JP2020026372A - METHOD FOR EVALUATING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC WAFER - Google Patents

METHOD FOR EVALUATING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC WAFER Download PDF

Info

Publication number
JP2020026372A
JP2020026372A JP2018152317A JP2018152317A JP2020026372A JP 2020026372 A JP2020026372 A JP 2020026372A JP 2018152317 A JP2018152317 A JP 2018152317A JP 2018152317 A JP2018152317 A JP 2018152317A JP 2020026372 A JP2020026372 A JP 2020026372A
Authority
JP
Japan
Prior art keywords
atomic arrangement
single crystal
sic
sic single
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018152317A
Other languages
Japanese (ja)
Other versions
JP7117938B2 (en
Inventor
駿介 野口
Shunsuke Noguchi
駿介 野口
陽平 藤川
Yohei Fujikawa
陽平 藤川
秀隆 鷹羽
Hidetaka Takahane
秀隆 鷹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Denso Corp filed Critical Showa Denko KK
Priority to JP2018152317A priority Critical patent/JP7117938B2/en
Priority to PCT/JP2019/031799 priority patent/WO2020036166A1/en
Publication of JP2020026372A publication Critical patent/JP2020026372A/en
Application granted granted Critical
Publication of JP7117938B2 publication Critical patent/JP7117938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide efficiently a high-quality SiC single crystal wafer.SOLUTION: This method for evaluating an SiC single crystal evaluates the curved state of an atomic arrangement surface at least in two directions, namely in a first direction that passes through the center of the plan view of an SiC single crystal and extends along the <1-100> direction and in a second direction that is perpendicular to the first direction, while passing through the center of the plan view of the SiC single crystal and extending along the <11-20> direction.SELECTED DRAWING: Figure 1

Description

本発明は、SiC単結晶の評価方法及びSiCウェハの製造方法に関する。   The present invention relates to a method for evaluating a SiC single crystal and a method for manufacturing a SiC wafer.

炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、バンドギャップが3倍大きい。また、炭化珪素(SiC)は、シリコン(Si)に比べて熱伝導率が3倍程度高い等の特性を有する。炭化珪素(SiC)は、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。   Silicon carbide (SiC) has a breakdown electric field one order of magnitude higher than silicon (Si) and a band gap three times larger. Further, silicon carbide (SiC) has characteristics such as a thermal conductivity that is about three times higher than that of silicon (Si). Silicon carbide (SiC) is expected to be applied to power devices, high-frequency devices, high-temperature operation devices, and the like.

半導体等のデバイスには、SiCウェハ上にエピタキシャル膜を形成したSiCエピタキシャルウェハが用いられる。SiCウェハ上に化学的気相成長法(Chemical Vapor Deposition:CVD)によって設けられたエピタキシャル膜が、SiC半導体デバイスの活性領域となる。   For devices such as semiconductors, an SiC epitaxial wafer having an epitaxial film formed on a SiC wafer is used. An epitaxial film provided on a SiC wafer by a chemical vapor deposition (CVD) becomes an active region of the SiC semiconductor device.

そのため、割れ等の破損が無く、欠陥の少ない、高品質なSiCウェハが求められている。なお、本明細書において、SiCエピタキシャルウェハはエピタキシャル膜を形成後のウェハを意味し、SiCウェハはエピタキシャル膜を形成前のウェハを意味する。   Therefore, there is a demand for a high-quality SiC wafer that is free from damage such as cracks and has few defects. In this specification, the SiC epitaxial wafer means a wafer after forming an epitaxial film, and the SiC wafer means a wafer before forming an epitaxial film.

例えば、特許文献1には、ウェハの反り量及び結晶方位のズレ量を所定の範囲内にすることで、SiCウェハ上に形成されるエピタキシャル膜が良好となることが記載されている。   For example, Patent Literature 1 describes that an epitaxial film formed on a SiC wafer is improved by setting the amount of warpage of the wafer and the amount of deviation of the crystal orientation within a predetermined range.

また特許文献2には、ウェハ面内の成長面方位のずれを所定の範囲内とすることで、良質なエピタキシャル膜が得られることが記載されている。   Patent Document 2 describes that a good quality epitaxial film can be obtained by setting the deviation of the growth plane orientation in the wafer plane within a predetermined range.

また高品質なSiCウェハを得るために、各工程において品質の評価が行われている。例えば、SiCインゴットの品質は、評価用ウェハを切断加工した後に、X線トポグラフ解析(XRT)、KOHエッチング等を用いて評価する(特許文献3)。SiCインゴットの品質を充分評価してから取得するSiCウェハ枚数及び種結晶数を決定すると、SiC単結晶のロス量を低減できる。   In order to obtain a high quality SiC wafer, quality evaluation is performed in each process. For example, the quality of a SiC ingot is evaluated using X-ray topographic analysis (XRT), KOH etching, or the like after cutting an evaluation wafer (Patent Document 3). If the number of SiC wafers and the number of seed crystals to be obtained after sufficiently evaluating the quality of the SiC ingot are determined, the loss amount of the SiC single crystal can be reduced.

特開2011−219296号公報JP 2011-219296 A 特開2011−16721号公報JP 2011-16721 A 特開2015−188003号公報JP-A-2005-188003

しかしながら、特許文献3に記載の方法では、SiCインゴットを評価用ウェハに加工し、エッチング等で品質を評価するのに時間がかかる。その結果、SiCインゴットからSiCウェハを加工するまでの間に、数週間単位の時間的なロスが生じる。   However, in the method described in Patent Document 3, it takes time to process the SiC ingot into an evaluation wafer and evaluate the quality by etching or the like. As a result, a time loss of several weeks occurs between the processing of the SiC ingot and the processing of the SiC wafer.

また特許文献1及び特許文献2に記載のSiCウェハのように、所定の方向における格子ズレの程度を制御したのみでは、基底面転位(BPD)の発生を充分に抑制することができない場合がある。基底面転位(BPD)は、SiCウェハのキラー欠陥の一つであり、基底面において生じるすべりが発生の原因の一つであると考えられている欠陥である。   Further, as in the case of the SiC wafers described in Patent Literature 1 and Patent Literature 2, the occurrence of basal plane dislocation (BPD) cannot be sufficiently suppressed only by controlling the degree of lattice displacement in a predetermined direction. . The basal plane dislocation (BPD) is one of the killer defects of the SiC wafer, and is a defect that is considered to be one of the causes of the occurrence of the slip generated on the basal plane.

本発明は上記問題に鑑みてなされたものであり、高品質なSiC単結晶ウェハを効率的に提供することを目的とする。   The present invention has been made in view of the above problems, and has as its object to efficiently provide a high-quality SiC single crystal wafer.

本発明者らは、鋭意検討の結果、SiC単結晶の原子配列面(格子面)の湾曲状態を少なくとも二方向で評価することで、基底面転位(BPD)を発生しにくいSiC単結晶を簡便に評価できることを見出した。
またSiC単結晶の原子配列面を簡便に評価することで、SiCインゴットの大まかな品質を把握でき、SiCインゴットの切断条件及び次回の単結晶の成長条件を素早くフィードバックできることを見出した。
すなわち、本発明は、上記課題を解決するために、以下の手段を提供する。
As a result of intensive studies, the present inventors have evaluated the bending state of the atomic arrangement plane (lattice plane) of the SiC single crystal in at least two directions, and have obtained a simple SiC single crystal in which basal plane dislocation (BPD) is not easily generated. It was found that it can be evaluated.
Also, by simply evaluating the atomic arrangement plane of the SiC single crystal, it was found that the rough quality of the SiC ingot can be grasped, and the cutting conditions of the SiC ingot and the next growth condition of the single crystal can be quickly fed back.
That is, the present invention provides the following means in order to solve the above problems.

(1)第1の態様にかかるSiC単結晶の評価方法は、SiC単結晶の平面視中心を通り<1−100>方向に沿う第1方向と、前記第1方向に垂直で前記SiC単結晶の平面視中心を通り<11−20>方向に沿う第2方向と、の少なくとも二方向における原子配列面の湾曲状態を評価する。 (1) In the method for evaluating a SiC single crystal according to the first aspect, the SiC single crystal is perpendicular to the first direction along a <1-100> direction passing through the center of the SiC single crystal in a plan view. And the second direction along the <11-20> direction passing through the center in plan view, and the curved state of the atom arrangement surface in at least two directions.

(2)上記態様にかかるSiC単結晶の評価方法において、前記原子配列面の湾曲状態を、前記第1方向を基準に30°ずつ回した少なくとも六方向で評価してもよい。 (2) In the method for evaluating a SiC single crystal according to the above aspect, the curved state of the atomic arrangement plane may be evaluated in at least six directions rotated by 30 ° with respect to the first direction.

(3)上記態様にかかるSiC単結晶の評価方法において、前記原子配列面の湾曲状態を、測定方向における前記原子配列面の湾曲方向が一致するか否かにより評価してもよい。 (3) In the method for evaluating a SiC single crystal according to the above aspect, the bending state of the atomic arrangement plane may be evaluated based on whether or not the bending direction of the atomic arrangement plane in the measurement direction matches.

(4)上記態様にかかるSiC単結晶の評価方法において、前記原子配列面の湾曲状態を、測定方向における前記原子配列面の湾曲量の最大値及び最小値の差から評価してもよい。 (4) In the method for evaluating a SiC single crystal according to the above aspect, the bending state of the atomic arrangement surface may be evaluated from a difference between a maximum value and a minimum value of the amount of curvature of the atomic arrangement surface in a measurement direction.

(5)上記態様にかかるSiC単結晶の評価方法において、前記原子配列面の湾曲状態をX線回折により評価してもよい。 (5) In the method for evaluating a SiC single crystal according to the above aspect, the curved state of the atomic arrangement plane may be evaluated by X-ray diffraction.

(6)第2の態様にかかるSiC単結晶の製造方法は、上記態様にかかるSiC単結晶の評価方法による評価結果に基づき、SiCインゴットのスライス方法又はSiC単結晶の成長条件を決定する。 (6) In the method for producing a SiC single crystal according to the second aspect, the method for slicing the SiC ingot or the growth condition for the SiC single crystal is determined based on the evaluation result of the evaluation method for the SiC single crystal according to the above aspect.

上記態様にかかるSiC単結晶の評価方法を用いると、高品質なSiC単結晶ウェハを効率的に提供できる。   When the method for evaluating a SiC single crystal according to the above aspect is used, a high-quality SiC single crystal wafer can be efficiently provided.

本実施形態にかかるSiCウェハの製造方法を模式的に示した図である。FIG. 4 is a view schematically showing a method for manufacturing a SiC wafer according to the embodiment. SiCインゴットを作製する際に用いられる製造装置の一例の模式図である。It is a schematic diagram of an example of the manufacturing apparatus used when manufacturing a SiC ingot. 種結晶上に結晶成長したSiCインゴットの断面模式図である。It is a cross section of an SiC ingot which grew on a seed crystal. 本実施形態にかかるSiCインゴットの品質評価方法を模式的に示した図である。It is the figure which showed typically the quality evaluation method of the SiC ingot concerning this embodiment. 平面視中心を通る[1−100]方向に延在する直線に沿って、テール又はヘッドを構成するSiC単結晶を切断した切断面の模式図である。It is a schematic diagram of the cut surface which cut | disconnected the SiC single crystal which comprises a tail or a head along the straight line extended in the [1-100] direction which passes through the center in planar view. 平面視中心を通る[11−20]方向に延在する直線に沿って、テール又はヘッドを構成するSiC単結晶を切断した切断面の模式図である。It is the schematic diagram of the cut surface which cut | disconnected the SiC single crystal which comprises a tail or a head along the straight line extended in the [11-20] direction which passes the center in planar view. SiC単結晶の原子配列面の一例を模式的に示した図である。It is the figure which showed typically an example of the atomic arrangement surface of a SiC single crystal. SiC単結晶の原子配列面の別の例を模式的に示した図である。FIG. 4 is a diagram schematically showing another example of the atomic arrangement plane of the SiC single crystal. 原子配列面の湾曲量の測定方法を具体的に説明するための図である。FIG. 4 is a diagram for specifically explaining a method of measuring the amount of curvature of an atomic arrangement surface. 原子配列面の湾曲量の測定方法を具体的に説明するための図である。FIG. 4 is a diagram for specifically explaining a method of measuring the amount of curvature of an atomic arrangement surface. 原子配列面の湾曲量の測定方法を具体的に説明するための図である。FIG. 4 is a diagram for specifically explaining a method of measuring the amount of curvature of an atomic arrangement surface. 原子配列面の湾曲量の測定方法を具体的に説明するための図である。FIG. 4 is a diagram for specifically explaining a method of measuring the amount of curvature of an atomic arrangement surface. 複数のXRDの測定点から原子配列面の曲率半径を求めた例を示す。An example in which a radius of curvature of an atomic arrangement surface is obtained from a plurality of XRD measurement points will be described. 原子配列面の湾曲量の測定方法の別の例を具体的に説明するための図である。FIG. 9 is a diagram for specifically explaining another example of a method for measuring the amount of curvature of an atomic arrangement surface. 原子配列面の湾曲量の測定方法の別の例を具体的に説明するための図である。FIG. 9 is a diagram for specifically explaining another example of a method for measuring the amount of curvature of an atomic arrangement surface. 所定のSiC単結晶上に単結晶を結晶成長した際に、結晶成長部内に含まれるBPD密度の関係を示した図である。FIG. 4 is a diagram showing a relationship between BPD densities contained in a crystal growth portion when a single crystal is grown on a predetermined SiC single crystal. SiCインゴットのヘッドとテールの格子面湾曲量を測定した結果である。It is the result of having measured the lattice curvature of the head and tail of the SiC ingot. 従来のSiCインゴットの品質評価方法を模式的に示した図である。It is the figure which showed typically the quality evaluation method of the conventional SiC ingot.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. In the drawings used in the following description, a characteristic portion may be enlarged for convenience, and a dimensional ratio of each component may be different from an actual one. The materials, dimensions, and the like illustrated in the following description are merely examples, and the present invention is not limited thereto, and can be implemented with appropriate changes without departing from the scope of the invention.

図1は、本実施形態にかかるSiCウェハの製造方法を模式的に示した図である。図1に示すように、まず種結晶を準備する。そして種結晶上に、SiCを結晶成長させSiCインゴットを作製する。得られたSiCインゴットは品質評価を受け、SiCウェハに加工され、出荷される。またSiCインゴットの一部は、次のSiCインゴット作製のための種結晶に加工される。作製されたSiCウェハは、表面にエピタキシャル膜を形成したSiCエピタキシャルウェハ、エピタキシャル膜の一部を加工したSiCデバイスに加工される。   FIG. 1 is a diagram schematically illustrating a method for manufacturing a SiC wafer according to the present embodiment. As shown in FIG. 1, first, a seed crystal is prepared. Then, SiC is grown on the seed crystal to produce a SiC ingot. The obtained SiC ingot undergoes quality evaluation, is processed into a SiC wafer, and is shipped. Further, a part of the SiC ingot is processed into a seed crystal for producing the next SiC ingot. The manufactured SiC wafer is processed into a SiC epitaxial wafer having an epitaxial film formed on the surface and an SiC device having a part of the epitaxial film processed.

図2は、SiCインゴットを作製する際に用いられる製造装置の一例の模式図である。図2に示す製造装置100は、昇華法を利用したSiC単結晶の製造装置の一つである。昇華法は、原料を加熱することによって生じた原料ガスを単結晶(種結晶)上で再結晶化し、大きな単結晶(インゴット)を得る方法である。   FIG. 2 is a schematic diagram of an example of a manufacturing apparatus used when manufacturing an SiC ingot. The manufacturing apparatus 100 shown in FIG. 2 is one of the SiC single crystal manufacturing apparatuses using the sublimation method. The sublimation method is a method in which a raw material gas generated by heating a raw material is recrystallized on a single crystal (seed crystal) to obtain a large single crystal (ingot).

図2に示す製造装置100は、坩堝10とコイル20とを有する。坩堝10とコイル20との間には、コイル20の誘導加熱により発熱する発熱体(図視略)を有してもよい。   2 includes a crucible 10 and a coil 20. Between the crucible 10 and the coil 20, a heating element (not shown) that generates heat by induction heating of the coil 20 may be provided.

坩堝10は、原料Gと対向する位置に設けられた結晶設置部11を有する。坩堝10は、内部に結晶設置部11から原料Gに向けて拡径するテーパーガイド12を有してもよい。図2では、理解を容易にするために、原料G、種結晶5及び種結晶から成長したSiCインゴット6を同時に図示している。   The crucible 10 has a crystal setting part 11 provided at a position facing the raw material G. The crucible 10 may have a taper guide 12 that expands in diameter from the crystal setting part 11 toward the raw material G inside. FIG. 2 simultaneously shows the raw material G, the seed crystal 5, and the SiC ingot 6 grown from the seed crystal for easy understanding.

コイル20に交流電流を印加すると、坩堝10が加熱され、原料Gから原料ガスが生じる。発生した原料ガスは、テーパーガイド12に沿って結晶設置部11に設置された種結晶5に供給される。種結晶5に原料ガスが供給されることで、種結晶5の主面にSiCインゴット6が結晶成長する。種結晶5の結晶成長面は、カーボン面、又は、カーボン面から10°以下のオフ角を設けた面とすることが好ましい。   When an alternating current is applied to the coil 20, the crucible 10 is heated, and a raw material gas is generated from the raw material G. The generated source gas is supplied to the seed crystal 5 installed in the crystal installation section 11 along the taper guide 12. By supplying the source gas to the seed crystal 5, the SiC ingot 6 grows on the main surface of the seed crystal 5. The crystal growth surface of seed crystal 5 is preferably a carbon surface or a surface provided with an off angle of 10 ° or less from the carbon surface.

図3は、種結晶5上に結晶成長したSiCインゴット6の断面模式図である。一般にマルチワイヤーソー等切断工程に投入する前にはSiCインゴット6の結晶成長面近傍(以下、ヘッド6Aと言う)や種結晶5近傍(以下、テール6Bと言う)を予め切除する工程が必要である。   FIG. 3 is a schematic cross-sectional view of the SiC ingot 6 grown on the seed crystal 5. In general, a step of cutting the vicinity of the crystal growth surface of the SiC ingot 6 (hereinafter, referred to as a head 6A) and the vicinity of the seed crystal 5 (hereinafter, referred to as a tail 6B) is required before inputting to a cutting step such as a multi-wire saw. is there.

図4は、本実施形態にかかるSiCインゴットの品質評価方法を模式的に示した図である。図4に示すようにまずSiCインゴットのテール又はヘッドを切断し、取得する(工程S1)。上述のように、マルチワイヤーソー等による切断には予めヘッド6A又はテール6B等を取得する工程が必要である。そのため当該評価方法を用いることで新たに追加の切断工程が発生したり、製品取得部を犠牲にして評価サンプルを取得したりする必要はない。   FIG. 4 is a diagram schematically illustrating a method for evaluating the quality of a SiC ingot according to the present embodiment. As shown in FIG. 4, first, the tail or head of the SiC ingot is cut and obtained (step S1). As described above, the step of obtaining the head 6A or the tail 6B or the like is necessary for cutting with a multi-wire saw or the like. Therefore, by using the evaluation method, it is not necessary to newly generate an additional cutting step or to obtain an evaluation sample at the expense of a product obtaining unit.

次いで、ヘッド6A又はテール6Bにおける原子配列面の湾曲状態を評価する(図4、工程S2)。まず、原子配列面について説明する。図5は、平面視中心を通る[1−100]方向に延在する直線に沿って、ヘッド6A又はテール6Bを構成するSiC単結晶を切断した切断面の模式図である。また図6は、平面視中心を通る[11−20]方向に延在する直線に沿って、ヘッド6A又はテール6Bを構成するSiC単結晶を切断した切断面の模式図である。図5及び図6において上側が[000−1]方向、すなわち<0001>方向に垂直に切断をした時にカーボン面(C面、(000−1)面)が現れる方向である。以下、第1方向と第2方向とが、それぞれ[1−100]方向と[11−20]方向との場合を例に説明する。   Next, the bending state of the atomic arrangement surface in the head 6A or the tail 6B is evaluated (FIG. 4, step S2). First, the atomic arrangement plane will be described. FIG. 5 is a schematic view of a cut surface obtained by cutting the SiC single crystal constituting the head 6A or the tail 6B along a straight line extending in the [1-100] direction passing through the center in plan view. FIG. 6 is a schematic view of a cut surface obtained by cutting the SiC single crystal constituting the head 6A or the tail 6B along a straight line extending in the [11-20] direction passing through the center in plan view. 5 and 6, the upper side is the direction in which the carbon plane (C plane, (000-1) plane) appears when cut perpendicularly to the [000-1] direction, that is, the <0001> direction. Hereinafter, the case where the first direction and the second direction are the [1-100] direction and the [11-20] direction, respectively, will be described as an example.

ここで結晶方位及び面は、ミラー指数として以下の括弧を用いて表記される。()と{}は面を表す時に用いられる。()は特定の面を表現する際に用いられ、{}は結晶の対称性による等価な面の総称(集合面)を表現する際に用いられる。一方で、<>と[]は方向を表す特に用いられる。[]は特定の方向を表現する際に用いられ、<>は結晶の対称性による等価な方向を表現する際に用いられる。   Here, the crystal orientation and the plane are indicated using the following parentheses as Miller indices. () And {} are used to represent a surface. () Is used to represent a specific plane, and {} is used to represent a generic term (collective plane) of equivalent planes due to crystal symmetry. On the other hand, <> and [] are particularly used to indicate directions. [] Is used to represent a specific direction, and <> is used to represent an equivalent direction due to crystal symmetry.

図5及び図6に示すように、ヘッド6A又はテール6Bを構成するSiC単結晶1は、複数の原子Aが整列してなる単結晶である。そのため図5及び図6に示すように、SiC単結晶の切断面をミクロに見ると、複数の原子Aが配列した原子配列面2が形成されている。切断面における原子配列面2は、切断面に沿って配列する原子Aを繋いで得られる切断方向と略平行な方向に延在する線として表記される。   As shown in FIGS. 5 and 6, the SiC single crystal 1 constituting the head 6A or the tail 6B is a single crystal in which a plurality of atoms A are aligned. Therefore, as shown in FIGS. 5 and 6, when the cut surface of the SiC single crystal is viewed microscopically, an atomic arrangement surface 2 in which a plurality of atoms A are arranged is formed. The atom arrangement surface 2 in the cutting plane is represented as a line extending in a direction substantially parallel to the cutting direction obtained by connecting the atoms A arranged along the cutting plane.

切断面における原子配列面2の形状は、SiC単結晶1の最表面の形状によらず、凸形状、凹形状となっている場合がある。また原子配列面2の形状は切断方向によって異なっている場合がある。原子配列面2の形状としては、例えば図7に示すように中心に向かって窪んだ凹形状、図8に示すように所定の切断面では凹形状、異なる切断面では凸形状のポテトチップス型(鞍型)の形状等がある。   The shape of the atomic arrangement plane 2 in the cut plane may be a convex shape or a concave shape regardless of the shape of the outermost surface of the SiC single crystal 1. The shape of the atomic arrangement plane 2 may be different depending on the cutting direction. As the shape of the atom arrangement surface 2, for example, a concave shape concave toward the center as shown in FIG. 7, a concave shape on a predetermined cut surface as shown in FIG. Saddle type).

原子配列面2の形状はX線回折(XRD)により測定できる。測定する面は測定する方向に応じて決定される。測定方向を[hkil]とすると、測定面は(mh mk mi n)の関係を満たす必要がある。ここで、mは0以上の整数であり、nは自然数である。例えば、[11−20]方向に測定する場合は、m=0、n=4として(0004)面、m=2、n=16として(22−416)面等が選択される。一方で、[11−20]方向に測定する場合は、m=0、n=4として(0004)面、m=3、n=16として(3−3016)面等が選択される。すなわち測定面は、測定方向によって異なる面であってもよく、原子配列面は必ずしも同じ面とはならなくてもよい。上記関係を満たすことで、結晶成長時に及ぼす影響の少ないa面又はm面方向の格子湾曲をc面方向の格子湾曲と誤認することを防ぐことができる。また測定はC面、Si面のいずれの面を選択してもよいが、一つのサンプルにおいて測定方向は変更しない。   The shape of the atomic arrangement surface 2 can be measured by X-ray diffraction (XRD). The surface to be measured is determined according to the measurement direction. Assuming that the measurement direction is [hkill], the measurement surface needs to satisfy the relationship of (mh mk min). Here, m is an integer of 0 or more, and n is a natural number. For example, when measuring in the [11-20] direction, the (0004) plane is selected as m = 0 and n = 4, and the (22-416) plane as m = 2 and n = 16. On the other hand, when measuring in the [11-20] direction, the (0004) plane is selected as m = 0 and n = 4, and the (3-3016) plane is selected as m = 3 and n = 16. That is, the measurement surface may be different depending on the measurement direction, and the atom arrangement surface does not necessarily have to be the same surface. By satisfying the above relationship, it is possible to prevent the lattice curvature in the a-plane or m-plane direction, which has little influence during crystal growth, from being mistaken for the lattice curvature in the c-plane direction. For the measurement, either the C plane or the Si plane may be selected, but the measurement direction is not changed in one sample.

X線回折データは、所定の方向に沿って中心、端部、中心と端部との中点の5点において取得する。原子配列面2が湾曲している場合、X線の反射方向が変わるため、中心とそれ以外の部分とで出力されるX線回折像のピークのω角の位置が変動する。この回折ピークの位置変動から原子配列面2の湾曲方向を求めることができる。また回折ピークの位置変動から原子配列面2の曲率半径も求めることができ、原子配列面2の湾曲量も求めることができる。   The X-ray diffraction data is acquired at five points along the predetermined direction: the center, the end, and the midpoint between the center and the end. When the atomic arrangement surface 2 is curved, the reflection direction of the X-ray changes, so that the position of the ω angle of the peak of the X-ray diffraction image output at the center and other portions changes. The bending direction of the atomic arrangement surface 2 can be obtained from the position fluctuation of the diffraction peak. Further, the radius of curvature of the atomic arrangement surface 2 can be obtained from the position fluctuation of the diffraction peak, and the amount of curvature of the atomic arrangement surface 2 can also be obtained.

(原子配列面の湾曲方向及び湾曲量の測定方法の具体的な説明)
SiC単結晶(インゴット)の一部をスライスした試料(以下、ウェハ20と言う)の外周端部分のXRDの測定値から原子配列面の湾曲方向及び湾曲量を測定する方法について具体的に説明する。
(Specific description of the method of measuring the bending direction and amount of bending of the atomic arrangement surface)
A method for measuring a bending direction and a bending amount of an atomic arrangement surface from a measured value of XRD of an outer peripheral end portion of a sample (hereinafter, referred to as a wafer 20) obtained by slicing a part of a SiC single crystal (ingot) will be specifically described. .

図9に平面視中心を通り原子配列面の測定の方向、例えば[1−100]方向に沿って切断した切断面を模式的に示す。ウェハ20の半径をrとすると、断面の横方向の長さは2rとなる。また図9にウェハ20における原子配列面22の形状も図示している。図9に示すように、ウェハ20自体の形状は平坦であるが、原子配列面22は湾曲している場合がある。図9に示す原子配列面22は左右対称であり、凹型に湾曲している。この対称性は、インゴットの製造条件が通常中心に対して対称性があることに起因する。なお、この対称性とは、完全対称である必要はなく、製造条件の揺らぎ等に起因したブレを容認する近似としての対称性を意味する。   FIG. 9 schematically shows a cross section cut along the direction of measurement of the atomic arrangement plane, for example, along the [1-100] direction, passing through the center in plan view. Assuming that the radius of the wafer 20 is r, the horizontal length of the cross section is 2r. FIG. 9 also shows the shape of the atomic arrangement plane 22 on the wafer 20. As shown in FIG. 9, the shape of the wafer 20 itself is flat, but the atomic arrangement surface 22 may be curved. The atom arrangement surface 22 shown in FIG. 9 is bilaterally symmetric and is concavely curved. This symmetry is due to the fact that the manufacturing conditions of the ingot are usually symmetric with respect to the center. The symmetry does not need to be perfect symmetry, but means symmetry as an approximation that allows blurring caused by fluctuations in manufacturing conditions and the like.

次いで、図10に示すように、XRDをウェハ20の両外周端部に対して行い、測定した2点間のX線回折ピーク角度の差Δθを求める。このΔθが測定した2点の原子配列面22の傾きの差になっている。X線回折測定に用いる回折面は、上述のように切断面にあわせて適切な面を選択する。   Next, as shown in FIG. 10, XRD is performed on both outer peripheral ends of the wafer 20, and a difference Δθ between the measured X-ray diffraction peak angles between the two points is obtained. This Δθ is the difference between the measured inclinations of the atomic arrangement plane 22 at the two points. As described above, an appropriate plane is selected according to the cut plane as the diffraction plane used for the X-ray diffraction measurement.

次に、図11に示すように、得られたΔθから湾曲した原子配列面22の曲率半径を求める。図11には、ウェハ20の原子配列面22の曲面が円の一部であると仮定して、測定した2箇所の原子配列面に接する円Cを示している。図11から幾何学的に、接点を両端とする円弧を含む扇型の中心角φは、測定したX線回折ピーク角度の差Δθと等しくなる。原子配列面22の曲率半径は、当該円弧の半径Rに対応する。円弧の半径Rは以下の関係式で求められる。   Next, as shown in FIG. 11, the radius of curvature of the curved atomic arrangement surface 22 is obtained from the obtained Δθ. FIG. 11 shows circles C that are in contact with two measured atomic arrangement surfaces, assuming that the curved surface of the atomic arrangement surface 22 of the wafer 20 is a part of a circle. From FIG. 11, geometrically, the center angle φ of the sector including the arc having the contact at both ends becomes equal to the difference Δθ between the measured X-ray diffraction peak angles. The radius of curvature of the atomic arrangement surface 22 corresponds to the radius R of the arc. The radius R of the arc is obtained by the following relational expression.

Figure 2020026372
Figure 2020026372

そして、この円弧の半径Rとウェハ20の半径rとから、原子配列面22の湾曲量dが求められる。図12に示すように、原子配列面22の湾曲量dは、円弧の半径から、円弧の中心からウェハ20に下した垂線の距離を引いたものに対応する。円弧の中心からウェハ20に下した垂線の距離は、三平方の定理から算出され、以下の式が成り立つ。なお、本明細書では曲率半径が正(凹面)の場合の湾曲量dを正の値とし、負(凸面)の場合の湾曲量dを負の値と定義する。   Then, from the radius R of the arc and the radius r of the wafer 20, the amount of curvature d of the atomic arrangement surface 22 is obtained. As shown in FIG. 12, the amount of curvature d of the atomic arrangement surface 22 corresponds to the radius of the arc minus the distance of the perpendicular from the center of the arc to the wafer 20. The distance of the perpendicular from the center of the arc to the wafer 20 is calculated from the three-square theorem, and the following equation holds. In this specification, the curvature d when the radius of curvature is positive (concave surface) is defined as a positive value, and the curvature d when the radius of curvature is negative (convex) is defined as a negative value.

Figure 2020026372
Figure 2020026372

上述のように、XRDのウェハ20の両外側端部の測定値だけからRを測定することもできる。一方で、この方法を用いると、測定箇所に局所的な歪等が存在した場合において、形状を見誤る可能性もある。その為、複数箇所でX線回折ピーク角度の測定を行って、単位長さ辺りの曲率を以下の式から換算する。   As described above, R can be measured only from the measured values at both outer ends of the XRD wafer 20. On the other hand, when this method is used, there is a possibility that the shape may be mistaken when local distortion or the like exists at the measurement location. Therefore, the X-ray diffraction peak angles are measured at a plurality of locations, and the curvature per unit length is converted from the following equation.

Figure 2020026372
Figure 2020026372

図13に、複数のXRDの測定点から原子配列面の曲率半径を求めた例を示す。図13の横軸はウェハ中心からの相対位置であり、縦軸はウェハ中心回折ピーク角に対する各測定点の相対的な回折ピーク角度を示す。図13は、ウェハの[1−100]方向を測定し、測定面を(3−3016)とした例である。測定箇所は5カ所で行った。5点はほぼ直線に並んでおり、この傾きから、dθ/dr=8.69×10−4deg/mmが求められる。この結果を上式に適用することでR=66mの凹面であることが計算できる。そして、このRとウェハの半径r(75mm)から、原子配列面の湾曲量dが42.6μmと求まる。 FIG. 13 shows an example in which the radius of curvature of the atomic arrangement surface is determined from a plurality of XRD measurement points. The horizontal axis in FIG. 13 is the relative position from the wafer center, and the vertical axis is the relative diffraction peak angle of each measurement point with respect to the wafer center diffraction peak angle. FIG. 13 shows an example in which the [1-100] direction of the wafer is measured and the measurement surface is set to (3-3016). The measurement was performed at five places. The five points are substantially arranged in a straight line, and dθ / dr = 8.69 × 10 −4 deg / mm is obtained from the inclination. By applying this result to the above equation, it can be calculated that the concave surface is R = 66 m. Then, from this R and the radius r (75 mm) of the wafer, the amount of curvature d of the atomic arrangement surface is determined to be 42.6 μm.

ここまで原子配列面の形状が凹面である例で説明したが、凸面の場合も同様に求められる。凸面の場合は、Rはマイナスとして算出される。   So far, an example has been described in which the shape of the atomic arrangement surface is a concave surface. In the case of a convex surface, R is calculated as minus.

(原子配列面の湾曲方向及び湾曲量の別の測定方法の説明)
原子配列面の湾曲方向及び湾曲量は、別の方法で求めてもよい。図14に平面視中心を通り原子配列面の測定の方向、例えば[1−100]方向に沿って切断した切断面を模式的に示す。図9では、格子配列面22の形状が凹状に湾曲している場合を例に説明する。
(Explanation of another measurement method of the bending direction and bending amount of the atomic arrangement surface)
The bending direction and the bending amount of the atomic arrangement surface may be obtained by another method. FIG. 14 schematically shows a cut surface cut along a direction of measurement of the atomic arrangement plane, for example, along the [1-100] direction, passing through the center in plan view. FIG. 9 illustrates an example in which the shape of the lattice array surface 22 is concavely curved.

図14に示すように、ウェハ20の中心とウェハ20の中心から距離xだけ離れた場所の2箇所で、X線回折の回折ピークを測定する。インゴットの製造条件の対称性からウェハ20の形状は、近似として左右対称とすることができ、原子配列面22はウェハ20の中央部で平坦になると仮定できる。そのため、図15に示すように測定した2点における原子配列面22の傾きの差をΔθとすると、原子配列面22の相対的な位置yは以下の式で表記できる。   As shown in FIG. 14, the diffraction peaks of the X-ray diffraction are measured at two positions, that is, the center of the wafer 20 and a position that is separated from the center of the wafer 20 by a distance x. From the symmetry of the manufacturing conditions of the ingot, it is possible to assume that the shape of the wafer 20 is bilaterally symmetric as an approximation, and that the atomic arrangement surface 22 is flat at the center of the wafer 20. Therefore, assuming that the difference between the inclinations of the atomic arrangement surface 22 at two points measured as shown in FIG. 15 is Δθ, the relative position y of the atomic arrangement surface 22 can be expressed by the following equation.

Figure 2020026372
Figure 2020026372

中心からの距離xの位置を変えて複数箇所の測定をすることで、それぞれの点でウェハ中心と測定点とにおける原子配列面22の相対的な原子位置を求めることができる。
この方法は、それぞれの測定箇所で原子配列面における原子の相対位置が求められる。そのため、ウェハ20全体において原子配列面22の相対的な原子位置をグラフとして示すことができ、原子配列面22のならびを感覚的に把握するために有益である。
By changing the position of the distance x from the center and measuring a plurality of points, it is possible to obtain the relative atomic position of the atom arrangement surface 22 at the wafer center and the measurement point at each point.
In this method, the relative positions of the atoms on the atomic arrangement plane are obtained at each measurement point. Therefore, the relative atomic positions of the atomic arrangement surface 22 in the entire wafer 20 can be shown as a graph, which is useful for intuitively grasping the arrangement of the atomic arrangement surface 22.

一方で、それぞれの点における測定は、それぞれ1か所での測定値に基づくものであるため、回折条件によっては部分的に測定しにくい位置(特にウェハの一方の端部近く)が生じる場合があり、また結晶性が悪い部分があると誤差を含みやすい場合がある。その為、現状の測定技術では、この方法は原子配列面22の反りの大きさを測定する方法として用いるよりも、原子配列面の並びを感覚的に把握するための参考値を得る際に用いることが好ましい。   On the other hand, since the measurement at each point is based on the measurement value at one point, a position (particularly near one end of the wafer) that is difficult to measure partially may occur depending on diffraction conditions. In some cases, if there is a portion having poor crystallinity, an error may easily be included. Therefore, in the current measurement technology, this method is used to obtain a reference value for intuitively grasping the arrangement of the atomic arrangement planes, rather than using the method for measuring the magnitude of the warpage of the atomic arrangement planes 22. Is preferred.

原子配列面2の湾曲量を測定する試料の厚みは、500μm以上であることが好ましい。試料の厚みが500μm以上であれば、試料の反りを抑制できる。試料自体が反ると、原子配列面2の湾曲量を正確に見積もることが難しくなる。試料の反り量としては、任意の方向に5μm以下であることが好ましい。ここで試料の反り量とは、平坦面に試料を載置した際に、試料の平坦面側の載置面から平坦面に向けて下した垂線の距離の最大値を指す。   The thickness of the sample for measuring the amount of curvature of the atomic arrangement surface 2 is preferably 500 μm or more. If the thickness of the sample is 500 μm or more, the warpage of the sample can be suppressed. If the sample warps itself, it becomes difficult to accurately estimate the amount of curvature of the atomic arrangement surface 2. The amount of warpage of the sample is preferably 5 μm or less in any direction. Here, the amount of warpage of the sample refers to the maximum value of the distance of a perpendicular that is lowered from the mounting surface on the flat surface side of the sample toward the flat surface when the sample is mounted on the flat surface.

原子配列面2の湾曲状態は、品質の一つの指標として機能する。原子配列面の湾曲状態は、平面視中心を通り<1−100>方向に沿う第1方向と、第1方向と垂直でSiC単結晶の平面視中心を通り<11−20>方向に沿う第2の方向との少なくとも二方向で評価する。   The curved state of the atomic arrangement surface 2 functions as one index of quality. The curved state of the atomic arrangement plane includes a first direction passing through the center in plan view along the <1-100> direction, and a first direction perpendicular to the first direction passing through the center of the SiC single crystal in plan view along the <11-20> direction. Evaluation is made in at least two directions, namely, two directions.

原子配列面2の湾曲状態は、それぞれの方向に沿って測定した原子配列面2の湾曲方向、又は、湾曲量の最大値と最小値と差から評価する(図4、工程S3)。   The bending state of the atomic arrangement surface 2 is evaluated from the bending direction of the atomic arrangement surface 2 measured along each direction or the difference between the maximum value and the minimum value of the amount of bending (FIG. 4, step S3).

原子配列面2の湾曲方向から評価する場合は、第1方向に沿って測定した原子配列面2の湾曲方向と、第2方向に沿って測定した原子配列面2の湾曲方向とが一致するか否かを判断する。各方向における湾曲方向は上述の方法で求めることができる。例えば、図7に示す態様における原子配列面2は、第1方向及び第2方向のいずれにおいても積層方向と反対向かって窪む凹形状であり、湾曲方向は一致している。これに対し、図8に示す態様における原子配列面2は、第1方向は積層方向に向かって突出する凸形状であり、第2方向は積層方向と反対側に向かって窪む凹形状である。すなわち、二つの方向で湾曲方向は異なっている。   When evaluating from the bending direction of the atomic arrangement surface 2, whether the bending direction of the atomic arrangement surface 2 measured along the first direction matches the bending direction of the atomic arrangement surface 2 measured along the second direction. Determine whether or not. The bending direction in each direction can be obtained by the method described above. For example, the atomic arrangement surface 2 in the embodiment shown in FIG. 7 has a concave shape depressed in the first direction and the second direction in a direction opposite to the stacking direction, and has the same curved direction. On the other hand, the atomic arrangement surface 2 in the embodiment shown in FIG. 8 has a convex shape protruding in the first direction in the laminating direction and a concave shape concave in the opposite direction to the laminating direction in the second direction. . That is, the bending directions are different in the two directions.

第1方向及び第2方向の原子配列面2の湾曲方向が同一の場合、そのSiC単結晶を種結晶として結晶成長を行った結晶成長部内におけるBPD密度は低くなる。この理由は明確ではないが、原子配列面2が二つの方向で異なる方向に湾曲すると、原子配列面2が歪む(図8参照)。原子配列面2が歪むと、温度変化が生じた際に複数の方向に応力が発生し、原子配列面2にひずみが生じやすくなる。原子配列面2のひずみは、結晶面の滑りを誘起し、BPDの原因となりうると考えられる。   When the bending directions of the atomic arrangement plane 2 in the first direction and the second direction are the same, the BPD density in the crystal growth part where the crystal growth is performed using the SiC single crystal as a seed crystal becomes low. Although the reason is not clear, if the atomic arrangement surface 2 bends in two different directions, the atomic arrangement surface 2 is distorted (see FIG. 8). When the atomic arrangement surface 2 is distorted, stress is generated in a plurality of directions when a temperature change occurs, and the atomic arrangement surface 2 is likely to be distorted. It is considered that the strain on the atomic arrangement plane 2 induces the slip of the crystal plane, and may cause BPD.

すなわち、第1方向に沿って測定した原子配列面2の湾曲方向と、第2方向に沿って測定した原子配列面2の湾曲方向とが一致する場合は、BPDが発生しにくい適切な条件でSiCインゴットが作製されていると判断できる。つまり、この結果に基づき、SiCウェハの切断条件、又は、次回のSiCインゴットの成長条件を設定できる。適切な条件でSiCインゴットを作製できている場合は、次回の製造条件を現在の製造条件と類似させる。またSiCウェハの切断条件は、SiCウェハの高品質なウェハの取得枚数を増やすように調整してもよいし、高品質な種結晶の取得枚数を増やすように調整してもよい。   That is, when the bending direction of the atomic arrangement surface 2 measured along the first direction coincides with the curving direction of the atomic arrangement surface 2 measured along the second direction, under appropriate conditions where BPD does not easily occur. It can be determined that the SiC ingot has been manufactured. That is, based on the result, the cutting condition of the SiC wafer or the growth condition of the next SiC ingot can be set. If the SiC ingot can be manufactured under appropriate conditions, the next manufacturing conditions are made similar to the current manufacturing conditions. The conditions for cutting the SiC wafer may be adjusted so as to increase the number of acquired high-quality SiC wafers, or may be adjusted so as to increase the number of acquired high-quality seed crystals.

またより高品質なSiCウェハが求められている場合は、原子配列面の湾曲状態を、第1方向を基準に30°ずつ回した少なくとも六方向で評価することが好ましい。SiC単結晶1の結晶構造は六方晶である。そのため、中心に対して対称な六方向に沿って切断した切断面における湾曲方向が同一であればよりひずみが生じにくく、BPDの発生しにくい高品質なSiCウェハを得ることができることを判断できる。   When a higher quality SiC wafer is required, it is preferable to evaluate the curved state of the atomic arrangement plane in at least six directions rotated by 30 ° with respect to the first direction. The crystal structure of SiC single crystal 1 is hexagonal. Therefore, it can be determined that if the bending directions of the cut surfaces cut along the six directions symmetric with respect to the center are the same, a high-quality SiC wafer that hardly generates distortion and hardly generates BPD can be obtained.

一方で、原子配列面2の湾曲量から評価する場合は、第1方向に沿って測定した原子配列面2の湾曲量d1(図5参照)と、第2方向に沿って測定した原子配列面2の湾曲量d2(図6参照)との差の大きさで判断する。各方向における湾曲量は上述の方法で求めることができる。ここで原子配列面2の湾曲量は、SiC単結晶1の平面視中心における原子位置と、SiC単結晶1の端部における原子位置との差を意味する。原子配列面2が中央部に向かって窪んだ凹形状の場合の湾曲量を正とし、中央部に向かって突出した凸形状の場合の湾曲量を負とする。   On the other hand, when evaluating from the amount of curvature of the atomic arrangement surface 2, the amount of curvature d1 of the atomic arrangement surface 2 measured along the first direction (see FIG. 5) and the amount of atomic arrangement surface measured along the second direction The determination is made based on the magnitude of the difference from the second bending amount d2 (see FIG. 6). The amount of bending in each direction can be obtained by the above-described method. Here, the amount of curvature of the atomic arrangement plane 2 means the difference between the atomic position at the center of the SiC single crystal 1 in plan view and the atomic position at the end of the SiC single crystal 1. The amount of curvature when the atomic arrangement surface 2 is concave toward the center is positive, and the amount of curvature when the atomic arrangement surface 2 is convex toward the center is negative.

図16は、所定のSiC単結晶上に単結晶を結晶成長した際に、結晶成長部内に含まれるBPD密度の関係を示した図である。図16(a)は、第1方向に沿って測定した原子配列面2の湾曲量d1の絶対値と、結晶成長部内に含まれるBPD密度との関係を示した図である。図16(b)は、第2方向に沿って測定した原子配列面2の湾曲量d2の絶対値と、結晶成長部内に含まれるBPDの密度との関係を示した図である。図16(c)は湾曲量d1と湾曲量d2の相対値と、結晶成長部内に含まれるBPDの密度を示した図である。   FIG. 16 is a diagram showing a relationship between BPD densities contained in a crystal growth portion when a single crystal is grown on a predetermined SiC single crystal. FIG. 16A is a diagram illustrating a relationship between the absolute value of the amount of curvature d1 of the atomic arrangement surface 2 measured along the first direction and the BPD density included in the crystal growth part. FIG. 16B is a diagram showing the relationship between the absolute value of the amount of curvature d2 of the atomic arrangement plane 2 measured in the second direction and the density of the BPD contained in the crystal growth part. FIG. 16C is a diagram illustrating the relative values of the amount of curvature d1 and the amount of curvature d2 and the density of the BPD included in the crystal growth part.

図16に示すSiC単結晶は、昇華法により作製した。種結晶の直径は16cmであった。種結晶上には、SiC単結晶を約20mm結晶成長させた。BPD密度は、KOHエッチングを用いて求めた。   The SiC single crystal shown in FIG. 16 was produced by a sublimation method. The diameter of the seed crystal was 16 cm. On the seed crystal, a SiC single crystal was grown by about 20 mm. BPD density was determined using KOH etching.

図16(a)及び図16(b)に示すように、湾曲量d1、d2とBPDとの間には相関が確認されない。そのため、湾曲量d1、d2の絶対値が小さいSiC単結晶を用いた場合に、BPDの発生頻度が必ず低下するわけではない。すなわち湾曲量d1、d2の絶対値は、BPDの密度の指標としては十分に機能していない。   As shown in FIGS. 16A and 16B, no correlation is confirmed between the bending amounts d1 and d2 and the BPD. Therefore, the frequency of occurrence of BPD does not necessarily decrease when using an SiC single crystal having small absolute values of the bending amounts d1 and d2. That is, the absolute values of the bending amounts d1 and d2 do not sufficiently function as an index of the BPD density.

これに対し図16(c)に示すように、湾曲量d1と湾曲量d2の相対値と、BPDとの間には相関がみられる。湾曲量d1と湾曲量d2の相対値が大きくなると、BPDの発生頻度が高まる傾向にある。換言すると、湾曲量d1と湾曲量d2との差が所定の範囲内であるSiC単結晶を用いると、BPDの密度を低減できる。すなわち、湾曲量d1と湾曲量d2の差が小さい場合は、BPDが発生しにくい適切な条件でSiCインゴットが作製されていると判断できる。   On the other hand, as shown in FIG. 16C, there is a correlation between the relative value of the amount of bending d1 and the amount of bending d2 and the BPD. When the relative value between the amount of bending d1 and the amount of bending d2 increases, the frequency of occurrence of BPD tends to increase. In other words, the density of BPD can be reduced by using a SiC single crystal in which the difference between the amount of curvature d1 and the amount of curvature d2 is within a predetermined range. That is, when the difference between the amount of curvature d1 and the amount of curvature d2 is small, it can be determined that the SiC ingot is manufactured under appropriate conditions where BPD is unlikely to occur.

湾曲量d1と湾曲量d2との相対値と、BPDの密度の間に上述の関係が見られるのは、以下の理由が考えられる。湾曲量d1と湾曲量d2との相対値の値が小さいということは、原子配列面2の形状が所定の方向に異方性を有していないことを意味する。例えば、第1方向の湾曲量d1と第2方向の湾曲量d2との差が大きい場合、原子配列面2は所定の方向に大きく曲がった形状となる。原子配列面2の形状が所定の方向に大きな異方性を有すると、温度変化が生じた際にその方向に応力集中が生じやすくなる。応力集中は、結晶面の滑りを誘起し、BPDの原因となりうる。   The above-mentioned relationship is found between the relative value of the amount of curvature d1 and the amount of curvature d2 and the density of the BPD for the following reasons. A small value of the relative value between the bending amount d1 and the bending amount d2 means that the shape of the atomic arrangement surface 2 does not have anisotropy in a predetermined direction. For example, when the difference between the amount of curvature d1 in the first direction and the amount of curvature d2 in the second direction is large, the atomic arrangement surface 2 has a shape that is greatly bent in a predetermined direction. When the shape of the atomic arrangement surface 2 has a large anisotropy in a predetermined direction, when a temperature change occurs, stress concentration tends to occur in that direction. The stress concentration induces the slip of the crystal plane and may cause BPD.

なお、図8に示すように原子配列面2の湾曲方向が第1方向と第2方向とで異なるポテトチップス型の場合、湾曲量d1は負の値、湾曲量d2は正の値を示す。そのため例えば、湾曲量d1を−α、湾曲量d2をβとすると、これらの差分の絶対値はα+βとなり、湾曲量d1と湾曲量d2との差は必然的に大きくなる。   Note that, as shown in FIG. 8, in the case of a potato chips type in which the bending direction of the atomic arrangement surface 2 is different between the first direction and the second direction, the bending amount d1 shows a negative value, and the bending amount d2 shows a positive value. Therefore, for example, if the bending amount d1 is -α and the bending amount d2 is β, the absolute value of these differences is α + β, and the difference between the bending amounts d1 and d2 is necessarily large.

上述のように、第1方向に沿って測定した原子配列面2の湾曲量d1と、第2方向に沿って測定した原子配列面2の湾曲量d2との差の結果に基づき、SiCウェハの切断条件、又は、次回のSiCインゴットの成長条件を設定できる。   As described above, based on the result of the difference between the amount of curvature d1 of the atomic arrangement surface 2 measured along the first direction and the amount of curvature d2 of the atomic arrangement surface 2 measured along the second direction, the SiC wafer Cutting conditions or growth conditions for the next SiC ingot can be set.

またより高品質なSiCウェハが求められている場合は、原子配列面の湾曲状態を、第1方向を基準に30°ずつ回した少なくとも六方向で測定し、六方向における湾曲量の最大値と最小値の差で評価することが好ましい。SiC単結晶1の結晶構造は六方晶である。そのため、中心に対して対称な六方向に沿って測定した原子配列面の湾曲量が小さければ、より原子配列面2は異方性を有し難く、BPDの発生しにくい高品質なSiCウェハが得られる。   When a higher quality SiC wafer is required, the bending state of the atomic arrangement plane is measured in at least six directions rotated by 30 ° with respect to the first direction, and the maximum value of the bending amount in the six directions is measured. It is preferable to evaluate the difference between the minimum values. The crystal structure of SiC single crystal 1 is hexagonal. Therefore, if the amount of curvature of the atomic arrangement plane measured along the six directions symmetric with respect to the center is small, the atomic arrangement plane 2 is less likely to have anisotropy, and a high-quality SiC wafer in which BPD is less likely to be generated. can get.

ここで原子配列面2の形状は、SiCインゴット6のヘッド6A又はテール6Bで評価している。ヘッド6A又はテール6Bの評価結果は、SiCインゴットの内部の評価結果と大きく違わない。そのため、ヘッド6A又はテール6Bの評価結果を基に、得られたSiCインゴットの品質を充分評価できる。   Here, the shape of the atomic arrangement surface 2 is evaluated by the head 6A or the tail 6B of the SiC ingot 6. The evaluation result of the head 6A or the tail 6B is not significantly different from the evaluation result inside the SiC ingot. Therefore, the quality of the obtained SiC ingot can be sufficiently evaluated based on the evaluation result of the head 6A or the tail 6B.

図17は、SiCインゴットのヘッド6A、テール6Bの原子配列面の形状を測定した結果である。このインゴットの総成長量は28mmであり、テール6B、ヘッド6Aはそれぞれ成長量が4mm、24mmの位置であった。横軸は反時計回りを正としたときの[11−20]と測定方向とのなす角、縦軸は格子湾曲量を表している。すなわちこの図における90°と−90°は同じ[1−100]方向を表している。   FIG. 17 shows the results of measuring the shapes of the atomic arrangement planes of the head 6A and the tail 6B of the SiC ingot. The total growth amount of this ingot was 28 mm, and the tail 6B and the head 6A were located at positions where the growth amounts were 4 mm and 24 mm, respectively. The horizontal axis represents the angle between [11-20] when the counterclockwise direction is defined as positive and the measurement direction, and the vertical axis represents the amount of lattice bending. That is, 90 ° and −90 ° in this drawing represent the same [1-100] direction.

またヘッド6Aにおいて最も凹となっている方向は[11−20]に対して30°をなす方向で、湾曲量は25.0μmであり、最も凸になっている方向は[11−20]に対して−60°をなす方向で、湾曲量は−2.5μmである。テール6Bにおいて最も凹となっている方向は[11−20]に対して30°の方向で、湾曲量は21.4μmであり、最も凸になっている方向は[11−20]に対して−60°をなす方向で、湾曲量は−2.5μmである。すなわち、成長初期にあたるテール部から成長後期にあたるヘッド部に至るまで、SiCインゴット内で原子配列面2の形状及び湾曲量に大きな差はないと言える。したがって、作製されたSiCインゴットの積層方向における任意の1箇所の格子湾曲量を測定することでSiCインゴット全体の格子湾曲を把握することが可能である。   The most concave direction of the head 6A is a direction forming 30 ° with respect to [11-20], the amount of bending is 25.0 μm, and the most convex direction is [11-20]. On the other hand, in the direction forming -60 °, the amount of bending is -2.5 μm. The most concave direction in the tail 6B is a direction of 30 ° with respect to [11-20], the amount of bending is 21.4 μm, and the most convex direction is with respect to [11-20]. In the direction forming −60 °, the amount of bending is −2.5 μm. That is, it can be said that there is no significant difference in the shape and the amount of curvature of the atomic arrangement surface 2 in the SiC ingot from the tail portion at the early growth stage to the head portion at the late growth stage. Therefore, it is possible to grasp the lattice curvature of the entire SiC ingot by measuring the lattice curvature amount at any one position in the stacking direction of the manufactured SiC ingot.

この評価はワイヤーソー等により切り出された切断面をそのまま評価することが可能であり、測定面の研磨は不要である。また評価は通常の切断工程で切り出される任意の箇所で実施可能であるため、本発明を実施する上で新たに加工工程が加える必要はない。また原子配列面もX線回折(XRD)で簡便に測定できるため、数時間程度の時間で確認できる。すなわち、本実施形態にかかるSiC単結晶の評価方法を用いれば、SiCインゴットの良、不良を簡便に判定できる。またこの評価結果を次回のSiCインゴットの作製条件、SiCウェハのスライス方法に迅速にフィードバックを行うことができ、SiCウェハの製造にかかる時間を大幅に短縮できる。   In this evaluation, it is possible to directly evaluate the cut surface cut out by a wire saw or the like, and it is not necessary to polish the measurement surface. In addition, since the evaluation can be performed at an arbitrary position cut out in a normal cutting step, it is not necessary to add a new processing step in implementing the present invention. In addition, since the atomic arrangement plane can be easily measured by X-ray diffraction (XRD), it can be confirmed in about several hours. That is, if the method for evaluating a SiC single crystal according to the present embodiment is used, it is possible to easily determine whether the SiC ingot is good or bad. Further, the evaluation result can be promptly fed back to the next SiC ingot manufacturing condition and the SiC wafer slicing method, and the time required for manufacturing the SiC wafer can be greatly reduced.

ここで図18は、従来のSiCインゴットの品質評価方法を模式的に示した図である。図18に示すように従来のSiCインゴットは、まず評価用ウェハを取得し(工程S11)、評価用ウェハで評価を行えるように加工する(工程S12)。その後、X線トポグラフ(工程S13)により積層欠陥や転位集中部の有無を確認し、KOHエッチングにより欠陥数をカウントする(工程S14)。そして得られた結果に基づき、次回のSiCインゴットの作製条件、SiCウェハのスライス方法を決定する。   FIG. 18 is a diagram schematically showing a conventional method for evaluating the quality of a SiC ingot. As shown in FIG. 18, the conventional SiC ingot first obtains an evaluation wafer (step S11), and processes it so that the evaluation wafer can be used for evaluation (step S12). Thereafter, the presence or absence of stacking faults and dislocation concentrated portions is confirmed by an X-ray topograph (Step S13), and the number of defects is counted by KOH etching (Step S14). Then, based on the obtained results, the next SiC ingot manufacturing condition and the SiC wafer slicing method are determined.

評価用ウェハの加工やKOHエッチングの作業及び欠陥数をカウントする作業は時間がかかり、品質の確認に数週間から数か月の時間が必要である。すなわち、次回のSiCインゴットの作製条件、SiCウェハのスライス方法のフィードバックに時間がかかり、SiCウェハの製造にかかる全体の時間が長くなる。品質評価のフィードバックを待たずに次回のインゴット作製を行うこともできるが、作製条件のズレ等で品質に異常があった場合、インゴット外観に異常が見られなければ品質評価結果が判明するまでは異常を検知できないため作製条件の調整等を行うことができない。結果としてその間に不良のインゴットが作製され続けてしまう危険性があるため好ましくない。   Processing of the wafer for evaluation, KOH etching and counting of the number of defects take time, and it takes several weeks to several months to check the quality. That is, it takes time to feed back the next SiC ingot manufacturing conditions and the SiC wafer slicing method, and the overall time required to manufacture the SiC wafer increases. The next ingot can be manufactured without waiting for the feedback of the quality evaluation.However, if there is an abnormality in the quality due to deviation of the manufacturing conditions, etc. Since no abnormality can be detected, adjustment of manufacturing conditions and the like cannot be performed. As a result, there is a risk that a defective ingot may be continuously produced during that time, which is not preferable.

上述のように、本実施形態にかかるSiC単結晶の評価方法を用いると、SiC単結晶の品質を簡便に測定できる。また原子配列面の湾曲状態は、BPDの発生の指標として機能し、BPDが発生しにくいSiC単結晶を容易に判別できる。   As described above, by using the method for evaluating a SiC single crystal according to the present embodiment, the quality of the SiC single crystal can be easily measured. In addition, the curved state of the atomic arrangement surface functions as an index of BPD generation, and a SiC single crystal in which BPD is unlikely to be generated can be easily determined.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   As described above, the preferred embodiments of the present invention have been described in detail, but the present invention is not limited to the specific embodiments, and various modifications may be made within the scope of the present invention described in the appended claims. Can be modified and changed.

1…SiC単結晶、2…原子配列面、5…種結晶、6…SiCインゴット、6A…ヘッド、6B…テール、10…坩堝、11…結晶設置部、12…テーパーガイド、20…コイル、100…製造装置、A…原子、G…原料 DESCRIPTION OF SYMBOLS 1 ... SiC single crystal, 2 ... Atomic arrangement plane, 5 ... Seed crystal, 6 ... SiC ingot, 6A ... Head, 6B ... Tail, 10 ... Crucible, 11 ... Crystal installation part, 12 ... Taper guide, 20 ... Coil, 100 ... production equipment, A ... atoms, G ... raw materials

Claims (6)

SiC単結晶の平面視中心を通り<1−100>方向に沿う第1方向と、前記第1方向と垂直で前記SiC単結晶の平面視中心を通り<11−20>方向に沿う第2方向と、の少なくとも二方向における原子配列面の湾曲状態を評価する、SiC単結晶の評価方法。   A first direction passing through the center of the SiC single crystal in plan view and along the <1-100> direction, and a second direction perpendicular to the first direction and passing through the center of the SiC single crystal in plan view and along the <11-20> direction A method for evaluating a SiC single crystal, which evaluates a curved state of an atomic arrangement plane in at least two directions. 前記原子配列面の湾曲状態を、前記第1方向を基準に30°ずつ回した少なくとも六方向で評価する、請求項1に記載のSiC単結晶の評価方法。   2. The method for evaluating a SiC single crystal according to claim 1, wherein the state of curvature of the atomic arrangement plane is evaluated in at least six directions rotated by 30 ° with respect to the first direction. 3. 前記原子配列面の湾曲状態を、測定方向における前記原子配列面の湾曲方向が一致するか否かにより評価する、請求項1又は2のいずれかに記載のSiC単結晶の評価方法。   3. The method for evaluating a SiC single crystal according to claim 1, wherein the bending state of the atomic arrangement surface is evaluated based on whether or not a bending direction of the atomic arrangement surface in a measurement direction matches. 前記原子配列面の湾曲状態を、測定方向における前記原子配列面の湾曲量の最大値及び最小値の差から評価する、請求項1〜3のいずれか一項に記載のSiC単結晶の評価方法。   The method for evaluating a SiC single crystal according to any one of claims 1 to 3, wherein a bending state of the atomic arrangement surface is evaluated from a difference between a maximum value and a minimum value of the amount of curvature of the atomic arrangement surface in a measurement direction. . 前記原子配列面の湾曲状態をX線回折により評価する、請求項1〜4のいずれか一項に記載のSiC単結晶の評価方法。   The method for evaluating a SiC single crystal according to any one of claims 1 to 4, wherein the bending state of the atomic arrangement surface is evaluated by X-ray diffraction. 請求項1〜5のいずれか一項に記載のSiC単結晶の評価方法による評価結果に基づき、SiCインゴットのスライス方法又は次回のSiC単結晶の成長条件を決定する、SiCウェハの製造方法。   A method for manufacturing a SiC wafer, comprising: determining a method for slicing an SiC ingot or a growth condition for a next SiC single crystal based on an evaluation result obtained by the method for evaluating a SiC single crystal according to claim 1.
JP2018152317A 2018-08-13 2018-08-13 SiC single crystal evaluation method and SiC wafer manufacturing method Active JP7117938B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018152317A JP7117938B2 (en) 2018-08-13 2018-08-13 SiC single crystal evaluation method and SiC wafer manufacturing method
PCT/JP2019/031799 WO2020036166A1 (en) 2018-08-13 2019-08-13 METHOD FOR EVALUATING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC WAFER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152317A JP7117938B2 (en) 2018-08-13 2018-08-13 SiC single crystal evaluation method and SiC wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2020026372A true JP2020026372A (en) 2020-02-20
JP7117938B2 JP7117938B2 (en) 2022-08-15

Family

ID=69525333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152317A Active JP7117938B2 (en) 2018-08-13 2018-08-13 SiC single crystal evaluation method and SiC wafer manufacturing method

Country Status (2)

Country Link
JP (1) JP7117938B2 (en)
WO (1) WO2020036166A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981537A (en) * 2020-07-27 2022-01-28 环球晶圆股份有限公司 Silicon carbide seed crystal, method for producing same, and method for producing silicon carbide crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373104A (en) * 1986-09-17 1988-04-02 Toshiba Corp X-ray diffraction apparatus for measuring lattice flection
WO2009035095A1 (en) * 2007-09-12 2009-03-19 Showa Denko K.K. EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE AND METHOD FOR MANUFACTURING EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE
JP2011111372A (en) * 2009-11-27 2011-06-09 Showa Denko Kk Silicon carbide single crystal, method for producing the same, silicon carbide single crystal wafer, and silicon carbide single crystal ingot
JP2013136494A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc SINGLE CRYSTAL PRODUCTION APPARATUS, SiC SINGLE CRYSTAL, WAFER AND SEMICONDUCTOR DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373104A (en) * 1986-09-17 1988-04-02 Toshiba Corp X-ray diffraction apparatus for measuring lattice flection
WO2009035095A1 (en) * 2007-09-12 2009-03-19 Showa Denko K.K. EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE AND METHOD FOR MANUFACTURING EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE
JP2011111372A (en) * 2009-11-27 2011-06-09 Showa Denko Kk Silicon carbide single crystal, method for producing the same, silicon carbide single crystal wafer, and silicon carbide single crystal ingot
JP2013136494A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc SINGLE CRYSTAL PRODUCTION APPARATUS, SiC SINGLE CRYSTAL, WAFER AND SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
WO2020036166A1 (en) 2020-02-20
JP7117938B2 (en) 2022-08-15

Similar Documents

Publication Publication Date Title
US11905621B2 (en) SiC single crystal, method of manufacturing SiC ingot, and method of manufacturing SiC wafer
JP5273741B2 (en) Epitaxial SiC single crystal substrate and method of manufacturing epitaxial SiC single crystal substrate
US10837123B2 (en) Method of manufacturing SiC ingot
US11466383B2 (en) Silicon carbide ingot, method of preparing the same, and method for preparing silicon carbide wafer
US20230268177A1 (en) SiC EPITAXIAL WAFER AND METHOD FOR MANUFACTURING SAME
JP2024032023A (en) PRODUCTION METHOD OF SiC SINGLE CRYSTAL, SiC SEED CRYSTAL AND SiC INGOT
JP7117938B2 (en) SiC single crystal evaluation method and SiC wafer manufacturing method
JP6722578B2 (en) Method for manufacturing SiC wafer
US10844517B2 (en) Method of processing SiC single crystal and method of manufacturing SiC ingot
WO2020036170A1 (en) Sic single crystal, method for producing sic ingot and method for producing sic wafer
WO2020036167A1 (en) Method for bonding sic single crystal, method for producing sic ingot, and mount for use in growth of sic single crystal
JP7170460B2 (en) SiC single crystal evaluation method and quality inspection method
JP7302716B2 (en) SiC epitaxial wafer and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220802

R150 Certificate of patent or registration of utility model

Ref document number: 7117938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350