JP2010244802A - Cooling structure for battery pack - Google Patents

Cooling structure for battery pack Download PDF

Info

Publication number
JP2010244802A
JP2010244802A JP2009091178A JP2009091178A JP2010244802A JP 2010244802 A JP2010244802 A JP 2010244802A JP 2009091178 A JP2009091178 A JP 2009091178A JP 2009091178 A JP2009091178 A JP 2009091178A JP 2010244802 A JP2010244802 A JP 2010244802A
Authority
JP
Japan
Prior art keywords
suction
passage
refrigerant
region
refrigerant supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009091178A
Other languages
Japanese (ja)
Inventor
Kenichi Fukuda
健一 福田
Kenji Tsukamoto
謙二 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009091178A priority Critical patent/JP2010244802A/en
Publication of JP2010244802A publication Critical patent/JP2010244802A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling structure for a battery pack that prevents deterioration in cooling efficiency and a drop in the degree of freedom in cable routing. <P>SOLUTION: Each coolant supply passage is respectively connected to an intake exhaust passage 24 in a confluent manner. The intake exhaust passage 24 is connected with an inlet 36 of a centrifugal fan 30. The inlet 36 is partitioned at least into a large intake region where a coolant intake amount is large and a small intake region where the coolant intake amount is smaller than that of the large intake region. The intake exhaust passage 24 is provided with: a large intake passage 26 communicating between a coolant supply passage 20a on the upstream side and the large intake region of the inlet 36; and a small intake passage 27 communicating between a coolant supply passage 20b on the downstream side and the small intake region of the inlet 36. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、組電池の冷却構造に関するものである。   The present invention relates to an assembled battery cooling structure.

駆動源として電動機を備えたハイブリッド車両などの車両にあっては、電動機を駆動するための電力を車載された蓄電池から供給するようになっている。車載される蓄電池としては、複数の電池モジュールから構成された組電池があり、このような組電池では各電池モジュール自らの発熱により充放電の効率が低下してしまう傾向があるため、各種ファンを用いて電池モジュールを冷却するための冷却構造が設けられている(例えば、特許文献1参照)。
上記冷却構造は、組電池が複数の電池モジュール列から構成される場合、それぞれの電池モジュール列が冷却用ダクトの冷媒導入流路から並列に分岐接続された分岐流路内にそれぞれ配置され、これら分岐流路の下流側が合流接続されて送風ファン装置に接続される。この場合、送風ファン装置によって流路に冷媒を流すと、図10に示すように、分岐流路100,101の配置や送風ファン装置102までの流路長のバラつきなどによって、各分岐流路100,101の冷媒流量(図10中矢印で示す)に不均一が生じていた。
そこで近年、各分岐流路100,101の冷媒流量の不均一を解消すべく、図11に示すように冷媒流量が多い分岐流路101近傍の導入流路103に圧力損失を生じさせるべく絞り104を設けたものや、反対に冷媒流量が少ない分岐流路100側の導入流路103を太く形成したもの(図示略)などが提案されている。
In a vehicle such as a hybrid vehicle equipped with an electric motor as a drive source, electric power for driving the electric motor is supplied from an on-board storage battery. As a storage battery mounted on a vehicle, there is an assembled battery composed of a plurality of battery modules. In such an assembled battery, the efficiency of charging / discharging tends to decrease due to the heat generated by each battery module. A cooling structure for cooling the battery module is provided (for example, see Patent Document 1).
When the assembled battery is composed of a plurality of battery module rows, the cooling structure is arranged in each branch channel in which each battery module row is branched and connected in parallel from the coolant introduction channel of the cooling duct. The downstream side of the branch flow path is joined and connected to the blower fan device. In this case, when the refrigerant is caused to flow through the flow path by the blower fan device, as shown in FIG. , 101 refrigerant flows (indicated by arrows in FIG. 10) were uneven.
Therefore, in recent years, in order to eliminate the non-uniformity of the refrigerant flow rates of the branch flow channels 100 and 101, as shown in FIG. On the other hand, there have been proposed ones (not shown) in which the introduction passage 103 on the side of the branch passage 100 having a small refrigerant flow is formed thick.

特開2007−321738号公報JP 2007-321738 A

しかしながら、上述した従来の組電池の冷却構造は、導入流路103に絞り104を設けることでダクト形状が複雑化し、さらに圧力損失が増加して冷却効率が低下してしまう課題がある。
また、上流側に接続された分岐流路100側の導入流路103を太く形成する場合には導入流路103すなわち冷却用ダクトが大型化するため配索自由度が低下してしまうという課題がある。
However, in the conventional assembled battery cooling structure described above, there is a problem in that the duct shape is complicated by providing the throttle 104 in the introduction flow path 103, the pressure loss increases, and the cooling efficiency decreases.
In addition, when the introduction flow path 103 on the branch flow path 100 side connected to the upstream side is formed thick, the introduction flow path 103, that is, the cooling duct is enlarged, so that the degree of freedom in routing is reduced. is there.

この発明は、上記事情に鑑みてなされたものであり、冷却効率の低下や配索自由度の低下を防止することができる組電池の冷却構造を提供するものである。   This invention is made in view of the said situation, and provides the cooling structure of the assembled battery which can prevent the fall of cooling efficiency and the fall of a routing freedom degree.

上記の課題を解決するために、請求項1に記載した発明は、電池モジュール(例えば、実施形態における電池モジュール12)が複数列に配列され、前記電池モジュールの配列方向に冷媒を導入する導入冷却通路(例えば、実施形態における導入冷却通路18)が設けられるとともに、該導入冷却通路の冷媒導入方向の上流側と下流側とからそれぞれ分岐接続されて冷媒を分流させる複数の冷媒供給通路(例えば、実施形態における冷媒供給通路20a,20b,20c)が設けられた組電池の冷却構造であって、前記冷媒供給通路はそれぞれ排出ダクト(例えば、実施形態における排気吸入通路24)に合流接続され、該排出ダクトには遠心式ファン(例えば、実施形態における遠心式ファン30)の吸入口(例えば、実施形態における吸入口36)が接続され、該吸入口は、冷媒の吸入量が大となる大吸入領域(例えば、実施形態における領域B)と、該大吸入領域よりも冷媒吸入量が小となる小吸入領域(例えば、実施形態における領域A)とに少なくとも区画され、
前記排出ダクトに、上流側の冷媒供給通路と前記吸入口の大吸入領域とを連通する大吸入通路(例えば、実施形態における大吸入通路26)、および、下流側の冷媒供給通路と前記吸入口の小吸入領域とを連通する小吸入通路(例えば、実施形態における小吸入通路27)とを設けたことを特徴とする。
In order to solve the above-described problem, the invention described in claim 1 is a cooling system in which battery modules (for example, battery modules 12 in the embodiment) are arranged in a plurality of rows and a refrigerant is introduced in the arrangement direction of the battery modules. A passage (for example, the introduction cooling passage 18 in the embodiment) is provided, and a plurality of refrigerant supply passages (for example, for branching the refrigerant from the upstream side and the downstream side in the refrigerant introduction direction of the introduction cooling passage to divert the refrigerant, for example, In the embodiment, the refrigerant supply passages 20a, 20b, and 20c) are provided with a cooling structure for an assembled battery, and each of the refrigerant supply passages is joined and connected to a discharge duct (for example, the exhaust suction passage 24 in the embodiment). The discharge duct has a suction port (for example, a suction port in the embodiment) of a centrifugal fan (for example, the centrifugal fan 30 in the embodiment). Port 36) is connected, and the suction port includes a large suction region where the refrigerant suction amount is large (for example, region B in the embodiment) and a small suction region where the refrigerant suction amount is smaller than the large suction region. (E.g., region A in the embodiment)
A large suction passage (for example, the large suction passage 26 in the embodiment) that communicates the upstream refrigerant supply passage and the large suction area of the suction port to the discharge duct, and a downstream refrigerant supply passage and the suction port A small suction passage (for example, the small suction passage 27 in the embodiment) communicating with the small suction region is provided.

請求項2に記載した発明は、請求項1に記載の発明において、前記大吸入領域と前記小吸入領域とは、前記遠心式ファンの吸入口における吸引流量の偏りに基づき区画されることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the large suction area and the small suction area are partitioned based on a deviation in suction flow rate at the suction port of the centrifugal fan. And

請求項3に記載した発明は、請求項1に記載の発明において、前記大吸入領域の前記吸入口における面積が、前記小吸入領域の前記吸入口における面積よりも大きく設定されることを特徴とする。   The invention described in claim 3 is characterized in that, in the invention described in claim 1, the area of the large suction area at the suction port is set larger than the area of the small suction area at the suction port. To do.

請求項4に記載した発明は、請求項1乃至3の何れか一項に記載の発明において、前記大吸入領域に連通される冷媒供給通路(例えば、実施形態における第1冷媒供給通路40、第2冷媒供給通路41、第3冷媒供給通路42)を複数有するとともに前記冷媒供給通路と前記大吸入領域とをそれぞれ接続する前記大吸入通路(例えば、実施形態における並行通路50)を複数有し、下流側に配置された冷媒供給通路に接続された前記大吸入通路ほど通路長が長く形成されることを特徴とする。   The invention described in claim 4 is the invention according to any one of claims 1 to 3, wherein the refrigerant supply passage communicated with the large suction region (for example, the first refrigerant supply passage 40, the first refrigerant supply passage in the embodiment, Two refrigerant supply passages 41 and a plurality of third refrigerant supply passages 42) and a plurality of large suction passages (for example, parallel passages 50 in the embodiment) respectively connecting the refrigerant supply passages and the large suction region, The large suction passage connected to the refrigerant supply passage arranged on the downstream side is formed to have a longer passage length.

請求項1に記載した発明によれば、冷媒流量が大となる導入冷却通路の下流側に接続された冷媒供給通路を小吸入通路を介して小吸入領域へ接続し、さらに、冷媒流量が小となる導入冷却通路の下流側に接続された冷媒供給通路を大吸入通路を介して大吸入領域へ接続することで、上流側の冷媒供給通路と下流側の冷媒供給通路との冷媒流量を均一化することができる。したがって、導入冷却通路に絞りを設けたり導入冷却通路を広げたりする必要が無いため、圧力損失などによって冷却効率が低下したり通路の配索自由度が低下するのを防止することができる効果がある。   According to the first aspect of the present invention, the refrigerant supply passage connected to the downstream side of the introduction cooling passage where the refrigerant flow rate is large is connected to the small suction region via the small suction passage, and the refrigerant flow rate is small. By connecting the refrigerant supply passage connected to the downstream side of the introduction cooling passage to the large intake region via the large intake passage, the refrigerant flow rate between the upstream refrigerant supply passage and the downstream refrigerant supply passage is made uniform. Can be Accordingly, there is no need to provide a throttle in the introduction cooling passage or to widen the introduction cooling passage, so that it is possible to prevent the cooling efficiency from being lowered due to pressure loss or the like and the freedom in routing the passage from being lowered. is there.

請求項2に記載した発明によれば、遠心式ファンの吸入口における吸引流量の偏りに基づいて大吸入領域と小吸入領域とを区画することで、冷却効率を低下させることなしに適宜冷媒流量を調整することができる効果がある。   According to the invention described in claim 2, by dividing the large suction area and the small suction area based on the bias of the suction flow rate at the suction port of the centrifugal fan, the refrigerant flow rate can be appropriately set without lowering the cooling efficiency. There is an effect that can be adjusted.

請求項3に記載した発明によれば、大吸入領域の吸入口における面積を小吸入領域の吸入口における面積よりも大きく設定することで、吸入口の面積を広げた分だけ大吸入領域の冷媒吸入量を大きく設定することができる効果がある。   According to the third aspect of the present invention, the refrigerant in the large suction region is increased by setting the area of the suction port of the large suction region to be larger than the area of the suction port of the small suction region. There is an effect that the inhalation amount can be set large.

請求項4に記載した発明によれば、複数の冷媒供給通路をそれぞれ大吸入領域へ接続する複数の大吸入通路の通路長を、接続される冷媒供給通路が上流のものほど長く設定することで、通路長に応じた流路抵抗によって冷媒流量の微調整を行うことができる効果がある。   According to the fourth aspect of the present invention, the lengths of the plurality of large suction passages connecting the plurality of refrigerant supply passages to the large suction region are set longer as the connected refrigerant supply passage is upstream. There is an effect that the refrigerant flow rate can be finely adjusted by the channel resistance corresponding to the passage length.

本発明の第1実施形態における組電池の冷却構造を示す概略構成図である。It is a schematic block diagram which shows the cooling structure of the assembled battery in 1st Embodiment of this invention. 本発明の第1実施形態における遠心式ファンの吸入口の流量割合の偏りを説明するための図である。It is a figure for demonstrating the deviation of the flow rate ratio of the inlet of the centrifugal fan in 1st Embodiment of this invention. 本発明の第1実施形態における大吸入流路および小吸入流路の接続状態を示す図である。It is a figure which shows the connection state of the large suction flow path and the small suction flow path in 1st Embodiment of this invention. 本発明の第2実施形態における図3に相当する図である。It is a figure equivalent to FIG. 3 in 2nd Embodiment of this invention. 本発明の第2実施形態の他の実施例における図3に相当する図である。It is a figure equivalent to FIG. 3 in the other Example of 2nd Embodiment of this invention. 本発明の第2実施形態の他の実施例の第1変形例における吸入口の区画例を示す図である。It is a figure which shows the division example of the inlet in the 1st modification of the other Example of 2nd Embodiment of this invention. 本発明の第2実施形態の他の実施例の第2変形例における図6に相当する図である。It is a figure equivalent to FIG. 6 in the 2nd modification of the other Example of 2nd Embodiment of this invention. 本発明の第2実施形態の他の実施例の第3変形例における吸入口近傍の縦断面図である。It is a longitudinal cross-sectional view of the suction inlet vicinity in the 3rd modification of the other Example of 2nd Embodiment of this invention. 本発明の第2実施形態の他の実施例の第4変形例における図1に相当する図である。It is a figure equivalent to FIG. 1 in the 4th modification of the other Example of 2nd Embodiment of this invention. 従来の組電池の冷却構造における図3に相当する図である。It is a figure equivalent to FIG. 3 in the cooling structure of the conventional assembled battery. 従来の組電池の冷却構造における導入冷却通路に絞りを設けた場合の図3に相当する図である。It is a figure equivalent to FIG. 3 at the time of providing an aperture | diaphragm | restriction in the introduction cooling channel | path in the cooling structure of the conventional assembled battery.

次に、この発明の第1実施形態における組電池の冷却構造について図面を参照しながら説明する。
図1は、この第1実施形態の組電池10の冷却構造を概略的に示すものであり、この組電池10は例えば、ハイブリッド車を含む電気自動車の駆動電源等に用いられる。組電池10は、筐体11の内部に直列に並べられた複数組の電池モジュール12が複数列に配置され、各電池モジュール12が間隔を一定に維持された状態で電池ホルダー14a,14bによってそれぞれ保持されている。
Next, the assembled battery cooling structure in the first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a cooling structure of an assembled battery 10 according to the first embodiment. The assembled battery 10 is used, for example, as a drive power source for an electric vehicle including a hybrid vehicle. The assembled battery 10 includes a plurality of battery modules 12 arranged in series inside a housing 11 arranged in a plurality of rows, and each battery module 12 is maintained at a constant interval by battery holders 14a and 14b. Is retained.

電池ホルダー14a,14bの電池モジュール12の直列方向(以下、単に列方向と称す)の一端には、電池モジュール12を冷却するための冷媒である空気が導入される導入口16a,16bが列毎に形成され、この導入口16a,16bに、外部の空気を列方向に導入する導入冷却通路18が接続される。より具体的には、導入冷却通路18の流路方向の上流側の側壁と下流側の側壁とにそれぞれ接続部19a,19bが形成され、上流側の接続部19aが導入口16aに接続され、下流側の接続部19bが導入口16bに接続される。なお、図1において、図示都合上、接続部19a,19bと導入口16a,16bとの間に隙間が生じているが実際には気密構造となっている。   At one end of the battery holders 14a and 14b in the series direction of the battery modules 12 (hereinafter simply referred to as the row direction), inlets 16a and 16b into which air as a coolant for cooling the battery modules 12 is introduced are arranged for each row. The introduction cooling passage 18 for introducing external air in the column direction is connected to the introduction ports 16a and 16b. More specifically, connection portions 19a and 19b are respectively formed on the upstream side wall and the downstream side wall in the flow direction of the introduction cooling passage 18, and the upstream connection portion 19a is connected to the introduction port 16a. The downstream connection portion 19b is connected to the introduction port 16b. In FIG. 1, for the sake of illustration, a gap is formed between the connecting portions 19a and 19b and the introduction ports 16a and 16b, but in reality, an airtight structure is formed.

電池ホルダー14a,14bの内部には、列方向に沿って導入口16a,16bから導入された空気を電池モジュール12に効率よく接触させて冷却させる冷媒供給通路20a,20bが形成されている。また、電池ホルダー14a,14bの列方向の他端には、冷却を終えた空気を排出する排出口22a,22bがそれぞれ形成されている。   Refrigerant supply passages 20a and 20b are formed in the battery holders 14a and 14b so as to efficiently bring the air introduced from the inlets 16a and 16b into contact with the battery module 12 in the row direction to cool it. Further, at the other end in the row direction of the battery holders 14a and 14b, discharge ports 22a and 22b for discharging the cooled air are formed, respectively.

排出口22a,22bには、シロッコファン等の遠心式ファン30が排気吸入通路24を介して接続されている。排気吸入通路24は、それぞれ空気の流れる方向に亘る板状のセパレータ25により分離形成され、少なくとも遠心式ファン30に接続される端部側において断面略半円形状となる大吸入通路26と小吸入通路27とを備えている。   A centrifugal fan 30 such as a sirocco fan is connected to the discharge ports 22 a and 22 b through an exhaust suction passage 24. The exhaust suction passage 24 is separated and formed by a plate-like separator 25 extending in the direction of air flow, and has a large suction passage 26 and a small suction portion having a substantially semicircular cross section at least on the end side connected to the centrifugal fan 30. And a passage 27.

上記遠心式ファン30は、所定角度の羽根Fが略円筒状に配置されて図示しないモータにより回転駆動されるファン部32と、このファン部32を囲むとともに、このファン部32の回転によって羽根Fの内周側から径方向外側に向かって押し出された空気を吐出口35へ導くファンケース34とで主に構成される。また、ファンケース34には、ファン部32の回転時にファンケース34内へ空気を取り入れる平面視略円形の吸入口36が設けられている。そして、この遠心式ファン30の吸入口36においては、吸入口36内の位置に応じて吸引流量に偏りが生じる。以下、吸入口36における吸引流量の偏りについて説明する。   The centrifugal fan 30 includes a fan unit 32 in which blades F having a predetermined angle are arranged in a substantially cylindrical shape and are driven to rotate by a motor (not shown), and surrounds the fan unit 32. And a fan case 34 that guides air pushed radially outward from the inner circumferential side to the discharge port 35. Further, the fan case 34 is provided with a suction port 36 having a substantially circular shape in plan view for taking air into the fan case 34 when the fan portion 32 rotates. In the suction port 36 of the centrifugal fan 30, the suction flow rate is biased depending on the position in the suction port 36. Hereinafter, the bias of the suction flow rate at the suction port 36 will be described.

図2は、遠心式ファン30の吸入口36へ排気吸入通路24を接続したときに、大吸入通路26と小吸入通路27とが接続される吸入口36の領域をそれぞれ同一面積の領域Aおよび領域Bとし、これらの配置を変化させた場合の空気の吸引流量の流量割合[%]を示したものである。ここで、角度[°]は、吐出口35からの空気の吐出方向を基準としたセパレータ25の角度である。なお、遠心式ファン30の回転速度は一定である。   FIG. 2 shows a region of the suction port 36 to which the large suction passage 26 and the small suction passage 27 are connected when the exhaust suction passage 24 is connected to the suction port 36 of the centrifugal fan 30. Region B shows the flow rate ratio [%] of the air suction flow rate when these arrangements are changed. Here, the angle [°] is an angle of the separator 25 with reference to the discharge direction of the air from the discharge port 35. The rotational speed of the centrifugal fan 30 is constant.

この図2に示すように、セパレータ25の角度が0°の場合には、吐出口35に近い方の領域Bに接続された通路の流量割合が58[%]、吐出口35から遠い方の領域Aに接続された通路の流量割合が42[%]となり、吐出口35に近い方の領域Bの方が吐出口35から遠い方の領域Aよりも流入割合[%]が大きくなっている。そして、この角度0°のセパレータ25を時計回りに変位させて45°に設定すると、領域Aが46[%]、領域Bが54[%]となって0°の場合よりもその差が縮まる。セパレータ25の角度をさらに時計回りに変位させて90°、135°に変位させた場合は、何れも領域Aが50[%]、領域Bが50[%]となり領域A,Bの各流量割合に差が出ない。   As shown in FIG. 2, when the angle of the separator 25 is 0 °, the flow rate ratio of the passage connected to the region B closer to the discharge port 35 is 58 [%], which is farther from the discharge port 35. The flow rate of the passage connected to the region A is 42 [%], and the region B closer to the discharge port 35 has a larger inflow rate [%] than the region A far from the discharge port 35. . When the separator 25 having an angle of 0 ° is displaced clockwise and set to 45 °, the region A is 46 [%] and the region B is 54% and the difference is smaller than the case of 0 °. . When the angle of the separator 25 is further displaced clockwise to 90 ° and 135 °, the region A is 50 [%] and the region B is 50 [%]. There is no difference.

この実施形態の組電池10の冷却構造では、冷媒供給通路20a,20bにおける冷媒流量を均一化すべく、図3に示すように、セパレータ25の角度を遠心式ファン30の吐出方向に対して0°に設定し、導入冷却通路18の上流側に接続されて元々の冷媒流量が少ない冷媒供給通路20aの排出口22aを流入割合が相対的に大きい大吸入領域である領域B(58%)に大吸入通路26を介して接続し、さらに、導入冷却通路18の下流側に接続されて元々の冷媒流量が多い冷媒供給通路20bの排出口22bを流入割合が相対的に小さい小吸入領域である領域A(42%)に小吸入通路27を接続することで、冷媒供給通路20aと冷媒供給通路20bとにおける冷媒流量の均一化を図っている。なお、流量割合が領域A=42[%]、領域B=58[%]を一例に説明したがこれに限られるものではなく、冷媒供給通路20a,20bにおける冷媒流量のバラつきに応じてセパレータ25の角度を調整して所望の流量割合を得るようにすればよい。   In the cooling structure of the assembled battery 10 of this embodiment, the angle of the separator 25 is set to 0 ° with respect to the discharge direction of the centrifugal fan 30 as shown in FIG. 3 in order to equalize the refrigerant flow rate in the refrigerant supply passages 20a and 20b. The discharge port 22a of the refrigerant supply passage 20a, which is connected to the upstream side of the introduction cooling passage 18 and has a small refrigerant flow rate, is large in the region B (58%), which is a large suction region with a relatively large inflow rate. A region that is connected through the suction passage 26 and is connected to the downstream side of the introduction cooling passage 18 and is a small suction region with a relatively small inflow rate of the discharge port 22b of the refrigerant supply passage 20b having a high original refrigerant flow rate. By connecting the small suction passage 27 to A (42%), the refrigerant flow rates in the refrigerant supply passage 20a and the refrigerant supply passage 20b are made uniform. In addition, although the flow rate ratio has been described by taking the region A = 42 [%] and the region B = 58 [%] as an example, the present invention is not limited to this, and the separator 25 corresponds to the variation in the refrigerant flow rate in the refrigerant supply passages 20a and 20b. The desired flow rate ratio may be obtained by adjusting the angle.

したがって、上述した実施形態における組電池10の冷却構造によれば、冷媒流量が大となる導入冷却通路18の下流側に接続された冷媒供給通路20bを小吸入領域である領域Aへ小吸入通路27を介して接続し、さらに、冷媒流量が小となる導入冷却通路18の上流側に接続された冷媒供給通路20aを大吸入領域である領域Bへ大吸入通路26を介して接続することで、上流側の冷媒供給通路20aと下流側の冷媒供給通路20bとの冷媒流量を均一化することができ、この結果、導入冷却通路18に絞りを設けたり導入冷却通路18を広げたりする必要が無いため、絞りの圧力損失によって冷却効率が低下したり冷媒流路の大型化により配索自由度が低下するのを防止することができる。   Therefore, according to the cooling structure of the assembled battery 10 in the above-described embodiment, the refrigerant supply passage 20b connected to the downstream side of the introduction cooling passage 18 where the refrigerant flow rate is large is transferred to the region A which is the small suction region. 27, and the refrigerant supply passage 20a connected to the upstream side of the introduction cooling passage 18 where the refrigerant flow rate is small is connected to the region B, which is the large suction region, via the large suction passage 26. The refrigerant flow rates in the upstream refrigerant supply passage 20a and the downstream refrigerant supply passage 20b can be made uniform. As a result, it is necessary to provide a throttle in the introduction cooling passage 18 or widen the introduction cooling passage 18. Therefore, it is possible to prevent the cooling efficiency from being reduced due to the pressure loss of the throttle, and the freedom of routing from being reduced due to the enlargement of the refrigerant flow path.

また、遠心式ファン30の吸入口36における流入割合(吸引流量)の偏りに基づいて領域A(大吸入領域)と領域B(小吸入領域)とを区画することで、冷却効率を低下させることなしに適宜冷媒流量を調整することができる。   Further, by dividing the region A (large suction region) and the region B (small suction region) based on the deviation of the inflow rate (suction flow rate) at the suction port 36 of the centrifugal fan 30, the cooling efficiency is lowered. The refrigerant flow rate can be adjusted appropriately without any change.

次にこの発明の第2実施形態の組電池10の冷却構造について説明する。この第2実施形態は、上述した導入供給通路を3系統設けたものであり、第1実施形態と同一部分には同一符号を付し詳細説明を省略する。
図4は、第2実施形態の組電池10の冷却構造の概略構成を示すものである。なお、図4において、図示都合上、冷媒である空気の通過する流路のみを示し冷媒供給通路内の電池モジュール12を省略している。
Next, the cooling structure of the assembled battery 10 of 2nd Embodiment of this invention is demonstrated. In the second embodiment, the above-described three introduction supply passages are provided. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
FIG. 4 shows a schematic configuration of the cooling structure of the assembled battery 10 of the second embodiment. In FIG. 4, for the sake of illustration, only the flow path through which air as the refrigerant passes is shown, and the battery module 12 in the refrigerant supply passage is omitted.

導入冷却通路18には、それぞれ上流側から順に第1冷媒供給通路40、第2冷媒供給通路41、第3冷媒供給通路42が接続されている。さらに、第1冷媒供給通路40、第2冷媒供給通路41、および第3冷媒供給通路42の下流側端部にはそれぞれ大吸入通路43、中吸入通路44および小吸入通路45から構成される排気吸入通路46が接続されている。   A first refrigerant supply passage 40, a second refrigerant supply passage 41, and a third refrigerant supply passage 42 are connected to the introduction cooling passage 18 in order from the upstream side. Further, exhausts constituted by a large suction passage 43, a middle suction passage 44, and a small suction passage 45 at downstream end portions of the first refrigerant supply passage 40, the second refrigerant supply passage 41, and the third refrigerant supply passage 42, respectively. A suction passage 46 is connected.

排気吸入通路46の下流側端部には遠心式ファン30が接続され、それぞれ吸入口36の流量割合に応じて、流量割合が相対的に大きい大領域、流量割合が相対的に小さい小領域、および、流量割合が大領域と小領域の間の割合となる中領域とがそれぞれ区画されて設定されている。
そして、上述した大吸入通路43が吸入口36の大領域に接続され、中吸入通路44が吸入口36の中領域に接続され、さらに、小吸入通路45が吸入口36の小領域に接続されている。
A centrifugal fan 30 is connected to the downstream end of the exhaust suction passage 46, and a large region with a relatively large flow rate and a small region with a relatively small flow rate according to the flow rate ratio of the suction port 36, respectively. And the middle region where the flow rate ratio is a proportion between the large region and the small region is set separately.
The large suction passage 43 is connected to the large area of the suction port 36, the middle suction path 44 is connected to the middle area of the suction port 36, and the small suction path 45 is connected to the small area of the suction port 36. ing.

したがって、第2実施形態の組電池10の冷却構造によれば、組電池10の電池モジュール12の数量が多くなり第1実施形態の冷媒供給通路20a,20bよりも冷媒供給通路の数量が増加したとしても、遠心式ファン30の吸入口36における吸引流量の偏りに基づいて、適宜の吸引流量が得られる領域を区画して元々冷媒流量の異なる複数の、例えば第1冷媒供給通路40〜第3冷媒供給通路42に連通させることで、冷却効率を低下させることなしに、これら第1冷媒供給通路40〜第3冷媒供給通路42の冷媒流量を均一化することができる。   Therefore, according to the cooling structure of the assembled battery 10 of the second embodiment, the number of battery modules 12 of the assembled battery 10 is increased, and the number of refrigerant supply passages is increased as compared to the refrigerant supply passages 20a and 20b of the first embodiment. However, based on the bias of the suction flow rate at the suction port 36 of the centrifugal fan 30, a plurality of, for example, first coolant supply passages 40 to 3 that originally have different coolant flow rates by partitioning a region where an appropriate suction flow rate can be obtained. By communicating with the refrigerant supply passage 42, the refrigerant flow rates in the first refrigerant supply passage 40 to the third refrigerant supply passage 42 can be made uniform without reducing the cooling efficiency.

なお、上述した第1実施形態および第2実施形態の構成に限られず、他の実施例として図5に示すように、複数の冷媒供給通路20a,20bのうち、元々の冷媒流量が多い冷媒供給通路20bが連通される吸入口36の領域と、元々の冷媒流量が少ない冷媒供給通路20aが連通される吸入口36の領域との区画の面積を適宜変化させてもよい。このように構成することにより、遠心式ファン30の吸入口36に区画された各領域において、同一面積の領域に生じる流量割合の偏差の最大値よりも、さらに大きい流量割合の偏りを生じさせることができるため、複数の冷媒供給通路20a,20bの各冷媒流量のバラつきが比較的大きい場合にも各冷媒供給通路20a,20bの冷媒流量を均一化することができる。   In addition, as shown in FIG. 5 as another example, the present invention is not limited to the configurations of the first embodiment and the second embodiment described above, and the refrigerant supply having a large original refrigerant flow rate among the plurality of refrigerant supply passages 20a and 20b. You may change suitably the area of the division of the area | region of the inlet port 36 with which the channel | path 20b is connected, and the area | region of the inlet port 36 with which the refrigerant | coolant supply channel | path 20a with the original small refrigerant | coolant flow volume communicates. With this configuration, in each region partitioned by the suction port 36 of the centrifugal fan 30, a deviation in the flow rate ratio that is larger than the maximum value of the flow rate deviation occurring in the region of the same area is caused. Therefore, the refrigerant flow rates of the refrigerant supply passages 20a and 20b can be made uniform even when the variation of the refrigerant flow rates of the refrigerant supply passages 20a and 20b is relatively large.

また他の実施例の第1変形例として図6に示すように、吸入口36の中心から径方向外側に向かって区画を行い(図6は、十字状に区画した一例を示す。)、それぞれの領域の流量割合に応じて複数の冷媒供給通路の冷媒流量の均一化を図るようにしてもよい。また、第2変形例として図7に示すように、図6で区画された各領域を適宜組み合わせて所望の流量割合を得るようにしてもよい。   Further, as shown in FIG. 6 as a first modified example of another embodiment, a partition is made from the center of the suction port 36 toward the radially outer side (FIG. 6 shows an example of a cross-shaped partition). The refrigerant flow rates in the plurality of refrigerant supply passages may be made uniform according to the flow rate ratio in the region. Further, as shown in FIG. 7 as a second modification, each region partitioned in FIG. 6 may be appropriately combined to obtain a desired flow rate ratio.

さらに、他の実施例の第3変形例として、図8に示すように、相対的に流量割合が大きい大吸入領域へ接続される大吸入通路26にセパレータ25により仕切られた複数の並行通路50a〜50cを形成し、これら並行通路50a〜50cを導入冷却通路18(図3参照)の上流側から下流側に順次接続された複数の冷媒供給通路(図示略)に連通させてもよい。これら並行通路50a〜50cは、連通される冷媒供給通路が上流のものほど、吸入口36側の通路長が短く形成されている。この第3変形例のように並行通路50a〜50cの通路長を遠心式ファン30側で変化させることで、吸入口36と並行通路50a〜50cの各出口との間にチャンバー(空間)が形成されるため、このチャンバーを介して並行通路50a〜50cのトータル流量の制御を行うことができる。さらに、並行通路50a〜50cの通路長を変化させることで冷媒供給通路の元々の流量に応じて冷媒流量の流量割合を微調整して上流側の冷媒供給通路および下流側の冷媒供給通路の冷媒流量を均一化することができる。   Furthermore, as a third modification of another embodiment, as shown in FIG. 8, a plurality of parallel passages 50a partitioned by a separator 25 into a large suction passage 26 connected to a large suction region having a relatively large flow rate ratio. ˜50c may be formed, and these parallel passages 50a˜50c may be communicated with a plurality of refrigerant supply passages (not shown) sequentially connected from the upstream side to the downstream side of the introduction cooling passage 18 (see FIG. 3). These parallel passages 50a to 50c are formed such that the passage length on the suction port 36 side is shorter as the refrigerant supply passage to be communicated is upstream. A chamber (space) is formed between the suction port 36 and each outlet of the parallel passages 50a to 50c by changing the passage length of the parallel passages 50a to 50c on the centrifugal fan 30 side as in the third modification. Therefore, the total flow rate of the parallel passages 50a to 50c can be controlled through this chamber. Further, the flow rate ratio of the refrigerant flow rate is finely adjusted according to the original flow rate of the refrigerant supply passage by changing the passage length of the parallel passages 50a to 50c, and the refrigerant in the upstream side refrigerant supply passage and the downstream side refrigerant supply passage The flow rate can be made uniform.

さらに、他の実施例の第4変形例として、図9に示すように、電池ホルダー14a〜14cの排出口22a〜22cにそれぞれ排出通路23a〜23cを形成し、第1冷媒供給通路40〜第3冷媒供給通路42の流量割合をこの排出通路23a〜23cの長さ(距離)を変化させることで微調整するようにしてもよい。また、図9では、導入冷却通路18の最も下流側に接続された第3冷媒供給通路42のみを小吸入通路27に接続し、他の2つの上流側の第1冷媒供給通路40、第2冷媒供給通路41を単一の大吸入通路26に接続し、さらに、これら大吸入通路26および小吸入通路27が接続される吸入口36の面積比を変化させて第1冷媒通路40〜第3冷媒供給通路42における冷媒流量の均一化を図っている。   Furthermore, as a fourth modification of the other embodiment, as shown in FIG. 9, discharge passages 23a to 23c are formed in the discharge ports 22a to 22c of the battery holders 14a to 14c, respectively, and the first refrigerant supply passage 40 to the first The flow rate ratio of the three refrigerant supply passages 42 may be finely adjusted by changing the lengths (distances) of the discharge passages 23a to 23c. Further, in FIG. 9, only the third refrigerant supply passage 42 connected to the most downstream side of the introduction cooling passage 18 is connected to the small suction passage 27, and the other two upstream first refrigerant supply passages 40, 2 The refrigerant supply passage 41 is connected to a single large suction passage 26, and the area ratio of the suction port 36 to which the large suction passage 26 and the small suction passage 27 are connected is changed to change the first refrigerant passage 40 to the third refrigerant passage. The refrigerant flow rate in the refrigerant supply passage 42 is made uniform.

なお、上述の各実施形態、他の実施例、および各変形例においては、冷媒として空気を用いる場合について説明したが、遠心式ファン30を用いて送風可能な冷媒であれば空気に限られるものではない。   In each of the above-described embodiments, other examples, and modifications, the case where air is used as the refrigerant has been described. However, any refrigerant that can be blown using the centrifugal fan 30 is limited to air. is not.

12 電池モジュール
18 導入冷却通路
20a,20b,20c 冷媒供給通路
24 排気吸入通路(排出ダクト)
26 大吸入通路
27 小吸入通路
30 遠心式ファン
40 第1冷媒供給通路(冷媒供給通路)
41 第2冷媒供給通路(冷媒供給通路)
42 第3冷媒供給通路(冷媒供給通路)
50a,50b,50c 並行通路(大吸入通路)
A 領域(小吸入領域)
B 領域(大吸入領域)
12 Battery Module 18 Introduction Cooling Passage 20a, 20b, 20c Refrigerant Supply Passage 24 Exhaust Suction Passage (Exhaust Duct)
26 Large suction passage 27 Small suction passage 30 Centrifugal fan 40 First refrigerant supply passage (refrigerant supply passage)
41 Second refrigerant supply passage (refrigerant supply passage)
42 Third refrigerant supply passage (refrigerant supply passage)
50a, 50b, 50c Parallel passage (large suction passage)
A area (small inhalation area)
B area (large inhalation area)

Claims (4)

電池モジュールが複数列に配列され、前記電池モジュールの配列方向に冷媒を導入する導入冷却通路が設けられるとともに、該導入冷却通路の冷媒導入方向の上流側と下流側とからそれぞれ分岐接続されて冷媒を分流させる複数の冷媒供給通路が設けられた組電池の冷却構造であって、
前記冷媒供給通路はそれぞれ排出ダクトに合流接続され、該排出ダクトには遠心式ファンの吸入口が接続され、該吸入口は、冷媒の吸入量が大となる大吸入領域と、該大吸入領域よりも冷媒吸入量が小となる小吸入領域とに少なくとも区画され、
前記排出ダクトに、上流側の冷媒供給通路と前記吸入口の大吸入領域とを連通する大吸入通路、および、下流側の冷媒供給通路と前記吸入口の小吸入領域とを連通する小吸入通路とを設けたことを特徴とする組電池の冷却構造。
The battery modules are arranged in a plurality of rows, an introduction cooling passage for introducing the refrigerant in the arrangement direction of the battery modules is provided, and the refrigerant is branched and connected from the upstream side and the downstream side in the refrigerant introduction direction of the introduction cooling passage. An assembled battery cooling structure provided with a plurality of refrigerant supply passages for shunting
Each of the refrigerant supply passages is joined and connected to a discharge duct, and a suction port of a centrifugal fan is connected to the discharge duct. The suction port includes a large suction area where a refrigerant suction amount is large, Is divided into at least a small suction area where the refrigerant suction amount is smaller than
A large suction passage communicating the upstream refrigerant supply passage and the large suction region of the suction port to the discharge duct, and a small suction passage communicating the downstream refrigerant supply passage and the small suction region of the suction port And a cooling structure for the assembled battery.
前記大吸入領域と前記小吸入領域とは、前記遠心式ファンの吸入口における吸引流量の偏りに基づき区画されることを特徴とする請求項1に記載の組電池の冷却構造。   The assembled battery cooling structure according to claim 1, wherein the large suction area and the small suction area are partitioned based on a bias of a suction flow rate at a suction port of the centrifugal fan. 前記大吸入領域の前記吸入口における面積が、前記小吸入領域の前記吸入口における面積よりも大きく設定されることを特徴とする請求項1に記載の組電池の冷却構造。   2. The assembled battery cooling structure according to claim 1, wherein an area of the large suction region at the suction port is set larger than an area of the small suction region at the suction port. 前記大吸入領域に連通される冷媒供給通路を複数有するとともに前記冷媒供給通路と前記大吸入領域とをそれぞれ接続する前記大吸入通路を複数有し、下流側に配置された冷媒供給通路に接続された前記大吸入通路ほど通路長が長く形成されることを特徴とする請求項1乃至3の何れか一項に記載の組電池の冷却構造。   A plurality of refrigerant supply passages communicated with the large suction region and a plurality of large suction passages connecting the refrigerant supply passage and the large suction region, respectively, are connected to a refrigerant supply passage disposed downstream. The assembled battery cooling structure according to any one of claims 1 to 3, wherein the larger suction passage is formed to have a longer passage length.
JP2009091178A 2009-04-03 2009-04-03 Cooling structure for battery pack Pending JP2010244802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091178A JP2010244802A (en) 2009-04-03 2009-04-03 Cooling structure for battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091178A JP2010244802A (en) 2009-04-03 2009-04-03 Cooling structure for battery pack

Publications (1)

Publication Number Publication Date
JP2010244802A true JP2010244802A (en) 2010-10-28

Family

ID=43097603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091178A Pending JP2010244802A (en) 2009-04-03 2009-04-03 Cooling structure for battery pack

Country Status (1)

Country Link
JP (1) JP2010244802A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001383A (en) * 2011-06-16 2013-01-07 Hyundai Motor Co Ltd Battery cooling structure of eco-friendly vehicle
EP2642586A2 (en) * 2010-11-18 2013-09-25 LG Chem, Ltd. Battery pack having superior cooling efficiency
KR101338258B1 (en) * 2010-11-17 2013-12-06 주식회사 엘지화학 Battery Pack Providing Improved Distribution Uniformity of Coolant
JP2014500591A (en) * 2010-11-18 2014-01-09 エルジー・ケム・リミテッド Battery pack with excellent cooling efficiency
EP2685521A2 (en) * 2011-04-25 2014-01-15 LG Chem, Ltd. Battery pack storage apparatus and cooling apparatus for power storage battery pack using same
WO2015033694A1 (en) * 2013-09-06 2015-03-12 日産自動車株式会社 Battery pack cooling system
JP2015158979A (en) * 2014-02-21 2015-09-03 富士重工業株式会社 On-vehicle battery
WO2020060048A1 (en) * 2018-09-18 2020-03-26 주식회사 엘지화학 Battery module

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072924A (en) * 2010-11-17 2015-04-16 エルジー・ケム・リミテッド Battery pack having improved uniformity in distribution of refrigerant
KR101338258B1 (en) * 2010-11-17 2013-12-06 주식회사 엘지화학 Battery Pack Providing Improved Distribution Uniformity of Coolant
EP2642586A2 (en) * 2010-11-18 2013-09-25 LG Chem, Ltd. Battery pack having superior cooling efficiency
JP2014500591A (en) * 2010-11-18 2014-01-09 エルジー・ケム・リミテッド Battery pack with excellent cooling efficiency
US9312579B2 (en) 2010-11-18 2016-04-12 Lg Chem, Ltd. Battery pack of excellent cooling efficiency
EP2642586A4 (en) * 2010-11-18 2014-05-21 Lg Chemical Ltd Battery pack having superior cooling efficiency
EP2685521A2 (en) * 2011-04-25 2014-01-15 LG Chem, Ltd. Battery pack storage apparatus and cooling apparatus for power storage battery pack using same
EP2685521A4 (en) * 2011-04-25 2014-09-24 Lg Chemical Ltd Battery pack storage apparatus and cooling apparatus for power storage battery pack using same
US9461344B2 (en) 2011-04-25 2016-10-04 Lg Chem, Ltd. Battery pack container and apparatus for cooling power storage battery pack using the same
JP2013001383A (en) * 2011-06-16 2013-01-07 Hyundai Motor Co Ltd Battery cooling structure of eco-friendly vehicle
WO2015033694A1 (en) * 2013-09-06 2015-03-12 日産自動車株式会社 Battery pack cooling system
CN105518929A (en) * 2013-09-06 2016-04-20 日产自动车株式会社 Battery pack cooling system
JPWO2015033694A1 (en) * 2013-09-06 2017-03-02 日産自動車株式会社 Battery pack cooling system
JP2015158979A (en) * 2014-02-21 2015-09-03 富士重工業株式会社 On-vehicle battery
WO2020060048A1 (en) * 2018-09-18 2020-03-26 주식회사 엘지화학 Battery module
KR20200032525A (en) * 2018-09-18 2020-03-26 주식회사 엘지화학 Battery module
KR102358425B1 (en) 2018-09-18 2022-02-03 주식회사 엘지에너지솔루션 Battery module

Similar Documents

Publication Publication Date Title
JP2010244802A (en) Cooling structure for battery pack
US7998610B2 (en) Electric power source providing a battery case with an intermediary duct
JP5052057B2 (en) Power supply
JP6097058B2 (en) Battery system
JP4739867B2 (en) Assembled battery
CN103732924B (en) Centrifugal blower system and the fuel cell including centrifugal blower system
JP2010186681A (en) Battery pack
CN103682526A (en) Battery system
JP2010092854A (en) Battery structure and hybrid vehicle
KR101450267B1 (en) Battery pack with radial fan
JPH11329518A (en) Battery system
CN104852105B (en) Hybrid Vehicle electrokinetic cell bag heat abstractor
JP2006318820A (en) Cooling structure of battery box
JP2014500590A (en) Battery pack with improved uniformity in refrigerant distribution
JP2014533989A (en) Vacuum cleaner
JP2016115514A (en) Battery temperature adjustment device
JP2009129730A (en) Battery cooling device
US20180159188A1 (en) Temperature conditioning unit, temperature conditioning system, and vehicle
JP2009004378A (en) Metering device for reducing diffusion of heat in battery pack
JP6024570B2 (en) Battery pack
JP2020161219A (en) Cooling structure of battery pack
JP2014179178A (en) Battery system
JP4314044B2 (en) Battery pack
TWI429171B (en) Cooling module and water-cooled motor system using the same
JP6129683B2 (en) Power storage device