JP2020028059A - Supersonic wave transmitter-receiver - Google Patents

Supersonic wave transmitter-receiver Download PDF

Info

Publication number
JP2020028059A
JP2020028059A JP2018152730A JP2018152730A JP2020028059A JP 2020028059 A JP2020028059 A JP 2020028059A JP 2018152730 A JP2018152730 A JP 2018152730A JP 2018152730 A JP2018152730 A JP 2018152730A JP 2020028059 A JP2020028059 A JP 2020028059A
Authority
JP
Japan
Prior art keywords
ultrasonic
metal tube
tube
receiver
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018152730A
Other languages
Japanese (ja)
Inventor
光楠 金
Kwang-Nan Kim
光楠 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2018152730A priority Critical patent/JP2020028059A/en
Publication of JP2020028059A publication Critical patent/JP2020028059A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)

Abstract

To attenuate noise components leaking from a piezoelectric device to the shell side, in a supersonic wave transmitter-receiver for ultrasonic flowmeter originating and receiving an ultrasonic beam into and from liquid flowing through the shell.SOLUTION: A supersonic wave transmitter-receiver 1 includes a piezoelectric device 1b placed in an element housing section 1a, and a metal tube 1f fixed to the rear wall 1e of the element housing section 1a by means of a holding part 1g. The metal tube 1f attenuates noise components by reducing the cross-sectional area, and increasing the length by bending spirally. A lead wire 1j is inserted into the metal tube 1f, one end of the lead wire 1j is connected with the piezoelectric device 1b, and the other end is connected with a terminal, or the like, on the outside of the holding part 1g. Around the metal tube 1f, a protective cylinder 1h fixed to the holding part 1g is placed, and the protective cylinder 1h is filled with an elastic filler 1i, surrounding the metal tube 1f.SELECTED DRAWING: Figure 2

Description

本発明は、超音波流量計において、超音波ビームを送信すると共に受信し測定対象を気体とする場合に特に好適に使用できる超音波送受信器に関するものである。   The present invention relates to an ultrasonic transmitter / receiver that can be used particularly preferably when an ultrasonic flowmeter transmits and receives an ultrasonic beam and makes a measurement object a gas.

超音波流量計は、管体内を流れる測定対象媒体中に超音波ビームを伝播させ、流体の流に順行する超音波ビームと逆行する超音波ビームとの伝播時間差を利用して流量を求める。   An ultrasonic flowmeter propagates an ultrasonic beam through a medium to be measured flowing through a tube, and obtains a flow rate by using a propagation time difference between an ultrasonic beam that goes forward and a backward ultrasonic beam.

しかし、媒体が気体であると超音波流量計により精度良く測定することはなかなか困難である。つまり、気体と超音波送信器との音響インピーダンスの差が大きいために、超音波送信器から気体中へ、気体から超音波送信器への超音波ビームの伝達が悪く、気体を介した超音波送信器から他方の超音波受信器への超音波ビームの伝達信号の大きさが、液体に比較して極めて小さくなるからである。   However, when the medium is a gas, it is very difficult to accurately measure the medium with an ultrasonic flowmeter. In other words, since the difference in acoustic impedance between the gas and the ultrasonic transmitter is large, the transmission of the ultrasonic beam from the ultrasonic transmitter into the gas and from the gas to the ultrasonic transmitter is poor, and the ultrasonic This is because the magnitude of the transmitted signal of the ultrasonic beam from the transmitter to the other ultrasonic receiver is extremely small as compared with the liquid.

一方で、超音波送信器からはその支持機構を介して管体中に漏れ、雑音として不要なノイズ成分が超音波受信器に伝達される。このノイズ成分は気体媒体中を伝播して得られた測定信号に比較して大きく、超音波受信器においては測定信号とノイズ成分とが混在し、SN比が小さくなって測定精度に悪影響を与える。   On the other hand, the ultrasonic transmitter leaks into the tube via the support mechanism, and unnecessary noise components as noise are transmitted to the ultrasonic receiver. This noise component is large compared to the measurement signal obtained by propagating through the gaseous medium. In the ultrasonic receiver, the measurement signal and the noise component are mixed, and the SN ratio becomes small, which adversely affects the measurement accuracy. .

特開2010−28815号公報JP 2010-28815 A 特許第6141556号公報Japanese Patent No. 6141556

このような問題を解決するための手段が、特許文献1、2が開示されている。これらの特許文献1、2においては、超音波送受信器を支持する支持機構において、漏れにより管体に伝達するノイズ成分を減衰する工夫をしている。このために、超音波送受信器を支持する支持機構として、断面積を小さくした支持体を、折り返して重ね合わせて迂回することにより伝達距離を長くすると共に、音吸収部材を介在して、管体側へのノイズ成分を減衰させている。しかし、これらの特許文献1、2に開示の減衰機構は構造が複雑となる。   Patent Literatures 1 and 2 disclose means for solving such a problem. In these Patent Literatures 1 and 2, a mechanism for supporting an ultrasonic transceiver is designed to attenuate a noise component transmitted to a tube due to leakage. For this reason, as a support mechanism for supporting the ultrasonic transceiver, a support having a reduced cross-sectional area is folded back, overlapped and detoured to extend the transmission distance, and a sound absorbing member is interposed between the tube side and Attenuate noise components. However, the structures of the damping mechanisms disclosed in Patent Documents 1 and 2 are complicated.

本発明の目的は、上述の課題を解消し、管体側に漏れて伝達するノイズ成分を簡便な手段で効果的に減衰し、測定対象を気体とした場合にも、特に好適に使用し得る超音波送受信器を提供することにある。   An object of the present invention is to solve the above-described problems, effectively attenuate a noise component leaking and transmitting to the tube side by simple means, and to use a gas to be measured, which can be used particularly suitably. It is to provide a sound wave transceiver.

上記目的を達成するための本発明に係る超音波送受信器は、管体を流れる流体中に超音波ビームを発信、受信する超音波流量計用の超音波送受信器において、前壁に流体に対して超音波ビームを送受信する圧電素子が配置された素子収容部と、前記管体に取り付けるための保持部と、一端が前記素子収容部に固定され他端が前記保持部に固定された断面積の小さな金属管とから成り、該金属管は曲成により迂回されてその長さが大きくされていることを特徴とする。   An ultrasonic transmitter / receiver according to the present invention for achieving the above object transmits and receives an ultrasonic beam in a fluid flowing through a tube, and in an ultrasonic transmitter / receiver for an ultrasonic flowmeter which receives and receives a fluid on a front wall. Element holding section in which a piezoelectric element for transmitting and receiving an ultrasonic beam is disposed, a holding section for attaching to the tube, and a cross-sectional area in which one end is fixed to the element holding section and the other end is fixed to the holding section. Characterized in that the metal tube is detoured by bending and its length is increased.

本発明に係る超音波送受信器によれば、素子収容部を曲成した細径の金属管により支持することにより、管体側に伝達する不要なノイズ成分を簡便に減衰できる。   ADVANTAGE OF THE INVENTION According to the ultrasonic transmitter / receiver which concerns on this invention, an unnecessary noise component transmitted to a tube body side can be easily attenuated by supporting an element accommodating part with the curved small diameter metal tube.

また、金属管の周囲を弾性充填材で囲むと、金属管を伝達する振動を吸収し、ノイズ信号を減少させることができる。   Further, when the periphery of the metal tube is surrounded by the elastic filler, the vibration transmitted through the metal tube can be absorbed, and the noise signal can be reduced.

測定管路部の構成図である。It is a block diagram of a measurement pipe part. 実施例1の超音波送受信器の構成図である。FIG. 2 is a configuration diagram of the ultrasonic transceiver according to the first embodiment. 実施例2の超音波送受信器の構成図である。FIG. 9 is a configuration diagram of an ultrasonic transceiver according to a second embodiment.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the illustrated embodiment.

図1は本発明に係る超音波送受信器を使用した超音波流量計の測定管路部の例を示す構成図である。2個の超音波送受信器1は流量を測定すべき気体が矢印方向に流れる管体2の2個所に、一対として配置されている。超音波送受信器1同士は管体2を挟んで対向されており、超音波送受信器1から発信される超音波ビームB1、B2が管体2を斜めに横切り、相手側の超音波送受信器1において受信するように取り付けられている。   FIG. 1 is a configuration diagram showing an example of a measurement pipe section of an ultrasonic flowmeter using an ultrasonic transceiver according to the present invention. The two ultrasonic transmitters / receivers 1 are arranged as a pair at two locations on the tube 2 through which the gas whose flow rate is to be measured flows in the direction of the arrow. The ultrasonic transceivers 1 are opposed to each other with the tube 2 interposed therebetween, and the ultrasonic beams B1 and B2 emitted from the ultrasonic transceiver 1 traverse the tube 2 diagonally, and the ultrasonic transmitter / receiver 1 Mounted to receive at.

管体2の管壁3には外側に突出する円筒状の取付部4が形成されており、超音波送受信器1はこの取付部4内に設けられ、超音波送受信器1同士は超音波ビームの伝播路Wを介して正対している。   A cylindrical mounting portion 4 protruding outward is formed on the tube wall 3 of the tube 2, and the ultrasonic transceiver 1 is provided in the mounting portion 4, and the ultrasonic transceivers 1 are connected to each other by an ultrasonic beam. Through the propagation path W.

それぞれの超音波送受信器1からは、例えば数百KHzの超音波ビームB1、B2が交互に発信され、相手側の超音波送受信器1により受信される。流体の流れに沿って進行する超音波ビームB1と、流れに逆行する超音波ビームB2の到達時間差を測定して流速を求め、更に管体2の断面積を乗じて流体の流量を測定する。流速を測定する時間差法は公知であるので、その詳細な説明は省略する。   From each of the ultrasonic transceivers 1, for example, ultrasonic beams B1 and B2 of several hundred KHz are alternately transmitted, and received by the ultrasonic transceiver 1 on the partner side. The flow velocity is obtained by measuring the arrival time difference between the ultrasonic beam B1 traveling along the flow of the fluid and the ultrasonic beam B2 going backward to the flow, and further multiplying the cross-sectional area of the tube 2 to measure the flow rate of the fluid. Since the time difference method for measuring the flow velocity is known, its detailed description is omitted.

なお、超音波送受信器1の配置は図1のように管体2を挟むような位置に配置するとは限らず、一対の超音波送受信器1を管体2の片側に配置し、超音波ビームB1、B2が管体2内でV字状に反射して、相手側の超音波送受信器1に入射するようにしてもよい。   The arrangement of the ultrasonic transmitter / receiver 1 is not limited to the position sandwiching the tube 2 as shown in FIG. 1, but a pair of ultrasonic transmitter / receivers 1 is arranged on one side of the tube 2 and the ultrasonic beam B <b> 1 and B <b> 2 may be reflected in a V-shape in the tubular body 2 and enter the ultrasonic transceiver 1 on the other side.

図2は実施例1の超音波送受信器1の構成図である。前後端を閉塞した金属体から成る円筒状の素子収容部1a内に、超音波ビームの送受信を行う圧電素子1bが固定されている。素子収容部1aの直径は10mm程度であり、前壁1cの厚みは例えば0.5mm程度とされ、その内側に圧電素子1bがグリスを介して貼着されている。また、素子収容部1aの側壁1d、後壁1eの厚みは例えば2mm程度とされている。   FIG. 2 is a configuration diagram of the ultrasonic transceiver 1 according to the first embodiment. A piezoelectric element 1b that transmits and receives an ultrasonic beam is fixed in a cylindrical element housing portion 1a made of a metal body whose front and rear ends are closed. The diameter of the element accommodating portion 1a is about 10 mm, the thickness of the front wall 1c is, for example, about 0.5 mm, and the piezoelectric element 1b is adhered to the inside thereof through grease. The thickness of the side wall 1d and the rear wall 1e of the element housing portion 1a is, for example, about 2 mm.

素子収容部1aの後壁1eには、金属管1fの一端が支持機構として固定されており、金属管1fの他端は素子収容部1aと離隔された板体状の保持部1gに固定されている。金属管1fは例えば外径が2.0mm、内径が1.0mmの銅、チタン等の金属体から成り、例えば直径15mmの螺旋形に例えば5回巻回することにより曲成されている。   One end of a metal tube 1f is fixed to a rear wall 1e of the element housing portion 1a as a support mechanism, and the other end of the metal tube 1f is fixed to a plate-shaped holding portion 1g separated from the element housing portion 1a. ing. The metal tube 1f is made of, for example, a metal body such as copper or titanium having an outer diameter of 2.0 mm and an inner diameter of 1.0 mm, and is bent by, for example, winding a spiral of 15 mm in diameter, for example, five times.

圧電素子1bから管体2側に漏れ、ノイズ成分となる超音波信号が振動として保持部1gを介して管体2に伝達されることを極力防止するために、支持体として金属管1fが用いられ、金属管1fは断面積を小さく、曲成により長さを大きくして、伝達されるノイズ成分を減衰している。
金属管1fとしては、素子収容部1aを支持するための剛性が必要であり、また伝達中のノイズ成分を減衰するためには断面積を小さくすることが望ましく、両者の兼ね合いが必要である。
A metal tube 1f is used as a support in order to prevent an ultrasonic signal leaking from the piezoelectric element 1b to the tube 2 side and becoming a noise component from being transmitted to the tube 2 via the holding portion 1g as vibration. The metal tube 1f has a small cross-sectional area and a large length by bending to attenuate the transmitted noise component.
The metal tube 1f needs to have rigidity to support the element accommodating portion 1a, and it is desirable to reduce the cross-sectional area in order to attenuate noise components during transmission, and a balance between the two is required.

金属管1fの材料として銅、チタン、又は他の種類の金属であってもよい。なお、支持機構である金属管1fは、長さを大きくするほどノイズ成分の減衰が大きくなるために、金属管1fは素子収容部1aと保持部1gとの間を、曲成により迂回し長さを大きくすることが好ましい。この曲成は加工上、実施例のような螺旋形が好適ではあるが、螺旋形に限られることはなく、例えばつづら折りのような迂回形状であってもよい。   The material of the metal tube 1f may be copper, titanium, or another type of metal. Since the metal tube 1f, which is a support mechanism, has a larger noise component attenuation as its length is increased, the metal tube 1f detours between the element housing portion 1a and the holding portion 1g by bending. It is preferable to increase the height. In terms of processing, this bending is preferably a spiral shape as in the embodiment, but is not limited to the spiral shape, and may be a detour shape such as a zigzag fold.

金属管1fの素子収容部1a、保持部1gへの接続は、例えば溶接によりなされる。この溶接を容易にするためには、金属管1f、素子収容部1a、保持部1gは同じ種類の金属を選択することが好ましい。   The connection of the metal tube 1f to the element housing portion 1a and the holding portion 1g is made by, for example, welding. In order to facilitate this welding, it is preferable to select the same type of metal for the metal tube 1f, the element housing portion 1a, and the holding portion 1g.

金属管1fの周囲には、保持部1gに固定された円筒状の金属製の保護筒1hが離隔的に配置されている。保護筒1hの前端は解放されており、前端は素子収容部1aの後端付近まで延在されているが、素子収容部1aに接することはないようにされている。
そして、保護筒1h内には例えばシリコンゴムから成る弾性充填材1iが充填され、金属管1fの周囲を固み、金属管1fを保持すると共に、金属管1fを伝達する振動の吸収材としても機能する。この弾性充填材1iは液状の状態で保護筒1h内に注入され、加熱や自然固化によって固形化されている。
Around the metal tube 1f, a cylindrical metal protection tube 1h fixed to the holding portion 1g is spaced apart. The front end of the protection cylinder 1h is open, and the front end extends to near the rear end of the element accommodating portion 1a, but does not contact the element accommodating portion 1a.
The protective cylinder 1h is filled with an elastic filler 1i made of, for example, silicone rubber, and solidifies the periphery of the metal tube 1f, holds the metal tube 1f, and also serves as a vibration absorber transmitting the metal tube 1f. Function. The elastic filler 1i is injected in a liquid state into the protective cylinder 1h, and is solidified by heating or natural solidification.

金属管1fは素子収容部1aを宙吊りにして支持しているが、金属管1fの剛性が大きく、また、金属管1fの周囲を弾性充填材1iで固めているために、素子収容部1aが動いたり、金属管1fが保護筒1hに接触することはない。   Although the metal tube 1f suspends and supports the element accommodating portion 1a, the rigidity of the metal tube 1f is high, and the element accommodating portion 1a is hardened around the metal tube 1f with an elastic filler 1i. It does not move or the metal tube 1f does not contact the protection tube 1h.

金属管1f内には、信号線となる絶縁被覆されたリード線1jが挿通されており、このリード線1jの一端は素子収容部1a内の圧電素子1bに接続され、他端は保持部1gの外部において、図示しない制御回路部等に接続するために、コネクタ等に接続されている。一方、圧電素子1bのアース線は素子収容部1a、金属管1f、保持部1gを経て、制御回路部等に接続されている。なお、金属管1f内には、2本のリード線を挿通することもできる。   Insulated lead wire 1j serving as a signal line is inserted into the metal tube 1f. One end of the lead wire 1j is connected to the piezoelectric element 1b in the element housing portion 1a, and the other end is a holding portion 1g. Outside, is connected to a connector or the like in order to connect to a control circuit unit or the like (not shown). On the other hand, the ground wire of the piezoelectric element 1b is connected to the control circuit section and the like via the element housing section 1a, the metal tube 1f, and the holding section 1g. Note that two lead wires can be inserted into the metal tube 1f.

使用に際しては、図1に示すように、超音波送受信器1を取付部4内に挿入し、保持部1gを取付部4の端部に例えばねじを用いて密封して固定する。その後に、リード線1jを相手方端子に接続する。このような準備をした上で、管体2に測定すべき気体媒体を流し、圧電素子1b間の伝播路Wに超音波ビームB1、B2を送受信して測定を開始する。   In use, as shown in FIG. 1, the ultrasonic transceiver 1 is inserted into the mounting portion 4, and the holding portion 1g is sealed and fixed to the end of the mounting portion 4 using, for example, a screw. After that, the lead wire 1j is connected to the other terminal. After such preparation, the gas medium to be measured is caused to flow through the tube 2, and the ultrasonic beams B1 and B2 are transmitted and received through the propagation path W between the piezoelectric elements 1b to start the measurement.

このとき、圧電素子1bから素子収容部1a、金属管1f、保持部1gを介して、管体2に漏れるノイズ成分を皆無とすることはできない。しかし、断面積の小さな金属管1fを使用し、しかも金属管1fは曲成されて長さを大きくしているので、ノイズ成分が大幅に減衰し、受信する圧電素子1bにおいては、気体中を経由してきた本来の測定信号とのSN比が大きくなり、流量測定精度が向上する。   At this time, it is not possible to eliminate noise components leaking from the piezoelectric element 1b to the tube 2 via the element accommodating portion 1a, the metal tube 1f, and the holding portion 1g. However, since the metal tube 1f having a small cross-sectional area is used, and the metal tube 1f is bent to increase the length, the noise component is greatly attenuated, and the receiving piezoelectric element 1b passes through the gas. The SN ratio with the original measurement signal that has passed increases, and the flow rate measurement accuracy improves.

図3は実施例2の超音波送受信器1の構成図であり、支持機構として、2本の螺旋形に曲成された金属管1f、1f’が使用されている。なお、実施例1と同一の符号は同一の部材を示している。   FIG. 3 is a configuration diagram of the ultrasonic transceiver 1 according to the second embodiment, in which two spirally bent metal tubes 1f and 1f 'are used as a support mechanism. The same reference numerals as in the first embodiment denote the same members.

金属管1f、1f’はほぼ同形であり、互いに接触しないように配置されていて、何れか一方、実施例では金属管1fにリード線1jが挿通されている。また、アース線は何れか一方の金属管1f、1f’を利用して、伝達させればよいが、リード線1j、アース線をそれぞれ金属管1f、1f’に挿通することもできる。
この実施例2の場合には、各金属管1f、1f’の径は実施例1よりも小径で済み、例えば外径1.2mm、内径0.5mmとされている。
The metal tubes 1f and 1f 'have substantially the same shape and are arranged so as not to contact each other. In one embodiment, the lead wire 1j is inserted through the metal tube 1f. The ground wire may be transmitted using one of the metal tubes 1f and 1f ', but the lead wire 1j and the ground wire may be inserted through the metal tubes 1f and 1f', respectively.
In the case of the second embodiment, the diameter of each of the metal tubes 1f and 1f 'may be smaller than that of the first embodiment. For example, the outer diameter is 1.2 mm and the inner diameter is 0.5 mm.

この実施例2においては、金属管1f、1f’が2本とされているので、実施例1よりも素子収容部1aを強固に保持できる。   In the second embodiment, since the number of the metal tubes 1f and 1f 'is two, the element housing portion 1a can be held more firmly than in the first embodiment.

1 超音波送受信器
1a 素子収容部
1b 圧電素子
1c 前壁
1f、1f’ 金属管
1g 保持部
1h 保護筒
1i 弾性充填材
1j リード線
2 管体
3 管壁
4 取付部
DESCRIPTION OF SYMBOLS 1 Ultrasonic transmitter / receiver 1a Element accommodating part 1b Piezoelectric element 1c Front wall 1f, 1f 'Metal tube 1g Holding part 1h Protective cylinder 1i Elastic filler 1j Lead wire 2 Tubular body 3 Tube wall 4 Attaching part

Claims (5)

管体を流れる流体中に超音波ビームを発信、受信する超音波流量計用の超音波送受信器において、前壁に流体に対して超音波ビームを送受信する圧電素子が配置された素子収容部と、前記管体に取り付けるための保持部と、一端が前記素子収容部に固定され他端が前記保持部に固定された断面積の小さな金属管とから成り、該金属管は曲成により迂回されてその長さが大きくされていることを特徴とする超音波送受信器。   In an ultrasonic transmitter / receiver for an ultrasonic flowmeter for transmitting and receiving an ultrasonic beam in a fluid flowing through a tube, an element housing section in which a piezoelectric element for transmitting / receiving an ultrasonic beam to / from the fluid is disposed on a front wall. A holding portion for attaching to the tube, and a metal tube having a small cross-sectional area, one end of which is fixed to the element housing portion and the other end of which is fixed to the holding portion. An ultrasonic transmitter / receiver, characterized in that its length is increased. 前記金属管は螺旋形に曲成されていることを特徴とする請求項1に記載の超音波送受信器。   The ultrasonic transceiver according to claim 1, wherein the metal tube is spirally bent. 前記金属管中に、一端が前記圧電素子に接続されたリード線が挿通され、前記リード線の他端は前記保持部の外部に導出されていることを特徴とする請求項1又は2に記載の超音波送受信器。   The lead wire having one end connected to the piezoelectric element is inserted into the metal tube, and the other end of the lead wire is led out of the holding unit. Ultrasonic transceiver. 前記金属管の本数は1本又は複数本とされていることを特徴とする請求項1〜3の何れか1項に記載の超音波送受信器。   The ultrasonic transceiver according to any one of claims 1 to 3, wherein the number of the metal tubes is one or more. 前記金属管の周囲に前記保持部に固定された保護筒が離隔的に配置され、前記保護筒内に弾性充填材が充填されていることを特徴とする請求項1〜4の何れか1項に記載の超音波送受信器。   The protection cylinder fixed to the holding part is spaced apart around the metal tube, and an elastic filler is filled in the protection cylinder. 2. The ultrasonic transceiver according to claim 1.
JP2018152730A 2018-08-14 2018-08-14 Supersonic wave transmitter-receiver Pending JP2020028059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152730A JP2020028059A (en) 2018-08-14 2018-08-14 Supersonic wave transmitter-receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152730A JP2020028059A (en) 2018-08-14 2018-08-14 Supersonic wave transmitter-receiver

Publications (1)

Publication Number Publication Date
JP2020028059A true JP2020028059A (en) 2020-02-20

Family

ID=69620418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152730A Pending JP2020028059A (en) 2018-08-14 2018-08-14 Supersonic wave transmitter-receiver

Country Status (1)

Country Link
JP (1) JP2020028059A (en)

Similar Documents

Publication Publication Date Title
KR101730377B1 (en) Flowmeter and method
JP5971428B2 (en) Fluid measuring device
JP2012021899A (en) Ultrasonic flow rate measuring unit and ultrasonic flowmeter using the same
CN103477194A (en) Coupling element of an ultrasonic transducer for an ultrasonic flow meter
JP2006275686A (en) Ultrasonic flow measuring instrument
JP5046330B2 (en) Ultrasonic flowmeter and ultrasonic transducer unit
JP2001141533A (en) Ultrasonic measuring instrument for measuring flow rate
JP2020028059A (en) Supersonic wave transmitter-receiver
US20190033260A1 (en) Method for acoustically determining properties of a medium, and device for acoustically determining properties of a medium, comprising a reflective element
EP3035006A2 (en) Apparatus and a method for providing a time measurement
JP2008122317A (en) Ultrasonic flow meter for gas
JP5155490B1 (en) Ultrasonic flow meter
JP3821571B2 (en) Ultrasonic flow meter
JP3922233B2 (en) Ultrasonic flow measuring device
JP5113354B2 (en) Ultrasonic flow meter
JP4368591B2 (en) Ultrasonic flow meter
JP2012018030A (en) Ultrasonic sensor attachment structure and ultrasonic flow measuring device using the same
JP2007033115A (en) Detection part of ultrasonic flowmeter
JP2019002907A (en) Apparatus for ultrasonically measuring flow rate of fluid in measuring channel capable of attenuating parasitic signals
JP2005180988A (en) Ultrasonic flowmeter
JP5533332B2 (en) Ultrasonic flow meter
JP4818713B2 (en) Ultrasonic flow meter
JPH09287990A (en) Ultrasonic flowmeter
JP5373218B1 (en) Ultrasonic flow meter
KR101173372B1 (en) Ultrasonic transmitting/receiving device