step bent inclined plate 41 is mounted inside the flow path of the branch header 4b as shown in FIG.
The inside of the branch header 4b is divided into a region 62 where the cooling fluid does not flow and a region 63 where the cooling fluid flows.

冷却流体が流れない領域62は、分岐ヘッダー4bと三段屈曲傾斜板41とで囲まれた領域で、図5では網掛けで示している。
そして、冷却流体が流れる領域63は、分岐ヘッダー4bの流路断面積が下流(図5では上側)に向かって減少するが、分岐ヘッダー4bの流路断面積が減少する割合は分岐ヘッダー4bの上流部(下側)で大きく、分岐ヘッダー4bの下流部(上側)で小さく、かつ、分岐ヘッダー4bの中流部(中間部)では、上流部と下流部の分岐ヘッダー4bの流路断面積が減少する割合の中間値を取る。
一方、合流ヘッダー5は、分岐ヘッダー4bと同等な大きさに抑え、装置全体の小形化を実現している。
An area 62 through which the cooling fluid does not flow is an area surrounded by the branch header 4b and the three-step bent inclined plate 41, and is shaded in FIG.
In the region 63 where the cooling fluid flows, the flow path cross-sectional area of the branch header 4b decreases toward the downstream side (upward in FIG. 5), but the rate of decrease in the flow path cross-sectional area of the branch header 4b depends on the branch header 4b. The flow path cross-sectional area of the upstream and downstream branch headers 4b is large in the upstream part (lower part), small in the downstream part (upper part) of the branch header 4b, and in the middle part (intermediate part) of the branch header 4b. Take the median of the decreasing rate.
On the other hand, the merge header 5 is suppressed to the same size as the branch header 4b, thereby realizing the miniaturization of the entire apparatus.

第2の装置のような構成にすれば、三段屈曲傾斜板41によって分岐ヘッダー4bの流路断面積が減少する割合を微細に調整することが可能になる。即ち、合流ヘッダー5内で生ずる圧力損失に対して、分岐ヘッダー4b内で生ずる圧力損失を微細に調整し増大させることが可能なので、どの多段積電子装置の冷却流路を通っても総圧力損失が等しくすることができ、分岐ヘッダー4bと合流ヘッダー5の横厚さを大きくせずに多段積電子装置の冷却流路に均一の流量を流すことができる。   With the configuration of the second device, the rate at which the cross-sectional area of the flow path of the branch header 4b is reduced by the three-step bent inclined plate 41 can be finely adjusted. That is, it is possible to finely adjust and increase the pressure loss generated in the branch header 4b with respect to the pressure loss generated in the merged header 5, so that the total pressure loss does not pass through the cooling passage of any multi-stage electronic device. Can be made equal, and a uniform flow rate can be passed through the cooling flow path of the multi-stack electronic device without increasing the lateral thickness of the branch header 4b and the merge header 5.

この動作を詳細に説明するため、図13と同じ段積実装条件、PAは100mmピッチで積層実装され、分岐ヘッダー4bと合流ヘッダー5は、共に最大の横厚さが100mm、奥行が650mm、分岐導入流路6と合流導入路7は、高さが36mm、長さが40mmとし、総送風量が30m3/minとする一般的な条件下で、流れのシミュレーションを行い、各PAを通過する冷却風量と冷却流路の分岐合流で生ずる圧力損失を求めた。 In order to explain this operation in detail, the same stacking mounting conditions as in FIG. 13, PA are stacked and mounted at a pitch of 100 mm, the branch header 4b and the merge header 5 both have a maximum lateral thickness of 100 mm, a depth of 650 mm, and a branch. The flow path is simulated under the general conditions of a height of 36 mm, a length of 40 mm, and a total air flow of 30 m 3 / min. The cooling air volume and the pressure loss caused by the branching and joining of the cooling channels were determined.

そして、三段屈曲傾斜板41の条件は、図6に示すように、PA10(最下段PA)からPA7までは、三段屈曲傾斜板41と分岐導入流路6との間隙である分岐ヘッダー4bの流路幅が、PA実装ピッチ毎に19.5mm小さくなる傾斜角度を持っている。
また、PA6からPA5までは、三段屈曲傾斜板41と分岐導入流路6との間隙である分岐ヘッダー4bの流路幅が、PA実装ピッチ毎に6.7mm小さくなる傾斜角度を持っている。
また、PA4からPA1(最上段PA)までは、三段屈曲傾斜板41と分岐導入流路6との間隙である分岐ヘッダー4bの流路幅がPA実装ピッチ毎に4.4mm小さくなる傾斜角度を持っている。
As shown in FIG. 6, the condition of the three-step bent inclined plate 41 is as follows: from PA10 (lowest stage PA) to PA7, the branch header 4b, which is the gap between the three-step bent inclined plate 41 and the branch introduction flow path 6; Has an inclination angle of 19.5 mm smaller for each PA mounting pitch.
Also, from PA6 to PA5, the width of the flow path of the branch header 4b, which is the gap between the three-step bent inclined plate 41 and the branch introduction flow path 6, has an inclination angle of 6.7 mm smaller for each PA mounting pitch. .
From PA4 to PA1 (uppermost PA), the inclination angle at which the flow path width of the branch header 4b, which is the gap between the three-step bent inclined plate 41 and the branch introduction flow path 6, becomes smaller by 4.4 mm for each PA mounting pitch. have.

[分岐合流での圧力損失分布:図7、冷却流体の風量分布:図8]
第2の装置におけるシミュレーションの結果について、図7及び図8を参照しながら説明する。図7は、第2の装置における分岐合流での圧力損失分布を示す図であり、図8は、第2の装置における冷却流体の風量分布を示す図である。
図7では、分岐ヘッダー4bの総入口(A点)から各PAの冷却流体流入口3aに至る分岐ヘッダー4b内の圧損ΔPhi、分岐導入流路6内の圧損ΔPbi、合流導入路7内の圧損ΔPbo、各PAの冷却流体流出口3bから合流ヘッダー5の総出口(B点)に至る合流ヘッダー5内の圧損ΔPhoなどを、冷却流路の分岐合流で生ずる圧力損失分布としてPA段毎に示したものである。
[Distribution of pressure loss at branch junction: FIG. 7, distribution of air flow of cooling fluid: FIG. 8]
The result of the simulation in the second device will be described with reference to FIGS. FIG. 7 is a diagram showing a pressure loss distribution at the branching junction in the second device, and FIG. 8 is a diagram showing an air volume distribution of the cooling fluid in the second device.
In FIG. 7, the pressure loss ΔPhi in the branch header 4b from the total inlet (point A) of the branch header 4b to the cooling fluid inlet 3a of each PA, the pressure loss ΔPbi in the branch introduction flow path 6, and the pressure loss in the merge introduction path 7 ΔPbo, pressure loss ΔPho in the junction header 5 from the cooling fluid outlet 3b of each PA to the total exit (point B) of the junction header 5 and the like are shown for each PA stage as a pressure loss distribution generated at the branching junction of the cooling flow path. It is a thing.

図8では、PA内で冷却流路内を通過する冷却流体風量の分布を示すものであり、上記圧損和(ΔPhi+ΔPbi+ΔPbo+ΔPho)は全PA間で平均圧損値に対する偏差が+3%〜−2%、風量は全PA間で平均風量に対する偏差が±0.5%と大幅に小さくできることが分った。   FIG. 8 shows the distribution of the flow rate of the cooling fluid passing through the cooling flow path in the PA. The sum of the pressure losses (ΔPhi + ΔPbi + ΔPbo + ΔPho) is such that the deviation from the average pressure loss value between all PAs is + 3% to −2%, It was found that the deviation from the average airflow between all PAs could be significantly reduced to ± 0.5%.

従って、分岐ヘッダー4bに装着する屈曲傾斜板41の折り曲げ回数を更に複数増やすことで、全PAの冷却流路に流れる冷却風量を高精度で平均化することができる。
或は、折り曲げる代わりに滑らかな曲率を持つ傾斜板を装着させても、本発明の趣旨を逸脱しない範囲で適宜変更して実行できることは言うまでもない。
Therefore, by further increasing the number of times of bending of the bent inclined plate 41 attached to the branch header 4b, the amount of cooling air flowing through the cooling passages of all PAs can be averaged with high accuracy.
Alternatively, it is needless to say that even if an inclined plate having a smooth curvature is attached instead of bending, the present invention can be carried out with appropriate changes without departing from the spirit of the present invention.

[第3の実施の形態]
本冷却装置における第3の実施の形態に係る多段積電子装置の冷却装置は、分岐導入流路を装着した分岐ヘッダーと、合流導入流路を装着した合流ヘッダーとに対して多段積した電子装置の冷却流路を並列状に繋ぎ、冷却流体が分岐ヘッダーの下部から流入し、電子装置の冷却流路を流れ、合流ヘッダーの上部から流出する冷却流路構造において、電子装置の並列実装ピッチ当りの分岐ヘッダーの流路断面積減少率が分岐ヘッダーの上流部で大きく、分岐ヘッダーの下流部で小さくし、かつ、分岐ヘッダーの側壁について傾斜角を異なるよう屈曲させることにより、分岐ヘッダーと合流ヘッダーの寸法を大きくせず、多段積の電子装置の冷却流路にほぼ均一の冷却風が流れ、各段の電子装置の温度上昇が一様にして適正な温度範囲に収まり、装置全体の小型化と冷却効率向上を同時に達成することができるものである。
[Third Embodiment]
A cooling device for a multi-stage electronic device according to a third embodiment of the present cooling device is an electronic device in which a branch header provided with a branch introduction flow channel and a merge header mounted with a merge introduction flow channel are multi-tiered. In the cooling channel structure, the cooling fluid flows in parallel from the lower part of the branch header, flows through the cooling channel of the electronic device, and flows out from the upper part of the merging header. Of the branch header is large at the upstream part of the branch header, small at the downstream part of the branch header, and by bending the side wall of the branch header so that the inclination angle is different, the branch header and the junction header are merged. Without increasing the size of the electronic device, a substantially uniform cooling air flows in the cooling passages of the multi-stage electronic device, and the temperature rise of the electronic device in each stage is uniform and within an appropriate temperature range, It is capable of achieving downsizing of 置全 body and cooling efficiency at the same time.

[第3の装置:図9,図10]
第3の実施の形態に係る多段積電子装置の冷却装置の1例である第3の装置について図9、図10を参照しながら説明する。図9は、第3の装置の断面説明図であり、図10は、第3の装置における二段屈曲傾斜壁と流路幅の関係を示す図である。尚、第1の装置と同じ構成には同じ符号を付して説明を省略する。
第3の装置は、図9に示すように、分岐ヘッダー8が、図8に示すように分岐ヘッダー8の側壁を二段に折り曲げた形状の二段屈曲傾斜壁50を有している。
[Third device: FIGS. 9 and 10]
A third device, which is an example of a cooling device for a multi-stack electronic device according to the third embodiment, will be described with reference to FIGS. FIG. 9 is an explanatory cross-sectional view of the third device, and FIG. 10 is a diagram illustrating a relationship between a two-step bent inclined wall and a flow channel width in the third device. The same components as those of the first device are denoted by the same reference numerals, and description thereof will be omitted.
In the third device, as shown in FIG. 9, the branch header 8 has a two-step bent inclined wall 50 in which the side wall of the branch header 8 is bent in two steps as shown in FIG.

二段屈曲傾斜壁50は、第1の装置において分岐ヘッダー4aに二段屈曲傾斜板40を設けるようにしていたが、二段屈曲傾斜板40を分岐ヘッダー8の壁(流路壁)にしたものとなっている。
従って、二段屈曲傾斜壁50の内壁の形状は、二段屈曲傾斜板40の内側の形状と同様になっている。
Although the two-step bent inclined wall 50 is provided with the two-step bent inclined plate 40 in the branch header 4a in the first device, the two-step bent inclined plate 40 is used as a wall (flow path wall) of the branch header 8. It has become something.
Therefore, the shape of the inner wall of the two-step bent inclined wall 50 is the same as the inner shape of the two-step bent inclined plate 40.

分岐ヘッダー8の流路内部は、分岐ヘッダー8の流路断面積が下流(図9では上側)に向かって減少するが、分岐ヘッダー8の流路断面積が減少する割合が分岐ヘッダー8の上流部(下側)で大きく、かつ分岐ヘッダー8の下流部(上側)で小さくなるように形成されている。
一方、合流ヘッダー5は、分岐ヘッダー8と同等な大きさに抑え、装置全体の小形化を実現している。
In the inside of the flow path of the branch header 8, the flow path cross-sectional area of the branch header 8 decreases toward the downstream side (upward in FIG. 9). It is formed so as to be large at the portion (lower side) and smaller at the downstream portion (upper side) of the branch header 8.
On the other hand, the merging header 5 is suppressed to the same size as the branch header 8, thereby realizing the downsizing of the entire apparatus.

第3の装置のような構成にすれば、二段屈曲側壁50によって分岐ヘッダー8の流路断面積が減少する割合が調整できるので、合流ヘッダー5内で生ずる圧力損失に対して、分岐ヘッダー8の下流側で分岐ヘッダー8内に生ずる圧力損失を増大させることができる。これにより、多段積電子装置の冷却流路のどの流路を通っても総圧力損失をほぼ等しくすることができ、分岐ヘッダー8と合流ヘッダー5の横厚さを大きくせずに多段積電子装置の冷却流路に均一の流量を流すことができる。   According to the configuration of the third device, the rate at which the cross-sectional area of the flow path of the branch header 8 is reduced can be adjusted by the two-step bent side wall 50. , The pressure loss occurring in the branch header 8 on the downstream side can be increased. Thus, the total pressure loss can be made substantially equal regardless of the flow path of the cooling flow path of the multi-stage electronic device, and without increasing the lateral thickness of the branch header 8 and the merge header 5. A uniform flow rate can be made to flow through the cooling passage.

この動作を詳細に説明するため、図1と同じ段積実装条件、PAは100mmピッチで積層実装され、分岐ヘッダー8と合流ヘッダー5は、共に最大の横厚さが100mm、奥行が650mm、分岐導入流路6と合流導入路7は、高さが36mm、長さが40mmとし、総送風量が30m3/minとする一般的な条件下で、流れのシミュレーションを行い、各PAを通過する冷却風量と冷却流路の分岐合流で生ずる圧力損失を求めた。 In order to explain this operation in detail, the same stacking mounting conditions as in FIG. 1, PA are stacked and mounted at a pitch of 100 mm, the branch header 8 and the merge header 5 both have a maximum lateral thickness of 100 mm, a depth of 650 mm, and a branch. The flow path is simulated under the general conditions of a height of 36 mm, a length of 40 mm, and a total air flow of 30 m 3 / min. The cooling air volume and the pressure loss caused by the branching and joining of the cooling channels were determined.

そして、分岐ヘッダー8の二段屈曲傾斜壁50の条件は、図10に示すようにPA10(最下段PA)からPA7までは、分岐ヘッダー8の二段屈曲傾斜壁50と分岐導入流路6との間隙である分岐ヘッダー8の流路幅が、PA実装ピッチ毎に17mm小さくなる傾斜角度を持っている。
また、PA6からPA1(最上段PA)までは、分岐ヘッダー8の二段屈曲傾斜壁50と分岐導入流路6との間隙である分岐ヘッダー8の流路幅が、PA実装ピッチ毎に4.25mm小さくなる傾斜角度を持っている。
As shown in FIG. 10, the condition of the two-step bent inclined wall 50 of the branch header 8 is as follows: from PA10 (lowest step PA) to PA7, the two-step bent inclined wall 50 of the branch header 8 The flow path width of the branch header 8, which is the gap of the above, has an inclination angle of decreasing by 17 mm for each PA mounting pitch.
From PA6 to PA1 (the uppermost PA), the flow width of the branch header 8, which is the gap between the two-step bent inclined wall 50 of the branch header 8 and the branch introduction flow path 6, is set to 4. It has an inclination angle that is reduced by 25 mm.

[第3の装置のシミュレーションの結果]
第3の装置のシミュレーションの結果、分岐ヘッダー8の総入口(A点)から合流ヘッダー5の総出口(B点)に至る圧損和((ΔPhi+ΔPbi+ΔPbo+ΔPho)で、PAを通過する圧損は各PA共にほぼ同じなので圧損和に加えなかった)は、第1の装置と同様に全PA間で平均圧損値に対する偏差が+4%〜−3%、風量は全PA間で平均風量に対する偏差が±2%と大幅に小さくできることが分った。
[Result of Simulation of Third Device]
As a result of the simulation of the third apparatus, the pressure loss sum ((ΔPhi + ΔPbi + ΔPbo + ΔPho) from the total entrance (point A) of the branch header 8 to the total exit (point B) of the junction header 5 is approximately equal to the pressure loss passing through each PA. As in the case of the first device, the deviation from the average pressure loss value between all PAs was + 4% to -3%, and the deviation from the average airflow between all PAs was ± 2%. It turns out that it can be made much smaller.

[第3の実施の形態の効果]
上述したように、第3の実施形態に係る多段積電子装置の冷却装置によれば、分岐ヘッダーと合流ヘッダーの寸法を大きくせず、多段積の電子装置の冷却流路にほぼ均一の冷却風が流れるので、各段の電子装置の温度上昇が一様(均一)にして適正な温度範囲に収まり、装置の小型化と冷却効率向上を同時に達成することができる効果がある。
[Effects of Third Embodiment]
As described above, according to the cooling device for a multi-stage electronic device according to the third embodiment, the size of the branch header and the merge header is not increased, and the cooling air flow path of the multi-stage electronic device is substantially uniform. Flows, the temperature rise of the electronic devices in each stage is uniform (uniform) and falls within an appropriate temperature range, and there is an effect that the device can be reduced in size and the cooling efficiency can be improved at the same time.

[第4の実施の形態]
本冷却装置における第4の実施の形態に係る多段積電子装置の冷却装置は、傾斜角を変更する点を2箇所として、傾斜壁(流路壁)の構造を三段屈曲にし、圧力損失を微妙に調整可能としたものである。
傾斜壁の傾斜角の変更点は、3箇所以上であってもよく、更に、滑らかな曲面であってもよい。
[Fourth Embodiment]
The cooling device of the multistage stacked electronic device according to the fourth embodiment of the present cooling device has two points where the inclination angle is changed, the structure of the inclined wall (flow path wall) is bent in three steps, and the pressure loss is reduced. It can be adjusted slightly.
The change point of the inclination angle of the inclined wall may be three or more, and may be a smooth curved surface.

[第4の装置:図11,図12]
第4の実施の形態に係る多段積電子装置の冷却装置の1例である第4の装置について図11、図12を参照しながら説明する。図11は、第4の装置の断面説明図であり、図12は、第4の装置における三段屈曲傾斜壁と流路幅の関係を示す図である。尚、第1の装置と同じ構成には同じ符号を付して説明を省略する。
第4の装置は、図11に示すように、分岐ヘッダー9が、図12に示すように分岐ヘッダー9の側壁51を三段に折り曲げた形状の三段屈曲傾斜壁51を有している。
三段屈曲傾斜壁51は、第2の装置において分岐ヘッダー4bに三段屈曲傾斜板41を設けるようにしていたが、三段屈曲傾斜板41を分岐ヘッダー9の壁にしたものとなっている。
[Fourth device: FIGS. 11 and 12]
A fourth device which is an example of a cooling device for a multi-stack electronic device according to a fourth embodiment will be described with reference to FIGS. FIG. 11 is an explanatory cross-sectional view of the fourth device, and FIG. 12 is a diagram showing the relationship between the three-step bent inclined wall and the flow channel width in the fourth device. The same components as those of the first device are denoted by the same reference numerals, and description thereof will be omitted.
In the fourth device, as shown in FIG. 11, the branch header 9 has a three-step bent inclined wall 51 in which the side wall 51 of the branch header 9 is bent in three steps as shown in FIG.
Although the three-step bent inclined wall 51 is provided with the three-step bent inclined plate 41 in the branch header 4b in the second device, the three-step bent inclined plate 41 is used as the wall of the branch header 9. .

分岐ヘッダー9の流路内部は、分岐ヘッダー9の流路断面積は下流(図11では上側)に向かって減少するが、分岐ヘッダー9の流路断面積が減少する割合が分岐ヘッダー9の上流部(下側)で大きく、分岐ヘッダー9の下流部(上側)で小さく、かつ分岐ヘッダー9の中流部(中間部)では、上流部と下流部の分岐ヘッダー9の流路断面積が減少する割合の中間値を取る。
一方、合流ヘッダー5は、分岐ヘッダー9と同等な大きさに抑え、装置全体の小形化を実現している。
In the inside of the flow path of the branch header 9, the flow path cross-sectional area of the branch header 9 decreases toward the downstream side (upward in FIG. 11). In the middle portion (intermediate portion) of the branch header 9, the flow path cross-sectional area of the upstream and downstream branch headers 9 decreases. Take the median of the percentages.
On the other hand, the merge header 5 is suppressed to the same size as the branch header 9 to realize a compact apparatus as a whole.

第4の装置のような構成にすれば、三段屈曲側壁51によって分岐ヘッダー9の流路断面積が減少する割合を微細に調整することが可能になる。即ち、合流ヘッダー5内で生ずる圧力損失に対して、分岐ヘッダー9で生ずる圧力損失を微細に調整し増大させることが可能なので、どの多段積電子装置の冷却流路を通っても総圧力損失が等しくすることができ、分岐ヘッダー9と合流ヘッダー5の横厚さを大きくせずに多段積電子装置の冷却流路に均一の流量を流すことができる。   According to the configuration of the fourth device, the rate at which the cross-sectional area of the flow path of the branch header 9 is reduced by the three-step bent side wall 51 can be finely adjusted. That is, since the pressure loss generated in the branch header 9 can be finely adjusted and increased with respect to the pressure loss generated in the merged header 5, the total pressure loss can be reduced regardless of the cooling flow path of any multi-stage electronic device. It is possible to make the flow rate uniform, and to make the flow rate uniform in the cooling flow channel of the multi-stage electronic device without increasing the lateral thickness of the branch header 9 and the merge header 5.

この動作を詳細に説明するため、図1と同じ段積実装条件、PAは100mmピッチで積層実装され、分岐ヘッダー9と合流ヘッダー5は、共に最大の厚さが100mm、奥行が650mm、分岐導入流路6と合流導入路7は、高さが36mm、長さが40mmとし、総送風量が30m3/minとする一般的な条件下で、流れのシミュレーションを行い、各PAを通過する冷却風量と冷却流路の分岐合流で生ずる圧力損失を求めた。 In order to explain this operation in detail, the same stacking mounting conditions as in FIG. 1, PA are stacked and mounted at a pitch of 100 mm, the branch header 9 and the merge header 5 both have a maximum thickness of 100 mm, a depth of 650 mm, and a branch introduction. The flow path 6 and the merging introduction path 7 simulate the flow under the general condition that the height is 36 mm, the length is 40 mm, and the total air flow is 30 m 3 / min, and the cooling passing through each PA is performed. The air volume and the pressure loss caused by the branching and joining of the cooling channels were determined.

そして、三段屈曲傾斜壁51の条件は、図12に示すようにPA10(最下段PA)からPA7までは、三段屈曲傾斜壁51と分岐導入流路6との間隙である分岐ヘッダー9の流路幅が、PA実装ピッチ毎に19.5mm小さくなる傾斜角度を持っている。
また、PA6からPA5までは、三段屈曲傾斜壁51と分岐導入流路6との間隙である分岐ヘッダー9の流路幅が、PA実装ピッチ毎に6.7mm小さくなる傾斜角度を持っている。
また、PA4からPA1(最上段PA)までは、三段屈曲傾斜壁51と分岐導入流路6との間隙である分岐ヘッダー9の流路幅が、PA実装ピッチ毎に4.4mm小さくなる傾斜角度を持っている。
As shown in FIG. 12, the condition of the three-step bent inclined wall 51 is as follows: from PA10 (lowest step PA) to PA7, the branch header 9 which is the gap between the three-step bent inclined wall 51 and the branch introduction flow path 6 is used. The flow path width has an inclination angle that becomes smaller by 19.5 mm for each PA mounting pitch.
Further, from PA6 to PA5, the flow passage width of the branch header 9, which is the gap between the three-step bent inclined wall 51 and the branch introduction flow passage 6, has an inclination angle at which the width becomes smaller by 6.7 mm for each PA mounting pitch. .
Further, from PA4 to PA1 (the uppermost PA), the inclination width at which the flow path width of the branch header 9, which is the gap between the three-step bent inclined wall 51 and the branch introduction flow path 6, becomes smaller by 4.4 mm for each PA mounting pitch. Have an angle.

[第4の装置のシミュレーションの結果]
第4の装置のシミュレーションの結果、分岐ヘッダー9の総入口(A点)から合流ヘッダー5の総出口(B点)に至る圧損和((ΔPhi+ΔPbi+ΔPbo+ΔPho)で、PAを通過する圧損は各PA共にほぼ同じなので圧損和に加えなかった)は、第2の装置と同様に全PA間で平均圧損値に対する偏差が+3%〜−2%、風量は全PA間で平均風量に対する偏差が±0.5%と大幅に小さくできることが分った。
[Result of Simulation of Fourth Device]
As a result of the simulation of the fourth device, the pressure loss sum ((ΔPhi + ΔPbi + ΔPbo + ΔPho) from the total entrance (point A) of the branch header 9 to the total exit (point B) of the junction header 5 is almost equal to the pressure loss passing through each PA. The difference in the average pressure loss value between all PAs was + 3% to −2%, and the air flow was ± 0.5% in deviation from the average air flow among all PAs, similarly to the second apparatus. % Can be significantly reduced.

[第4の実施の形態の効果]
上述したように、第4の実施形態に係る多段積電子装置の冷却装置によれば、分岐ヘッダーと合流ヘッダーの寸法を大きくせず、多段積の電子装置の冷却流路にほぼ均一の冷却風が流れるので、各段の電子機器の温度上昇が一様(均一)にして適正な温度範囲に収まり、装置の小型化と冷却効率向上を同時に達成することができる効果がある。
[Effects of Fourth Embodiment]
As described above, according to the cooling device for a multi-stage electronic device according to the fourth embodiment, the dimensions of the branch header and the merge header are not increased, and the cooling air flow in the cooling passage of the multi-stage electronic device is substantially uniform. Flows, the temperature rises of the electronic devices at each stage are uniform (uniform) and within an appropriate temperature range, so that there is an effect that the size of the device can be reduced and the cooling efficiency can be improved at the same time.

従って、第4の装置において、分岐ヘッダー9の屈曲傾斜壁51の折り曲げ回数を更に複数増やすことで、全PAの冷却流路に流れる冷却風量を高精度で平均化することができる。
或は、折り曲げる代わりに滑らかな曲率を持つ傾斜壁を形成させてもよい。
Therefore, in the fourth device, by further increasing the number of times of bending the bent inclined wall 51 of the branch header 9, the amount of cooling air flowing through the cooling passages of all PAs can be averaged with high accuracy.
Alternatively, instead of bending, an inclined wall having a smooth curvature may be formed.

また、本発明の実施例の冷却装置は、10段の段積で説明して来たが、段積数が10段以外にあってもよく、また、冷却流体が気体である空気として説明したが、冷却流体が液体の場合でもよく、本発明の趣旨を逸脱しない範囲で適宜変更して実行できることは言うまでもない。   Further, although the cooling device according to the embodiment of the present invention has been described with ten stages, the number of stages may be other than ten, and the cooling fluid is described as air, which is a gas. However, it is needless to say that the cooling fluid may be a liquid, and the cooling fluid may be appropriately changed without departing from the spirit of the present invention.

本発明は、送風機から送られる冷却空気風を多段積した電子装置に並列分配する際に、冷却風を分岐・合流させる共通ヘッダーの寸法を小さく抑えながら、かつ、電子装置の各段の冷却流路に冷却流体を均一に分配し、各段の電子装置の温度上昇を同等にして、全体の装置の小型化と冷却効率向上とを同時に達成する多段積電子装置の冷却装置に好適である。   The present invention is intended to reduce the size of a common header for branching and merging cooling air when distributing cooling air sent from a blower in parallel to electronic devices stacked in multiple stages, and to reduce the cooling flow of each stage of the electronic device. The present invention is suitable for a cooling device of a multi-stage electronic device in which a cooling fluid is evenly distributed in a passage and the temperature of the electronic device in each stage is made equal, thereby achieving a reduction in size of the entire device and an improvement in cooling efficiency at the same time.

1…電子装置(PA)、 2…冷却フィン、 3…冷却流路、 3a…冷却流体流入口、 3b…冷却流体流出口、 4,4a,4b,8,9…分岐ヘッダー、 5…合流ヘッダー、 6…分岐導入流路、 7…合流導入流路、 20…送風機、 40…二段屈曲傾斜板、 41…三段屈曲傾斜板、 50…二段屈曲傾斜壁、 51…三段屈曲傾斜壁、 60,62…冷却流体が流れない領域、 61,63…冷却流体が流れる領域、 100…筐体   DESCRIPTION OF SYMBOLS 1 ... Electronic device (PA), 2 ... Cooling fin, 3 ... Cooling channel, 3a ... Cooling fluid inflow port, 3b ... Cooling fluid outflow port, 4, 4a, 4b, 8, 9 ... Branch header, 5 ... Merging header Reference numeral 6: Branch introduction passage, 7: Merging introduction passage, 20: Blower, 40: Two-stage bent inclined plate, 41: Three-stage bent inclined plate, 50: Two-stage bent inclined wall, 51: Three-stage bent inclined wall Reference numerals 60, 62: regions where cooling fluid does not flow, 61, 63: regions where cooling fluid flows, 100: housing

Claims (4)

収納筐体内に複数の電子装置が多段積されている多段積電子装置の冷却装置であって、
分岐導入流路を装着した分岐ヘッダーと、
合流導入流路を装着した合流ヘッダーとを備え、
冷却流体が前記分岐ヘッダーの下部から流入して、並列に設けられた前記電子装置の冷却流路を流れ、前記合流ヘッダーの上部から流出するものであり、
前記電子装置の並列実装ピッチ当りの前記分岐ヘッダーの流路断面積の減少率を前記分岐ヘッダーの上流部で大きく、前記分岐ヘッダーの下流部で小さくする傾斜板を前記分岐ヘッダー内に装着したことを特徴とする多段積電子装置の冷却装置。
A cooling device for a multi-stage electronic device in which a plurality of electronic devices are stacked in a storage case,
A branch header equipped with a branch introduction flow path,
A merging header equipped with a merging introduction flow path,
A cooling fluid flows in from a lower part of the branch header, flows through a cooling passage of the electronic device provided in parallel, and flows out from an upper part of the merge header.
An inclined plate is mounted in the branch header so that the reduction rate of the flow path cross-sectional area of the branch header per parallel mounting pitch of the electronic device is large in the upstream part of the branch header and small in the downstream part of the branch header. A cooling device for a multi-stage electronic device, comprising:
傾斜板を途中で少なくとも2箇所以上屈曲させたことを特徴とする請求項1記載の多段積電子装置の冷却装置。   2. The cooling device for a multi-stack electronic device according to claim 1, wherein the inclined plate is bent at least at two places in the middle. 収納筐体内に複数の電子装置が多段積されている多段積電子装置の冷却装置であって、
分岐導入流路を装着した分岐ヘッダーと、
合流導入流路を装着した合流ヘッダーとを備え、
冷却流体が前記分岐ヘッダーの下部から流入して、並列に設けられた前記電子装置の冷却流路を流れ、前記合流ヘッダーの上部から流出するものであり、
前記電子装置の並列実装ピッチ当りの前記分岐ヘッダーの流路断面積の減少率を前記分岐ヘッダーの上流部で大きく、前記分岐ヘッダーの下流部で小さくする流路壁を前記分岐ヘッダーの側壁としたことを特徴とする多段積電子装置の冷却装置。
A cooling device for a multi-stage electronic device in which a plurality of electronic devices are stacked in a storage case,
A branch header equipped with a branch introduction flow path,
A merging header equipped with a merging introduction flow path,
A cooling fluid flows in from a lower part of the branch header, flows through a cooling passage of the electronic device provided in parallel, and flows out from an upper part of the merge header.
The side wall of the branch header is a flow path wall in which the reduction rate of the flow path cross-sectional area of the branch header per parallel mounting pitch of the electronic device is large in the upstream part of the branch header and small in the downstream part of the branch header. A cooling device for a multi-stage electronic device, comprising:
流路壁を途中で少なくとも2箇所以上屈曲させたことを特徴とする請求項3記載の多段積電子装置の冷却装置。   4. The cooling device for a multi-stage electronic device according to claim 3, wherein the flow path wall is bent at at least two places in the middle.
JP2018160371A 2018-08-29 2018-08-29 Cooling device for multi-stage electronic apparatus Pending JP2020035859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018160371A JP2020035859A (en) 2018-08-29 2018-08-29 Cooling device for multi-stage electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160371A JP2020035859A (en) 2018-08-29 2018-08-29 Cooling device for multi-stage electronic apparatus

Publications (1)

Publication Number Publication Date
JP2020035859A true JP2020035859A (en) 2020-03-05

Family

ID=69668607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160371A Pending JP2020035859A (en) 2018-08-29 2018-08-29 Cooling device for multi-stage electronic apparatus

Country Status (1)

Country Link
JP (1) JP2020035859A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055883A (en) * 2002-07-22 2004-02-19 Nihon Form Service Co Ltd Rack with air-conditioning duct and rack cooling system
JP2009302036A (en) * 2008-06-12 2009-12-24 Lg Chem Ltd Medium-sized or large-sized battery pack case improving distribution uniformity of refrigerant flux
JP2012044047A (en) * 2010-08-20 2012-03-01 Hitachi Kokusai Electric Inc Cooling apparatus for stacked multistage electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055883A (en) * 2002-07-22 2004-02-19 Nihon Form Service Co Ltd Rack with air-conditioning duct and rack cooling system
JP2009302036A (en) * 2008-06-12 2009-12-24 Lg Chem Ltd Medium-sized or large-sized battery pack case improving distribution uniformity of refrigerant flux
JP2012044047A (en) * 2010-08-20 2012-03-01 Hitachi Kokusai Electric Inc Cooling apparatus for stacked multistage electronic apparatus

Similar Documents

Publication Publication Date Title
US20140000841A1 (en) Compressed gas cooling apparatus
EP2884561A1 (en) Heat generating element housing device
JP2000502516A (en) Cold plate with uniform pressure drop and uniform flow
US9844165B2 (en) Advanced heat exchanger with integrated coolant fluid flow deflector
US8388142B2 (en) Thermal management of very small form factor projectors with synthetic jets
US20070295492A1 (en) Heat exchange system with inclined heat exchanger device
JP2006099773A (en) System and method for cooling electronic system
US20220178627A1 (en) Multi-channel high-efficiency heat dissipation water-cooling radiator
US20140246179A1 (en) Plate For A Heat Exchanger And Heat Exchanger Equipped With Such Plates
SE532837C2 (en) Heat exchanger, such as a charge air cooler
US20220032767A1 (en) Heat exchanger module for a motor vehicle
JP2010244802A (en) Cooling structure for battery pack
WO2010150747A1 (en) Heat sink
US20140318753A1 (en) Heat exchanger
JP2013016569A (en) Cooling mechanism
JP2020035859A (en) Cooling device for multi-stage electronic apparatus
US20120267074A1 (en) Cooling device
WO2000016397A1 (en) Electronic device
WO2010104080A1 (en) Ebullient cooling device
US20230156958A1 (en) Liquid cooling device
US10883767B2 (en) Multi-fluid heat exchanger
CN100533046C (en) Plate used for heat converter
US20220243991A1 (en) Wind-guiding type heat dissipation module
US20120261098A1 (en) Heat exchanger
US20220236015A1 (en) Flat tube, multi-channel heat exchanger, and air conditioning and refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018