JP2020026357A - Method for producing geopolymer hardened body - Google Patents

Method for producing geopolymer hardened body Download PDF

Info

Publication number
JP2020026357A
JP2020026357A JP2018150197A JP2018150197A JP2020026357A JP 2020026357 A JP2020026357 A JP 2020026357A JP 2018150197 A JP2018150197 A JP 2018150197A JP 2018150197 A JP2018150197 A JP 2018150197A JP 2020026357 A JP2020026357 A JP 2020026357A
Authority
JP
Japan
Prior art keywords
component
geopolymer
cured
geopolymer composition
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018150197A
Other languages
Japanese (ja)
Other versions
JP7026593B2 (en
Inventor
可奈 小林
Kana Kobayashi
可奈 小林
翔平 小川
Shohei Ogawa
翔平 小川
野田 泰史
Yasushi Noda
泰史 野田
耕司 原田
Koji Harada
耕司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Lion Specialty Chemicals Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Lion Specialty Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Lion Specialty Chemicals Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2018150197A priority Critical patent/JP7026593B2/en
Publication of JP2020026357A publication Critical patent/JP2020026357A/en
Application granted granted Critical
Publication of JP7026593B2 publication Critical patent/JP7026593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a method for producing a geopolymer hardened body that can sufficiently prolong fluidity holding time of a geopolymer composition.SOLUTION: A method for producing a geopolymer hardened body includes: preparing a geopolymer composition containing (A) component: fly ash, (B) component: blast furnace slag fine powder, (C) component: alkali solution containing liquid glass, (D) component: aggregate, (E) component: orthophosphate, and water; and hardening the geopolymer composition.SELECTED DRAWING: None

Description

本発明は、ジオポリマー硬化体の製造方法に関する。   The present invention relates to a method for producing a cured geopolymer.

地球温暖化の問題から、各種材料として、できるだけ二酸化炭素の排出量が少ないものが選択されるようになってきている。現在、コンクリートの材料として、石灰石を主原料とするポルトランドセメントが大量に製造されているが、製造時の焼成工程において酸化カルシウムに分解され二酸化炭素を排出する。このため、ポルトランドセメントを使用せずにコンクリートを製造する技術として、ジオポリマー法が注目されている。   Due to the problem of global warming, materials that emit as little carbon dioxide as possible have been selected as various materials. At present, Portland cement using limestone as a main material is produced in large quantities as a concrete material, but is decomposed into calcium oxide and emits carbon dioxide in a firing step during the production. For this reason, the geopolymer method has attracted attention as a technique for producing concrete without using Portland cement.

ジオポリマー法は、ケイ酸の縮重合体をバインダとして利用し、粉末同士を接合して人工の岩石を製造する技術である。このジオポリマー法により形成されるジオポリマー硬化体は、アルミノシリケート源であるフィラーとアルカリ溶液を用いて製造され、これらは、従来のセメントと水に相当する。フィラーとしては、カオリンや粘土等の天然物のほか、フライアッシュ、シリカフューム、高炉スラグ、もみ殻灰等も利用することが可能である。アルカリ溶液としては、水酸化ナトリウムまたは水酸化カリウムと水ガラス(ケイ酸ナトリウム、NaSiO)またはケイ酸カリウム(KSiO)の化合物の水溶液が用いられる。 The geopolymer method is a technique of using a polycondensate of silicic acid as a binder and joining powders to produce an artificial rock. The geopolymer cured product formed by the geopolymer method is produced using a filler as an aluminosilicate source and an alkaline solution, which correspond to conventional cement and water. As the filler, fly ash, silica fume, blast furnace slag, chaff ash, etc. can be used in addition to natural products such as kaolin and clay. As the alkaline solution, an aqueous solution of a compound of sodium hydroxide or potassium hydroxide and water glass (sodium silicate, Na 2 SiO 3 ) or potassium silicate (K 2 SiO 3 ) is used.

しかし、アルカリ溶液がナトリウム化合物を含む場合には、急速に硬化が進むため流動性保持時間が短いという問題がある。流動性保持時間が短いと、作業工程の制約が大きく、工場内での製造は可能であっても、施工現場での打設(現場打設)は困難である。
特許文献1には、ジオポリマー硬化体を作製する際に、硬化を遅延させる遅延剤として、カルボン酸塩、グルコン酸塩等のキレート剤、酸、又は糖類を添加する方法が記載されている。
However, when the alkali solution contains a sodium compound, there is a problem that the fluidity holding time is short because curing proceeds rapidly. If the fluidity retention time is short, the work process is greatly restricted, and it is difficult to perform casting at a construction site (casting on site) even though production in a factory is possible.
Patent Document 1 describes a method of adding a chelating agent such as a carboxylate or a gluconate, an acid, or a saccharide as a retarder for delaying the curing when producing a cured geopolymer.

特開2014−28728号公報JP 2014-28728 A

フライアッシュは、石炭火力発電所などで石炭燃焼の際に副生する石炭灰のうち、集塵器で排ガス中から回収される微細な灰である。高炉スラグは銑鉄製造工程で発生する副生物である。ジオポリマー法においてこれらを使用すると、二酸化炭素消費量の削減に加え産業廃棄物を再利用できるという利点がある。
しかし、本発明者らの知見によれば、フライアッシュと、高炉スラグと、骨材と、水酸化ナトリウム及び水ガラスを含むアルカリ溶液とを含むジオポリマー組成物に、特許文献1に記載されている遅延剤を含有させても流動性保持時間の延長効果は不充分であり、現場打設に適用することは難しい。
本発明は、ジオポリマー組成物の流動性保持時間を充分に延長できる、ジオポリマー硬化体の製造方法を提供する。
Fly ash is fine ash collected from exhaust gas by a dust collector among coal ash by-produced during coal combustion in a coal-fired power plant or the like. Blast furnace slag is a by-product generated in the pig iron manufacturing process. The use of these in the geopolymer process has the advantage that industrial waste can be recycled in addition to reducing carbon dioxide consumption.
However, according to the findings of the present inventors, a geopolymer composition containing fly ash, blast furnace slag, aggregate, and an alkaline solution containing sodium hydroxide and water glass is described in Patent Document 1. Even if a retarder is contained, the effect of extending the fluidity retention time is insufficient, and it is difficult to apply the method to casting in place.
The present invention provides a method for producing a cured geopolymer, which can sufficiently extend the fluidity retention time of the geopolymer composition.

本発明は以下の態様を有する。
[1] 下記(A)〜(E)成分および水を含むジオポリマー組成物を調製し、前記ジオポリマー組成物を硬化させる、ジオポリマー硬化体の製造方法。
(A)成分:フライアッシュ、
(B)成分:高炉スラグ微粉末、
(C)成分:水ガラスを含有するアルカリ溶液、
(D)成分:骨材、
(E)成分:正リン酸塩。
[2] 前記(A)成分、前記(B)成分及び前記(D)成分の混合物に、前記(C)成分、及び前記(E)成分の水溶液を添加して前記ジオポリマー組成物を調製する、[1]のジオポリマー硬化体の製造方法。
[3] 前記(A)成分、前記(B)成分、前記(D)成分、及び前記(E)成分の混合物に、前記(C)成分、及び水を添加して前記ジオポリマー組成物を調製する、[1]のジオポリマー硬化体の製造方法。
[4] 前記(E)成分がリン酸二水素ナトリウムを含む、[1]〜[3]のいずれかのジオポリマー硬化体の製造方法。
[5] 施工現場で前記ジオポリマー組成物を調製し、施工部位に前記ジオポリマー組成物を流し込み硬化させる、[1]〜[4]のいずれかのジオポリマー硬化体の製造方法。
The present invention has the following aspects.
[1] A method for producing a cured geopolymer, comprising preparing a geopolymer composition containing the following components (A) to (E) and water and curing the geopolymer composition.
(A) ingredient: fly ash,
(B) component: blast furnace slag fine powder,
(C) component: an alkaline solution containing water glass,
(D) component: aggregate,
Component (E): orthophosphate.
[2] An aqueous solution of the components (C) and (E) is added to a mixture of the components (A), (B) and (D) to prepare the geopolymer composition. And [1].
[3] The component (C) and water are added to a mixture of the component (A), the component (B), the component (D), and the component (E) to prepare the geopolymer composition. The method for producing a cured geopolymer according to [1].
[4] The method for producing a cured geopolymer according to any one of [1] to [3], wherein the component (E) contains sodium dihydrogen phosphate.
[5] The method for producing a cured geopolymer according to any one of [1] to [4], wherein the geopolymer composition is prepared at a construction site, and the geopolymer composition is poured into a construction site and cured.

本発明のジオポリマー硬化体の製造方法によれば、フライアッシュと、高炉スラグ微粉末と、骨材と、水酸化ナトリウム及び水ガラスを含むアルカリ溶液とを含むジオポリマー組成物の流動性保持時間を充分に延長できる。例えば現場打設が可能となる程度に、流動性保持時間を延長できる。   According to the method for producing a cured geopolymer of the present invention, the fluidity retention time of the geopolymer composition including fly ash, blast furnace slag fine powder, aggregate, and an alkaline solution containing sodium hydroxide and water glass Can be extended sufficiently. For example, the fluidity retention time can be extended to such an extent that casting in place is possible.

本実施形態は、(A)〜(E)成分および水を含むジオポリマー組成物を硬化させてジオポリマー硬化体(以下、単に「硬化体」ともいう。)を製造する方法である。
ジオポリマー硬化体はジオポリマー組成物の硬化物である。
The present embodiment is a method for producing a cured geopolymer (hereinafter, also simply referred to as a “cured body”) by curing a geopolymer composition containing components (A) to (E) and water.
The cured geopolymer is a cured product of the geopolymer composition.

<(A)成分>
(A)成分はフライアッシュである。(A)成分は1種でもよく、2種以上を併用してもよい。
JIS A6201(2015年)に規定する「フライアッシュI種(以下、「JIS(I)種」ともいう。)」、「フライアッシュII種(以下、「JIS(II)種」ともいう。)」が好ましい。
(A)成分の密度は1.90g/cm以上が好ましく、1.95g/cm以上がより好ましい。
本明細書において、粉体の密度の測定方法は、JIS R5201(2015年)の7.(密度試験)である。
<(A) component>
The component (A) is fly ash. As the component (A), one type may be used alone, or two or more types may be used in combination.
"Fly ash type I (hereinafter, also referred to as" JIS (I) type ")" and "Fly ash type II (hereinafter, also referred to as" JIS (II) type ")" defined in JIS A6201 (2015). Is preferred.
The density of the component (A) is preferably 1.90 g / cm 3 or more, and more preferably 1.95 g / cm 3 or more.
In the present specification, the method of measuring the density of the powder is described in JIS R5201 (2015) under 7. (Density test).

<(B)成分>
(B)成分は高炉スラグ微粉末である。(B)成分はケイ酸の縮重合に必要な多価金属イオンを溶出し硬化を促進し、硬化体の強度向上に寄与する。(B)成分は1種でもよく、2種以上を併用してもよい。
JIS A6206(2013年)に規定する「高炉スラグ微粉末3000」、「高炉スラグ微粉末4000」、「高炉スラグ微粉末6000」、「高炉スラグ微粉末8000」が好ましい。
(B)成分の密度は2.75g/cm以上が好ましく、2.80g/cm以上がより好ましい。
<(B) component>
The component (B) is blast furnace slag fine powder. The component (B) elutes polyvalent metal ions necessary for the polycondensation of silicic acid, promotes curing, and contributes to the improvement of the strength of the cured product. As the component (B), one type may be used alone, or two or more types may be used in combination.
“Blast furnace slag fine powder 3000”, “Blast furnace slag fine powder 4000”, “Blast furnace slag fine powder 6000” and “Blast furnace slag fine powder 8000” specified in JIS A6206 (2013) are preferable.
The density of the component (B) is preferably at least 2.75 g / cm 3, more preferably at least 2.80 g / cm 3 .

(A)成分及び(B)成分はアルミノシリケート源である。ジオポリマー組成物の1mに対して(A)成分と(B)成分の合計の配合量は、600kg/m以下が好ましく、550kg/m以下がより好ましい。上記上限値以下であると充分な強度が得られる。
ジオポリマー組成物の1mに対して(A)成分と(B)成分の合計の配合量の下限値は、硬化が充分に進行しやすい点で、450kg/m以上が好ましい。
(A)成分と(B)成分の配合割合は得ようとする硬化体の圧縮強度に応じて適宜設定できる。例えば(A)成分と(B)成分の合計100質量部のうち、(B)成分が10〜50質量部が好ましく、20〜50質量部がより好ましい。
(B)成分割合が上記範囲の下限値以上であると硬化体の良好な強度が得られやすく、上限値以下であると充分な流動性保持時間が得られやすい。
The components (A) and (B) are aluminosilicate sources. The total of the amount of the component (A) and component (B) relative to 1 m 3 of geopolymer composition is preferably 600 kg / m 3 or less, 550 kg / m 3 or less is more preferable. If it is less than the above upper limit, sufficient strength can be obtained.
The lower limit of the combined amount of the components (A) and (B) per 1 m 3 of the geopolymer composition is preferably 450 kg / m 3 or more from the viewpoint that curing can easily proceed sufficiently.
The mixing ratio of the component (A) and the component (B) can be appropriately set according to the compressive strength of the cured product to be obtained. For example, of the total of 100 parts by mass of the components (A) and (B), the component (B) is preferably 10 to 50 parts by mass, more preferably 20 to 50 parts by mass.
When the component ratio (B) is at least the lower limit of the above range, good strength of the cured product is easily obtained, and when it is at most the upper limit, a sufficient fluidity retention time is easily obtained.

<(C)成分>
(C)成分は水ガラスを含有するアルカリ溶液である。
(C)成分は水酸化ナトリウムと水ガラスを含有してもよい。水酸化ナトリウム:水ガラスの体積比は0:100〜20:80が好ましく、5:95〜10:90がより好ましい。水ガラスの比率が上記範囲の下限値以上であると充分な硬化強度が得られやすい。水酸化ナトリウムの比率が上記範囲の下限値以上であると充分な流動性保持時間が得られやすい。
(C)成分は、JIS K1408(1966年)に規定する3号ケイ酸ナトリウムと水酸化ナトリウムの混合物、またはJIS K1408(1966年)に規定する2号ケイ酸ナトリウムを含むことが好ましい。
(C)成分の密度は1.1〜1.5g/cmが好ましく、1.3〜1.5g/cmがより好ましい。
(C)成分の密度は15℃における値である。
<(C) component>
The component (C) is an alkaline solution containing water glass.
The component (C) may contain sodium hydroxide and water glass. The volume ratio of sodium hydroxide: water glass is preferably 0: 100 to 20:80, and more preferably 5:95 to 10:90. When the ratio of the water glass is equal to or more than the lower limit of the above range, sufficient curing strength is easily obtained. When the ratio of sodium hydroxide is at least the lower limit of the above range, a sufficient fluidity retention time is easily obtained.
The component (C) preferably contains a mixture of sodium silicate No. 3 and sodium hydroxide specified in JIS K1408 (1966), or sodium silicate No. 2 specified in JIS K1408 (1966).
(C) The density of the component is preferably 1.1~1.5g / cm 3, more preferably 1.3~1.5g / cm 3.
The density of the component (C) is a value at 15 ° C.

(C)成分は水酸化ナトリウム及び水ガラス以外のその他のアルカリ成分を含有してもよい。その他のアルカリ成分としては、例えば水酸化カリウム、ケイ酸カリウム等が挙げられる。
(C)成分の配合量は、(A)成分と(B)成分の合計100質量部に対して55〜75質量部が好ましい。
The component (C) may contain other alkali components other than sodium hydroxide and water glass. Other alkali components include, for example, potassium hydroxide, potassium silicate and the like.
The compounding amount of the component (C) is preferably 55 to 75 parts by mass based on 100 parts by mass in total of the components (A) and (B).

<(D)成分>
(D)成分は骨材である。(D)成分は硬化体の強度向上に寄与する。(D)成分は1種でもよく、2種以上を併用してもよい。
骨材として、モルタルやコンクリートを製造する際に一般に用いられる砂、砂利、砕石等を使用できる。ジオポリマー組成物中の金属イオンは硬化を促進すると考えられるため、骨材は金属イオンの溶出量が多くないものが好ましい。
(D)成分の密度は2.0g/cm以上が好ましく、2.5g/cm以上がより好ましい。
(D)成分の配合量は、ジオポリマー組成物の1mに対して、1600kg/m以下が好ましく、1500kg/m以下がより好ましい。上記上限値以下であると、充分に混合できる。
(D)成分の配合量の下限値は、硬化体の良好な強度が得られやすい点で、ジオポリマー組成物の1mに対して、800kg/m以上が好ましい。
<(D) component>
The component (D) is an aggregate. The component (D) contributes to improving the strength of the cured product. As the component (D), one type may be used alone, or two or more types may be used in combination.
As the aggregate, sand, gravel, crushed stone, and the like generally used when producing mortar and concrete can be used. Since metal ions in the geopolymer composition are considered to promote curing, it is preferable that the aggregate does not dissolve a large amount of metal ions.
The density of the component (D) is preferably 2.0 g / cm 3 or more, and more preferably 2.5 g / cm 3 or more.
Blend quantity of the component (D), relative to 1 m 3 of geopolymer composition is preferably 1600 kg / m 3 or less, 1500 kg / m 3 or less is more preferable. If it is less than the above upper limit, mixing can be sufficiently performed.
The lower limit of the amount of the component (D) is preferably 800 kg / m 3 or more with respect to 1 m 3 of the geopolymer composition, since good strength of the cured product is easily obtained.

<(E)成分>
(E)成分は正リン酸塩である。(E)成分は、ジオポリマー組成物の硬化遅延に寄与する。(E)成分は1種でもよく、2種以上を併用してもよい。
正リン酸塩は、HPOで表されるリン酸の水素原子の1個〜3個が金属イオンに置き換わった塩である。具体的には、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸三ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸三カリウムおよびこれらの水和物が挙げられる。これらのうち、水への溶解性及び流動性保持時間の延長効果の点から、リン酸二水素ナトリウムの水和物が特に好ましい。
リン酸二水素ナトリウム二水和物は、リン酸に等量の水酸化ナトリウムまたは炭酸ナトリウムの水溶液を加え、pH4.4〜4.6に調整した溶液を蒸発濃縮すると、41℃以下で二水塩が析出する。
リン酸三ナトリウム十二水和物は、リン酸に過剰の水酸化ナトリウムを加えたものを蒸発濃縮すると、常温で十二水塩が晶出する。
<(E) component>
The component (E) is a normal phosphate. The component (E) contributes to delay in curing of the geopolymer composition. As the component (E), one type may be used alone, or two or more types may be used in combination.
Orthophosphates are salts in which one to three hydrogen atoms of phosphoric acid represented by H 3 PO 4 is replaced by a metal ion. Specific examples include disodium hydrogen phosphate, sodium dihydrogen phosphate, trisodium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, tripotassium phosphate and hydrates thereof. Among these, hydrates of sodium dihydrogen phosphate are particularly preferred from the viewpoint of solubility in water and the effect of extending the fluidity retention time.
Sodium dihydrogen phosphate dihydrate is obtained by adding an equal amount of an aqueous solution of sodium hydroxide or sodium carbonate to phosphoric acid, and evaporating and evaporating the solution adjusted to pH 4.4 to 4.6. Salt precipitates out.
When trisodium phosphate dodecahydrate is obtained by evaporating and concentrating a mixture of phosphoric acid and an excess of sodium hydroxide, dodecahydrate crystallizes at room temperature.

(E)成分の配合量は、(A)成分と(B)成分の合計100質量部に対して、無水物換算で0.3〜1.8質量部が好ましく、0.5〜1.5質量部がより好ましい。
(E)成分の配合量が上記範囲の下限値以上であると充分な硬化遅延効果が得られやすい、上限値以下であると硬化体の強度低下が生じ難い。
なお、本明細書における(E)成分の配合量は、「無水物換算で」という記載が無い場合は水和水を含む配合量である。
The compounding amount of the component (E) is preferably from 0.3 to 1.8 parts by mass, and preferably from 0.5 to 1.5 parts by mass, based on 100 parts by mass of the components (A) and (B) in total. Parts by mass are more preferred.
When the amount of the component (E) is at least the lower limit of the above range, a sufficient curing retardation effect can be easily obtained, and when the amount is at most the lower limit, the strength of the cured product is not easily reduced.
In addition, the compounding amount of the component (E) in this specification is a compounding amount containing water of hydration unless there is a description “in terms of anhydride”.

(E)成分を水溶液として添加するとより高い硬化遅延効果が得られる。水溶液の総質量に対して、水が60〜95質量%であることが好ましく、60〜85質量%がより好ましい。
水の量が上記範囲の下限値以上であると、ジオポリマー組成物を調製する工程で正リン酸塩が析出し難く、充分な硬化遅延効果が得られやすい。上限値以下であると、硬化体の強度低下が生じ難い。
When the component (E) is added as an aqueous solution, a higher curing retardation effect can be obtained. Water is preferably 60 to 95% by mass, more preferably 60 to 85% by mass, based on the total mass of the aqueous solution.
When the amount of water is equal to or more than the lower limit of the above range, orthophosphate does not easily precipitate in the step of preparing the geopolymer composition, and a sufficient curing retardation effect is easily obtained. If it is less than the upper limit, the strength of the cured product is hardly reduced.

<水>
(E)成分を粉体として添加する場合、(A)〜(E)成分のほかに水を配合する。この場合の水の配合量は、(E)成分と水の合計質量に対して、60〜95質量%が好ましく、60〜85質量%がより好ましい。
水の配合量が上記範囲の下限値以上であると、ジオポリマー組成物を調製する工程で正リン酸塩が析出し難く、充分な硬化遅延効果が得られやすい。上限値以下であると、硬化体の強度低下が生じ難い。
<Water>
When the component (E) is added as a powder, water is blended in addition to the components (A) to (E). In this case, the amount of water is preferably 60 to 95% by mass, more preferably 60 to 85% by mass, based on the total mass of the component (E) and water.
If the amount of water is not less than the lower limit of the above range, orthophosphate does not easily precipitate in the step of preparing the geopolymer composition, and a sufficient curing retardation effect is easily obtained. If it is less than the upper limit, the strength of the cured product is hardly reduced.

<任意成分>
ジオポリマー組成物は、(A)〜(E)成分及び水以外の任意成分を、本発明の効果を損なわない範囲で含有してもよい。任意成分はコンクリートの分野で公知の原料を適宜用いることができる。
任意成分の配合量は、(A)成分と(B)成分の合計100質量部に対して1.8質量部以下が好ましく、1.5質量部以下がより好ましい。ゼロでもよい。
<Optional components>
The geopolymer composition may contain components (A) to (E) and optional components other than water as long as the effects of the present invention are not impaired. As the optional component, a raw material known in the field of concrete can be appropriately used.
The mixing amount of the optional component is preferably 1.8 parts by mass or less, more preferably 1.5 parts by mass or less based on 100 parts by mass of the total of the components (A) and (B). It may be zero.

本実施形態のジオポリマー組成物は、(A)〜(E)成分及び水を含み、ジオポリマー組成物の1mに対して(A)成分と(B)成分の合計の配合量が600kg/m以下であり、(A)成分と(B)成分の合計100質量部に対して、(B)成分が10〜50質量部、(C)成分が55〜75質量部、(D)成分が1600kg/m以下、かつ(E)成分が無水物換算で0.3〜1.8質量部であり、(E)成分と水の合計質量に対して、水が60〜95質量%であることが好ましい。
ジオポリマー組成物の1mに対する(A)〜(E)成分及び水の配合量の体積の合計は1mを超えない。
The geopolymer composition of the present embodiment contains the components (A) to (E) and water, and the total amount of the components (A) and (B) is 600 kg / m 3 of the geopolymer composition. m is 3 or less, (a) component and (B) per 100 parts by weight of component, (B) component 10 to 50 parts by weight, (C) component 55 to 75 parts by weight, (D) component Is 1600 kg / m 3 or less, and the component (E) is 0.3 to 1.8 parts by mass in terms of anhydride, and water is 60 to 95% by mass based on the total mass of the component (E) and water. Preferably, there is.
Geo sum of (A) the ~ (E) component and the amount of water volume to 1 m 3 of the polymer composition does not exceed 1 m 3.

<ジオポリマー硬化体の製造方法>
(A)〜(E)成分および水を含む全原料を撹拌混合してジオポリマー組成物を調製し、前記ジオポリマー組成物を硬化させてジオポリマー硬化体を得る。
原料の撹拌混合はバッチ式又は連続式の各種ミキサーを用いて実施できる。混練後、得られたジオポリマー組成物を所望の形状に成形し、養生して硬化させる。
例えば現場打設を行う場合は、全原料を混錬してジオポリマー組成物を調製した後、速やかにジオポリマー組成物を施工部位に流し込み、養生して硬化させる。予め、施工部位に型枠を設け、硬化後に脱型してもよい。
また、工場内で所定形状の硬化体製品を製造する場合には、ジオポリマー組成物を型枠に流し込み、養生して硬化させた後に脱型する。
養生は、常温養生あるいは蒸気養生により行うことができる。蒸気養生には、一定の温度かつ一定の湿度に保持するための恒温恒湿装置が用いられる。現場打設を行う場合は常温養生が好ましい。
<Production method of cured geopolymer>
All raw materials including the components (A) to (E) and water are stirred and mixed to prepare a geopolymer composition, and the geopolymer composition is cured to obtain a cured geopolymer.
The stirring and mixing of the raw materials can be carried out using various mixers of a batch type or a continuous type. After kneading, the obtained geopolymer composition is molded into a desired shape, cured and cured.
For example, in the case of in-situ casting, after the geopolymer composition is prepared by kneading all the raw materials, the geopolymer composition is immediately poured into the construction site, cured and cured. A mold may be provided in advance at the construction site, and the mold may be removed after curing.
When a cured product having a predetermined shape is produced in a factory, the geopolymer composition is poured into a mold, cured, cured, and then released.
Curing can be performed by room temperature curing or steam curing. A constant temperature and constant humidity device for maintaining a constant temperature and a constant humidity is used for steam curing. When cast in place, room temperature curing is preferred.

全原料を撹拌混合してジオポリマー組成物を調製する工程は、下記の第1の態様又は第2の態様の方法で行うことが好ましい。
[第1の態様]
本態様は(E)成分を水溶液として添加する態様である。
予め、(E)成分と水を含む水溶液を調製する。これとは別に(A)成分と(B)成分と(D)成分を含む粉体原料を撹拌混合し、粉体混合物を得る。この粉体混合物に前記水溶液および(C)成分を添加し混練してジオポリマー組成物を得る。
The step of preparing a geopolymer composition by stirring and mixing all the raw materials is preferably performed by the method of the first embodiment or the second embodiment described below.
[First aspect]
In this embodiment, the component (E) is added as an aqueous solution.
An aqueous solution containing the component (E) and water is prepared in advance. Separately, a powder raw material containing the components (A), (B) and (D) is stirred and mixed to obtain a powder mixture. The aqueous solution and the component (C) are added to the powder mixture and kneaded to obtain a geopolymer composition.

[第2の態様]
本態様は(E)成分を粉体として添加する態様である。
(A)成分と(B)成分と(D)成分と(E)成分を含む粉体原料を撹拌混合し、粉体混合物を得る。この粉体混合物に(C)成分と水を添加し混練してジオポリマー組成物を得る。
[Second aspect]
In this embodiment, the component (E) is added as a powder.
A powder raw material containing the components (A), (B), (D) and (E) is stirred and mixed to obtain a powder mixture. The component (C) and water are added to the powder mixture and kneaded to obtain a geopolymer composition.

本実施形態のジオポリマー硬化体の製造方法によれば、ジオポリマー組成物の流動性保持時間を延長できるため、土木・建築分野における現場打設や二次製品工場において十分な流動性保持時間を確保することができ、施工性及び作業性を改善することができる。
例えばコンクリートの施工現場でジオポリマー硬化体を打設するためには、ジオポリマーの全原料を混合したジオポリマー組成物が、30分以上、好ましくは45分以上、流動性を保持していることが必要とされる。
本実施形態によれば、後述の実施例に示されるように、30分以上の流動性保持時間を得ることができ、ジオポリマー硬化体の現場打設が可能となる。
According to the production method of the geopolymer cured product of the present embodiment, since the fluidity retention time of the geopolymer composition can be extended, sufficient fluidity retention time in on-site placement and secondary product factories in the civil engineering and construction fields can be achieved. Thus, the workability and workability can be improved.
For example, in order to cast a cured geopolymer at a concrete construction site, the geopolymer composition obtained by mixing all the raw materials of the geopolymer must maintain fluidity for 30 minutes or more, preferably 45 minutes or more. Is required.
According to the present embodiment, as shown in the examples described later, a fluidity retention time of 30 minutes or more can be obtained, and it is possible to cast a cured geopolymer in place.

以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されない。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following description.

(使用原料)
<(A)成分>
A−1:フライアッシュ、九州電力社品、JIS(II)種、密度2.32g/cm
A−2:フライアッシュ、九州電力社品、JIS(II)種、密度2.34g/cm
<(B)成分>
B−1:高炉スラグ微粉末、日鉄住金高炉セメント社品、エスメント(商品名)、密度2.91g/cm
B−2:高炉スラグ微粉末、日鉄住金高炉セメント社品、エスメント(商品名)、密度2.90g/cm
<(C)成分>
C−1:2号ケイ酸ナトリウム(JIS K1408(1966年))、密度1.40g/cm
<(D)成分>
D−1:標準砂、一般社団法人セメント協会品、密度2.64g/cm
D−2:ケイ砂(絶乾状態)、中国産、密度2.60g/cm
<(E)成分>
E−1:リン酸二水素ナトリウム二水和物、純正化学社品、試薬、密度1.915g/cm
E−2:リン酸三ナトリウム十二水和物、純正化学社品、試薬、密度1.62g/cm
<水>
水道水。
<比較成分(遅延剤)>
GNa:グルコン酸ナトリウム:昭和化学社品、試薬。
Glu:(+)−グルコース:関東化学社品、試薬。
CiA:クエン酸:和光純薬工業社品、試薬。
(Raw materials used)
<(A) component>
A-1: Fly ash, product of Kyushu Electric Power Company, JIS (II) type, density 2.32 g / cm 3 .
A-2: Fly ash, manufactured by Kyushu Electric Power Company, JIS (II) type, density 2.34 g / cm 3 .
<(B) component>
B-1: Blast furnace slag fine powder, Nippon Steel & Sumikin Blast Furnace Cement Co., Ltd., Esment (trade name), density 2.91 g / cm 3 .
B-2: Blast furnace slag fine powder, Nippon Steel & Sumikin Blast Furnace Cement Co., Ltd., Esment (trade name), density 2.90 g / cm 3 .
<(C) component>
C-1: No. 2 sodium silicate (JIS K1408 (1966)), density 1.40 g / cm 3 .
<(D) component>
D-1: Standard sand, product of the Japan Cement Association, density 2.64 g / cm 3 .
D-2: silica sand (absolutely dried state), made in China, density 2.60 g / cm 3 .
<(E) component>
E-1: sodium dihydrogen phosphate dihydrate, a product of Junsei Chemical Co., reagent, density 1.915 g / cm 3 .
E-2: trisodium phosphate dodecahydrate, a product of Junsei Chemical Co., reagent, density 1.62 g / cm 3 .
<Water>
Tap water.
<Comparative component (retarder)>
GNa: sodium gluconate: Showa Chemical Co., reagent.
Glu: (+)-glucose: a product of Kanto Chemical Co., a reagent.
CiA: citric acid: a product of Wako Pure Chemical Industries, a reagent.

<練り混ぜ方法(1)>
本方法では(E)成分(又は比較成分)を水溶液として添加した。
予め、(E)成分(又は比較成分)と水を混合して混和剤水溶液を調製した。(A)成分、(B)成分及び(D)成分を30秒間撹拌した後、前記混和剤水溶液及び(C)成分を添加して120秒間撹拌することにより、全原料を混錬したジオポリマー組成物を得た。
なお、表中、空欄はその成分が配合されていないことを意味する。表に示す(E)成分の配合量は水和水を含む。
<Mixing method (1)>
In this method, the component (E) (or the comparative component) was added as an aqueous solution.
The component (E) (or comparative component) and water were previously mixed to prepare an aqueous solution of the admixture. After the components (A), (B) and (D) are stirred for 30 seconds, the aqueous solution of the admixture and the component (C) are added and stirred for 120 seconds to obtain a kneaded geopolymer composition. I got something.
In addition, in the table, the blank means that the component is not mix | blended. The amount of the component (E) shown in the table includes water of hydration.

<練り混ぜ方法(2)>
本方法では、(E)成分(又は比較成分)を水溶液とせずに、粉体の状態で添加した。
(A)成分、(B)成分、(D)成分及び(E)成分(又は比較成分)を30秒間撹拌した後、(C)成分及び水を添加して120秒間撹拌することにより、全原料を混錬したジオポリマー組成物を得た。
<Mixing method (2)>
In this method, the component (E) (or the comparative component) was added in the form of a powder without being converted into an aqueous solution.
After stirring the component (A), the component (B), the component (D) and the component (E) (or the comparative component) for 30 seconds, the component (C) and water are added, and the mixture is stirred for 120 seconds to obtain all the raw materials. Was obtained to obtain a geopolymer composition.

(実施例1、2、4)
表1に示す配合で、前記練り混ぜ方法(1)によりジオポリマー組成物を調製し、下記の方法で、流動性保持時間を評価した。評価結果を表1に示す(以下、同様)。
(実施例3)
表1に示す配合で、前記練り混ぜ方法(2)によりジオポリマー組成物を調製した。
(比較例1)
本例は、実施例1、2において(E)成分を配合せず、その代わりに水を増量した例である。すなわち、表1に示す配合で、前記練り混ぜ方法(1)によりジオポリマー組成物を調製した。
(比較例2〜4)
本例は、実施例1、2において(E)成分を配合せず、その代わりに公知の遅延剤(比較成分)を配合した例である。すなわち、表1に示す配合で、前記練り混ぜ方法(1)によりジオポリマー組成物を調製した。
(比較例5)
本例は、実施例4において(E)成分を配合せず、その代わりに水を増量した例である。すなわち、表1に示す配合で、前記練り混ぜ方法(1)によりジオポリマー組成物を調製した。
(Examples 1, 2, and 4)
The geopolymer composition was prepared according to the kneading method (1) with the composition shown in Table 1, and the fluidity retention time was evaluated by the following method. The evaluation results are shown in Table 1 (hereinafter the same).
(Example 3)
With the composition shown in Table 1, a geopolymer composition was prepared according to the kneading method (2).
(Comparative Example 1)
This example is an example in which the component (E) is not blended in Examples 1 and 2, but the amount of water is increased instead. That is, the geopolymer composition was prepared according to the kneading method (1) with the composition shown in Table 1.
(Comparative Examples 2 to 4)
This example is an example in which the component (E) was not blended in Examples 1 and 2, but a known retarder (comparative component) was blended instead. That is, the geopolymer composition was prepared according to the kneading method (1) with the composition shown in Table 1.
(Comparative Example 5)
This example is an example in which the component (E) was not blended in Example 4 but water was increased instead. That is, the geopolymer composition was prepared according to the kneading method (1) with the composition shown in Table 1.

<流動性保持時間の評価方法(テーブルフロー試験)>
JIS R5201(2015年)に規定されるフロー試験を混練直後から15分おきに行って測定したテーブルフロー値に基づいて流動性保持時間を評価した。ただし、前記フロー試験において、後述するように、フローコーンを取り去ってから落下運動を加えるまでに30秒の静置時間を設けた。
試験は概略下記の手順で行った。測定対象のジオポリマー組成物を、フローテーブル上の中央に置いたフローコーンに詰めて表面を均した。直ちにフローコーンを垂直方向に取り去り、30秒間静置した後、15秒間に15回の落下運動を与え、広がったジオポリマー組成物の径を、最大と認める方向とこれに直角な方向とで1mmの単位まで測定し、それらの平均値をミリメートル単位で表したものをテーブルフロー値とした。
混練直後、混練終了からの経過時間が15分、30分、45分、及び60分のジオポリマー組成物について、それぞれ上記の方法でテーブルフロー値を測定した。テーブルフロー値が100mm以下の値(表には「100」と記載する)となった測定時の、1回前の測定時の経過時間を流動性保持時間(単位:分)とした。結果を表1に示す。
<Fluidity retention time evaluation method (table flow test)>
The flow test specified in JIS R5201 (2015) was performed every 15 minutes immediately after kneading, and the fluidity retention time was evaluated based on the measured table flow values. However, in the flow test, a standing time of 30 seconds was provided between the removal of the flow cone and the addition of the falling motion, as described later.
The test was performed according to the following procedure. The geopolymer composition to be measured was packed in a flow cone placed at the center on a flow table to level the surface. Immediately after removing the flow cone in the vertical direction and allowing it to stand for 30 seconds, apply a falling motion 15 times in 15 seconds, and make the diameter of the expanded geopolymer composition 1 mm in the direction recognized as the maximum and the direction perpendicular to this direction. , And their average value expressed in millimeters was taken as the table flow value.
Immediately after kneading, the table flow values of the geopolymer compositions having elapsed times of 15 minutes, 30 minutes, 45 minutes, and 60 minutes from the end of kneading were measured by the methods described above. The elapsed time from the previous measurement at the time when the table flow value became a value of 100 mm or less (described as “100” in the table) was defined as the fluidity retention time (unit: minute). Table 1 shows the results.

Figure 2020026357
Figure 2020026357

表1の結果より、比較例1に比べて、(E)成分を添加した実施例1、2はジオポリマー組成物の流動性保持時間が延長された。
比較例5に比べて、(E)成分を添加した実施例3、4はジオポリマー組成物の流動性保持時間が延長された。
(E)成分の代わりに比較成分を添加した比較例2〜4は、ジオポリマー組成物の流動性保持時間が比較例1と同等であり、延長されなかった。
From the results shown in Table 1, in Examples 1 and 2 to which the component (E) was added, the fluidity retention time of the geopolymer composition was extended as compared with Comparative Example 1.
In Examples 3 and 4 in which the component (E) was added, the fluidity retention time of the geopolymer composition was extended as compared with Comparative Example 5.
In Comparative Examples 2 to 4 in which the comparative component was added instead of the component (E), the fluidity retention time of the geopolymer composition was equivalent to that of Comparative Example 1 and was not extended.

Claims (5)

下記(A)〜(E)成分および水を含むジオポリマー組成物を調製し、前記ジオポリマー組成物を硬化させる、ジオポリマー硬化体の製造方法。
(A)成分:フライアッシュ、
(B)成分:高炉スラグ微粉末、
(C)成分:水ガラスを含有するアルカリ溶液、
(D)成分:骨材、
(E)成分:正リン酸塩。
A method for producing a cured geopolymer, comprising preparing a geopolymer composition containing the following components (A) to (E) and water, and curing the geopolymer composition.
(A) ingredient: fly ash,
(B) component: blast furnace slag fine powder,
(C) component: an alkaline solution containing water glass,
(D) component: aggregate,
Component (E): orthophosphate.
前記(A)成分、前記(B)成分及び前記(D)成分の混合物に、前記(C)成分、及び前記(E)成分の水溶液を添加して前記ジオポリマー組成物を調製する、請求項1に記載のジオポリマー硬化体の製造方法。   The geopolymer composition is prepared by adding an aqueous solution of the component (C) and the component (E) to a mixture of the component (A), the component (B), and the component (D). 2. The method for producing a geopolymer cured product according to 1. 前記(A)成分、前記(B)成分、前記(D)成分、及び前記(E)成分の混合物に、前記(C)成分、及び水を添加して前記ジオポリマー組成物を調製する、請求項1に記載のジオポリマー硬化体の製造方法。   The geopolymer composition is prepared by adding the component (C) and water to a mixture of the component (A), the component (B), the component (D), and the component (E). Item 10. A method for producing a cured geopolymer according to Item 1. 前記(E)成分がリン酸二水素ナトリウムを含む、請求項1〜3のいずれか一項に記載のジオポリマー硬化体の製造方法。   The method for producing a cured geopolymer according to any one of claims 1 to 3, wherein the component (E) includes sodium dihydrogen phosphate. 施工現場で前記ジオポリマー組成物を調製し、施工部位に前記ジオポリマー組成物を流し込み硬化させる、請求項1〜4のいずれか一項に記載のジオポリマー硬化体の製造方法。   The method for producing a cured geopolymer according to any one of claims 1 to 4, wherein the geopolymer composition is prepared at a construction site, and the geopolymer composition is poured into a construction site and cured.
JP2018150197A 2018-08-09 2018-08-09 Method for manufacturing a hardened geopolymer Active JP7026593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018150197A JP7026593B2 (en) 2018-08-09 2018-08-09 Method for manufacturing a hardened geopolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018150197A JP7026593B2 (en) 2018-08-09 2018-08-09 Method for manufacturing a hardened geopolymer

Publications (2)

Publication Number Publication Date
JP2020026357A true JP2020026357A (en) 2020-02-20
JP7026593B2 JP7026593B2 (en) 2022-02-28

Family

ID=69621931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150197A Active JP7026593B2 (en) 2018-08-09 2018-08-09 Method for manufacturing a hardened geopolymer

Country Status (1)

Country Link
JP (1) JP7026593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759338A (en) * 2021-01-13 2021-05-07 湖北工业大学 Slag-based cementing material for 3D printing and preparation method thereof
JP7384505B1 (en) 2023-05-29 2023-11-21 株式会社キクノ Fluidized soil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168640A (en) * 2002-11-07 2004-06-17 Doboku Chishitsu Kk Water glass for water glass-slag concrete, its manufacturing method, and water glass-slag concrete
JP2013001580A (en) * 2011-06-13 2013-01-07 Nishimatsu Constr Co Ltd Geopolymer composition and method for producing the same
JP2013035884A (en) * 2011-08-03 2013-02-21 Mitsubishi Rayon Co Ltd Suspended grout chemical liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168640A (en) * 2002-11-07 2004-06-17 Doboku Chishitsu Kk Water glass for water glass-slag concrete, its manufacturing method, and water glass-slag concrete
JP2013001580A (en) * 2011-06-13 2013-01-07 Nishimatsu Constr Co Ltd Geopolymer composition and method for producing the same
JP2013035884A (en) * 2011-08-03 2013-02-21 Mitsubishi Rayon Co Ltd Suspended grout chemical liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759338A (en) * 2021-01-13 2021-05-07 湖北工业大学 Slag-based cementing material for 3D printing and preparation method thereof
CN112759338B (en) * 2021-01-13 2022-04-29 湖北工业大学 Slag-based cementing material for 3D printing and preparation method thereof
JP7384505B1 (en) 2023-05-29 2023-11-21 株式会社キクノ Fluidized soil

Also Published As

Publication number Publication date
JP7026593B2 (en) 2022-02-28

Similar Documents

Publication Publication Date Title
JP4037543B2 (en) Fast curing, high initial strength binder
JP5364497B2 (en) Spraying method for quick setting sprayed cement concrete
JP2013512168A (en) Inorganic binder systems for the production of chemically resistant building chemicals
JP6482878B2 (en) Spray cement mortar and spray cement concrete
RU2707316C2 (en) Acid-base binding material containing phosphate-based cements
JP2022133746A (en) Two agent-type quick setting agent, spraying material, and spraying method
JP7026593B2 (en) Method for manufacturing a hardened geopolymer
JP7037879B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
JP6386902B2 (en) Shotcrete and manufacturing method thereof
JP2007031182A (en) Quick setting material for cement and cement composition
JP2009227544A (en) Hydraulic composition, hydraulic mortar and hardened body
JP6300678B2 (en) Method for promoting curing and production of geopolymer composition
JP5776268B2 (en) Self-leveling material
JP5782776B2 (en) Self-leveling material
JP6938742B1 (en) Ground improvement material slurry, ground improvement material cured product, and ground improvement method
AU2014356413A1 (en) Flowable concrete with secondary accelerator
JP6809761B2 (en) Cement composition and its manufacturing method
WO2021024853A1 (en) Cement admixture and hydraulic composition
JPWO2020036087A1 (en) Ground injection agent and ground injection method using it
JP2007031181A (en) Quick setting material for cement and quick hardening cement composition
JP2006062888A (en) Quick-hardening admixture and quick-hardening cement composition
JP5459001B2 (en) Self-flowing hydraulic composition
JP5515901B2 (en) Self-flowing hydraulic composition
JP2012240874A (en) Cement composition
CN112839916B (en) Additive for cement containing sulfur-containing bauxite

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220215

R150 Certificate of patent or registration of utility model

Ref document number: 7026593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350