JP2020026374A - PASTING METHOD OF SiC SINGLE CRYSTAL, MANUFACTURING METHOD OF SiC INGOT, AND PEDESTAL FOR SiC SINGLE CRYSTAL GROWTH - Google Patents

PASTING METHOD OF SiC SINGLE CRYSTAL, MANUFACTURING METHOD OF SiC INGOT, AND PEDESTAL FOR SiC SINGLE CRYSTAL GROWTH Download PDF

Info

Publication number
JP2020026374A
JP2020026374A JP2018152319A JP2018152319A JP2020026374A JP 2020026374 A JP2020026374 A JP 2020026374A JP 2018152319 A JP2018152319 A JP 2018152319A JP 2018152319 A JP2018152319 A JP 2018152319A JP 2020026374 A JP2020026374 A JP 2020026374A
Authority
JP
Japan
Prior art keywords
single crystal
sic single
atomic arrangement
curvature
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018152319A
Other languages
Japanese (ja)
Other versions
JP2020026374A5 (en
JP7149767B2 (en
Inventor
陽平 藤川
Yohei Fujikawa
陽平 藤川
秀隆 鷹羽
Hidetaka Takahane
秀隆 鷹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Denso Corp filed Critical Showa Denko KK
Priority to JP2018152319A priority Critical patent/JP7149767B2/en
Priority to PCT/JP2019/031803 priority patent/WO2020036167A1/en
Publication of JP2020026374A publication Critical patent/JP2020026374A/en
Publication of JP2020026374A5 publication Critical patent/JP2020026374A5/ja
Application granted granted Critical
Publication of JP7149767B2 publication Critical patent/JP7149767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a pasting method of a SiC single crystal capable of reducing curvature on an atomic arrangement plane during growth of the crystal.SOLUTION: A pasting method of a SiC single crystal includes a measurement step for measuring a curvature amount and a curvature direction of an atomic arrangement plane of the SiC single crystal along at least a first direction passing through a plane view center, and a second direction orthogonal to the first direction, a preparation step for preparing a pedestal having a curved plane curved in a reverse direction to the atomic arrangement plane of the SiC single crystal, and a pasting step for opposing and pasting the SiC single crystal to the pedestal so that the curvature direction of the atomic arrangement plane is differentiated from a curvature direction of the curved plane.SELECTED DRAWING: Figure 1

Description

本発明は、SiC単結晶の貼合方法、SiCインゴットの製造方法及びSiC単結晶成長用台座に関する。   The present invention relates to a method for bonding a SiC single crystal, a method for manufacturing a SiC ingot, and a pedestal for growing a SiC single crystal.

炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、バンドギャップが3倍大きい。また、炭化珪素(SiC)は、シリコン(Si)に比べて熱伝導率が3倍程度高い等の特性を有する。炭化珪素(SiC)は、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。   Silicon carbide (SiC) has a breakdown electric field one order of magnitude higher than silicon (Si) and a band gap three times larger. Further, silicon carbide (SiC) has characteristics such as a thermal conductivity that is about three times higher than that of silicon (Si). Silicon carbide (SiC) is expected to be applied to power devices, high-frequency devices, high-temperature operation devices, and the like.

半導体等のデバイスには、SiCウェハ上にエピタキシャル膜を形成したSiCエピタキシャルウェハが用いられる。SiCウェハ上に化学的気相成長法(Chemical Vapor Deposition:CVD)によって設けられたエピタキシャル膜が、SiC半導体デバイスの活性領域となる。   For devices such as semiconductors, an SiC epitaxial wafer having an epitaxial film formed on a SiC wafer is used. An epitaxial film provided on a SiC wafer by a chemical vapor deposition (CVD) becomes an active region of the SiC semiconductor device.

そのため、割れ等の破損が無く、欠陥の少ない、高品質なSiCウェハが求められている。なお、本明細書において、SiCエピタキシャルウェハはエピタキシャル膜を形成後のウェハを意味し、SiCウェハはエピタキシャル膜を形成前のウェハを意味する。   Therefore, there is a demand for a high-quality SiC wafer that is free from damage such as cracks and has few defects. In this specification, the SiC epitaxial wafer means a wafer after forming an epitaxial film, and the SiC wafer means a wafer before forming an epitaxial film.

例えば、特許文献1及び特許文献2には、種結晶として使用されるSiC単結晶の外形の反り及びうねりが、クラックや欠陥の起因になっていることが記載されている。特許文献1には、SiC単結晶と台座の線膨張係数を所定の範囲にすることで、ウェハの反りが低減されることが記載されている。また特許文献2には、種結晶保持部の熱膨張係数を坩堝のその他の部分より小さくすることで、SiC単結晶が成長中に受ける応力を小さくできることが記載されている。   For example, Patent Literature 1 and Patent Literature 2 describe that the warp and undulation of the outer shape of a SiC single crystal used as a seed crystal cause cracks and defects. Patent Document 1 describes that by setting the linear expansion coefficient of the SiC single crystal and the pedestal within a predetermined range, the warpage of the wafer is reduced. Patent Literature 2 discloses that the stress applied to a SiC single crystal during growth can be reduced by making the coefficient of thermal expansion of a seed crystal holding portion smaller than that of other portions of the crucible.

特許第5398492号公報Japanese Patent No. 5398492 特開2009−102187号公報JP 2009-102187 A

SiCウェハのキラー欠陥の一つとして、基底面転位(BPD)がある。SiCウェハのBPDの一部はSiCエピタキシャルウェハにも引き継がれ、デバイスの順方向に電流を流した際の順方向特性の低下の要因となる。BPDは、基底面において生じるすべりが発生の原因の一つであると考えられている欠陥である。   As one of the killer defects of the SiC wafer, there is a basal plane dislocation (BPD). Part of the BPD of the SiC wafer is also carried over to the SiC epitaxial wafer, which causes a decrease in the forward characteristics when a current flows in the forward direction of the device. BPD is a defect that is considered to be one of the causes of the occurrence of slip at the basal plane.

特許文献1及び2に記載のように、種結晶として使用されるSiC単結晶の外形の結晶成長時における反りを制御しても、BPDは十分抑制することができない。そのため、BPDの低減が求められている。   As described in Patent Literatures 1 and 2, BPD cannot be sufficiently suppressed even when controlling the warpage of a SiC single crystal used as a seed crystal during crystal growth. Therefore, reduction of BPD is required.

本発明は上記問題に鑑みてなされたものであり、結晶成長時において原子配列面の湾曲を低減できるSiC単結晶の貼合方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of bonding an SiC single crystal that can reduce the curvature of an atomic arrangement surface during crystal growth.

本発明者らは、鋭意検討の結果、SiC単結晶の原子配列面(格子面)の湾曲量と、基底面転位(BPD)密度との間に、相関関係があることを見出した。そこで、SiC単結晶を設置する台座の貼付面を所定の形状に加工することで、結晶成長時の原子配列面を平坦化できることを見出した。
すなわち、本発明は、上記課題を解決するために、以下の手段を提供する。
As a result of intensive studies, the present inventors have found that there is a correlation between the amount of curvature of the atomic arrangement plane (lattice plane) of the SiC single crystal and the basal plane dislocation (BPD) density. Therefore, it has been found that by processing the attachment surface of the pedestal on which the SiC single crystal is placed into a predetermined shape, the atomic arrangement surface during crystal growth can be flattened.
That is, the present invention provides the following means in order to solve the above problems.

(1)第1の態様にかかるSiC単結晶の貼合方法は、SiC単結晶の原子配列面の湾曲量及び湾曲方向を少なくとも平面視中央を通る第1の方向と前記第1の方向と直交する第2の方向に沿って測定する測定工程と、前記SiC単結晶の原子配列面と逆方向に湾曲する湾曲面を有する台座を準備する準備工程と、前記原子配列面の湾曲方向と前記湾曲面の湾曲方向とが異なるように前記SiC単結晶と前記台座とを対向させて、貼りつける貼付工程と、を備える。 (1) In the method for bonding a SiC single crystal according to the first aspect, the bending amount and the bending direction of the atomic arrangement surface of the SiC single crystal are orthogonal to the first direction passing at least through the center in plan view and the first direction. A measurement step of measuring along a second direction, a preparing step of preparing a pedestal having a curved surface curved in a direction opposite to an atomic arrangement surface of the SiC single crystal, and a bending direction of the atomic arrangement surface and the curvature. And attaching the SiC single crystal and the pedestal to each other so that the direction of curvature of the surface is different.

(2)上記態様にかかるSiC単結晶の貼合方法において、前記原子配列面の湾曲量の絶対値と、前記台座の前記湾曲面の湾曲量の絶対値と、の差が、貼付面のいずれの箇所においても10μm以下であってもよい。 (2) In the method for bonding a SiC single crystal according to the above aspect, the difference between the absolute value of the amount of curvature of the atomic arrangement surface and the absolute value of the amount of curvature of the curved surface of the pedestal may be any one of the attachment surfaces. May be 10 μm or less.

(3)上記態様にかかるSiC単結晶の貼合方法において、前記原子配列面の曲率半径が28m以上であってもよい。 (3) In the method for bonding a SiC single crystal according to the above aspect, the radius of curvature of the atomic arrangement plane may be 28 m or more.

(4)上記態様にかかるSiC単結晶の貼合方法において、前記SiC単結晶の直径が150mm以上である場合に、前記原子配列面の湾曲量の最大値が100μm以下であってもよい。 (4) In the bonding method of the SiC single crystal according to the above aspect, when the diameter of the SiC single crystal is 150 mm or more, the maximum value of the amount of curvature of the atomic arrangement plane may be 100 μm or less.

(5)上記態様にかかるSiC単結晶の貼合方法において、前記貼付工程を行う際の前記SiC単結晶の厚みが5mm以下であってもよい。 (5) In the method for bonding a SiC single crystal according to the above aspect, the thickness of the SiC single crystal when performing the bonding step may be 5 mm or less.

(6)第2の態様にかかるSiCインゴットの製造方法は、上記態様にかかるSiC単結晶の貼合方法において、前記台座に貼り付けられた前記SiC単結晶を種結晶として結晶成長を行う。 (6) In the method for manufacturing a SiC ingot according to the second aspect, in the method for bonding an SiC single crystal according to the above aspect, crystal growth is performed using the SiC single crystal attached to the pedestal as a seed crystal.

(7)上記態様にかかるSiCインゴットの製造方法において、前記台座と前記SiC単結晶との結晶成長温度における熱膨張係数の差が、0.3×10−6/℃以下であってもよい。 (7) In the method of manufacturing an SiC ingot according to the above aspect, a difference in a thermal expansion coefficient between the pedestal and the SiC single crystal at a crystal growth temperature may be 0.3 × 10 −6 / ° C. or less.

(8)第3の態様にかかるSiC単結晶成長用台座は、貼りつけるSiC単結晶の原子配列面の湾曲方向と反対方向に湾曲する湾曲面を備える。 (8) The pedestal for growing a SiC single crystal according to the third aspect includes a curved surface that is curved in a direction opposite to a direction of curvature of an atomic arrangement surface of the SiC single crystal to be bonded.

(9)上記態様にかかるSiC単結晶成長用台座は、貼りつけるSiC単結晶の原子配列面の湾曲量の絶対値と、前記湾曲面の湾曲量の絶対値と、の差が、貼付面のいずれの箇所においても10μm以下であってもよい。 (9) In the pedestal for growing a SiC single crystal according to the above aspect, the difference between the absolute value of the amount of curvature of the atomically arranged surface of the SiC single crystal to be attached and the absolute value of the amount of curvature of the curved surface is different from that of the attachment surface. The thickness may be 10 μm or less at any point.

上記態様にかかるSiC単結晶の貼合方法を用いると、結晶成長時の原子配列面を平坦化できる。   When the bonding method of the SiC single crystal according to the above embodiment is used, it is possible to flatten an atomic arrangement surface during crystal growth.

SiC単結晶を平面視中心を通る第1の方向に延在する直線に沿って切断した切断面の模式図である。FIG. 3 is a schematic view of a cut surface obtained by cutting a SiC single crystal along a straight line extending in a first direction passing through the center in plan view. SiC単結晶の原子配列面の一例を模式的に示した図である。It is the figure which showed typically an example of the atomic arrangement surface of a SiC single crystal. SiC単結晶の原子配列面の別の例を模式的に示した図である。FIG. 4 is a diagram schematically showing another example of the atomic arrangement plane of the SiC single crystal. 原子配列面の形状の測定方法を具体的に説明するための図である。FIG. 3 is a diagram for specifically explaining a method for measuring the shape of an atomic arrangement surface. 原子配列面の形状の測定方法を具体的に説明するための図である。FIG. 3 is a diagram for specifically explaining a method for measuring the shape of an atomic arrangement surface. 原子配列面の形状の測定方法を具体的に説明するための図である。FIG. 3 is a diagram for specifically explaining a method for measuring the shape of an atomic arrangement surface. 原子配列面の形状の測定方法を具体的に説明するための図である。FIG. 3 is a diagram for specifically explaining a method for measuring the shape of an atomic arrangement surface. 複数のXRDの測定点から原子配列面の曲率半径を求めた例を示す。An example in which a radius of curvature of an atomic arrangement surface is obtained from a plurality of XRD measurement points will be described. 原子配列面の形状の測定方法の別の例を具体的に説明するための図である。FIG. 9 is a diagram for specifically explaining another example of the method of measuring the shape of the atomic arrangement plane. 原子配列面の形状の測定方法の別の例を具体的に説明するための図である。FIG. 9 is a diagram for specifically explaining another example of the method of measuring the shape of the atomic arrangement plane. SiC単結晶と台座の関係を示す図である。It is a figure which shows the relationship between a SiC single crystal and a pedestal. SiC単結晶を台座に貼りつけた後の状態を模式的に示した図である。It is the figure which showed typically the state after sticking a SiC single crystal to a pedestal. 昇華法に用いられる製造装置の一例の模式図である。It is a schematic diagram of an example of the manufacturing apparatus used for the sublimation method. SiC単結晶の原子配列面の曲率半径と、BPD密度の関係を示すグラフである。4 is a graph showing a relationship between a radius of curvature of an atomic arrangement surface of a SiC single crystal and a BPD density.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. In the drawings used in the following description, a characteristic portion may be enlarged for convenience, and a dimensional ratio of each component may be different from an actual one. The materials, dimensions, and the like illustrated in the following description are merely examples, and the present invention is not limited thereto, and can be implemented with appropriate changes without departing from the scope of the invention.

「SiC単結晶の貼合方法」
本実施形態にかかるSiC単結晶の貼合方法は、測定工程と、準備工程と、貼付工程とを有する。測定工程では、SiC単結晶の原子配列面の形状を、少なくとも平面視中央を通る第1の方向と、第1の方向と直交する第2の方向とに沿って測定する。また準備工程では、SiC単結晶の原子配列面と逆方向に湾曲する湾曲面を有する台座を準備する。さらに貼付工程では、原子配列面の湾曲方向と台座の湾曲面の湾曲方向とが異なるようにSiC単結晶と台座とを対向させて、貼りつける。以下、各工程について具体的に説明する。
"SiC single crystal bonding method"
The method for bonding a SiC single crystal according to the present embodiment includes a measurement step, a preparation step, and a bonding step. In the measurement step, the shape of the atomic arrangement plane of the SiC single crystal is measured along at least a first direction passing through the center in plan view and a second direction orthogonal to the first direction. In the preparation step, a pedestal having a curved surface curved in a direction opposite to the atomic arrangement surface of the SiC single crystal is prepared. Further, in the attaching step, the SiC single crystal and the pedestal are attached to each other such that the curved direction of the atomic arrangement surface and the curved surface of the pedestal are different from each other. Hereinafter, each step will be specifically described.

<測定工程>
図1は、SiC単結晶1を平面視中心を通る第1の方向に延在する直線に沿って切断した切断面の模式図である。第1の方向は、任意の方向を設定できる。図1では、第1の方向を[1−100]としている。図1において上側は[000−1]方向、すなわち<0001>方向に垂直に切断をした時にカーボン面(C面、(000−1)面)が現れる方向である。以下、第1の方向を[1−100]とした場合を例に説明する。
<Measurement process>
FIG. 1 is a schematic view of a cut surface obtained by cutting the SiC single crystal 1 along a straight line extending in a first direction passing through the center in plan view. An arbitrary direction can be set as the first direction. In FIG. 1, the first direction is [1-100]. In FIG. 1, the upper side is the direction in which the carbon plane (C plane, (000-1) plane) appears when cut perpendicularly to the [000-1] direction, that is, the <0001> direction. Hereinafter, a case where the first direction is set to [1-100] will be described as an example.

ここで結晶方位及び面は、ミラー指数として以下の括弧を用いて表記される。()と{}は面を表す時に用いられる。()は特定の面を表現する際に用いられ、{}は結晶の対称性による等価な面の総称(集合面)を表現する際に用いられる。一方で、<>と[]は方向を表す特に用いられる。[]は特定の方向を表現する際に用いられ、<>は結晶の対称性による等価な方向を表現する際に用いられる。   Here, the crystal orientation and the plane are indicated using the following parentheses as Miller indices. () And {} are used to represent a surface. () Is used to represent a specific plane, and {} is used to represent a generic term (collective plane) of equivalent planes due to crystal symmetry. On the other hand, <> and [] are particularly used to indicate directions. [] Is used to represent a specific direction, and <> is used to represent an equivalent direction due to crystal symmetry.

図1に示すように、SiC単結晶1は、複数の原子Aが整列してなる単結晶である。そのため図1に示すように、SiC単結晶の切断面をミクロに見ると、複数の原子Aが配列した原子配列面2が形成されている。切断面における原子配列面2は、切断面に沿って配列する原子Aを繋いで得られる切断方向と略平行な方向に延在する線として表記される。   As shown in FIG. 1, the SiC single crystal 1 is a single crystal in which a plurality of atoms A are aligned. Therefore, as shown in FIG. 1, when the cut surface of the SiC single crystal is viewed microscopically, an atomic arrangement surface 2 in which a plurality of atoms A are arranged is formed. The atom arrangement surface 2 in the cutting plane is represented as a line extending in a direction substantially parallel to the cutting direction obtained by connecting the atoms A arranged along the cutting plane.

原子配列面2の形状は、SiC単結晶1の最表面の形状によらず、切断面の方向によって異なる場合がある。図2及び図3は、原子配列面2の形状を模式的に示した図である。図2に示す原子配列面2は、中心に向かって凹形状である。そのため、図2に示す原子配列面2は、[1−100]方向と、[1−100]方向に直交する[11−20]方向とで湾曲方向が一致する。これに対し図3に示す原子配列面2は、所定の切断面では凹形状、異なる切断面では凸形状のポテトチップス型(鞍型)の形状である。そのため、図3に示す原子配列面2は、[1−100]方向と、[1−100]方向に直交する[11−20]方向と、で湾曲方向が異なる。   The shape of the atomic arrangement plane 2 may vary depending on the direction of the cut surface, regardless of the shape of the outermost surface of the SiC single crystal 1. 2 and 3 are diagrams schematically showing the shape of the atomic arrangement plane 2. FIG. The atomic arrangement surface 2 shown in FIG. 2 is concave toward the center. Therefore, in the atomic arrangement plane 2 shown in FIG. 2, the [1-100] direction and the [11-20] direction orthogonal to the [1-100] direction have the same bending direction. On the other hand, the atom arrangement surface 2 shown in FIG. 3 has a potato chip type (saddle type) shape having a concave shape on a predetermined cut surface and a convex shape on a different cut surface. Therefore, the bending direction of the atomic arrangement surface 2 shown in FIG. 3 differs between the [1-100] direction and the [11-20] direction orthogonal to the [1-100] direction.

つまり、原子配列面2の形状を正確に把握するためには、少なくとも平面視中央を通り互いに直交する2方向(第1の方向及び第2の方向)に沿って、SiC単結晶の原子配列面2の形状を測定する必要がある。またSiC単結晶1の結晶構造は六方晶であり、中心に対して対称な六方向に沿って原子配列面2の形状を測定することが好ましい。中心に対して対称な六方向に沿って原子配列面2の形状を計測すれば、原子配列面2の形状をより精密に求めることができる。   In other words, in order to accurately grasp the shape of the atomic arrangement plane 2, the atomic arrangement plane of the SiC single crystal must be formed along at least two directions (first direction and second direction) passing through the center in plan view and orthogonal to each other. 2 needs to be measured. The crystal structure of SiC single crystal 1 is hexagonal, and it is preferable to measure the shape of atomic arrangement plane 2 along six directions symmetric with respect to the center. If the shape of the atomic arrangement surface 2 is measured along six directions symmetrical with respect to the center, the shape of the atomic arrangement surface 2 can be determined more precisely.

原子配列面2の形状はX線回折(XRD)により測定できる。測定する面は測定する方向に応じて決定される。測定方向を[hkil]とすると、測定面は(mh mk mi n)の関係を満たす必要がある。ここで、mは0以上の整数であり、nは自然数である。例えば、[11−20]方向に測定する場合は、m=0、n=4として(0004)面、m=2、n=16として(22−416)面等が選択される。一方で、[11−20]方向に測定する場合は、m=0、n=4として(0004)面、m=3、n=16として(3−3016)面等が選択される。すなわち測定面は、測定方向によって異なる面であってもよく、測定される原子配列面2は必ずしも同じ面とはならなくてもよい。上記関係を満たすことで、結晶成長時に及ぼす影響の少ないa面又はm面方向の格子湾曲をc面方向の格子湾曲と誤認することを防ぐことができる。また測定はC面、Si面のいずれの面を選択してもよいが、坩堝の設置面に貼りつける貼付面(第1面)に対して行うことが好ましい。   The shape of the atomic arrangement surface 2 can be measured by X-ray diffraction (XRD). The surface to be measured is determined according to the measurement direction. Assuming that the measurement direction is [hkill], the measurement surface needs to satisfy the relationship of (mh mk min). Here, m is an integer of 0 or more, and n is a natural number. For example, when measuring in the [11-20] direction, the (0004) plane is selected as m = 0 and n = 4, and the (22-416) plane as m = 2 and n = 16. On the other hand, when measuring in the [11-20] direction, the (0004) plane is selected as m = 0 and n = 4, and the (3-3016) plane is selected as m = 3 and n = 16. That is, the measurement surface may be different depending on the measurement direction, and the atomic arrangement surface 2 to be measured does not necessarily have to be the same surface. By satisfying the above relationship, it is possible to prevent the lattice curvature in the a-plane or m-plane direction, which has little influence during crystal growth, from being mistaken for the lattice curvature in the c-plane direction. In addition, the measurement may be performed on either the C plane or the Si plane, but it is preferable to perform the measurement on the adhering surface (first surface) to be attached to the installation surface of the crucible.

X線回折データは、所定の方向に沿って中心、端部、中心と端部との中点の5点において取得する。原子配列面2が湾曲している場合、X線の反射方向が変わるため、中心とそれ以外の部分とで出力されるX線回折像のピークのω角の位置が変動する。この回折ピークの位置変動から原子配列面2の湾曲方向を求めることができる。また回折ピークの位置変動から原子配列面2の曲率半径も求めることができ、原子配列面2の湾曲量も求めることができる。そして、原子配列面2の湾曲方向及び湾曲量から原子配列面2の形状を求めることができる。   The X-ray diffraction data is acquired at five points along the predetermined direction: the center, the end, and the midpoint between the center and the end. When the atomic arrangement surface 2 is curved, the reflection direction of the X-ray changes, so that the position of the ω angle of the peak of the X-ray diffraction image output at the center and other portions changes. The bending direction of the atomic arrangement surface 2 can be obtained from the position fluctuation of the diffraction peak. Further, the radius of curvature of the atomic arrangement surface 2 can be obtained from the position fluctuation of the diffraction peak, and the amount of curvature of the atomic arrangement surface 2 can also be obtained. Then, the shape of the atomic arrangement surface 2 can be obtained from the bending direction and the amount of curvature of the atomic arrangement surface 2.

(原子配列面の形状の測定方法(方法1)の具体的な説明)
SiC単結晶をスライスした試料(以下、ウェハ20と言う)の外周端部分のXRDの測定値から原子配列面の湾曲方向及び湾曲量を測定する方法について具体的に説明する。一例としてウェハ20を用いて測定方法を説明するが、スライスする前のインゴット状のSiC単結晶においても同様の方法を用いて測定できる。
(Specific description of the method of measuring the shape of the atomic arrangement plane (method 1))
A method of measuring the bending direction and the bending amount of the atomic arrangement surface from the XRD measurement value of the outer peripheral end portion of the sample (hereinafter, referred to as wafer 20) obtained by slicing the SiC single crystal will be specifically described. The measurement method will be described using the wafer 20 as an example. However, the same method can be used for ingot-shaped SiC single crystal before slicing.

図4に平面視中心を通り原子配列面の測定の方向、例えば[1−100]方向に沿って切断した切断面を模式的に示す。ウェハ20の半径をrとすると、断面の横方向の長さは2rとなる。また図4にウェハ20における原子配列面22の形状も図示している。図4に示すように、ウェハ20自体の形状は平坦であるが、原子配列面22は湾曲している場合がある。図4に示す原子配列面22は左右対称であり、凹型に湾曲している。この対称性は、SiC単結晶(インゴット)の製造条件が通常中心に対して対称性があることに起因する。なお、この対称性とは、完全対称である必要はなく、製造条件の揺らぎ等に起因したブレを容認する近似としての対称性を意味する。   FIG. 4 schematically shows a cut surface cut along a direction of measurement of the atomic arrangement plane, for example, along the [1-100] direction, passing through the center in plan view. Assuming that the radius of the wafer 20 is r, the horizontal length of the cross section is 2r. FIG. 4 also shows the shape of the atomic arrangement plane 22 on the wafer 20. As shown in FIG. 4, the shape of the wafer 20 itself is flat, but the atomic arrangement surface 22 may be curved. The atom arrangement surface 22 shown in FIG. 4 is bilaterally symmetric and concavely curved. This symmetry is due to the fact that the manufacturing conditions of the SiC single crystal (ingot) are usually symmetric with respect to the center. The symmetry does not need to be perfect symmetry, but means symmetry as an approximation that allows blurring caused by fluctuations in manufacturing conditions and the like.

次いで、図5に示すように、XRDをウェハ20の外周端部に対して行い、測定した2点間のX線回折ピーク角度の差Δθを求める。このΔθが測定した2点の原子配列面22の傾きの差になっている。X線回折測定に用いる回折面は、上述のように切断面にあわせて適切な面を選択する。   Next, as shown in FIG. 5, XRD is performed on the outer peripheral end of the wafer 20, and a difference Δθ between the measured X-ray diffraction peak angles between the two points is obtained. This Δθ is the difference between the measured inclinations of the atomic arrangement plane 22 at the two points. As described above, an appropriate plane is selected according to the cut plane as the diffraction plane used for the X-ray diffraction measurement.

次に、図6に示すように、得られたΔθから湾曲した原子配列面22の曲率半径を求める。図6には、ウェハ20の原子配列面22の曲面が円の一部であると仮定して、測定した2箇所の原子配列面に接する円Cを示している。図6から幾何学的に、接点を両端とする円弧を含む扇型の中心角φは、測定したX線回折ピーク角度の差Δθと等しくなる。原子配列面22の曲率半径は、当該円弧の半径Rに対応する。円弧の半径Rは以下の関係式で求められる。   Next, as shown in FIG. 6, the radius of curvature of the curved atomic arrangement surface 22 is obtained from the obtained Δθ. FIG. 6 shows circles C that are in contact with two measured atomic arrangement planes, assuming that the curved surface of the atomic arrangement plane 22 of the wafer 20 is a part of a circle. From FIG. 6, geometrically, the center angle φ of the sector including the arc having the contact at both ends becomes equal to the difference Δθ between the measured X-ray diffraction peak angles. The radius of curvature of the atomic arrangement surface 22 corresponds to the radius R of the arc. The radius R of the arc is obtained by the following relational expression.

Figure 2020026374
Figure 2020026374

そして、この円弧の半径Rとウェハ20の半径rとから、原子配列面22の湾曲量dが求められる。図7に示すように、原子配列面22の湾曲量dは、円弧の半径から、円弧の中心からウェハ20に下した垂線の距離を引いたものに対応する。円弧の中心からウェハ20に下した垂線の距離は、三平方の定理から算出され、以下の式が成り立つ。なお、本明細書では曲率半径が正(凹面)の場合の湾曲量dを正の値とし、負(凸面)の場合の湾曲量dを負の値と定義する。   Then, from the radius R of the arc and the radius r of the wafer 20, the amount of curvature d of the atomic arrangement surface 22 is obtained. As shown in FIG. 7, the amount of curvature d of the atomic arrangement surface 22 corresponds to the radius of the arc minus the distance of the perpendicular from the center of the arc to the wafer 20. The distance of the perpendicular from the center of the arc to the wafer 20 is calculated from the three-square theorem, and the following equation holds. In this specification, the curvature d when the radius of curvature is positive (concave surface) is defined as a positive value, and the curvature d when the radius of curvature is negative (convex) is defined as a negative value.

Figure 2020026374
Figure 2020026374

上述のように、XRDのウェハ20の外周端部の測定値だけからRを測定することもできる。一方で、この方法を用いると、測定箇所に局所的な歪等が存在した場合において、形状を見誤る可能性もある。その為、複数箇所でX線回折ピーク角度の測定を行って、単位長さ辺りの曲率を以下の式から換算する。   As described above, R can be measured only from the measured value of the outer peripheral edge of the XRD wafer 20. On the other hand, when this method is used, there is a possibility that the shape may be mistaken when local distortion or the like exists at the measurement location. Therefore, the X-ray diffraction peak angles are measured at a plurality of locations, and the curvature per unit length is converted from the following equation.

Figure 2020026374
Figure 2020026374

図8に、複数のXRDの測定点から原子配列面の曲率半径を求めた例を示す。図8の横軸はウェハ中心からの相対位置であり、縦軸はウェハ中心回折ピーク角に対する各測定点の相対的な回折ピーク角度を示す。図8は、ウェハの[1−100]方向を測定し、測定面を(3−3016)とした例である。測定箇所は5カ所で行った。5点はほぼ直線に並んでおり、この傾きから、dθ/dr=8.69×10−4deg/mmが求められる。この結果を上式に適用することで曲率半径R=66mの凹面であることが計算できる。そして、このRとウェハの半径r(75mm)から、原子配列面の湾曲量dが42.6μmと求まる。 FIG. 8 shows an example in which the radius of curvature of the atomic arrangement surface is obtained from a plurality of XRD measurement points. The horizontal axis in FIG. 8 is the relative position from the wafer center, and the vertical axis is the relative diffraction peak angle of each measurement point with respect to the wafer center diffraction peak angle. FIG. 8 shows an example in which the wafer is measured in the [1-100] direction and the measurement surface is set to (3-3016). The measurement was performed at five places. The five points are substantially arranged in a straight line, and dθ / dr = 8.69 × 10 −4 deg / mm is obtained from the inclination. By applying the result to the above equation, it can be calculated that the concave surface has a radius of curvature R = 66 m. Then, from this R and the radius r (75 mm) of the wafer, the amount of curvature d of the atomic arrangement surface is determined to be 42.6 μm.

ここまで原子配列面の形状が凹面である例で説明したが、凸面の場合も同様に求められる。凸面の場合は、Rはマイナスとして算出される。   So far, an example has been described in which the shape of the atomic arrangement surface is a concave surface. In the case of a convex surface, R is calculated as minus.

(原子配列面の形状の別の測定方法(方法2)の説明)
原子配列面の形状は、別の方法で求めてもよい。図9に平面視中心を通り原子配列面の測定の方向、例えば[1−100]方向に沿って切断した切断面を模式的に示す。図9では、原子配列面22の形状が凹状に湾曲している場合を例に説明する。
(Explanation of another measurement method (method 2) of the shape of the atomic arrangement plane)
The shape of the atomic arrangement plane may be obtained by another method. FIG. 9 schematically shows a cross section cut along the direction of measurement of the atomic arrangement plane, for example, along the [1-100] direction, passing through the center in plan view. FIG. 9 illustrates an example in which the shape of the atomic arrangement surface 22 is concavely curved.

図9に示すように、ウェハ20の中心とウェハ20の中心から距離xだけ離れた場所の2箇所で、X線回折の回折ピークを測定する。インゴットの製造条件の対称性からウェハ20の形状は、近似として左右対称とすることができ、原子配列面22はウェハ20の中央部で平坦になると仮定できる。そのため、図10に示すように測定した2点における原子配列面22の傾きの差をΔθとすると、原子配列面22の相対的な位置yは以下の式で表記できる。   As shown in FIG. 9, the diffraction peaks of the X-ray diffraction are measured at two places, that is, at the center of the wafer 20 and at a distance x from the center of the wafer 20. From the symmetry of the manufacturing conditions of the ingot, it is possible to assume that the shape of the wafer 20 is bilaterally symmetric as an approximation, and that the atomic arrangement surface 22 is flat at the center of the wafer 20. Therefore, assuming that the difference between the inclinations of the atomic arrangement surface 22 at two points measured as shown in FIG. 10 is Δθ, the relative position y of the atomic arrangement surface 22 can be expressed by the following equation.

Figure 2020026374
Figure 2020026374

中心からの距離xの位置を変えて複数箇所の測定をすることで、それぞれの点でウェハ中心と測定点とにおける原子配列面22の相対的な原子位置を求めることができる。
この方法は、それぞれの測定箇所で原子配列面における原子の相対位置が求められる。そのため、局所的な原子配列面の湾曲量を求めることができる。また、ウェハ20全体における原子配列面22の相対的な原子位置をグラフとして示すことができ、原子配列面22のならびを感覚的に把握するために有益である。
By changing the position of the distance x from the center and measuring a plurality of points, it is possible to obtain the relative atomic position of the atom arrangement surface 22 at the wafer center and the measurement point at each point.
In this method, the relative positions of the atoms on the atomic arrangement plane are obtained at each measurement point. Therefore, the amount of local curvature of the atomic arrangement plane can be obtained. Further, the relative atomic positions of the atomic arrangement surface 22 in the entire wafer 20 can be shown as a graph, which is useful for intuitively grasping the arrangement of the atomic arrangement surface 22.

ここでは、測定対象をウェハ20の場合を例に説明した。測定対象がSiCインゴットやSiCインゴットから切断された切断体の場合も、同様に原子配列面の湾曲量を求めることができる。   Here, the case where the measurement target is the wafer 20 has been described as an example. In the case where the measurement target is a SiC ingot or a cut body cut from the SiC ingot, the amount of curvature of the atomic arrangement surface can be similarly obtained.

上述の手順で、少なくとも平面視中央を通り互いに直交する2方向(第1の方向及び第2の方向)に沿って、SiC単結晶の原子配列面2の湾曲量を測定する。それぞれの方向の湾曲量及び湾曲方向を求めることで、図2及び図3に示すような原子配列面2の概略形状を求めることができる。   In the above procedure, the amount of curvature of the atomic arrangement surface 2 of the SiC single crystal is measured in at least two directions (first direction and second direction) passing through the center in plan view and orthogonal to each other. The approximate shape of the atomic arrangement plane 2 as shown in FIGS. 2 and 3 can be obtained by obtaining the amount of bending and the bending direction in each direction.

<準備工程>
準備工程では、SiC単結晶を貼り付ける台座を準備する。図11は、SiC単結晶1と台座3の関係を示す図である。図11に示すように、台座3は、SiC単結晶1の原子配列面2の湾曲方向と逆方向に湾曲する湾曲面3Aを有する。後述する貼付工程で、SiC単結晶1を台座3に貼り付けることで、原子配列面2の湾曲を解消し、原子配列面2を平坦化することができる。
<Preparation process>
In the preparation step, a pedestal on which the SiC single crystal is to be attached is prepared. FIG. 11 is a diagram showing the relationship between the SiC single crystal 1 and the pedestal 3. As shown in FIG. 11, the pedestal 3 has a curved surface 3A that is curved in a direction opposite to the direction of curvature of the atomic arrangement surface 2 of the SiC single crystal 1. By sticking the SiC single crystal 1 to the pedestal 3 in the sticking step described later, the curvature of the atomic arrangement surface 2 can be eliminated and the atomic arrangement surface 2 can be flattened.

貼付工程をおこなった後のSiC単結晶の原子面配列の湾曲量は0であることが望ましい。その為、原子配列面2の湾曲量の絶対値と、台座3の湾曲面3Aの湾曲量の絶対値と、の差は、貼付面のいずれの箇所においても10μm以下であることが好ましく、0であることが最も好ましい。台座3と原子配列面2との湾曲量の絶対値差が小さければ、貼り付け後の原子配列面2をより平坦化できる。また原子配列面2の湾曲量の絶対値と、台座3の湾曲面3Aの湾曲量の絶対値と、の差が0でない場合、変形による応力をSiC単結晶に加えすぎないように、台座3の湾曲面3Aの湾曲量は原子配列面2の湾曲量の絶対値よりも小さいことが好ましい。SiC単結晶を歪ませすぎて、SiC単結晶が割れるリスクを低減させることができる。   It is desirable that the amount of curvature of the atomic plane arrangement of the SiC single crystal after performing the attaching step is zero. Therefore, the difference between the absolute value of the amount of curvature of the atomic arrangement surface 2 and the absolute value of the amount of curvature of the curved surface 3A of the pedestal 3 is preferably 10 μm or less at any point on the attachment surface. Is most preferred. If the absolute value difference of the amount of curvature between the pedestal 3 and the atomic arrangement surface 2 is small, the atomic arrangement surface 2 after pasting can be made flatter. When the difference between the absolute value of the amount of curvature of the atomic arrangement surface 2 and the absolute value of the amount of curvature of the curved surface 3A of the pedestal 3 is not zero, the pedestal 3 is not subjected to excessive stress due to deformation to the SiC single crystal. Is preferably smaller than the absolute value of the amount of curvature of the atomic arrangement surface 2. The risk of breaking the SiC single crystal by excessively distorting the SiC single crystal can be reduced.

台座3の湾曲面3Aは、SiC単結晶1の原子配列面2の形状を測定してから加工してもよいし、予め事前に湾曲方向及び湾曲量の異なる複数の台座3を準備しておき、それらの中から貼付後に原子配列面2を最も平坦化できるものを選択してもよい。   The curved surface 3A of the pedestal 3 may be processed after measuring the shape of the atomic arrangement surface 2 of the SiC single crystal 1, or a plurality of pedestals 3 having different bending directions and bending amounts are prepared in advance. Alternatively, one of them may be selected that can flatten the atomic arrangement surface 2 after being attached.

また台座3の熱膨張係数は、SiC単結晶1の熱膨張係数と近いことが好ましい。具体的には、熱膨張係数差が、0.3×10−6/℃以下であることが好ましい。なお、ここで示す熱膨張係数とは、SiC単結晶1を種結晶として結晶成長する温度領域における熱膨張係数を意味し、2000℃近傍の温度を意味する。例えば、黒鉛の熱膨張係数は、加工条件、含有材料等により、4.3×10−6/℃〜7.1×10−6/℃の範囲で選択できる。台座3とSiC単結晶1の熱膨張率差が近いことで、結晶成長時の熱膨張率差によってSiC単結晶1が反り、原子配列面2が湾曲することを防ぐことができる。 Further, the thermal expansion coefficient of pedestal 3 is preferably close to the thermal expansion coefficient of SiC single crystal 1. Specifically, the difference in thermal expansion coefficient is preferably 0.3 × 10 −6 / ° C. or less. The coefficient of thermal expansion shown here means a coefficient of thermal expansion in a temperature region where a crystal is grown using the SiC single crystal 1 as a seed crystal, and means a temperature near 2000 ° C. For example, the thermal expansion coefficient of the graphite, the processing conditions, the inclusion material and the like, can be selected in the range of 4.3 × 10 -6 /℃~7.1×10 -6 / ℃ . Since the difference in thermal expansion coefficient between the pedestal 3 and the SiC single crystal 1 is close, it is possible to prevent the SiC single crystal 1 from warping due to the difference in thermal expansion coefficient during crystal growth, and prevent the atomic arrangement plane 2 from being curved.

<貼付工程>
貼付工程では、原子配列面2の湾曲方向と台座3の湾曲面3Aの湾曲方向とが異なるようにSiC単結晶1と台座3とを対向させて、貼りつける。図12は、SiC単結晶1を台座3に貼りつけた後の状態を模式的に示した図である。
<Paste process>
In the attaching step, the SiC single crystal 1 and the pedestal 3 are attached so as to face each other such that the curved direction of the atomic arrangement surface 2 and the curved direction of the curved surface 3A of the pedestal 3 are different. FIG. 12 is a diagram schematically illustrating a state after the SiC single crystal 1 is attached to the pedestal 3.

図11及び図12に示すように、原子配列面2の湾曲方向と台座3の湾曲面3Aの湾曲方向とが反対方向になるようにしてSiC単結晶1を台座3に貼りつけると、SiC単結晶1の原子配列面2が貼付前と比較して平坦化する。   As shown in FIGS. 11 and 12, when the SiC single crystal 1 is attached to the pedestal 3 such that the bending direction of the atomic arrangement surface 2 and the bending direction of the curved surface 3A of the pedestal 3 are opposite to each other, The atomic arrangement surface 2 of the crystal 1 is flattened as compared to before the attachment.

貼付工程を行う際のSiC単結晶1の厚みは5mm以下であることが好ましい。SiC単結晶10の厚みが厚いと、貼付時にたわみが生じにくい。そのため、台座に対して密着させて貼り付け難くなり、貼付工程後のSiC単結晶の原子配列面(格子面)を平坦に配置し辛くなる。   The thickness of the SiC single crystal 1 at the time of performing the attaching step is preferably 5 mm or less. If the thickness of the SiC single crystal 10 is large, bending is less likely to occur during sticking. For this reason, it is difficult to attach the SiC single crystal in close contact with the pedestal, and it becomes difficult to arrange the atomic arrangement plane (lattice plane) of the SiC single crystal after the attaching step flat.

また貼付工程において、台座3の湾曲面3Aに対してSiC単結晶1を押し付ける荷重は、原子配列面2の台座3の湾曲面3Aに対する相対的な距離に応じて変えることが好ましい。例えば、SiC単結晶1の原子配列面2が台座3に向って凸に湾曲し、外周に向かうほど原子配列面2と台座3の湾曲面3Aとの距離が離れる場合は、SiC単結晶1の外周側の荷重を内側より強くすることが好ましい。またSiC単結晶1の原子配列面2が台座3に向って凹に湾曲し、内側に向かうほど原子配列面2と台座3の湾曲面3Aとの距離が離れる場合は、SiC単結晶1の内側の荷重を外周側より強くすることが好ましい。   In the attaching step, it is preferable that the load pressing the SiC single crystal 1 against the curved surface 3A of the pedestal 3 is changed according to the relative distance of the atomic arrangement surface 2 to the curved surface 3A of the pedestal 3. For example, when the atomic arrangement surface 2 of the SiC single crystal 1 is convexly curved toward the pedestal 3 and the distance between the atomic arrangement surface 2 and the curved surface 3A of the pedestal 3 increases toward the outer periphery, the SiC single crystal 1 It is preferable to make the load on the outer peripheral side stronger than that on the inner side. When the atomic arrangement surface 2 of the SiC single crystal 1 is concavely curved toward the pedestal 3 and the distance between the atomic arrangement surface 2 and the curved surface 3A of the pedestal 3 increases toward the inside, the inside of the SiC single crystal 1 It is preferable that the load on the outer peripheral side be higher than that on the outer peripheral side.

また貼付工程は、例えば、接着剤を用いて行う。接着剤は、熱硬化性樹脂等を用いることができる。   The attaching step is performed using, for example, an adhesive. As the adhesive, a thermosetting resin or the like can be used.

また貼付工程後に、SiC単結晶1の周囲を減圧する減圧工程をさらに行ってもよい。接着面に気泡等が噛みこんだ場合でも減圧環境にすることで脱泡できる。その結果、塗布時の接着剤の厚みムラをより抑制できる。   After the attaching step, a pressure reducing step of reducing the pressure around the SiC single crystal 1 may be further performed. Even when air bubbles or the like are caught in the bonding surface, degassing can be performed by setting a reduced pressure environment. As a result, thickness unevenness of the adhesive at the time of application can be further suppressed.

また貼付工程に至るSiC単結晶1の原子配列面2の曲率半径は28m以上であることが好ましい。曲率半径が大きいほど、原子配列面2は平坦になる。また、SiC単結晶の直径が150mm以上の場合に、原子配列面の湾曲量の最大値は100μm以下であることが好ましい。原子配列面2の湾曲量が大きいと、原子配列面2を平坦化させるために、SiC単結晶1を原子配列面2の湾曲方向と反対方向に大きく歪ませる必要がある。SiC単結晶1の歪量を所定の範囲内にしておくことで、SiC単結晶1にクラックが生じることや、SiC単結晶1内に応力が蓄積することを抑制できる。   The radius of curvature of the atomic arrangement surface 2 of the SiC single crystal 1 leading to the attaching step is preferably 28 m or more. The larger the radius of curvature, the flatter the atomic arrangement surface 2 becomes. Further, when the diameter of the SiC single crystal is 150 mm or more, it is preferable that the maximum value of the amount of curvature of the atomic arrangement surface is 100 μm or less. If the amount of curvature of the atomic arrangement surface 2 is large, it is necessary to greatly deform the SiC single crystal 1 in the direction opposite to the curving direction of the atomic arrangement surface 2 in order to flatten the atomic arrangement surface 2. By setting the amount of strain of the SiC single crystal 1 within a predetermined range, it is possible to suppress the occurrence of cracks in the SiC single crystal 1 and the accumulation of stress in the SiC single crystal 1.

上述のように、本実施形態にかかるSiC単結晶の貼合方法によれば、原子配列面2の湾曲を小さくすることができる。   As described above, according to the bonding method of the SiC single crystal according to the present embodiment, the curvature of the atomic arrangement surface 2 can be reduced.

「SiCインゴットの製造方法」
本実施形態にかかるSiCインゴットの製造方法は、上述のSiC単結晶の貼合方法において、台座3に貼り付けられたSiC単結晶1を種結晶として結晶成長を行う。SiCインゴットは、例えば昇華法を用いて製造できる。昇華法は、原料を加熱することによって生じた原料ガスを単結晶(種結晶)上で再結晶化し、大きな単結晶(インゴット)を得る方法である。
"Method of manufacturing SiC ingot"
In the method for manufacturing a SiC ingot according to the present embodiment, in the above-described method for bonding a SiC single crystal, crystal growth is performed using the SiC single crystal 1 bonded to the pedestal 3 as a seed crystal. The SiC ingot can be manufactured using, for example, a sublimation method. The sublimation method is a method in which a raw material gas generated by heating a raw material is recrystallized on a single crystal (seed crystal) to obtain a large single crystal (ingot).

図13は、昇華法に用いられる製造装置の一例の模式図である。製造装置200は、坩堝100とコイル101とを有する。坩堝100とコイル101との間には、コイル101の誘導加熱により発熱する発熱体(図視略)を有してもよい。   FIG. 13 is a schematic view of an example of a manufacturing apparatus used for the sublimation method. The manufacturing apparatus 200 has a crucible 100 and a coil 101. Between the crucible 100 and the coil 101, a heating element (not shown) that generates heat by induction heating of the coil 101 may be provided.

坩堝100は、原料Gと対向する位置に設けられた台座3を有する。台座3には、SiC単結晶1が上記の貼合方法に従って貼り付けられている。また坩堝100の内部には、台座3から原料Gに向けて拡径するテーパーガイド102が設けられている。   The crucible 100 has a pedestal 3 provided at a position facing the raw material G. SiC single crystal 1 is attached to pedestal 3 according to the above-described attaching method. Further, inside the crucible 100, there is provided a taper guide 102 whose diameter increases from the pedestal 3 toward the raw material G.

コイル101に交流電流を印加すると、坩堝100が加熱され、原料Gから原料ガスが生じる。発生した原料ガスは、テーパーガイド102に沿って台座3に設置されたSiC単結晶1に供給される。SiC単結晶1に原料ガスが供給されることで、SiC単結晶1の主面にSiCインゴットIが結晶成長する。SiC単結晶1の結晶成長面は、カーボン面、又は、カーボン面から10°以下のオフ角を設けた面とすることが好ましい。   When an alternating current is applied to the coil 101, the crucible 100 is heated, and a raw material gas is generated from the raw material G. The generated source gas is supplied to the SiC single crystal 1 installed on the pedestal 3 along the taper guide 102. When the source gas is supplied to the SiC single crystal 1, the SiC ingot I grows on the main surface of the SiC single crystal 1. The crystal growth surface of SiC single crystal 1 is preferably a carbon surface or a surface having an off angle of 10 ° or less from the carbon surface.

SiCインゴットIは、SiC単結晶1の結晶情報の多くを引き継ぐ。SiC単結晶10の原子配列面2は平坦化されているため、SiCインゴットI内にBPDが発生することを抑制できる。   SiC ingot I inherits much of the crystal information of SiC single crystal 1. Since the atomic arrangement surface 2 of the SiC single crystal 10 is flattened, generation of BPD in the SiC ingot I can be suppressed.

図14は、SiC単結晶の原子配列面の曲率半径と、BPD密度の関係を示すグラフである。図14に示すように、原子配列面2の曲率半径とSiCインゴットI内のBPD密度とは対応関係を有する。原子配列面2の曲率半径が大きい(原子配列面2の湾曲量が小さい)ほど、BPD密度は少なくなる傾向にある。内部に応力が残留した結晶は、結晶面のすべりを誘起させ、BPDの発生と共に原子配列面2を湾曲させると考えられる。あるいは、逆に、湾曲量が大きい原子配列面2が、ひずみを有し、BPDの原因となることも考えられる。いずれの場合においても、原子配列面の曲率半径が大きい(すなわち、原子配列面の湾曲量が小さい)ほど、BPD密度が小さくなる。   FIG. 14 is a graph showing the relationship between the radius of curvature of the atomic arrangement plane of the SiC single crystal and the BPD density. As shown in FIG. 14, there is a correspondence between the radius of curvature of the atomic arrangement surface 2 and the BPD density in the SiC ingot I. The BPD density tends to decrease as the radius of curvature of the atomic arrangement surface 2 increases (the amount of curvature of the atomic arrangement surface 2 decreases). It is considered that the crystal in which the stress remains inside induces a slip of the crystal plane, and causes the atomic arrangement plane 2 to be curved with the occurrence of BPD. Alternatively, conversely, it is conceivable that the atomic arrangement surface 2 having a large amount of curvature has a strain and causes BPD. In either case, the BPD density decreases as the radius of curvature of the atomic arrangement surface increases (ie, the amount of curvature of the atomic arrangement surface decreases).

上述のように、本実施形態にかかるSiCインゴットの製造方法は、種結晶として用いられるSiC単結晶1の原子配列面2が平坦化されているため、SiCインゴットI内にBPDが生じることが抑制されている。そのため、BPD密度の少ない良質なSiCインゴットIが得られる。   As described above, in the method of manufacturing the SiC ingot according to the present embodiment, since the atomic arrangement surface 2 of the SiC single crystal 1 used as the seed crystal is flattened, the generation of BPD in the SiC ingot I is suppressed. Have been. Therefore, a high quality SiC ingot I having a low BPD density can be obtained.

最後に得られたSiCインゴットIをスライスしてSiCウェハを作製する。切断する方向は、<0001>に垂直または0〜10°のオフ角をつけた方向に切断し、C面に平行、またはC面から0〜10°オフ角をつけた面をもつウェハを作製する。ウェハの表面加工は、(0001)面側すなわちSi面側に鏡面加工を施してもよい。Si面は、通常エピタキシャル成長を行う面である。SiCインゴットIはBPDが少ないため、BPDの少ないSiCウェハを得ることができる。キラー欠陥であるBPDが少ないSiCウェハを用いることで、高品質なSiCエピタキシャルウェハを得ることができ、SiCデバイスの歩留りを高めることができる。   Finally, the obtained SiC ingot I is sliced to produce a SiC wafer. The cutting direction is perpendicular to <0001> or cut at a direction with an off angle of 0 to 10 ° to produce a wafer having a surface parallel to the C plane or a plane with an off angle of 0 to 10 ° from the C plane. I do. The wafer may be mirror-finished on the (0001) surface side, that is, on the Si surface side. The Si surface is a surface on which epitaxial growth is usually performed. Since the SiC ingot I has a small BPD, a SiC wafer having a small BPD can be obtained. By using an SiC wafer with a small number of BPDs as killer defects, a high-quality SiC epitaxial wafer can be obtained, and the yield of SiC devices can be increased.

また坩堝100を加熱し原料Gを昇華させる際に、周方向の異方性が生じないように、坩堝100を回転させることが好ましい。回転速度は、0.1rpm以上とすることが好ましい。また成長時の成長面における温度変化は少なくすることが好ましい。   Further, when heating the crucible 100 and sublimating the raw material G, it is preferable to rotate the crucible 100 so that circumferential anisotropy does not occur. The rotation speed is preferably set to 0.1 rpm or more. Further, it is preferable to reduce the temperature change on the growth surface during growth.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   As described above, the preferred embodiments of the present invention have been described in detail, but the present invention is not limited to the specific embodiments, and various modifications may be made within the scope of the present invention described in the appended claims. Can be modified and changed.

1 SiC単結晶
2,22 原子配列面
20 ウェハ
3 台座
3A 湾曲面
100 坩堝
101 コイル
102 テーパーガイド
200 製造装置
A 原子
I SiCインゴット
G 原料
DESCRIPTION OF SYMBOLS 1 SiC single crystal 2,22 Atomic arrangement surface 20 Wafer 3 Pedestal 3A Curved surface 100 Crucible 101 Coil 102 Taper guide 200 Manufacturing apparatus A Atomic I SiC ingot G Raw material

Claims (9)

SiC単結晶の原子配列面の湾曲量及び湾曲方向を少なくとも平面視中央を通る第1の方向と前記第1の方向と直交する第2の方向に沿って測定する測定工程と、
前記SiC単結晶の原子配列面と逆方向に湾曲する湾曲面を有する台座を準備する準備工程と、
前記原子配列面の湾曲方向と前記湾曲面の湾曲方向とが異なるように前記SiC単結晶と前記台座とを対向させて、貼りつける貼付工程と、を備えるSiC単結晶の貼合方法。
A measurement step of measuring the amount and direction of curvature of the atomic arrangement plane of the SiC single crystal along at least a first direction passing through the center in plan view and a second direction orthogonal to the first direction;
A preparing step of preparing a pedestal having a curved surface curved in a direction opposite to an atomic arrangement surface of the SiC single crystal;
A bonding step of bonding the SiC single crystal and the pedestal so that the bending direction of the atomic arrangement surface is different from the bending direction of the curved surface, and bonding the SiC single crystal and the pedestal.
前記原子配列面の湾曲量の絶対値と、前記台座の前記湾曲面の湾曲量の絶対値と、の差が、貼付面のいずれの箇所においても10μm以下である、請求項1に記載のSiC単結晶の貼合方法。     2. The SiC according to claim 1, wherein a difference between an absolute value of the amount of curvature of the atomic arrangement surface and an absolute value of the amount of curvature of the curved surface of the pedestal is 10 μm or less at any part of the attachment surface. Single crystal bonding method. 前記原子配列面の曲率半径が28m以上である、請求項1又は2に記載のSiC単結晶の貼合方法。   The bonding method of a SiC single crystal according to claim 1 or 2, wherein a radius of curvature of the atomic arrangement surface is 28 m or more. 前記SiC単結晶の直径が150mm以上の場合に、前記原子配列面の湾曲量の最大値が100μm以下である、請求項1〜3のいずれか一項に記載のSiC単結晶の貼合方法。   The bonding method of the SiC single crystal according to any one of claims 1 to 3, wherein when the diameter of the SiC single crystal is 150 mm or more, the maximum value of the amount of curvature of the atomic arrangement surface is 100 µm or less. 前記貼付工程を行う際の前記SiC単結晶の厚みが5mm以下である、請求項1〜4のいずれか一項に記載のSiC単結晶の貼合方法。   The method for bonding a SiC single crystal according to any one of claims 1 to 4, wherein the thickness of the SiC single crystal when performing the bonding step is 5 mm or less. 請求項1〜5のいずれか一項に記載のSiC単結晶の貼合方法において、前記台座に貼り付けられた前記SiC単結晶を種結晶として結晶成長を行う、SiCインゴットの製造方法。   The method for bonding an SiC single crystal according to any one of claims 1 to 5, wherein a crystal is grown using the SiC single crystal attached to the pedestal as a seed crystal. 前記台座と前記SiC単結晶との結晶成長温度における熱膨張係数の差が、0.3×10−6/℃以下である、請求項6に記載のSiCインゴットの製造方法。 The method for producing an SiC ingot according to claim 6 , wherein a difference in thermal expansion coefficient between the pedestal and the SiC single crystal at a crystal growth temperature is 0.3 10-6 / C or less. 貼りつけるSiC単結晶の原子配列面の湾曲方向と反対方向に湾曲する湾曲面を備える、SiC単結晶成長用台座。   A SiC single crystal growth pedestal having a curved surface that is curved in a direction opposite to the direction of the atomic arrangement surface of the SiC single crystal to be attached. 貼りつけるSiC単結晶の原子配列面の湾曲量の絶対値と、前記湾曲面の湾曲量の絶対値と、の差が、貼付面のいずれの箇所においても10μm以下である、請求項8に記載のSiC単結晶成長用台座。   9. The difference between the absolute value of the amount of curvature of the atomic arrangement surface of the SiC single crystal to be attached and the absolute value of the amount of curvature of the curved surface is 10 μm or less at any point on the attachment surface. 10. Pedestal for growing SiC single crystal.
JP2018152319A 2018-08-13 2018-08-13 SiC Single Crystal Bonding Method, SiC Ingot Manufacturing Method, and SiC Single Crystal Growth Pedestal Active JP7149767B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018152319A JP7149767B2 (en) 2018-08-13 2018-08-13 SiC Single Crystal Bonding Method, SiC Ingot Manufacturing Method, and SiC Single Crystal Growth Pedestal
PCT/JP2019/031803 WO2020036167A1 (en) 2018-08-13 2019-08-13 Method for bonding sic single crystal, method for producing sic ingot, and mount for use in growth of sic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152319A JP7149767B2 (en) 2018-08-13 2018-08-13 SiC Single Crystal Bonding Method, SiC Ingot Manufacturing Method, and SiC Single Crystal Growth Pedestal

Publications (3)

Publication Number Publication Date
JP2020026374A true JP2020026374A (en) 2020-02-20
JP2020026374A5 JP2020026374A5 (en) 2021-07-26
JP7149767B2 JP7149767B2 (en) 2022-10-07

Family

ID=69525346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152319A Active JP7149767B2 (en) 2018-08-13 2018-08-13 SiC Single Crystal Bonding Method, SiC Ingot Manufacturing Method, and SiC Single Crystal Growth Pedestal

Country Status (2)

Country Link
JP (1) JP7149767B2 (en)
WO (1) WO2020036167A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4060098A1 (en) * 2021-03-19 2022-09-21 SiCrystal GmbH Method for producing sic-volume single crystal of inhomogeneous screw dislocation distribution and sic substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543718A (en) * 2010-12-14 2012-07-04 北京天科合达蓝光半导体有限公司 Method for decreasing warp and bow of silicon carbide wafer
JP2015117143A (en) * 2013-12-17 2015-06-25 住友電気工業株式会社 Production method of single crystal
JP2020026373A (en) * 2018-08-13 2020-02-20 昭和電工株式会社 PROCESSING METHOD OF SiC SINGLE CRYSTAL, MANUFACTURING METHOD OF SiC INGOT, AND SiC SINGLE CRYSTAL

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373104A (en) * 1986-09-17 1988-04-02 Toshiba Corp X-ray diffraction apparatus for measuring lattice flection
JPH07101679B2 (en) * 1988-11-01 1995-11-01 三菱電機株式会社 Wafer for electronic device, rod-shaped substrate for wafer, and electronic device
JP3239884B2 (en) * 1989-12-12 2001-12-17 ソニー株式会社 Semiconductor substrate manufacturing method
JP6390628B2 (en) * 2016-01-12 2018-09-19 トヨタ自動車株式会社 Method and apparatus for producing SiC single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543718A (en) * 2010-12-14 2012-07-04 北京天科合达蓝光半导体有限公司 Method for decreasing warp and bow of silicon carbide wafer
JP2015117143A (en) * 2013-12-17 2015-06-25 住友電気工業株式会社 Production method of single crystal
JP2020026373A (en) * 2018-08-13 2020-02-20 昭和電工株式会社 PROCESSING METHOD OF SiC SINGLE CRYSTAL, MANUFACTURING METHOD OF SiC INGOT, AND SiC SINGLE CRYSTAL

Also Published As

Publication number Publication date
WO2020036167A1 (en) 2020-02-20
JP7149767B2 (en) 2022-10-07

Similar Documents

Publication Publication Date Title
US11905621B2 (en) SiC single crystal, method of manufacturing SiC ingot, and method of manufacturing SiC wafer
JP7002932B2 (en) Manufacturing method of SiC ingot
US20080217745A1 (en) Nitride Semiconductor Wafer
JP4985625B2 (en) Method for producing silicon carbide single crystal
JPWO2009035095A1 (en) Epitaxial SiC single crystal substrate and method of manufacturing epitaxial SiC single crystal substrate
JP6916835B2 (en) Chamfering Silicon Carbide Substrate and Chamfering Method
JP6120742B2 (en) Method for manufacturing single crystal ingot, method for manufacturing single crystal substrate, and method for manufacturing semiconductor device
JP2024032023A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL, SiC SEED CRYSTAL AND SiC INGOT
WO2019244580A1 (en) Device for growing silicon carbide single crystal and method for producing silicon carbide single crystal
WO2020036167A1 (en) Method for bonding sic single crystal, method for producing sic ingot, and mount for use in growth of sic single crystal
WO2021200203A1 (en) Diamond crystal substrate and method for producing diamond crystal substrate
CN109957839B (en) Method for processing SiC single crystal and method for producing SiC ingot
WO2020036170A1 (en) Sic single crystal, method for producing sic ingot and method for producing sic wafer
JP2018104231A (en) MANUFACTURING METHOD OF SiC WAFER AND SiC WAFER
WO2020036166A1 (en) METHOD FOR EVALUATING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC WAFER
US11618969B2 (en) SiC single crystal composite and SiC ingot
JP6697748B2 (en) GaN substrate and method of manufacturing the same
JP6971144B2 (en) Pedestal, SiC single crystal manufacturing equipment and manufacturing method
WO2020036163A1 (en) METHOD FOR EVALUATING SiC SINGLE CRYSTAL AND QUALITY INSPECTION METHOD

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220927

R150 Certificate of patent or registration of utility model

Ref document number: 7149767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350