WO2021024853A1 - Cement admixture and hydraulic composition - Google Patents

Cement admixture and hydraulic composition Download PDF

Info

Publication number
WO2021024853A1
WO2021024853A1 PCT/JP2020/028848 JP2020028848W WO2021024853A1 WO 2021024853 A1 WO2021024853 A1 WO 2021024853A1 JP 2020028848 W JP2020028848 W JP 2020028848W WO 2021024853 A1 WO2021024853 A1 WO 2021024853A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
cement
aluminum sulfate
cement admixture
admixture
Prior art date
Application number
PCT/JP2020/028848
Other languages
French (fr)
Japanese (ja)
Inventor
貴光 室川
博貴 水野
孝記 榊原
岩崎 昌浩
三島 俊一
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019142847A external-priority patent/JP6675033B1/en
Priority claimed from JP2020047886A external-priority patent/JP6902643B1/en
Priority claimed from JP2020047902A external-priority patent/JP6972214B2/en
Priority claimed from JP2020047873A external-priority patent/JP6972213B2/en
Priority claimed from JP2020047915A external-priority patent/JP6902644B1/en
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2021024853A1 publication Critical patent/WO2021024853A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Definitions

  • the present invention relates to a cement admixture and a hydraulic composition used in the fields of civil engineering, construction, etc.
  • simplification of construction is a very important factor in considering the safety of workers.
  • simplification of construction means, for example, comprehensive rationalization such as improvement of construction speed, unification of materials, and improvement of handleability.
  • Various hydraulic compositions having the above have been proposed (for example, Patent Documents 1 to 3).
  • the performance required for hydraulic compositions has been increasing more and more with further improvement in simplification of construction and support for new applications.
  • a cement admixture is blended in the hydraulic composition for the purpose of improving various properties such as curing speed.
  • an alkaline admixture has been used as the cement admixture, but from the viewpoint of safety, it is desired to use an acidic admixture.
  • a hydraulic substance such as cement is strongly alkaline, it is difficult to combine it with an acidic cement admixture, and there is a problem that a hydraulic composition having desired properties cannot be obtained.
  • a conventional acidic cement admixture suitable for improving the curing rate and premixing is added to the hydraulic composition, the storage stability of the hydraulic composition, the strength of the cured product, and the like are lowered. In addition, good cohesiveness and high strength from the very beginning may not be obtained.
  • a first object of the present invention is to provide a cement admixture capable of providing a hydraulic composition capable of obtaining a cured product having high strength. Further, according to the present invention, even if the hydraulic composition is preliminarily blended with an alkaline admixture, the storage stability is unlikely to decrease, and the hydraulic composition exhibits good cohesiveness and high strength can be obtained from the very beginning.
  • a second object is to provide a cement admixture capable of giving a substance.
  • the present inventors have conducted the above-mentioned problems, particularly the above-mentioned problems, in spite of the fact that the cement admixture containing aluminum sulfate having specific properties is acidic.
  • the object of 1 can be solved, and have completed the first invention of the present invention. That is, the first invention is as follows.
  • the aluminum sulfate is amorphous.
  • the solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
  • the pH of the aluminum sulfate is 1 to 6.
  • Particles having a particle size of 100 ⁇ m or more are 70% by mass or less, and particles having a particle size of 10 ⁇ m or less are less than 30% by mass.
  • the present inventors have found that a cement admixture containing calcium aluminate and aluminum sulfate having specific properties is a problem, particularly the second problem.
  • the object can be solved, and have completed the second invention of the present invention. That is, the second invention is as follows.
  • the aluminum sulfate is amorphous.
  • the solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. .. (3) Particles having a particle size of 100 ⁇ m or more are 70% by mass or less, and particles having a particle size of 10 ⁇ m or less are less than 30% by mass.
  • the present inventors have solved the above problems, particularly the second purpose, with a cement admixture containing sodium silicate and aluminum sulfate having specific properties. He found out that he could do it, and completed the third invention, which is the present invention. That is, the third invention is as follows.
  • the aluminum sulfate is amorphous.
  • the solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. .. (3) Particles having a particle size of 100 ⁇ m or more are 70% by mass or less, and particles having a particle size of 10 ⁇ m or less are less than 30% by mass.
  • the present inventors have solved the above problems, particularly the second object, with a cement admixture containing calcium sulfate and aluminum sulfate having specific properties. He found out that he could do it, and completed the fourth invention, which is the present invention. That is, the fourth invention is as follows.
  • the aluminum sulfate is amorphous.
  • the solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. .. (3) Particles having a particle size of 100 ⁇ m or more are 70% by mass or less, and particles having a particle size of 10 ⁇ m or less are less than 30% by mass.
  • the present inventors have made a cement admixture containing by-product slaked lime and aluminum sulfate having specific properties the above-mentioned problems, particularly the second purpose.
  • the fifth invention is as follows.
  • the aluminum sulfate is amorphous.
  • the solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. .. (3) Particles having a particle size of 100 ⁇ m or more are 70% by mass or less, and particles having a particle size of 10 ⁇ m or less are less than 30% by mass.
  • the storage stability is unlikely to decrease, and a hydraulically hardened body having ultrafast hardness and high strength can be obtained.
  • a cement admixture that can provide the composition can be provided.
  • the second invention even if the hydraulic composition is premixed with an alkaline admixture, the storage stability does not easily decrease, and the cement exhibits good cohesiveness and can obtain high strength from the very beginning. An admixture can be provided.
  • the hydraulic composition containing the cement admixture does not easily deteriorate in storage stability, and has high cohesive properties and high strength from the very beginning in a low temperature (5 ° C or lower) or high temperature (30 ° C or higher) environment. Since it can be obtained, in underground construction such as tunnels, stable rebound and adhesion can be achieved even in a spring water environment to some extent.
  • the third invention even if the hydraulic composition is premixed with an alkaline admixture, the storage stability does not easily decrease, and the cement exhibits good cohesiveness and can obtain high strength from the very beginning.
  • An admixture can be provided.
  • the hydraulic composition containing the cement admixture can have the above-mentioned effect and self-healing performance independent of the environmental temperature caused by sodium silicate.
  • the fourth invention it is possible to provide a cement admixture that exhibits good cohesiveness and can obtain high strength from the very beginning. In particular, it is possible to obtain a constant long-term strength without much dependence on the long-term strength in a high-temperature environment and the water-cement ratio of cement paste, cement mortar, and cement concrete.
  • the fifth invention even if the hydraulic composition is premixed with an alkaline admixture, the storage stability does not easily decrease, and the cement exhibits good cohesiveness and can obtain high strength from the very beginning.
  • An admixture can be provided. In particular, condensation and initial strength development in a low temperature environment can be stably obtained, and it is possible to prevent the physical properties from being affected by the timing of addition to cement.
  • the cement admixture of the first invention contains aluminum sulfate that satisfies the following (1) to (4).
  • Aluminum sulfate is amorphous. When aluminum sulfate is not amorphous, it is difficult to premix it with a hydraulic substance showing strong alkalinity such as cement, and even if it can be premixed, the storage stability of the hydraulic composition is lowered.
  • whether or not aluminum sulfate is amorphous can be determined by X-ray diffraction analysis.
  • the X-ray diffraction spectrum of aluminum sulfate is broad, it can be determined to be amorphous.
  • the half width of the peak is preferably 10 to 35 ppm, more preferably 25 to 32 ppm.
  • the solid 27 Al-NMR measurement of aluminum sulfate can be carried out under the following conditions using a commercially available measuring device, for example, a superconducting nuclear magnetic resonance device “ECX-400” manufactured by JEOL Ltd. .. Observation nucleus: 27 Al Sample tube rotation speed: 10 KHz Measurement temperature: Room temperature Pulse width: 3.3 ⁇ sec (90 ° pulse) Waiting time: 5 seconds External standard: Aluminum nitrate
  • the heating temperature when heating a mixture of various raw materials may be adjusted.
  • the pH of aluminum sulfate is 1 to 6. If the pH of aluminum sulfate is out of the above range, the curing rate of the hydraulic composition will decrease.
  • the pH is preferably 2 to 5, more preferably 2 to 4. Further, in order to set the pH of aluminum sulfate to 1 to 6, the above heating temperature may be adjusted. In the present specification, the pH can be measured by adding 10 g to 100 ml of water at 20 ⁇ 2 ° C. and stirring at 500 rpm using a pH meter.
  • 70% or less of the particles have a particle size of 100 ⁇ m or more, and less than 30% of the particles have a particle size of 10 ⁇ m or less. If the particle size of 100 ⁇ m or more exceeds 70%, the curing rate of the hydraulic substance cannot be sufficiently obtained, and if the particles having a particle size of 10 ⁇ m or less are 30% or more, an alkaline admixture having a pH of 8 or more. By coexisting with, storage deterioration becomes remarkable.
  • the particles having a particle size of 100 ⁇ m or more are preferably 50% or less, more preferably 30% or less. Further, the particles having a particle size of 10 ⁇ m or less are preferably 40% or more, more preferably 50% or more.
  • the particle size can be adjusted by, for example, a sieve. It should be noted that the admixture using aluminum sulfate in the range of (4) does not mean that a sufficient curing rate can be obtained from low temperature to high temperature, and it is expected that the curing rate will increase particularly at high temperature. Since it is thought that the curing rate can be controlled by the coexistence of alkaline substances with pH 8 or higher, it can be used in a wide temperature range from low temperature (10 ° C) to high temperature (30 ° C), so it can be applied stably in both summer and winter. is there.
  • Aluminum sulfate satisfying the above-mentioned (1) to (4) is prepared by mixing raw materials such as Al 2 O 3 source and SO 3 source using an Al 2 O 3 source and an SO 3 source to prepare a mixture.
  • a method of heating treatment a method of directly chemically reacting Al 2 O 3 source and SO 3 source, a method is a chemical reaction after mixing was charged with Al 2 O 3 source and SO 3 source in a solvent such as pure water or the like Can be used.
  • a solvent such as pure water or the like
  • the Al 2 O 3 source is not particularly limited, but aluminum sulfate, aluminate, and other inorganic aluminum compounds, organoaluminum compounds, and aluminum complexes can be used.
  • the sulfate of aluminum is not particularly limited, and examples thereof include ammonium alum, aluminum hydroxysulfate, and aluminum sulfate.
  • the alumate is not particularly limited, and examples thereof include lithium aluminate, sodium aluminate, potassium aluminate, calcium aluminate, and magnesium aluminate.
  • Other inorganic aluminum compounds are not particularly limited, but are, for example, bokisite, aluminum oxide, aluminum hydroxide, aluminum chloride, aluminum phosphate, aluminum nitrate, aluminum fluoride, polyaluminum chloride, aluminum carbonate, synthetic hydrotal. Sight, aluminum metasilicate and the like.
  • the organoaluminum compound is not particularly limited, and examples thereof include aluminum stearate, aluminum oxalate, aluminum isopropoxide, and aluminum formate.
  • the aluminum complex is not particularly limited, and examples thereof include tris (8-hydroxyquinolinato) aluminum.
  • Al 2 O 3 source a single species can be used, but two or more species may be used in combination.
  • aluminum sulfate is preferable because it has high solubility in water, low production cost, and excellent cohesiveness, but aluminum hydroxide is also preferable.
  • the SO 3 source but are not limited to, in addition to elemental sulfur, such as sulfur and sulfur oxide, sulfide, sulfate, sulfate, sulfite, sulfite, thiosulfate, sulfate, and organic sulfur compounds such as Can be used.
  • the sulfide is not particularly limited, and examples thereof include magnesium sulfide, calcium sulfide, iron sulfide, and phosphorus pentasulfide.
  • the sulfate is not particularly limited, and examples thereof include aniline sulfate, aluminum sulfate, ammonium sulfate, magnesium sulfate, manganese sulfate, barium sulfate, calcium sulfate, sodium sulphate, potassium sulphate, ammonium sulphate, and hydroxylamine sulfate.
  • the sulfite salt is not particularly limited, and examples thereof include ammonium hydrogen sulfite and calcium sulfite.
  • the thiosulfate is not particularly limited, and examples thereof include ammonium thiosulfate and barium thiosulfate.
  • the organic sulfur compound is not particularly limited, and examples thereof include resins such as a sulfonic acid derivative, a salt of a sulfonic acid derivative, mercaptan, thiophene, a thiophene derivative, polysulfone, polyether sulfone, and polyphenylene sulfide.
  • the SO 3 source can be used single type may be used in combination of two or more. Among the various SO 3 source of the high solubility in water, from the viewpoint of excellent cheap and caking manufacturing cost, preferably sulfuric acid or sulfates, and most preferably sulfuric acid or ammonium alum.
  • the obtained aluminum sulfate is pulverized by, for example, a known mill or the like so as to satisfy the requirement (4) by sieving or the like.
  • the first invention it is preferable to contain any one of calcium aluminate, powdered sodium silicate, calcium sulfate, and by-product slaked lime.
  • the second invention described later when calcium aluminate is contained the third invention described later when containing powdered sodium silicate, the fourth invention described later when calcium sulfate is contained, and the fourth invention described later when containing by-product slaked lime will be described later.
  • the fourth invention is incorporated by reference.
  • the cement admixture according to the present embodiment contains calcium aluminate and specific acidic aluminum sulfate.
  • CA Calcium aluminumate Calcium aluminate
  • CaO and Al 2 O 3 as main components and having hydration activity
  • Ca O and / or Al 2 O 3 alkali metal oxidation.
  • amorphous calcium aluminate is preferable.
  • the vitrification rate is preferably 80% or more.
  • the calcium aluminate used in the present embodiment is mixed with a trace amount of alkali metal and / or alkaline earth metal from the industrial raw material, and some CAs containing the alkali metal and / or alkaline earth metal are generated. It is possible, but not limited by the presence of these few alkali metals and / or alkaline earth metals.
  • Calcium aluminate is preferably alkaline, and more preferably has a pH of 10-14. Being alkaline (particularly pH 10 to 14) makes it easier to exert the characteristics of calcium aluminate.
  • the CaO / Al 2 O 3 molar ratio of calcium aluminate is not particularly limited, but the molar ratio is preferably 2.0 to 3.0 in consideration of the strength development in the very early stage. When the molar ratio is 2.0 or more, the cohesive property at the very early stage can be improved, and when it is 3.0 or less, good long-term strength development can be easily obtained.
  • the specific surface area of the brain of calcium aluminate (hereinafter, may be simply referred to as "brain") is preferably 4000 to 8000 cm 2 / g, and more preferably 5000 to 7000 cm 2 / g. When it is 4000 to 8000 cm 2 / g, the initial strength development can be easily obtained, and the handleability of the mortar and / or concrete at the time of spraying can be improved.
  • the brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.
  • the average particle size of calcium aluminate is preferably 1 to 250 ⁇ m, and more preferably 1 to 150 ⁇ m, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
  • the average particle size can be measured and obtained by the laser diffraction / diffusion method.
  • the aluminum sulfate according to the present embodiment is acidic aluminum sulfate that satisfies the following (1) to (3).
  • Aluminum sulfate is amorphous. The above (1) is the same as (1) according to the first invention.
  • Particles having a particle size of 100 ⁇ m or more are 70% by mass or less, and particles having a particle size of 10 ⁇ m or less are less than 30% by mass.
  • the above (3) is the same as (2) according to the first invention.
  • the pH of aluminum sulfate is preferably 1 to 6.
  • the pH is preferably 2 to 5, more preferably 2 to 4.
  • the heating temperature described above may be adjusted.
  • the pH can be measured by adding 10 g to 100 ml of water at 20 ⁇ 2 ° C. and stirring at 500 rpm using a pH meter.
  • Acidic aluminum sulfate satisfying the above-mentioned (1) to (3) is mixed with raw materials such as Al 2 O 3 source and SO 3 source using Al 2 O 3 source and SO 3 source to form a mixture.
  • raw materials such as Al 2 O 3 source and SO 3 source using Al 2 O 3 source and SO 3 source
  • a method of directly chemically reacting Al 2 O 3 source and SO 3 source, react chemically after mixing was charged with Al 2 O 3 source and SO 3 source in a solvent such as pure water A method or the like can be used.
  • Al 2 O 3 source and SO 3 source in a solvent such as pure water
  • the Al 2 O 3 source and the SO 3 source are the same as those according to the first invention.
  • the obtained acidic aluminum sulfate is pulverized by, for example, a known mill or the like so as to satisfy the requirement (3) by sieving or the like.
  • the mixing ratio of calcium aluminate and acidic aluminum sulfate (calcium aluminate / acidic aluminum sulfate: mass ratio) according to the present embodiment may be 1 to 40 from the viewpoint of fully exerting mutual effects. It is preferably 2 to 30, and more preferably 2 to 30.
  • cement admixture contains sodium silicate and specific acidic aluminum sulfate.
  • Soda silicate a powdered quick-setting admixture
  • cement mortar cement mortar for spraying mortar
  • cement concrete cement concrete for spraying cement
  • the sodium silicate is preferably in the form of powder.
  • the molar ratio of SiO 2 to Na 2 O (SiO 2 / Na 2 O) in sodium silicate is preferably 0.5 to 5, as a powdered quick-setting admixture, for example, for promoting the loss of fluidity in the very early stage.
  • 0.5 to 1.5 is more preferable, and 0.9 to 1.3 is even more preferable.
  • the molar ratio is 0.5 or more, the powder is easy to handle, and when it is 1.5 or less, the fluidity disappears and the initial strength develops significantly immediately after the addition to cement mortar and cement concrete. It will be easier to obtain.
  • sodium silicate examples include sodium orthosilicate, sodium metasilicate, and sodium sesquisilicate, and sodium metasilicate is preferable.
  • the sodium silicate is not particularly limited whether it is a hydrate or an anhydride, but the number of hydrated water is preferably 9 or less, more preferably 5 or less, and further preferably the use of anhydrous.
  • Blaine specific surface area of the sodium silicate is preferably 300 ⁇ 1000cm 2 / g, more preferably 500 ⁇ 800cm 2 / g. When it is 300 to 1000 cm 2 / g, the initial strength development can be easily obtained, and the handleability of the mortar and / or concrete at the time of spraying can be improved.
  • the brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.
  • the average particle size of sodium silicate is preferably 1 to 300 ⁇ m, and more preferably 1 to 250 ⁇ m, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
  • the average particle size can be determined by using, for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA.
  • the content of sodium silicate in the powdered quick-setting admixture of the present embodiment is preferably 0.5 to 20 parts, more preferably 1 to 10 parts out of 100 parts of the powdered quick-setting admixture. With 0.5 to 20 parts, the self-repairing function against cracks can be improved.
  • the aluminum sulfate according to the present embodiment is the same as that of the "specific acidic aluminum sulfate" in the second invention.
  • the mixing ratio of sodium silicate and acidic aluminum sulfate (soda silicate / acidic aluminum sulfate: mass ratio) according to the present embodiment is 5/5 to 5/40 from the viewpoint of fully exerting mutual effects. Is preferable, and 5/5 to 5/20 is more preferable.
  • the cement admixture according to the present embodiment contains calcium sulfate and specific acidic aluminum sulfate.
  • Calcium sulfate imparts an effect of increasing the compressive strength to cement mortar and cement concrete mainly for a short period of time to a long period of time (for example, 28 days of age).
  • Calcium sulfate includes anhydrous, semi-aqueous, and binary depending on the presence or absence of water of crystallization, but both can be used.
  • the brain specific surface area of calcium sulfate is preferably 1000 cm 2 / g or more, more preferably 2000 cm 2 / g or more, and further preferably 3000 cm 2 / g or more. When it is 1000 cm 2 / g or more, it is easy to obtain strength development from a short time to a long period of time, and it is possible to improve the handleability of mortar and / or concrete at the time of spraying.
  • Blaine specific surface area is preferably at 6000 cm 2 / g or less, and more preferably less 5000 cm 2 / g.
  • the brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.
  • Calcium sulfate is preferably contained in 10 to 60 parts, more preferably 15 to 60 parts, further preferably 15 to 50 parts, and particularly 20 to 50 parts in 100 parts of the powdered quick-setting admixture. Is more preferable. By including 10 to 60, the effect of increasing the long-term strength is more likely to be imparted.
  • the average particle size of calcium sulfate is preferably 1 to 150 ⁇ m, more preferably 10 to 100 ⁇ m, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
  • the average particle size can be measured and obtained by a laser diffraction / diffusion method.
  • the aluminum sulfate according to the present embodiment is the same as that of the "specific acidic aluminum sulfate" in the second invention.
  • the mixing ratio of calcium sulfate and acidic aluminum sulfate (calcium sulfate / acidic aluminum sulfate: mass ratio) according to the present embodiment is preferably 1 to 40 from the viewpoint of sufficiently exerting mutual effects. More preferably, it is 2 to 20.
  • the cement admixture according to the present embodiment contains by-product slaked lime and specific acidic aluminum sulfate.
  • By-product slaked lime is an effective material for ensuring the decrease in fluidity at the very beginning and the long-term strength development.
  • By-product slaked lime refers to the carbide slag produced when the carbide is hydrated.
  • Commercially available calcium hydroxide can be used in combination as appropriate.
  • the content of by-product slaked lime is preferably 5 to 30 parts, more preferably 10 to 25 parts, out of 100 parts of the powdered quick-setting admixture. By having 5 or more parts, it is possible to ensure the quick-setting property and the long-term strength development. When the number of parts is 20 or less, good initial strength development can be easily obtained.
  • Blaine specific surface area of the by-product calcium hydroxide is preferably 1000 ⁇ 3000cm 2 / g, and more preferably 1500 ⁇ 2500cm 2 / g. When it is 1000 to 3000 cm 2 / g, it is possible to secure the quick-setting property and the long-term strength development, and it is possible to easily obtain a good initial strength development.
  • the brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.
  • the average particle size of the by-product slaked lime is preferably 1 to 300 ⁇ m, more preferably 1 to 250 ⁇ m, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
  • the average particle size can be determined by using, for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA.
  • the aluminum sulfate according to the present embodiment is the same as that of the "specific acidic aluminum sulfate" in the second invention.
  • the mixing ratio of by-product slaked lime and acidic aluminum sulfate (by-product slaked lime / acidic aluminum sulfate: mass ratio) according to the present embodiment is 10/30 to 30/10 from the viewpoint of fully exerting mutual effects. It is preferably 10/30 to 20/10, and more preferably.
  • the cement admixture according to the first to fifth inventions is mixed with an alkaline admixture having a pH of 8 or more.
  • alkaline admixture examples include alkali metal aluminate, alkaline earth metal aluminate, alkaline earth metal carbonate, alkali metal hydroxide, alkali metal carbonate, alkaline earth metal hydroxide and the like. Of these, alkali metal carbonates and alkaline earth metal hydroxides are preferably contained.
  • Alkali metal carbonate can impart further cohesiveness and rapid hardness to cement.
  • the alkali metal carbonate include sodium carbonate, sodium hydrogencarbonate, calcium carbonate, potassium carbonate, lithium carbonate, lithium hydrogencarbonate, beryllium carbonate, magnesium carbonate, etc. Among them, sodium carbonate, sodium hydrogencarbonate, calcium carbonate, and carbonate. Potassium is preferred.
  • the content of the alkali metal carbonate in the alkaline admixture is preferably 50% or more, more preferably 80% or more.
  • Alkaline earth metal hydroxide can impart further cohesiveness, rapid hardness, and long-term strength development to cement.
  • Examples of the alkaline earth metal hydroxide include calcium hydroxide, magnesium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydroxide, beryllium hydroxide and the like, among which calcium hydroxide, magnesium hydroxide and hydroxide are used. Sodium and potassium hydroxide are preferable.
  • the content of the alkaline earth metal hydroxide in the alkaline admixture is preferably 50% or more, more preferably 80% or more.
  • the alkaline admixture used in the cement admixture according to the first to fifth inventions preferably contains a combination of an alkali metal carbonate and an alkaline earth metal hydroxide. This combination makes it possible to impart significant cement coagulation, rapid hardening, and strength development.
  • the combination of the alkali metal carbonate and the alkaline earth metal hydroxide in the alkaline admixture is preferably 50% or more, and more preferably 80% or more.
  • the mass ratio of alkali metal carbonate to alkaline earth metal hydroxide in the combination is preferably 30/70 to 70/30 for alkali metal carbonate / alkaline earth metal hydroxide. , 40/60 to 60/40, more preferably.
  • the cement admixture and the alkaline admixture according to the first to fifth inventions are preferably mixed when added to a hydraulic substance, but the cement admixture according to the present invention has excellent storage stability with respect to alkali. , Preferably mixed 2-3 weeks before addition to the hydraulic material.
  • the hydraulic composition according to the present invention contains the cement admixture and the hydraulic substance according to the first to fifth inventions, and preferably further contains the above-mentioned alkaline admixture.
  • the cement admixture according to the first to fifth inventions can be used together with various hydraulic substances to prepare a hydraulic composition.
  • the cement admixtures according to the first to fifth inventions can be used together with an alkaline hydraulic substance even though they are acidic.
  • the storage stability tends to decrease, but the cement admixture according to the present invention is an alkaline hydraulic substance.
  • the hydraulic composition prepared by using the cement admixture according to the present invention can be stored for a long period of time without any special storage method, construction method or handling method. Further, this hydraulic composition has ultrafast hardness and can form a cured product having high strength. Therefore, by using this hydraulic composition, it is possible to simplify the construction.
  • the water-hardening substance used in the water-hardening composition is not particularly limited, but for example, various Portland cements such as ordinary, fast-strength, moderate heat, low heat, and white; manufactured from city waste incineration ash and sewage sludge incineration ash as raw materials.
  • Eco-cement to be used examples include mixed cement containing blast furnace slag, silica fume, limestone, fly ash, gypsum and the like.
  • the pH of the hydraulic substance is not particularly limited, but is preferably more than 7, more preferably 8 or more, and further preferably 10 or more.
  • the hydraulic composition can contain known additives that can be generally blended as long as the effects of the present invention are not impaired.
  • Additives are not particularly limited, but are rust preventives, colorants, polymers, fibers, fluidizers, neutralization inhibitors, waterproofing agents, thickeners, waterproofing agents, retarding agents, fast-strengthening agents, and accelerators. , Water reducing agent, high performance (AE) water reducing agent, foaming agent, foaming agent, AE agent, drying shrinkage reducing agent, quick-setting agent, leavening agent, cold resistance accelerator, efflorescence inhibitor, alkaline aggregate reaction inhibitor, Examples include black unevenness reducing agents and environmental purification admixtures. These additives can be used alone or in combination of two or more.
  • the cement admixture according to the first to fifth inventions in the hydraulic composition is preferably 1 to 30% by mass, more preferably 2 to 20% by mass, respectively.
  • the amount of the alkaline admixture is preferably 2 to 30 parts with respect to 100 parts of each cement admixture according to the first to fifth inventions, and 2 to 20 parts. Is more preferable.
  • Aluminum sulfates A to E were prepared by mixing an Al 2 O 3 source, an SO 3 source, and a solvent at a molar ratio of 2: 3:10, and heating and reacting the mixture at each temperature shown in Table 1. .. Then, it was pulverized using a ball mill, and pulverized by a sieve so that particles having a particle size of 100 ⁇ m or more were 30% and particles having a particle size of 10 ⁇ m or less were 20%. The aluminum sulfate prepared above was subjected to X-ray diffraction, solid 27 Al-NMR, and pH evaluation.
  • Alkaline admixture a Sodium carbonate, reagent, pH11 Alkaline admixture a: Sodium hydrogen carbonate, reagent, pH 8.3 Alkaline admixture c: Calcium carbonate, reagent, pH10 Alkaline admixture d: Potassium carbonate, reagent, pH12 Alkaline admixture e: Calcium hydroxide, reagent, pH11 Alkaline admixture F: Magnesium hydroxide, reagent, pH 10.5 Alkaline admixture: sodium hydroxide, reagent, pH14 Alkaline admixture: potassium hydroxide, reagent, pH13
  • the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture.
  • the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.
  • the admixture using aluminum sulfate in the range of the first invention can be used in a wide temperature range from low temperature (10 ° C.) to high temperature (30 ° C.), and is stable in both summer and winter. Is applicable.
  • the hydraulic composition which has ultra-fast hardness and high strength of the cured product, as well as the storage stability is unlikely to decrease even if it is blended in the hydraulic composition in advance.
  • a cement admixture capable of feeding can be provided.
  • alkaline admixtures a, b, c, d, o, mosquito, ki, and ku in this example are the same as those used in the example according to the first invention.
  • the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), and therefore can be stably applied in both summer and winter. It is possible.
  • Calcium aluminate B Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, rapidly cooled, and vitrified by 90%.
  • Brain 5500 cm 2 / g, pH 12, and calcium aluminate having an average particle size of 0.4 ⁇ m were prepared.
  • Calcium aluminate C Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, rapidly cooled, and vitrified by 90%.
  • Calcium aluminate D Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, rapidly cooled, and vitrified by 90%.
  • Calcium aluminate E Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, rapidly cooled, and vitrified by 90%. , Brain 5500 cm 2 / g, pH 11, and calcium aluminate having an average particle size of 300 ⁇ m were prepared.
  • the hydraulic composition which has ultra-fast hardness and high strength of the cured product, as well as the storage stability is unlikely to decrease even if it is blended in the hydraulic composition in advance.
  • a cement admixture capable of feeding can be provided.
  • alkaline admixtures a, b, c, d, o, mosquito, ki, and ku in this example are the same as those used in the example according to the first invention.
  • the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture.
  • the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.
  • the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), and therefore can be stably applied in both summer and winter. It is possible.
  • Example 2 As shown in Table 22, all tests were carried out in the same manner as in Experimental Example 1 except that sodium silicates having different SiO 2 / Na 2 O molar ratios were used.
  • the composition of the powdered quick-setting admixture was described in Experiment No. It was prepared to have a composition of 1-5.
  • the fluidity decrease time, the setting time, and the compressive strength from the time when 80 g of the powdered quick-setting agent was added to the mortar to prepare the quick-setting mortar were measured. The results are also shown in Table 22 below.
  • Example 3 The test was carried out in the same manner as in Experimental Example 1 except that the hydrates of sodium silicates shown in Table 23 were used.
  • the composition of the powdered quick-setting admixture was described in Experiment No. It was prepared to have a composition of 1-5.
  • the fluidity decrease time, the setting time, and the compressive strength from the time when 80 g of the powdered quick-setting agent was added to the mortar to prepare the quick-setting mortar were measured. The results are also shown in Table 23.
  • Example 4 Concrete (sprayed concrete) of 360 kg of cement, 216 kg of water, 1049 kg of fine aggregate, and 716 kg of coarse aggregate (Himekawa water system No. 6 crushed stone, Niigata prefecture, density 2.67 g / cm 3 ) was prepared.
  • a concrete pump manufactured by MAYCO (Suprema) pumped concrete at a setting of 5 m 3 / h, and mixed and merged with compressed air from another system on the way to carry air. Further, at 3 m before discharge, the powdered quick-setting admixture shown in Table 24 below is applied by the transport device Werner Mader (WM-14 FU) so that the amount of the powdered quick-setting admixture is 10 parts per 100 parts of cement.
  • Test method Initial strength: The initial strength was measured by spraying on a mold according to JSCE-G561 and converting the pull-out strength at the age of 10 minutes, 3 hours, and 1 day into compression strength.
  • Rebound rate amount of dropped concrete sprayed (kg) / amount of concrete sprayed used for spraying (kg) x 100 (%).
  • the rebound rate is preferably 20% or less.
  • a test piece was prepared by spraying sprayed concrete onto each of two 10 cm ⁇ 10 cm ⁇ 40 cm molds. Immediately after production, the 40 cm surfaces of the two specimens were placed in parallel and fixed so that the gap was 0.1 mm, and underwater curing was carried out at 20 ° C. for 6 months, observed with a microscope, and 0.1 mm width. The repair rate for the gap was calculated.
  • the crack repair rate is preferably 50% or more.
  • the hydraulic composition which has ultra-fast hardness and high strength of the cured product, as well as the storage stability is unlikely to decrease even if it is blended in the hydraulic composition in advance.
  • a cement admixture capable of feeding can be provided.
  • alkaline admixtures a, b, c, d, o, mosquito, ki, and ku in this example are the same as those used in the example according to the first invention.
  • the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture.
  • the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.
  • the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), and therefore can be stably applied in both summer and winter. It is possible.
  • the temperature (test temperature) for obtaining the hydraulic composition was set to 20 ° C. to 10 ° C. by using calcium sulfates B to E having the average particle diameter shown in Table 31 below instead of calcium sulfate A.
  • a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of a cement admixture was obtained in the same manner except that the temperature was set to 30 ° C.
  • 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
  • the setting test was carried out in accordance with JIS R5201 “Physical test method for cement”.
  • the condensation test measured the onset time of condensation. The results of each of the above evaluations are shown in Table 31.
  • the fourth invention it is possible to provide a cement admixture capable of providing a hydraulic composition having ultrafast hardness and high strength of a cured product. Further, according to the fourth invention, it is possible to provide a hydraulic composition having ultrafast hardness and high strength of a cured product.
  • alkaline admixtures a, b, c, d, o, mosquito, ki, and ku in this example are the same as those used in the example according to the first invention.
  • a cement admixture is prepared by mixing and mixing with parts, and after storing at the number of days shown in Table 33, temperature 20 ° C., and humidity 60%, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture 10 A hydraulic composition consisting of parts was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed. The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation. The results of each of the above evaluations are shown in Table 33.
  • a cement admixture is prepared by blending and mixing with parts, and after storing at the number of days shown in Table 34, temperature 20 ° C., and humidity 60%, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture A hydraulic composition consisting of 10 parts was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed. The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation. The results of each of the above evaluations are shown in Table 34.
  • the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), and therefore can be stably applied in both summer and winter. It is possible.
  • the temperature (test temperature) at the time of obtaining the hydraulic composition by using the following by-product slaked limes B to E having different particle sizes instead of the by-product slaked lime A is set to 20 ° C. to 5 ° C. or 30 ° C.
  • a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained in the same manner except that the temperature was set to ° C.
  • 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
  • the setting test was carried out in accordance with JIS R5201 “Physical test method for cement”.
  • the condensation test measured the onset time of condensation. The results of each of the above evaluations are shown in Table 38.
  • the hydraulic composition which has ultra-fast hardness and high strength of the cured product, as well as the storage stability is unlikely to decrease even if it is blended in the hydraulic composition in advance.
  • a cement admixture capable of feeding can be provided.
  • the present invention can be suitably applied to cement admixtures used in the fields of civil engineering, construction and the like.

Abstract

This cement admixture including aluminum sulfate satisfies the conditions that: (1) the aluminum sulfate is amorphous; (2) in a spectrum obtained by solid 27Al-NMR of the aluminum sulfate, a peak is at a chemical shift of -0.20 ppm to -20.0 ppm, and the half-value width of the peak is 10.00 ppm to 35.00 ppm; (3) the aluminum sulfate has a pH of 1 to 6; and (4) the cement admixture has at most 70 mass% of particles having a particle diameter of 100 μm or more, and less than 30 mass% of particles having a particle diameter of 10 μm or less.

Description

セメント混和剤及び水硬性組成物Cement admixture and hydraulic composition
 本発明は、土木分野、建築分野等で用いられるセメント混和剤及び水硬性組成物に関する。 The present invention relates to a cement admixture and a hydraulic composition used in the fields of civil engineering, construction, etc.
 近年、土木分野、建築分野などにおいて、水硬性組成物に多種多様な性能が要求されている。その中でも施工の簡略化は、作業員の安全性を考慮する上で非常に重要な要素となっている。ここで、施工の簡略化とは、例えば、施工スピードの向上、材料の一材化及び取扱性の向上などの総合的な合理化を指すことをいう。施工の簡略化を達成するために、例えば、水硬性組成物の硬化速度の向上、プレミックス化等を行うことが鍵となっており、実際、凝結が速く強度発現性も高い、いわゆる超速硬性を有する様々な水硬性組成物が提案されている(例えば、特許文献1~3)。また最近では、施工の簡略化の更なる改善、及び新たな用途への対応に伴い、水硬性組成物に要求される性能も益々高まっている。 In recent years, a wide variety of performances have been required for hydraulic compositions in the fields of civil engineering and construction. Among them, simplification of construction is a very important factor in considering the safety of workers. Here, simplification of construction means, for example, comprehensive rationalization such as improvement of construction speed, unification of materials, and improvement of handleability. In order to achieve simplification of construction, for example, it is important to improve the curing speed of the hydraulic composition, premix it, etc., and in fact, it is so-called ultrafast hardness, which has high condensation and high strength development. Various hydraulic compositions having the above have been proposed (for example, Patent Documents 1 to 3). In recent years, the performance required for hydraulic compositions has been increasing more and more with further improvement in simplification of construction and support for new applications.
特開平3-12350号公報Japanese Unexamined Patent Publication No. 3-12350 特開平1-230455号公報Japanese Unexamined Patent Publication No. 1-230455 特開平11-139859号公報Japanese Unexamined Patent Publication No. 11-139859
 水硬性組成物には、硬化速度などの各種特性の向上を目的としてセメント混和剤が配合されている。セメント混和剤としては、従来はアルカリ性の混和剤が使用されてきたが、安全性の観点から、酸性の混和剤を使用することが望まれている。
 しかしながら、セメントのような水硬性物質は強アルカリ性のため、酸性のセメント混和剤と組み合わせることが難しく、所望の特性を有する水硬性組成物が得られないという問題がある。実際、硬化速度の向上及びプレミックス化に適した従来の酸性のセメント混和剤を水硬性組成物に配合すると、水硬性組成物の貯蔵安定性、硬化体の強度等が低下してしまう。また、良好な凝結性及び極初期からの高い強度が得られなかったりすることがある。
A cement admixture is blended in the hydraulic composition for the purpose of improving various properties such as curing speed. Conventionally, an alkaline admixture has been used as the cement admixture, but from the viewpoint of safety, it is desired to use an acidic admixture.
However, since a hydraulic substance such as cement is strongly alkaline, it is difficult to combine it with an acidic cement admixture, and there is a problem that a hydraulic composition having desired properties cannot be obtained. In fact, when a conventional acidic cement admixture suitable for improving the curing rate and premixing is added to the hydraulic composition, the storage stability of the hydraulic composition, the strength of the cured product, and the like are lowered. In addition, good cohesiveness and high strength from the very beginning may not be obtained.
 本発明は、上記のような問題を解決するためになされたものであり、水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ高い強度の硬化体を得ることができる水硬性組成物を与えることが可能なセメント混和剤を提供することを第1の目的とする。
 また、本発明は、水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、良好な凝結性を示し、極初期から高い強度を得ることができる水硬性組成物を与えることが可能なセメント混和剤を提供することを第2の目的とする。
The present invention has been made to solve the above-mentioned problems, and even if it is previously blended with an alkaline admixture in a hydraulic composition, the storage stability is unlikely to decrease, and the hydraulic composition has ultrafast hardness. A first object of the present invention is to provide a cement admixture capable of providing a hydraulic composition capable of obtaining a cured product having high strength.
Further, according to the present invention, even if the hydraulic composition is preliminarily blended with an alkaline admixture, the storage stability is unlikely to decrease, and the hydraulic composition exhibits good cohesiveness and high strength can be obtained from the very beginning. A second object is to provide a cement admixture capable of giving a substance.
 本発明者らは、上記のような問題を解決するために鋭意研究を行った結果、特定の性質を有する硫酸アルミニウムを含むセメント混和剤が、酸性であるにも関わらず、上記課題、特に第1の目的を解決できることを見出し、本発明である第1の発明を完成するに至った。
 すなわち、第1の発明は、下記のとおりである。
As a result of diligent research to solve the above problems, the present inventors have conducted the above-mentioned problems, particularly the above-mentioned problems, in spite of the fact that the cement admixture containing aluminum sulfate having specific properties is acidic. We have found that the object of 1 can be solved, and have completed the first invention of the present invention.
That is, the first invention is as follows.
[1] 下記(1)~(4)を満たす硫酸アルミニウムを含むセメント混和剤。
(1)前記硫酸アルミニウムが非晶質である。
(2)前記硫酸アルミニウムの固体27Al-NMRによって得られるスペクトルにおいて、化学シフト-0.20~-20.00ppmにピークを有し、当該ピークの半値幅が10.00~35.00ppmである。
(3)前記硫酸アルミニウムのpHが1~6である。
(4)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
[2] pHが8以上であるアルカリ性混和剤が混合される[1]に記載のセメント混和剤。
[3] カルシウムアルミネート、粉末珪酸ソーダ、硫酸カルシウム、及び副生消石灰のいずれかを含む[1]又は[2]に記載のセメント混和材。
[4] 前記カルシウムアルミネートを含み、該カルシウムアルミネートのpHが10~14である[3]に記載のセメント混和材。
[5] 前記カルシウムアルミネートの平均粒径が1~250μmである[4]に記載のセメント混和材。
[6] 前記粉末珪酸ソーダを含有し、該粉末珪酸ソーダの平均粒径が1~300μmである[3]に記載のセメント混和剤。
[7] 前記粉末珪酸ソーダにおけるSiOとNaOとのモル比(SiO/NaO)が0.5~5である[6]に記載のセメント混和剤。
[8] 前記硫酸カルシウムを含有し、該硫酸カルシウムの平均粒径が1~150μmである[3]に記載のセメント混和剤。
[9] 前記硫酸カルシウムが無水セッコウである[8]に記載のセメント混和剤。
[10] 前記副生消石灰を含有し、該副生消石灰の平均粒径が1~300μmである[3]に記載のセメント混和剤。
[11] 前記アルカリ性混和剤がアルカリ金属炭酸塩を含む[2]~[10]のいずれかに記載のセメント混和剤。
[12] 前記アルカリ性混和剤がアルカリ土類金属水酸化物を含む[2]~[11]のいずれかに記載のセメント混和剤。
[13] [1]~[12]のいずれかに記載のセメント混和剤と、水硬性物質とを含む水硬性組成物。
 なお、上記[3]~[10]は第2の目的に対しても有効である。
[1] A cement admixture containing aluminum sulfate that satisfies the following (1) to (4).
(1) The aluminum sulfate is amorphous.
(2) The solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
(3) The pH of the aluminum sulfate is 1 to 6.
(4) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
[2] The cement admixture according to [1], wherein an alkaline admixture having a pH of 8 or more is mixed.
[3] The cement admixture according to [1] or [2], which contains any of calcium aluminate, powdered sodium silicate, calcium sulfate, and by-product slaked lime.
[4] The cement admixture according to [3], which contains the calcium aluminate and has a pH of the calcium aluminate of 10 to 14.
[5] The cement admixture according to [4], wherein the calcium aluminate has an average particle size of 1 to 250 μm.
[6] The cement admixture according to [3], which contains the powdered sodium silicate and has an average particle size of 1 to 300 μm.
[7] The cement admixture according to [6], wherein the molar ratio (SiO 2 / Na 2 O) of SiO 2 and Na 2 O in the powdered sodium silicate is 0.5 to 5.
[8] The cement admixture according to [3], which contains the calcium sulfate and has an average particle size of the calcium sulfate of 1 to 150 μm.
[9] The cement admixture according to [8], wherein the calcium sulfate is anhydrous gypsum.
[10] The cement admixture according to [3], which contains the by-product slaked lime and has an average particle size of 1 to 300 μm.
[11] The cement admixture according to any one of [2] to [10], wherein the alkaline admixture contains an alkali metal carbonate.
[12] The cement admixture according to any one of [2] to [11], wherein the alkaline admixture contains an alkaline earth metal hydroxide.
[13] A hydraulic composition containing the cement admixture according to any one of [1] to [12] and a hydraulic substance.
The above [3] to [10] are also effective for the second purpose.
 また、本発明者らは、上記のような問題を解決するために鋭意研究を行った結果、カルシウムアルミネートと特定の性質を有する硫酸アルミニウムとを含むセメント混和剤が上記課題、特に第2の目的を解決できることを見出し、本発明である第2の発明を完成するに至った。
 すなわち、第2の発明は、下記のとおりである。
In addition, as a result of diligent research to solve the above problems, the present inventors have found that a cement admixture containing calcium aluminate and aluminum sulfate having specific properties is a problem, particularly the second problem. We have found that the object can be solved, and have completed the second invention of the present invention.
That is, the second invention is as follows.
[1] カルシウムアルミネートと、下記(1)~(3)を満たす酸性の硫酸アルミニウムとを含むセメント混和剤。
(1)前記硫酸アルミニウムが非晶質である。
(2)前記硫酸アルミニウムの固体27Al-NMRによって得られるスペクトルにおいて、化学シフト-0.20~-20.00ppmにピークを有し、当該ピークの半値幅が10.00~35.00ppmである。
(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
[2] 前記硫酸アルミニウムのpHが1~6である[1]に記載のセメント混和剤。
[3] 前記カルシウムアルミネートのpHが10~14である[1]又は[2]に記載のセメント混和剤。
[4] 前記カルシウムアルミネートの平均粒径が1~250μmである[1]~[3]のいずれかに記載のセメント混和剤。
[5] [1]~[4]のいずれかに記載のセメント混和剤と、水硬性物質とを含む水硬性組成物。
[1] A cement admixture containing calcium aluminate and acidic aluminum sulfate satisfying the following (1) to (3).
(1) The aluminum sulfate is amorphous.
(2) The solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
(3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
[2] The cement admixture according to [1], wherein the pH of the aluminum sulfate is 1 to 6.
[3] The cement admixture according to [1] or [2], wherein the calcium aluminate has a pH of 10 to 14.
[4] The cement admixture according to any one of [1] to [3], wherein the calcium aluminate has an average particle size of 1 to 250 μm.
[5] A hydraulic composition containing the cement admixture according to any one of [1] to [4] and a hydraulic substance.
 本発明者らは、上記のような問題を解決するために鋭意研究を行った結果、珪酸ソーダと特定の性質を有する硫酸アルミニウムとを含むセメント混和剤が上記課題、特に第2の目的を解決できることを見出し、本発明である第3の発明を完成するに至った。
 すなわち、第3の発明は、下記のとおりである。
As a result of diligent research to solve the above problems, the present inventors have solved the above problems, particularly the second purpose, with a cement admixture containing sodium silicate and aluminum sulfate having specific properties. He found out that he could do it, and completed the third invention, which is the present invention.
That is, the third invention is as follows.
[1] 粉末珪酸ソーダと、下記(1)~(3)を満たす酸性の硫酸アルミニウムとを含むセメント混和剤。
(1)前記硫酸アルミニウムが非晶質である。
(2)前記硫酸アルミニウムの固体27Al-NMRによって得られるスペクトルにおいて、化学シフト-0.20~-20.00ppmにピークを有し、当該ピークの半値幅が10.00~35.00ppmである。
(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
[2] 前記硫酸アルミニウムのpHが1~6である[1]に記載のセメント混和剤。
[3] 粉末珪酸ソーダの平均粒径が1~300μmである[1]又は[2]に記載のセメント混和剤。
[4] 粉末珪酸ソーダにおけるSiOとNaOとのモル比(SiO/NaO)が0.5~5である[1]~[3]のいずれかに記載のセメント混和剤。
[5] [1]~[4]のいずれかに記載のセメント混和剤と、水硬性物質とを含む水硬性組成物。
[1] A cement admixture containing powdered sodium silicate and acidic aluminum sulfate satisfying the following (1) to (3).
(1) The aluminum sulfate is amorphous.
(2) The solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
(3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
[2] The cement admixture according to [1], wherein the pH of the aluminum sulfate is 1 to 6.
[3] The cement admixture according to [1] or [2], wherein the powdered sodium silicate has an average particle size of 1 to 300 μm.
[4] The cement admixture according to any one of [1] to [3], wherein the molar ratio (SiO 2 / Na 2 O) of SiO 2 to Na 2 O in powdered sodium silicate is 0.5 to 5.
[5] A hydraulic composition containing the cement admixture according to any one of [1] to [4] and a hydraulic substance.
 本発明者らは、上記のような問題を解決するために鋭意研究を行った結果、硫酸カルシウムと特定の性質を有する硫酸アルミニウムとを含むセメント混和剤が上記課題、特に第2の目的を解決できることを見出し、本発明である第4の発明を完成するに至った。
 すなわち、第4の発明は、下記のとおりである。
As a result of diligent research to solve the above problems, the present inventors have solved the above problems, particularly the second object, with a cement admixture containing calcium sulfate and aluminum sulfate having specific properties. He found out that he could do it, and completed the fourth invention, which is the present invention.
That is, the fourth invention is as follows.
[1] 硫酸カルシウムと、下記(1)~(3)を満たす酸性の硫酸アルミニウムとを含むセメント混和剤。
(1)前記硫酸アルミニウムが非晶質である。
(2)前記硫酸アルミニウムの固体27Al-NMRによって得られるスペクトルにおいて、化学シフト-0.20~-20.00ppmにピークを有し、当該ピークの半値幅が10.00~35.00ppmである。
(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
[2] 前記硫酸アルミニウムのpHが1~6である[1]に記載のセメント混和剤。
[3] 前記硫酸カルシウムの平均粒径が1~150μmである[1]又は[2]に記載のセメント混和剤。
[4] 前記硫酸カルシウムが無水セッコウである[1]~[3]のいずれかに記載のセメント混和剤。
[5] [1]~[4]のいずれかに記載のセメント混和剤と、水硬性物質とを含む水硬性組成物。
[1] A cement admixture containing calcium sulfate and acidic aluminum sulfate satisfying the following (1) to (3).
(1) The aluminum sulfate is amorphous.
(2) The solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
(3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
[2] The cement admixture according to [1], wherein the pH of the aluminum sulfate is 1 to 6.
[3] The cement admixture according to [1] or [2], wherein the calcium sulfate has an average particle size of 1 to 150 μm.
[4] The cement admixture according to any one of [1] to [3], wherein the calcium sulfate is anhydrous gypsum.
[5] A hydraulic composition containing the cement admixture according to any one of [1] to [4] and a hydraulic substance.
 本発明者らは、上記のような問題を解決するために鋭意研究を行った結果、副生消石灰と特定の性質を有する硫酸アルミニウムとを含むセメント混和剤が上記課題、特に第2の目的を解決できることを見出し、本発明である第5の発明を完成するに至った。
 すなわち、第5の発明は、下記のとおりである。
As a result of diligent research to solve the above problems, the present inventors have made a cement admixture containing by-product slaked lime and aluminum sulfate having specific properties the above-mentioned problems, particularly the second purpose. We have found that it can be solved, and have completed the fifth invention, which is the present invention.
That is, the fifth invention is as follows.
[1] 副生消石灰と、下記(1)~(3)を満たす酸性の硫酸アルミニウムとを含むセメント混和剤。
(1)前記硫酸アルミニウムが非晶質である。
(2)前記硫酸アルミニウムの固体27Al-NMRによって得られるスペクトルにおいて、化学シフト-0.20~-20.00ppmにピークを有し、当該ピークの半値幅が10.00~35.00ppmである。
(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
[2] 前記硫酸アルミニウムのpHが1~6である[1]に記載のセメント混和剤。
[3] 前記副生消石灰の平均粒径が1~300μmである[1]又は[2]に記載のセメント混和剤。
[4] [1]~[3]のいずれかに記載のセメント混和剤と、水硬性物質とを含む水硬性組成物。
[1] A cement admixture containing by-product slaked lime and acidic aluminum sulfate satisfying the following (1) to (3).
(1) The aluminum sulfate is amorphous.
(2) The solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
(3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
[2] The cement admixture according to [1], wherein the pH of the aluminum sulfate is 1 to 6.
[3] The cement admixture according to [1] or [2], wherein the by-product slaked lime has an average particle size of 1 to 300 μm.
[4] A hydraulic composition containing the cement admixture according to any one of [1] to [3] and a hydraulic substance.
 第1の発明によれば、水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ高い強度の硬化体を得ることができる水硬性組成物を与えることが可能なセメント混和剤を提供することができる。
 第2の発明によれば、水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、良好な凝結性を示し、極初期から高い強度を得ることができるセメント混和剤を提供することができる。
 特に、当該セメント混和剤を含む水硬性組成物は、貯蔵安定性が低下し難いと共に、低温(5℃以下)や高温(30℃以上)の環境下での凝結性状や極初期から高い強度を得ることが可能となるため、トンネルなどの地下工事において、ある程度の湧水環境下でも安定したリバウンドや付着となる施工が可能となる。
 第3の発明によれば、水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、良好な凝結性を示し、極初期から高い強度を得ることができるセメント混和剤を提供することができる。
 特に、当該セメント混和剤を含む水硬性組成物は、上記効果とともに、珪酸ソーダに起因する環境温度に依存しない自己治癒性能を有することが可能となる。
 第4の発明によれば、良好な凝結性を示し、極初期から高い強度を得ることができるセメント混和剤を提供することができる。
 特に、高温環境下での長期強度やセメントペースト、セメントモルタル、セメントコンクリートの水セメント比にあまり依存せずに、一定した長期強度を得ることが可能となる。
 第5の発明によれば、水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、良好な凝結性を示し、極初期から高い強度を得ることができるセメント混和剤を提供することができる。
 特に、低温環境下での凝結や初期強度発現性も安定して得られ、また、セメントへの添加時期で物性への影響を与えないことが可能となる
According to the first invention, even if it is preliminarily blended with an alkaline admixture in a hydraulic composition, the storage stability is unlikely to decrease, and a hydraulically hardened body having ultrafast hardness and high strength can be obtained. A cement admixture that can provide the composition can be provided.
According to the second invention, even if the hydraulic composition is premixed with an alkaline admixture, the storage stability does not easily decrease, and the cement exhibits good cohesiveness and can obtain high strength from the very beginning. An admixture can be provided.
In particular, the hydraulic composition containing the cement admixture does not easily deteriorate in storage stability, and has high cohesive properties and high strength from the very beginning in a low temperature (5 ° C or lower) or high temperature (30 ° C or higher) environment. Since it can be obtained, in underground construction such as tunnels, stable rebound and adhesion can be achieved even in a spring water environment to some extent.
According to the third invention, even if the hydraulic composition is premixed with an alkaline admixture, the storage stability does not easily decrease, and the cement exhibits good cohesiveness and can obtain high strength from the very beginning. An admixture can be provided.
In particular, the hydraulic composition containing the cement admixture can have the above-mentioned effect and self-healing performance independent of the environmental temperature caused by sodium silicate.
According to the fourth invention, it is possible to provide a cement admixture that exhibits good cohesiveness and can obtain high strength from the very beginning.
In particular, it is possible to obtain a constant long-term strength without much dependence on the long-term strength in a high-temperature environment and the water-cement ratio of cement paste, cement mortar, and cement concrete.
According to the fifth invention, even if the hydraulic composition is premixed with an alkaline admixture, the storage stability does not easily decrease, and the cement exhibits good cohesiveness and can obtain high strength from the very beginning. An admixture can be provided.
In particular, condensation and initial strength development in a low temperature environment can be stably obtained, and it is possible to prevent the physical properties from being affected by the timing of addition to cement.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書で使用する部や%は特に規定のない限り質量基準である。
<第1の発明>
[セメント混和剤]
 第1の発明のセメント混和剤は、下記(1)~(4)を満たす硫酸アルミニウムを含む。
(1)硫酸アルミニウムが非晶質である。
 硫酸アルミニウムが非晶質でない場合、セメントのような強アルカリ性を示す水硬性物質とプレミックス化することが難しいと共に、プレミックス化できたとしても水硬性組成物の貯蔵安定性が低下する。
 ここで、硫酸アルミニウムが非晶質であるか否かは、X線回折分析によって判断することができる。具体的には、硫酸アルミニウムのX線回折スペクトルがブロードであれば、非晶質であると判断することができる。硫酸アルミニウムは2θ=20~30°の範囲で明確なピークが確認できるが、ピークが得られないものは非晶質とした。
Hereinafter, embodiments of the present invention will be described in detail. The parts and% used in this specification are based on mass unless otherwise specified.
<First invention>
[Cement admixture]
The cement admixture of the first invention contains aluminum sulfate that satisfies the following (1) to (4).
(1) Aluminum sulfate is amorphous.
When aluminum sulfate is not amorphous, it is difficult to premix it with a hydraulic substance showing strong alkalinity such as cement, and even if it can be premixed, the storage stability of the hydraulic composition is lowered.
Here, whether or not aluminum sulfate is amorphous can be determined by X-ray diffraction analysis. Specifically, if the X-ray diffraction spectrum of aluminum sulfate is broad, it can be determined to be amorphous. For aluminum sulfate, a clear peak can be confirmed in the range of 2θ = 20 to 30 °, but those without a peak are considered amorphous.
(2)硫酸アルミニウムの固体27Al-NMRによって得られるスペクトルにおいて、化学シフトは-0.20~-20.00ppmにピークを有し、当該ピークの半値幅が10.00~35.00ppmである。
 ピークの化学シフトが-0.20ppmよりも大きいと、水硬性物質とプレミックス化することが難しいと共に、プレミックス化できたとしても水硬性組成物の貯蔵安定性が低下する場合がある。一方、ピークの化学シフトが-20.00ppmよりも小さいと、pHが8以上を呈すアルカリ性の混和剤と相乗効果が得られない場合がある。
 ピークの化学シフトは-1.00~-16.00ppmであることが好ましく、-2~-15ppmであることがより好ましい。
(2) Solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
If the peak chemical shift is greater than −0.20 ppm, it is difficult to premix with the hydraulic substance, and even if the premix can be achieved, the storage stability of the hydraulic composition may decrease. On the other hand, if the peak chemical shift is less than -20.00 ppm, a synergistic effect with an alkaline admixture having a pH of 8 or more may not be obtained.
The chemical shift of the peak is preferably −1.00 to -16.00 ppm, more preferably -2 to -15 ppm.
 また、当該ピークの半値幅が上記範囲を外れると、水硬性組成物の硬化速度が十分に得られない場合がある。当該ピークの半値幅は10~35ppmであることが好ましく、25~32ppmであることがより好ましい。 Further, if the half width of the peak is out of the above range, the curing rate of the hydraulic composition may not be sufficiently obtained. The half width of the peak is preferably 10 to 35 ppm, more preferably 25 to 32 ppm.
 ここで、硫酸アルミニウムの固体27Al-NMR測定は、市販の測定装置、例えば、日本電子株式会社製の超伝導核磁気共鳴装置「ECX-400」などを用い、下記の条件で行うことができる。
 観測核:27Al
 試料管回転数:10KHz
 測定温度:室温
 パルス幅:3.3μsec(90°パルス)
 待ち時間:5秒
 外部標準:硝酸アルミニウム
Here, the solid 27 Al-NMR measurement of aluminum sulfate can be carried out under the following conditions using a commercially available measuring device, for example, a superconducting nuclear magnetic resonance device “ECX-400” manufactured by JEOL Ltd. ..
Observation nucleus: 27 Al
Sample tube rotation speed: 10 KHz
Measurement temperature: Room temperature Pulse width: 3.3 μsec (90 ° pulse)
Waiting time: 5 seconds External standard: Aluminum nitrate
 上記(1)及び(2)の要件を満たす硫酸アルミニウムを得るには、例えば、各種原料からなある混合物を加熱する際の加熱温度を調整すればよい。 In order to obtain aluminum sulfate that satisfies the above requirements (1) and (2), for example, the heating temperature when heating a mixture of various raw materials may be adjusted.
(3)硫酸アルミニウムのpHが1~6である。
 硫酸アルミニウムのpHが上記の範囲外では、水硬性組成物の硬化速度が低下してしまう。pHは2~5が好ましく、2~4がより好ましい。また、硫酸アルミニウムのpHを1~6とするには、上記の加熱温度を調整すればよい。
 なお、本明細書においてpHは、pHメータを用いて、20±2℃で水100mlに10g添加し、500rpmで撹拌して測定することができる。
(3) The pH of aluminum sulfate is 1 to 6.
If the pH of aluminum sulfate is out of the above range, the curing rate of the hydraulic composition will decrease. The pH is preferably 2 to 5, more preferably 2 to 4. Further, in order to set the pH of aluminum sulfate to 1 to 6, the above heating temperature may be adjusted.
In the present specification, the pH can be measured by adding 10 g to 100 ml of water at 20 ± 2 ° C. and stirring at 500 rpm using a pH meter.
(4)硫酸アルミニウムにおいて、粒径100μm以上の粒子が70%以下で、かつ、粒径10μm以下の粒子が30%未満である。
 粒径100μm以上の粒子が70%を超えると、水硬性物質の硬化速度が十分に得られず、粒径10μm以下の粒子が30%以上であると、pHが8以上を呈すアルカリ性の混和剤と共存させることで、貯蔵劣化が顕著になる。
 粒径100μm以上の粒子は、50%以下が好ましく、30%以下がより好ましい。また、粒径10μm以下の粒子は、40%以上が好ましく、50%以上がより好ましい。なお、粒径は例えば、篩によって調整することができる。
 なお、(4)の範囲にある硫酸アルミニウムを用いた混和剤では、低温から高温まで硬化速度が十分に得られないということがなく、特に高温においては、硬化速度が速まることが予想されるが、pH8以上のアルカリ性物質の共存により、硬化速度がコントロールできると考えられるため、低温(10℃)から高温(30℃)まで幅広い温度範囲で使用できるため、夏でも冬でも安定して適用可能である。
(4) In aluminum sulfate, 70% or less of the particles have a particle size of 100 μm or more, and less than 30% of the particles have a particle size of 10 μm or less.
If the particle size of 100 μm or more exceeds 70%, the curing rate of the hydraulic substance cannot be sufficiently obtained, and if the particles having a particle size of 10 μm or less are 30% or more, an alkaline admixture having a pH of 8 or more. By coexisting with, storage deterioration becomes remarkable.
The particles having a particle size of 100 μm or more are preferably 50% or less, more preferably 30% or less. Further, the particles having a particle size of 10 μm or less are preferably 40% or more, more preferably 50% or more. The particle size can be adjusted by, for example, a sieve.
It should be noted that the admixture using aluminum sulfate in the range of (4) does not mean that a sufficient curing rate can be obtained from low temperature to high temperature, and it is expected that the curing rate will increase particularly at high temperature. Since it is thought that the curing rate can be controlled by the coexistence of alkaline substances with pH 8 or higher, it can be used in a wide temperature range from low temperature (10 ° C) to high temperature (30 ° C), so it can be applied stably in both summer and winter. is there.
 既述の(1)~(4)を満たす硫酸アルミニウムは、Al源とSO源とを用いて、Al源及びSO源等の原料を混合して混合物とした後に加熱処理する方法、Al源とSO源とを直接化学反応させる方法、Al源及びSO源を純水などの溶媒中に投入して混合した後に化学反応させる方法等を用いることができる。これらの方法において、製造条件を制御することにより、上記のような(1)~(3)を満たす硫酸アルミニウムを得ることができる。 Aluminum sulfate satisfying the above-mentioned (1) to (4) is prepared by mixing raw materials such as Al 2 O 3 source and SO 3 source using an Al 2 O 3 source and an SO 3 source to prepare a mixture. a method of heating treatment, a method of directly chemically reacting Al 2 O 3 source and SO 3 source, a method is a chemical reaction after mixing was charged with Al 2 O 3 source and SO 3 source in a solvent such as pure water or the like Can be used. In these methods, by controlling the production conditions, aluminum sulfate satisfying the above-mentioned (1) to (3) can be obtained.
 Al源としては、特に限定されないが、アルミニウムの硫酸塩、アルミン酸塩、及びその他の無機アルミニウム化合物、有機アルミニウム化合物、並びにアルミニウム錯体を用いることができる。 The Al 2 O 3 source is not particularly limited, but aluminum sulfate, aluminate, and other inorganic aluminum compounds, organoaluminum compounds, and aluminum complexes can be used.
 アルミニウムの硫酸塩としては、特に限定されないが、例えば、アンモニウム明礬、ヒドロキシ硫酸アルミニウム、及び硫酸アルミニウムなどが挙げられる。
 アルミン酸塩としては、特に限定されないが、例えば、アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸カルシウム、及びアルミン酸マグネシウムなどが挙げられる。
 その他の無機アルミニウム化合物としては、特に限定されないが、例えば、ボーキサイト、酸化アルミニウム、水酸化アルミニウム、塩化アルミニウム、リン酸アルミニウム、硝酸アルミニウム、フッ化アルミニウム、ポリ塩化アルミニウム、炭酸水酸化アルミニウム、合成ヒドロタルサイト、及びメタケイ酸アルミニウムなどが挙げられる。
The sulfate of aluminum is not particularly limited, and examples thereof include ammonium alum, aluminum hydroxysulfate, and aluminum sulfate.
The alumate is not particularly limited, and examples thereof include lithium aluminate, sodium aluminate, potassium aluminate, calcium aluminate, and magnesium aluminate.
Other inorganic aluminum compounds are not particularly limited, but are, for example, bokisite, aluminum oxide, aluminum hydroxide, aluminum chloride, aluminum phosphate, aluminum nitrate, aluminum fluoride, polyaluminum chloride, aluminum carbonate, synthetic hydrotal. Sight, aluminum metasilicate and the like.
 有機アルミニウム化合物としては、特に限定されないが、例えば、ステアリン酸アルミニウム、シュウ酸アルミニウム、アルミニウムイソプロポキシド、及びギ酸アルミニウムなどが挙げられる。
 アルミニウム錯体としては、特に限定されないが、例えば、トリス(8-ヒドロキシキノリナト)アルミニウムなどが挙げられる。
 Al源としては、単一種を用いることができるが、2種以上を組み合わせて用いてもよい。また、上記の様々なAl源の中でも、水への溶解性が高く、製造コストが安く且つ凝結性に優れる点からアルミニウムの硫酸塩が好ましいが、水酸化アルミニウムも好ましい。
The organoaluminum compound is not particularly limited, and examples thereof include aluminum stearate, aluminum oxalate, aluminum isopropoxide, and aluminum formate.
The aluminum complex is not particularly limited, and examples thereof include tris (8-hydroxyquinolinato) aluminum.
As the Al 2 O 3 source, a single species can be used, but two or more species may be used in combination. Among the various Al 2 O 3 sources described above, aluminum sulfate is preferable because it has high solubility in water, low production cost, and excellent cohesiveness, but aluminum hydroxide is also preferable.
 SO源としては、特に限定されないが、イオウ及びイオウ華などの元素状態のイオウの他に、硫化物、硫酸、硫酸塩、亜硫酸、亜硫酸塩、チオ硫酸、チオ硫酸塩、及び有機イオウ化合物などを用いることができる。
 硫化物としては、特に限定されないが、例えば、硫化マグネシウム、硫化カルシウム、硫化鉄、及び五硫化リンなどが挙げられる。
 硫酸塩としては、特に限定されないが、例えば、硫酸アニリン、硫酸アルミニウム、硫酸アンモニウム、硫酸マグネシウム、硫酸マンガン、硫酸バリウム、硫酸カルシウム、ナトリウム明礬、カリウム明礬、アンモニウム明礬、及び硫酸ヒドロキシルアミンなどが挙げられる。
The SO 3 source, but are not limited to, in addition to elemental sulfur, such as sulfur and sulfur oxide, sulfide, sulfate, sulfate, sulfite, sulfite, thiosulfate, sulfate, and organic sulfur compounds such as Can be used.
The sulfide is not particularly limited, and examples thereof include magnesium sulfide, calcium sulfide, iron sulfide, and phosphorus pentasulfide.
The sulfate is not particularly limited, and examples thereof include aniline sulfate, aluminum sulfate, ammonium sulfate, magnesium sulfate, manganese sulfate, barium sulfate, calcium sulfate, sodium sulphate, potassium sulphate, ammonium sulphate, and hydroxylamine sulfate.
 亜硫酸塩としては、特に限定されないが、例えば、亜硫酸水素アンモニウム及び亜硫酸カルシウムなどが挙げられる。
 チオ硫酸塩としては、特に限定されないが、例えば、チオ硫酸アンモニウム及びチオ硫酸バリウムなどが挙げられる。
 有機イオウ化合物としては、特に限定されないが、例えば、スルホン酸誘導体、スルホン酸誘導体の塩、メルカプタン、チオフェン、チオフェン誘導体、ポリサルホン、ポリエーテルサルホン、及びポリフェニレンサルファイドなどの樹脂が挙げられる。
 SO源としては、単一種を用いることができるが、2種以上を組み合わせて用いてもよい。また、上記の様々なSO源の中でも、水への溶解性が高く、製造コストが安く且つ凝結性に優れる点から、硫酸又は硫酸塩が好ましく、硫酸又はアンモニウム明礬が最も好ましい。
The sulfite salt is not particularly limited, and examples thereof include ammonium hydrogen sulfite and calcium sulfite.
The thiosulfate is not particularly limited, and examples thereof include ammonium thiosulfate and barium thiosulfate.
The organic sulfur compound is not particularly limited, and examples thereof include resins such as a sulfonic acid derivative, a salt of a sulfonic acid derivative, mercaptan, thiophene, a thiophene derivative, polysulfone, polyether sulfone, and polyphenylene sulfide.
The SO 3 source, can be used single type may be used in combination of two or more. Among the various SO 3 source of the high solubility in water, from the viewpoint of excellent cheap and caking manufacturing cost, preferably sulfuric acid or sulfates, and most preferably sulfuric acid or ammonium alum.
 ここで、得られた硫酸アルミニウムは、例えば、公知のミル等により粉砕して、篩分け等によって(4)の要件を満たすようにすることが好ましい。 Here, it is preferable that the obtained aluminum sulfate is pulverized by, for example, a known mill or the like so as to satisfy the requirement (4) by sieving or the like.
 第1の発明においては、カルシウムアルミネート、粉末珪酸ソーダ、硫酸カルシウム、及び副生消石灰のいずれかを含むことが好ましい。カルシウムアルミネートを含む場合は後述する第2の発明、粉末珪酸ソーダを含む場合は後述する第3の発明、硫酸カルシウムを含む場合は後述する第4の発明、及び副生消石灰を含む場合は後述する第4の発明を参照により組み入れることができる。 In the first invention, it is preferable to contain any one of calcium aluminate, powdered sodium silicate, calcium sulfate, and by-product slaked lime. The second invention described later when calcium aluminate is contained, the third invention described later when containing powdered sodium silicate, the fourth invention described later when calcium sulfate is contained, and the fourth invention described later when containing by-product slaked lime will be described later. The fourth invention is incorporated by reference.
<<第2の発明>>
[セメント混和剤]
 本実施形態に係るセメント混和材剤は、カルシウムアルミネートと、特定の酸性の硫酸アルミニウムとを含む。
<< Second Invention >>
[Cement admixture]
The cement admixture according to the present embodiment contains calcium aluminate and specific acidic aluminum sulfate.
(カルシウムアルミネート)
 カルシウムアルミネート(以下、CAともいう)は、CaOとAlを主成分とし、水和活性を有する化合物の総称であり、CaO及び/又はAlの一部が、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化ケイ素、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等と置換した化合物、あるいは、CaOとAlを主成分とするものにこれらが少量固溶した物質であり、CA類は結晶質、非晶質のいずれであってもよい。
(Calcium aluminumate)
Calcium aluminate (hereinafter, also referred to as CA) is a general term for compounds having CaO and Al 2 O 3 as main components and having hydration activity, and a part of Ca O and / or Al 2 O 3 is alkali metal oxidation. Substances, compounds substituted with alkaline earth metal oxides, silicon oxide, titanium oxide, iron oxide, alkali metal halides, alkaline earth metal halides, alkali metal sulfates, alkaline earth metal sulfates, etc., or It is a substance in which a small amount of these are solid-dissolved in a substance containing CaO and Al 2 O 3 as main components, and the CAs may be either crystalline or amorphous.
 結晶質の具体例としては、CaOをC、AlをA、RO(NaO、KO、LiO)をRとすると、CAやこれにアルカリ金属が固溶したC14RA、CAやC12やC11・CaF、CA・Fe、及びC・CaSO等が挙げられるが、急結性が良好であることから、非晶質のカルシウムアルミネートが好ましい。非晶質のカルシウムアルミネートの場合、ガラス化率は80%以上であることが好ましい。 As a specific example of crystallinity, when CaO is C, Al 2 O 3 is A, and R 2 O (Na 2 O, K 2 O, Li 2 O) is R, C 3 A and alkali metal are solidified therein. Melted C 14 RA 5 , CA and C 12 A 7 and C 11 A 7 · CaF 2 , C 4 A · Fe 2 O 3 and C 3 A 3 · CaSO 4 etc. are mentioned, but the quick connection is good. Therefore, amorphous calcium aluminate is preferable. In the case of amorphous calcium aluminate, the vitrification rate is preferably 80% or more.
 なお、本実施形態で用いるカルシウムアルミネートは、工業原料からは微量のアルカリ金属及び/又はアルカリ土類金属が混入し、このアルカリ金属及び/又はアルカリ土類金属を含むCA類が一部生成する可能性があるが、これらのわずかなアルカリ金属及び/又はアルカリ土類金属の存在によって何ら制限を受けるものではない。 The calcium aluminate used in the present embodiment is mixed with a trace amount of alkali metal and / or alkaline earth metal from the industrial raw material, and some CAs containing the alkali metal and / or alkaline earth metal are generated. It is possible, but not limited by the presence of these few alkali metals and / or alkaline earth metals.
 カルシウムアルミネートはアルカリ性であることが好ましく、pHが10~14であることがより好ましい。アルカリ性(特にpHが10~14)であることでカルシウムアルミネートの有する特性を発揮させやすくすることができる。 Calcium aluminate is preferably alkaline, and more preferably has a pH of 10-14. Being alkaline (particularly pH 10 to 14) makes it easier to exert the characteristics of calcium aluminate.
 カルシウムアルミネートのCaO/Alモル比は特に限定はされないが、極初期の強度発現性を考慮すると、当該モル比は2.0~3.0が好ましい。モル比が2.0以上であると、極初期の凝結性状を良好にすることができ、3.0以下であると、良好な長期強度発現性が得られやすくなる。 The CaO / Al 2 O 3 molar ratio of calcium aluminate is not particularly limited, but the molar ratio is preferably 2.0 to 3.0 in consideration of the strength development in the very early stage. When the molar ratio is 2.0 or more, the cohesive property at the very early stage can be improved, and when it is 3.0 or less, good long-term strength development can be easily obtained.
 カルシウムアルミネートのブレーン比表面積(以下、単に「ブレーン」ということがある)は、4000~8000cm/gであることが好ましく、5000~7000cm/gであることがより好ましい。4000~8000cm/gであることで、初期強度発現性が得られやすく、吹き付け時のモルタル及び/又はコンクリートの取扱い性を良好にすることができる。
 なお、ブレーン比表面積とは、JIS R 5201「セメントの物理試験方法」に記載された比表面積試験に基づいて測定されたものである。
The specific surface area of the brain of calcium aluminate (hereinafter, may be simply referred to as "brain") is preferably 4000 to 8000 cm 2 / g, and more preferably 5000 to 7000 cm 2 / g. When it is 4000 to 8000 cm 2 / g, the initial strength development can be easily obtained, and the handleability of the mortar and / or concrete at the time of spraying can be improved.
The brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.
 カルシウムアルミネートの平均粒径は、後述する特定の硫酸アルミニウムとの混合性と混合による良好な効果の発現の観点から、1~250μmであることが好ましく、1~150μmであることがより好ましい。
 なお、平均粒径はレーザー回折/拡散法により、測定して求めることができる。
The average particle size of calcium aluminate is preferably 1 to 250 μm, and more preferably 1 to 150 μm, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
The average particle size can be measured and obtained by the laser diffraction / diffusion method.
(特定の酸性の硫酸アルミニウム)
 本実施形態に係る硫酸アルミニウムは、下記(1)~(3)を満たす酸性の硫酸アルミニウムである。
(1)硫酸アルミニウムが非晶質である。
 上記(1)については第1の発明に係る(1)と同様である。
(Specific acidic aluminum sulfate)
The aluminum sulfate according to the present embodiment is acidic aluminum sulfate that satisfies the following (1) to (3).
(1) Aluminum sulfate is amorphous.
The above (1) is the same as (1) according to the first invention.
(2)硫酸アルミニウムの固体27Al-NMRによって得られるスペクトルにおいて、化学シフトは-0.20~-20.00ppmにピークを有し、当該ピークの半値幅が10.00~35.00ppmである。
 上記(2)については第1の発明に係る(2)と同様である。
(2) Solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
The above (2) is the same as (2) according to the first invention.
(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
 上記(3)については第1の発明に係る(2)と同様である。
(3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
The above (3) is the same as (2) according to the first invention.
 硫酸アルミニウムのpHは1~6であることが好ましい。硫酸アルミニウムのpHが上記の範囲内であることで、水硬性組成物の硬化速度を良好にすることができる。pHは2~5が好ましく、2~4がより好ましい。また、硫酸アルミニウムのpHを1~6とするには、既述の加熱温度を調整すればよい。
 なお、本明細書においてpHは、pHメータを用いて、20±2℃で水100mlに10g添加し、500rpmで撹拌して測定することができる。
The pH of aluminum sulfate is preferably 1 to 6. When the pH of aluminum sulfate is within the above range, the curing rate of the hydraulic composition can be improved. The pH is preferably 2 to 5, more preferably 2 to 4. Further, in order to set the pH of aluminum sulfate to 1 to 6, the heating temperature described above may be adjusted.
In the present specification, the pH can be measured by adding 10 g to 100 ml of water at 20 ± 2 ° C. and stirring at 500 rpm using a pH meter.
 既述の(1)~(3)を満たす酸性の硫酸アルミニウムは、Al源とSO源とを用いて、Al源及びSO源等の原料を混合して混合物とした後に加熱処理する方法、Al源とSO源とを直接化学反応させる方法、Al源及びSO源を純水などの溶媒中に投入して混合した後に化学反応させる方法等を用いることができる。これらの方法において、製造条件を制御することにより、上記のような(1)~(3)を満たす硫酸アルミニウムを得ることができる。 Acidic aluminum sulfate satisfying the above-mentioned (1) to (3) is mixed with raw materials such as Al 2 O 3 source and SO 3 source using Al 2 O 3 source and SO 3 source to form a mixture. how to Cooked after, a method of directly chemically reacting Al 2 O 3 source and SO 3 source, react chemically after mixing was charged with Al 2 O 3 source and SO 3 source in a solvent such as pure water A method or the like can be used. In these methods, by controlling the production conditions, aluminum sulfate satisfying the above-mentioned (1) to (3) can be obtained.
 Al源、SO源としては、第1の発明に係るものと同様である。
 ここで、得られた酸性の硫酸アルミニウムは、例えば、公知のミル等により粉砕して、篩分け等によって(3)の要件を満たすようにすることが好ましい。
The Al 2 O 3 source and the SO 3 source are the same as those according to the first invention.
Here, it is preferable that the obtained acidic aluminum sulfate is pulverized by, for example, a known mill or the like so as to satisfy the requirement (3) by sieving or the like.
 本実施形態に係るカルシウムアルミネートと酸性の硫酸アルミニウムとの混合比率(カルシウムアルミネート/酸性の硫酸アルミニウム:質量比)は、互いの効果を十分に発揮させる観点から、1~40であることが好ましく、2~30であることがより好ましい。 The mixing ratio of calcium aluminate and acidic aluminum sulfate (calcium aluminate / acidic aluminum sulfate: mass ratio) according to the present embodiment may be 1 to 40 from the viewpoint of fully exerting mutual effects. It is preferably 2 to 30, and more preferably 2 to 30.
<<第3の発明>>
[セメント混和剤]
 本実施形態に係るセメント混和材剤は、珪酸ソーダと、特定の酸性の硫酸アルミニウムとを含む。
<< Third Invention >>
[Cement admixture]
The cement admixture according to the present embodiment contains sodium silicate and specific acidic aluminum sulfate.
(珪酸ソーダ)
 粉末状急結剤の珪酸ソーダは、吹き付けモルタル用のセメントモルタル(以下、単に「セメントモルタル」ということがある)や、吹き付けセメント用のセメントコンクリート(以下、単に「セメントコンクリート」ということがある)に対して、主に極初期の流動性消失の促進効果を発揮する。また、例えば、粉末状急結剤を用いて吹付け施工した際の急結材料が長い年月によりひび割れを生じた際に、例えば0.1mmひび割れに対しては流水条件下であれば、修復することができる。これは水によりゲル化した珪酸ソーダが、そのひび割れ自体を修復するように働きその幅を小さくするためと考えられる。
 なお、上記効果を効率よく発現させる観点から、珪酸ソーダは粉末状であることが好ましい。
(Soda silicate)
Soda silicate, a powdered quick-setting admixture, is a cement mortar for spraying mortar (hereinafter, may be simply referred to as "cement mortar") or cement concrete for spraying cement (hereinafter, may be simply referred to as "cement concrete"). On the other hand, it mainly exerts the effect of promoting the disappearance of fluidity in the very early stage. Further, for example, when the quick-setting material is cracked over a long period of time when sprayed using a powdered quick-setting agent, for example, 0.1 mm cracks can be repaired under running water conditions. can do. It is considered that this is because the sodium silicate gelled by water works to repair the crack itself and reduces its width.
From the viewpoint of efficiently exhibiting the above effects, the sodium silicate is preferably in the form of powder.
 粉末状急結剤として、例えば極初期の流動性消失を促進するものとして、珪酸ソーダにおけるSiOとNaOとのモル比(SiO/NaO)は0.5~5が好ましく、0.5~1.5がより好ましく、0.9~1.3がさらに好ましい。
 モル比が0.5以上であると、粉末として取り扱い性が良好であり、1.5以下であると、セメントモルタルやセメントコンクリートに対して添加直後からの著しい流動性消失や初期強度発現性が得られやすくなる。
The molar ratio of SiO 2 to Na 2 O (SiO 2 / Na 2 O) in sodium silicate is preferably 0.5 to 5, as a powdered quick-setting admixture, for example, for promoting the loss of fluidity in the very early stage. 0.5 to 1.5 is more preferable, and 0.9 to 1.3 is even more preferable.
When the molar ratio is 0.5 or more, the powder is easy to handle, and when it is 1.5 or less, the fluidity disappears and the initial strength develops significantly immediately after the addition to cement mortar and cement concrete. It will be easier to obtain.
 珪酸ソーダとしては、オルソ珪酸ソーダ、メタ珪酸ソーダ、セスキ珪酸ソーダ等が挙げられるが、なかでもメタ珪酸ソーダが好ましい。また、珪酸ソーダとしては、珪酸ソーダ1号[NaSi(NaO・2SiO:n=2)]、珪酸ナトリウム2号[NaSi12(NaO・2.5SiO:n=2.5)]、珪酸ソーダ3号[NaSi(NaO・3SiO:n=3)]、及び珪酸ソーダ4号[NaSi(NaO・4SiO:n=4)]等も挙げられる。 Examples of the sodium silicate include sodium orthosilicate, sodium metasilicate, and sodium sesquisilicate, and sodium metasilicate is preferable. Examples of sodium silicate include sodium silicate No. 1 [Na 2 Si 2 O 5 (Na 2 O · 2SiO 2 : n = 2)] and sodium silicate No. 2 [Na 4 Si 5 O 12 (Na 2 O · 2. 5SiO 2 : n = 2.5)], sodium silicate No. 3 [Na 2 Si 3 O 7 (Na 2 O · 3SiO 2 : n = 3)], and sodium silicate No. 4 [Na 2 Si 4 O 9 (Na) 2 O · 4SiO 2 : n = 4)] and the like.
 珪酸ソーダとしては、水和物であっても無水物であっても特に限定はされないが、水和水の数は9以下が好ましく、5以下がより好ましく、無水和物の使用がさらに好ましい。 The sodium silicate is not particularly limited whether it is a hydrate or an anhydride, but the number of hydrated water is preferably 9 or less, more preferably 5 or less, and further preferably the use of anhydrous.
 珪酸ソーダのブレーン比表面積は、300~1000cm/gであることが好ましく、500~800cm/gであることがより好ましい。300~1000cm/gであることで、初期強度発現性が得られやすく、吹き付け時のモルタル及び/又はコンクリートの取扱い性を良好にすることができる。なお、ブレーン比表面積とは、JIS R 5201「セメントの物理試験方法」に記載された比表面積試験に基づいて測定されたものである。 Blaine specific surface area of the sodium silicate is preferably 300 ~ 1000cm 2 / g, more preferably 500 ~ 800cm 2 / g. When it is 300 to 1000 cm 2 / g, the initial strength development can be easily obtained, and the handleability of the mortar and / or concrete at the time of spraying can be improved. The brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.
 珪酸ソーダの平均粒径は、後述する特定の硫酸アルミニウムとの混合性と混合による良好な効果の発現の観点から、1~300μmであることが好ましく、1~250μmであることがより好ましい。
 なお、平均粒径は、例えば、HORIBA社製のレーザー回折/散乱式粒子径分布測定装置を用いることで求めることができる。
The average particle size of sodium silicate is preferably 1 to 300 μm, and more preferably 1 to 250 μm, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
The average particle size can be determined by using, for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA.
 本実施形態の粉末状急結剤における珪酸ソーダの含有量は、粉末状急結剤100部中、0.5~20部が好ましく、1~10部がより好ましい。0.5~20部であることで、ひび割れに対する自己修復機能をより良好にすることができる。 The content of sodium silicate in the powdered quick-setting admixture of the present embodiment is preferably 0.5 to 20 parts, more preferably 1 to 10 parts out of 100 parts of the powdered quick-setting admixture. With 0.5 to 20 parts, the self-repairing function against cracks can be improved.
(特定の酸性の硫酸アルミニウム)
 本実施形態に係る硫酸アルミニウムは、第2の発明における「特定の酸性の硫酸アルミニウム」と同様である。
(Specific acidic aluminum sulfate)
The aluminum sulfate according to the present embodiment is the same as that of the "specific acidic aluminum sulfate" in the second invention.
 本実施形態に係るケイ酸ソーダと酸性の硫酸アルミニウムとの混合比率(ケイ酸ソーダ/酸性の硫酸アルミニウム:質量比)は、互いの効果を十分に発揮させる観点から、5/5~5/40であることが好ましく、5/5~5/20であることがより好ましい。 The mixing ratio of sodium silicate and acidic aluminum sulfate (soda silicate / acidic aluminum sulfate: mass ratio) according to the present embodiment is 5/5 to 5/40 from the viewpoint of fully exerting mutual effects. Is preferable, and 5/5 to 5/20 is more preferable.
<<第4の発明>>
[セメント混和剤]
 本実施形態に係るセメント混和材剤は、硫酸カルシウムと、特定の酸性の硫酸アルミニウムとを含む。
<< Fourth Invention >>
[Cement admixture]
The cement admixture according to the present embodiment contains calcium sulfate and specific acidic aluminum sulfate.
(硫酸カルシウム)
 硫酸カルシウムは、セメントモルタルやセメントコンクリートに対して、主に短時間から長期(例えば、材齢28日)に渡っての圧縮強度の増進効果を付与する。
(Calcium sulfate)
Calcium sulfate imparts an effect of increasing the compressive strength to cement mortar and cement concrete mainly for a short period of time to a long period of time (for example, 28 days of age).
 硫酸カルシウムには結晶水の有無で、無水物、半水物、2水物があるが、いずれも使用できる。 Calcium sulfate includes anhydrous, semi-aqueous, and binary depending on the presence or absence of water of crystallization, but both can be used.
 硫酸カルシウムのブレーン比表面積は、1000cm/g以上であることが好ましく、2000cm/g以上であることがより好ましく、3000cm/g以上であることがさらに好ましい。1000cm/g以上であることで、短時間から長期の強度発現性が得られやすく、吹き付け時のモルタル及び/又はコンクリートの取扱い性を良好にすることができる。ブレーン比表面積は、6000cm/g以下であることが好ましく、5000cm/g以下であることがより好ましい。なお、ブレーン比表面積とは、JIS R 5201「セメントの物理試験方法」に記載された比表面積試験に基づいて測定されたものである。 The brain specific surface area of calcium sulfate is preferably 1000 cm 2 / g or more, more preferably 2000 cm 2 / g or more, and further preferably 3000 cm 2 / g or more. When it is 1000 cm 2 / g or more, it is easy to obtain strength development from a short time to a long period of time, and it is possible to improve the handleability of mortar and / or concrete at the time of spraying. Blaine specific surface area is preferably at 6000 cm 2 / g or less, and more preferably less 5000 cm 2 / g. The brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.
 硫酸カルシウムは、粉末状急結剤100部中、10~60部含むことが好ましく、15~60部含むことがより好ましく、15~50部含むことがさらに好ましく、なかでも20~50部含むことがより好ましい。10~60含むことで、長期強度の増進効果がより付与されやすくなる。 Calcium sulfate is preferably contained in 10 to 60 parts, more preferably 15 to 60 parts, further preferably 15 to 50 parts, and particularly 20 to 50 parts in 100 parts of the powdered quick-setting admixture. Is more preferable. By including 10 to 60, the effect of increasing the long-term strength is more likely to be imparted.
 硫酸カルシウムの平均粒径は、後述する特定の硫酸アルミニウムとの混合性と混合による良好な効果の発現の観点から、1~150μmであることが好ましく、10~100μmであることがより好ましい。
 なお、平均粒径は、レーザー回折/拡散法により、測定して求めることができる。
The average particle size of calcium sulfate is preferably 1 to 150 μm, more preferably 10 to 100 μm, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
The average particle size can be measured and obtained by a laser diffraction / diffusion method.
(特定の酸性の硫酸アルミニウム)
 本実施形態に係る硫酸アルミニウムは、第2の発明における「特定の酸性の硫酸アルミニウム」と同様である。
(Specific acidic aluminum sulfate)
The aluminum sulfate according to the present embodiment is the same as that of the "specific acidic aluminum sulfate" in the second invention.
 本実施形態に係る硫酸カルシウムと酸性の硫酸アルミニウムとの混合比率(硫酸カルシウム/酸性の硫酸アルミニウム:質量比)は、互いの効果を十分に発揮させる観点から、1~40であることが好ましく、2~20であることがより好ましい。 The mixing ratio of calcium sulfate and acidic aluminum sulfate (calcium sulfate / acidic aluminum sulfate: mass ratio) according to the present embodiment is preferably 1 to 40 from the viewpoint of sufficiently exerting mutual effects. More preferably, it is 2 to 20.
<<第5の発明>>
[セメント混和剤]
 本実施形態に係るセメント混和材剤は、副生消石灰と、特定の酸性の硫酸アルミニウムとを含む。
<< Fifth Invention >>
[Cement admixture]
The cement admixture according to the present embodiment contains by-product slaked lime and specific acidic aluminum sulfate.
(副生消石灰)
 副生消石灰は、極初期の流動性低下や長期強度発現性の担保するものとして有効な材料である。副生消石灰とはカーバイドが水和した際に生じるカーバイド滓をいう。なお、市販されている水酸化カルシウムを適宜併用可能である。副生消石灰の含有量は粉末状急結剤100部中、5~30部であることが好ましく、10~25部であることがより好ましい。5部以上であることで、急結性状や長期強度発現性を担保することができる。20部以下であることで、良好な初期強度発現性が得られやすくなる。
(By-product slaked lime)
By-product slaked lime is an effective material for ensuring the decrease in fluidity at the very beginning and the long-term strength development. By-product slaked lime refers to the carbide slag produced when the carbide is hydrated. Commercially available calcium hydroxide can be used in combination as appropriate. The content of by-product slaked lime is preferably 5 to 30 parts, more preferably 10 to 25 parts, out of 100 parts of the powdered quick-setting admixture. By having 5 or more parts, it is possible to ensure the quick-setting property and the long-term strength development. When the number of parts is 20 or less, good initial strength development can be easily obtained.
 副生消石灰のブレーン比表面積は、1000~3000cm/gであることが好ましく、1500~2500cm/gであることがより好ましい。1000~3000cm/gであることで、急結性状や長期強度発現性を担保することができ、良好な初期強度発現性を得られやすくすることができる。なお、ブレーン比表面積とは、JIS R 5201「セメントの物理試験方法」に記載された比表面積試験に基づいて測定されたものである。 Blaine specific surface area of the by-product calcium hydroxide is preferably 1000 ~ 3000cm 2 / g, and more preferably 1500 ~ 2500cm 2 / g. When it is 1000 to 3000 cm 2 / g, it is possible to secure the quick-setting property and the long-term strength development, and it is possible to easily obtain a good initial strength development. The brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.
 副生消石灰の平均粒径は、後述する特定の硫酸アルミニウムとの混合性と混合による良好な効果の発現の観点から、1~300μmであることが好ましく、1~250μmであることがより好ましい。
 なお、平均粒径は、例えば、HORIBA社製のレーザー回折/散乱式粒子径分布測定装置を用いることで求めることができる。
The average particle size of the by-product slaked lime is preferably 1 to 300 μm, more preferably 1 to 250 μm, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
The average particle size can be determined by using, for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA.
(特定の酸性の硫酸アルミニウム)
 本実施形態に係る硫酸アルミニウムは、第2の発明における「特定の酸性の硫酸アルミニウム」と同様である。
(Specific acidic aluminum sulfate)
The aluminum sulfate according to the present embodiment is the same as that of the "specific acidic aluminum sulfate" in the second invention.
 本実施形態に係る副生消石灰と酸性の硫酸アルミニウムとの混合比率(副生消石灰/酸性の硫酸アルミニウム:質量比)は、互いの効果を十分に発揮させる観点から、10/30~30/10であることが好ましく、10/30~20/10であることがより好ましい。 The mixing ratio of by-product slaked lime and acidic aluminum sulfate (by-product slaked lime / acidic aluminum sulfate: mass ratio) according to the present embodiment is 10/30 to 30/10 from the viewpoint of fully exerting mutual effects. It is preferably 10/30 to 20/10, and more preferably.
 第1~第5の発明に係るセメント混和剤には、pHが8以上であるアルカリ性混和剤が混合されることが好ましい。当該アルカリ性の混和剤としては、アルカリ金属アルミン酸塩、アルカリ土類金属アルミン酸塩、アルカリ土類金属炭酸塩、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属水酸化物等が挙げられ、なかでもアルカリ金属炭酸塩、アルカリ土類金属水酸化物が含有されることが好ましい。 It is preferable that the cement admixture according to the first to fifth inventions is mixed with an alkaline admixture having a pH of 8 or more. Examples of the alkaline admixture include alkali metal aluminate, alkaline earth metal aluminate, alkaline earth metal carbonate, alkali metal hydroxide, alkali metal carbonate, alkaline earth metal hydroxide and the like. Of these, alkali metal carbonates and alkaline earth metal hydroxides are preferably contained.
 アルカリ金属炭酸塩はセメントにさらなる凝結性や急硬性を付与することができる。アルカリ金属炭酸塩としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸リチウム、炭酸水素リチウム、炭酸ベリリウム、炭酸マグネシウム等が挙げられ、なかでも炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム、炭酸カリウムが好ましい。アルカリ性混和剤中のアルカリ金属炭酸塩の含有量は、50%以上であることが好ましく、80%以上であることがより好ましい。 Alkali metal carbonate can impart further cohesiveness and rapid hardness to cement. Examples of the alkali metal carbonate include sodium carbonate, sodium hydrogencarbonate, calcium carbonate, potassium carbonate, lithium carbonate, lithium hydrogencarbonate, beryllium carbonate, magnesium carbonate, etc. Among them, sodium carbonate, sodium hydrogencarbonate, calcium carbonate, and carbonate. Potassium is preferred. The content of the alkali metal carbonate in the alkaline admixture is preferably 50% or more, more preferably 80% or more.
 アルカリ土類金属水酸化物はセメントにさらなる凝結性、急硬性、長期強度発現性を付与することができる。アルカリ土類金属水酸化物としては、水酸化カルシウム、水酸化マグネシウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ベリリウム等が挙げられ、なかでも水酸化カルシウム、水酸化マグネシウム、水酸化ナトリウム、水酸化カリウムが好ましい。アルカリ性混和剤中のアルカリ土類金属水酸化物の含有量は、50%以上であることが好ましく、80%以上であることがより好ましい。 Alkaline earth metal hydroxide can impart further cohesiveness, rapid hardness, and long-term strength development to cement. Examples of the alkaline earth metal hydroxide include calcium hydroxide, magnesium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydroxide, beryllium hydroxide and the like, among which calcium hydroxide, magnesium hydroxide and hydroxide are used. Sodium and potassium hydroxide are preferable. The content of the alkaline earth metal hydroxide in the alkaline admixture is preferably 50% or more, more preferably 80% or more.
 第1~第5の発明に係るセメント混和剤に用いられるアルカリ性混和剤は、アルカリ金属炭酸塩とアルカリ土類金属水酸化物との組合せを含むことが好ましい。この組合せにより、著しいセメントの凝結、急硬、強度発現性の付与が可能となる。アルカリ性混和剤中のアルカリ金属炭酸塩とアルカリ土類金属水酸化物との組合せは、50%以上であることが好ましく、80%以上であることがより好ましい。また、当該組み合わせにおける、アルカリ金属炭酸塩とアルカリ土類金属水酸化物との質量比は、アルカリ金属炭酸塩/アルカリ土類金属水酸化物で、30/70~70/30であることが好ましく、40/60~60/40であることがより好ましい。 The alkaline admixture used in the cement admixture according to the first to fifth inventions preferably contains a combination of an alkali metal carbonate and an alkaline earth metal hydroxide. This combination makes it possible to impart significant cement coagulation, rapid hardening, and strength development. The combination of the alkali metal carbonate and the alkaline earth metal hydroxide in the alkaline admixture is preferably 50% or more, and more preferably 80% or more. The mass ratio of alkali metal carbonate to alkaline earth metal hydroxide in the combination is preferably 30/70 to 70/30 for alkali metal carbonate / alkaline earth metal hydroxide. , 40/60 to 60/40, more preferably.
 第1~第5の発明に係るセメント混和剤とアルカリ性混和剤とは、水硬性物質に添加する際に混合することが好ましいが、本発明に係るセメント混和剤はアルカリに対する貯蔵安定性に優れるため、水硬性物質に添加する2~3週間前に混合することが好ましい。 The cement admixture and the alkaline admixture according to the first to fifth inventions are preferably mixed when added to a hydraulic substance, but the cement admixture according to the present invention has excellent storage stability with respect to alkali. , Preferably mixed 2-3 weeks before addition to the hydraulic material.
[水硬性組成物]
 本発明に係る水硬性組成物は、第1~第5の発明に係るセメント混和剤と水硬性物質とを含み、さらに既述のアルカリ性混和剤を含むことが好ましい。
 第1~第5の発明に係るセメント混和剤は、様々な水硬性物質と共に用いて水硬性組成物を調製することができる。特に、第1~第5の発明に係るセメント混和剤は、酸性であるにも関わらず、アルカリ性の水硬性物質と共に用いることが可能である。一般的に、酸性のセメント混和剤は、アルカリ性の水硬性物質と共に用いて水硬性組成物を調製すると、貯蔵安定性が低下し易いが、本発明に係るセメント混和材は、アルカリ性の水硬性物質と共に用い水硬性組成物を調製しても貯蔵安定性が低下し難い。そのため、本発明に係るセメント混和材を用いて調製された水硬性組成物は、特殊な保存方法、施工方法又は取扱方法を行わなくても長期保存が可能である。また、この水硬性組成物は、超速硬性を有し、強度が高い硬化体を形成することができる。したがって、この水硬性組成物を用いることにより、施工の簡略化が可能となる。
[Hydraulic composition]
The hydraulic composition according to the present invention contains the cement admixture and the hydraulic substance according to the first to fifth inventions, and preferably further contains the above-mentioned alkaline admixture.
The cement admixture according to the first to fifth inventions can be used together with various hydraulic substances to prepare a hydraulic composition. In particular, the cement admixtures according to the first to fifth inventions can be used together with an alkaline hydraulic substance even though they are acidic. Generally, when an acidic cement admixture is used together with an alkaline hydraulic substance to prepare a hydraulic composition, the storage stability tends to decrease, but the cement admixture according to the present invention is an alkaline hydraulic substance. Even if a hydraulic composition is prepared, the storage stability is unlikely to decrease. Therefore, the hydraulic composition prepared by using the cement admixture according to the present invention can be stored for a long period of time without any special storage method, construction method or handling method. Further, this hydraulic composition has ultrafast hardness and can form a cured product having high strength. Therefore, by using this hydraulic composition, it is possible to simplify the construction.
 水硬性組成物に用いられる水硬性物質としては、特に限定されないが、例えば、普通、早強、中庸熱、低熱、白色などの各種ポルトランドセメント;都市ゴミ焼却灰、下水汚泥焼却灰を原料として製造されるエコセメント;高炉スラグ、シリカヒューム、石灰石、フライアッシュ、石膏などを含む混合セメントなどが挙げられる。
 水硬性物質のpHとしては、特に限定されないが、好ましくは7超、より好ましくは8以上、さらに好ましくは10以上である。
The water-hardening substance used in the water-hardening composition is not particularly limited, but for example, various Portland cements such as ordinary, fast-strength, moderate heat, low heat, and white; manufactured from city waste incineration ash and sewage sludge incineration ash as raw materials. Eco-cement to be used; examples include mixed cement containing blast furnace slag, silica fume, limestone, fly ash, gypsum and the like.
The pH of the hydraulic substance is not particularly limited, but is preferably more than 7, more preferably 8 or more, and further preferably 10 or more.
 水硬性組成物には、本発明の効果を阻害しない範囲において、一般的に配合され得る公知の添加剤を含有することができる。添加剤としては、特に限定されないが、防錆剤、着色剤、ポリマー、繊維、流動化剤、中性化抑制剤、防水剤、増粘剤、防水剤、遅延剤、早強剤、促進剤、減水剤、高性能(AE)減水剤、起泡剤、発泡剤、AE剤、乾燥収縮低減剤、急結剤、膨張剤、耐寒促進剤、エフロレッセンス防止剤、アルカリ骨材反応抑制剤、黒色むら低減剤、環境浄化混和剤などが挙げられる。これらの添加剤は、単独又は2種以上を組み合わせて用いることができる。 The hydraulic composition can contain known additives that can be generally blended as long as the effects of the present invention are not impaired. Additives are not particularly limited, but are rust preventives, colorants, polymers, fibers, fluidizers, neutralization inhibitors, waterproofing agents, thickeners, waterproofing agents, retarding agents, fast-strengthening agents, and accelerators. , Water reducing agent, high performance (AE) water reducing agent, foaming agent, foaming agent, AE agent, drying shrinkage reducing agent, quick-setting agent, leavening agent, cold resistance accelerator, efflorescence inhibitor, alkaline aggregate reaction inhibitor, Examples include black unevenness reducing agents and environmental purification admixtures. These additives can be used alone or in combination of two or more.
 水硬性組成物中の第1~第5の発明に係るセメント混和剤は、それぞれ1~30質量%であることが好ましく、2~20質量%であることがより好ましい。また、既述のアルカリ性混和剤を含む場合、第1~第5の発明に係るそれぞれのセメント混和剤100部に対して、アルカリ性混和剤を2~30部とすることが好ましく、2~20部とすることがより好ましい。 The cement admixture according to the first to fifth inventions in the hydraulic composition is preferably 1 to 30% by mass, more preferably 2 to 20% by mass, respectively. When the above-mentioned alkaline admixture is contained, the amount of the alkaline admixture is preferably 2 to 30 parts with respect to 100 parts of each cement admixture according to the first to fifth inventions, and 2 to 20 parts. Is more preferable.
 以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as it does not deviate from the gist thereof.
[第1の発明に係る実施例]
<硫酸アルミニウムA~Eの調製>
 原料として下記の物質を使用した。
  Al源:水酸化アルミニウム、試薬、純度99%
  SO源:硫酸、試薬、純度99%
  溶媒:純水
[Example according to the first invention]
<Preparation of aluminum sulfates A to E>
The following substances were used as raw materials.
Al 2 O 3 source: aluminum hydroxide, reagent, purity 99%
SO 3 source: sulfuric acid, reagent, purity 99%
Solvent: pure water
 Al源とSO源と溶媒とを2:3:10のモル比で混合し、混合物を表1に示す各温度に加熱して反応させることにより、硫酸アルミニウムA~Eを調製した。その後、ボールミルを用いて粉砕し、篩によって粒径が100μm以上の粒子が30%、粒径が10μm以下の粒子が20%となるように粉砕した。
 上記で調製した硫酸アルミニウムについて、X線回折、固体27Al-NMR、及びpHの評価を行った。
Aluminum sulfates A to E were prepared by mixing an Al 2 O 3 source, an SO 3 source, and a solvent at a molar ratio of 2: 3:10, and heating and reacting the mixture at each temperature shown in Table 1. .. Then, it was pulverized using a ball mill, and pulverized by a sieve so that particles having a particle size of 100 μm or more were 30% and particles having a particle size of 10 μm or less were 20%.
The aluminum sulfate prepared above was subjected to X-ray diffraction, solid 27 Al-NMR, and pH evaluation.
 X線回折は、リガク社製のMulti-Flexを用いて測定した。測定は、管電圧-管電流を40KV-40mAとし、2θ=5°~60°、5°/分の条件で行った。また、解析ソフトはPDXLを用いた。X線回折の評価において、X線回折スペクトルがブロードであれば非晶質、それ以外を結晶質と判定した。結果を表1に示す。 X-ray diffraction was measured using Multi-Flex manufactured by Rigaku. The measurement was performed under the conditions of 2θ = 5 ° to 60 ° and 5 ° / min, with the tube voltage-tube current set to 40 KV-40 mA. In addition, PDXL was used as the analysis software. In the evaluation of X-ray diffraction, if the X-ray diffraction spectrum was broad, it was determined to be amorphous, and if it was not, it was determined to be crystalline. The results are shown in Table 1.
 固体27Al-NMRは、日本電子株式会社製の超伝導核磁気共鳴装置(ECX-400)を用いて上記した条件で行い、ピークの化学シフト及び半値幅を測定した。結果を表1に示す。 Solid 27 Al-NMR was carried out under the above conditions using a superconducting nuclear magnetic resonance apparatus (ECX-400) manufactured by JEOL Ltd., and the chemical shift and full width at half maximum of the peak were measured. The results are shown in Table 1.
 pHは、上記方法で調整した硫酸アルミニウムをHORIBA社製のpH測定計(D-53S)を用いて、既述の方法にて測定した。結果を表1に示す。 The pH of aluminum sulfate adjusted by the above method was measured by the method described above using a pH measuring meter (D-53S) manufactured by HORIBA. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 次に、上記で調製した表1に示す種類の硫酸アルミニウム100部に、表2に示すアルカリ性混和剤アを20部配合し混合してセメント混和剤を調製し、表2に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表2に示す。
Next, 20 parts of the alkaline admixture A shown in Table 2 was mixed with 100 parts of aluminum sulfate of the type shown in Table 1 prepared above to prepare a cement admixture, and the number of days and the temperature 20 shown in Table 2 were 20. After storage at ° C. and humidity of 60%, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 2.
 アルカリ性混和剤ア:炭酸ナトリウム、試薬、pH11
 アルカリ性混和剤イ:炭酸水素ナトリウム、試薬、pH8.3
 アルカリ性混和剤ウ:炭酸カルシウム、試薬、pH10
 アルカリ性混和剤エ:炭酸カリウム、試薬、pH12
 アルカリ性混和剤オ:水酸化カルシウム、試薬、pH11
 アルカリ性混和剤カ:水酸化マグネシウム、試薬、pH10.5
 アルカリ性混和剤キ:水酸化ナトリウム、試薬、pH14
 アルカリ性混和剤ク:水酸化カリウム、試薬、pH13
Alkaline admixture a: Sodium carbonate, reagent, pH11
Alkaline admixture a: Sodium hydrogen carbonate, reagent, pH 8.3
Alkaline admixture c: Calcium carbonate, reagent, pH10
Alkaline admixture d: Potassium carbonate, reagent, pH12
Alkaline admixture e: Calcium hydroxide, reagent, pH11
Alkaline admixture F: Magnesium hydroxide, reagent, pH 10.5
Alkaline admixture: sodium hydroxide, reagent, pH14
Alkaline admixture: potassium hydroxide, reagent, pH13
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 表2に示すように、硫酸アルミニウムAを用いることで、保管日数に伴い凝結時間が変化した。これは、該化合物と、混和剤が貯蔵劣化したものと考える。しかし、硫酸アルミニウムB~Eであれば、貯蔵劣化は見られず、特に促進的な効果が得られやすいのは、硫酸アルミニウムB~Dであることが確認された。 As shown in Table 2, by using aluminum sulfate A, the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture. However, it was confirmed that the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径100μm以上の粒子の割合を表3となるように調整したもの100部と、表3に示す種類のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表3に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表3に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 100 μm or more is shown in Table 3 and 20 parts of an alkaline admixture of the type shown in Table 3 are mixed and mixed. Then, the cement admixture was prepared and stored at the number of days shown in Table 3, the temperature at 20 ° C., and the humidity at 60%, and then a hydraulic composition consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of the cement admixture. I got something. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
 表3に示すように、硫酸アルミニウムの粒径100μm以上の粒子の割合が71%、99%では凝結始発時間が遅くなることが確認された。また、硫酸アルミニウムの粒径100μm以上の粒子の割合が70%以下ではいずれも、凝結性及び強度が良好であった。 As shown in Table 3, it was confirmed that when the proportion of particles of aluminum sulfate having a particle size of 100 μm or more was 71% and 99%, the condensation initiation time was delayed. Further, when the proportion of particles having a particle size of 100 μm or more of aluminum sulfate was 70% or less, the cohesiveness and strength were good.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径10μm以下の粒子の割合を表4となるように調整したもの100部と、表4に示す種類のアルカリ性混和剤20部とを配合し、混合してセメント混和剤を調製し、表4に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表4に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted to have a particle size of 10 μm or less so as to be shown in Table 4 and 20 parts of an alkaline admixture of the type shown in Table 4 were blended. After mixing to prepare a cement admixture and storing it at the number of days shown in Table 4, temperature 20 ° C., and humidity 60%, hydraulic property consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture The composition was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 表4に示すように、硫酸アルミニウムCで粒径10μm以下の粒子の割合が30%以上であると、貯蔵劣化が確認され、30%未満であると、特に貯蔵劣化は確認されないことがわかった。 As shown in Table 4, it was found that when the proportion of particles having a particle size of 10 μm or less in aluminum sulfate C was 30% or more, storage deterioration was confirmed, and when it was less than 30%, no particular storage deterioration was confirmed. ..
 次に、表5に示す種類の硫酸アルミニウム100部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表5に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表5に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 5 and 20 parts of various alkaline admixtures are mixed and mixed to prepare a cement admixture, and the number of days shown in Table 5, temperature 20 ° C., and humidity 60% are adjusted. After storage, a hydraulic composition consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
 表5に示すように、混和剤種別毎に保管日数に伴い材齢28日強度は変化するが、硫酸アルミニウムAと各種のアルカリ性混和剤の組合せは保管日数に伴い、強度が低下した。一方、硫酸アルミニウムCと各種のアルカリ性混和剤の組合せは、貯蔵安定性がよく、保管日数に関係なく、強度も低下しないことが確認された。 As shown in Table 5, the strength of the material age 28 days changed with the number of storage days for each type of admixture, but the strength of the combination of aluminum sulfate A and various alkaline admixtures decreased with the number of storage days. On the other hand, it was confirmed that the combination of aluminum sulfate C and various alkaline admixtures had good storage stability and the strength did not decrease regardless of the number of storage days.
 次に、上記で調製した表6に示す種類の硫酸アルミニウム100部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表6に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。なお、アルカリ性混和剤アとオを混合した場合(実験No.30、31)のこれらの比(ア:オ)は50:50とした。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表6に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 6 prepared above and 20 parts of various alkaline admixtures were mixed and mixed to prepare a cement admixture, and the number of days and temperature of 20 ° C. shown in Table 6 were adjusted. After storage at a humidity of 60%, a hydraulic composition consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of a cement admixture was obtained. When the alkaline admixtures A and O were mixed (Experiments No. 30 and 31), the ratio (A: O) of these was 50:50.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
 表6に示すように、硫酸アルミニウムAは混和剤種別をア、オを組み合わせても保管日数により、強度低下が確認されたが、硫酸アルミニウムCをア、オと組み合わせると、強度が更に増進することを確認した。 As shown in Table 6, it was confirmed that the strength of aluminum sulfate A decreased depending on the number of storage days even when the admixture types were combined with a and o, but when aluminum sulfate C was combined with a and o, the strength was further increased. It was confirmed.
 次に、表3、表4に示す実験No.3、No.6~17について、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表7に示す。
Next, the experimental numbers shown in Tables 3 and 4 are shown. 3, No. For 6 to 17, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture, except that the temperature (test temperature) for obtaining the hydraulic composition was set to 20 ° C. to 10 ° C. or 30 ° C. A hydraulic composition consisting of 10 parts was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 表7に示すように、第1の発明の範囲にある硫酸アルミニウムを用いた混和剤では、低温(10℃)から高温(30℃)まで幅広い温度範囲で使用できるため、夏でも冬でも安定して適用可能である。 As shown in Table 7, the admixture using aluminum sulfate in the range of the first invention can be used in a wide temperature range from low temperature (10 ° C.) to high temperature (30 ° C.), and is stable in both summer and winter. Is applicable.
 以上の結果からわかるように、第1の発明によれば、水硬性組成物に予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することができる。また、第1の発明によれば、貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することができる。 As can be seen from the above results, according to the first invention, the hydraulic composition which has ultra-fast hardness and high strength of the cured product, as well as the storage stability is unlikely to decrease even if it is blended in the hydraulic composition in advance. A cement admixture capable of feeding can be provided. Further, according to the first invention, it is possible to provide a hydraulic composition having ultrafast hardness and high strength of a cured product, while the storage stability is unlikely to decrease.
[第2の発明に係る実施例]
<カルシウムアルミネートAの調製>
 CaO/Alモル比2.5となるように原料(CaCO及びAl)を粉砕混合し、電気炉で溶融し、急冷して、ガラス化率90%、ブレーン5500cm/g、pH12、及び平均粒径120μmのカルシウムアルミネートを調製した。
[Example according to the second invention]
<Preparation of calcium aluminate A>
Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, and rapidly cooled to have a vitrification rate of 90% and a brain of 5500 cm 2 /. Calcium aluminate having g, pH 12 and an average particle size of 120 μm was prepared.
 次に、上記で調製した表1に示す種類の硫酸アルミニウム100部とカルシウムアルミネートAを1000部とを含むセメント混和剤に、表8に示すアルカリ性混和剤アを20部配合し混合してアルカリ入りセメント混和剤を調製し、表8に示す日数、温度20℃、湿度60%に保管した。その後、普通ポルトランドセメント(pH14、工業品)100部、アルカリ入りセメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表2に示す。
Next, 20 parts of the alkaline admixture A shown in Table 8 is mixed and mixed with a cement admixture containing 100 parts of aluminum sulfate and 1000 parts of calcium aluminate A of the types shown in Table 1 prepared above to make an alkali. A cement admixture containing the mixture was prepared and stored at the number of days shown in Table 8, a temperature of 20 ° C., and a humidity of 60%. Then, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of an alkali-containing cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 2.
 なお、本実施例におけるアルカリ性混和剤ア、イ、ウ、エ、オ、カ、キ、クは、第1の発明に係る実施例で使用したものと同様である。 The alkaline admixtures a, b, c, d, o, mosquito, ki, and ku in this example are the same as those used in the example according to the first invention.
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000008

 
 表8に示すように、硫酸アルミニウムAを用いることで、保管日数に伴い凝結時間が変化した。これは、該化合物と、混和剤が貯蔵劣化したものと考える。しかし、硫酸アルミニウムB~Eであれば、貯蔵劣化は見られず、特に促進的な効果が得られやすいのは、硫酸アルミニウムB~Dであることが確認された。 As shown in Table 8, by using aluminum sulfate A, the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture. However, it was confirmed that the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径100μm以上の粒子の割合を表9となるように調整したもの100部とカルシウムアルミネートAを1000部と、表9に示す種類のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表9に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表9に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 100 μm or more is shown in Table 9, 1000 parts of calcium aluminate A, and the types of alkaline mixture shown in Table 9 are mixed. 20 parts of the agent is mixed and mixed to prepare a cement admixture, and after storing at the number of days shown in Table 9, temperature 20 ° C. and humidity 60%, 100 parts of ordinary Portland cement (pH 14, industrial product) and cement admixture are mixed. A hydraulic composition consisting of 10 parts of the agent was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、硫酸アルミニウムの粒径100μm以上の粒子の割合が71%、99%では凝結始発時間が遅くなることが確認された。また、硫酸アルミニウムの粒径100μm以上の粒子の割合が70%以下ではいずれも、凝結性及び強度が良好であった。 As shown in Table 9, it was confirmed that when the proportion of particles of aluminum sulfate having a particle size of 100 μm or more was 71% and 99%, the condensation initiation time was delayed. Further, when the proportion of particles having a particle size of 100 μm or more of aluminum sulfate was 70% or less, the cohesiveness and strength were good.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径10μm以下の粒子の割合を表10となるように調整したもの100部とカルシウムアルミネートAを1000部と、表10に示す種類のアルカリ性混和剤20部とを配合し、混合してセメント混和剤を調製し、表10に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表10に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 10 μm or less is shown in Table 10 and 1000 parts of calcium aluminate A are mixed with the types shown in Table 10. 20 parts of the agent is mixed and mixed to prepare a cement admixture, and after storing at the number of days shown in Table 10, temperature 20 ° C. and humidity 60%, 100 parts of ordinary Portland cement (pH 14, industrial product), cement A hydraulic composition consisting of 10 parts of an admixture was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010

 
Figure JPOXMLDOC01-appb-T000010

 
 表10に示すように、硫酸アルミニウムCで粒径10μm以下の粒子の割合が30%以上であると、貯蔵劣化が確認され、30%未満であると、特に貯蔵劣化は確認されないことがわかった。 As shown in Table 10, it was found that when the proportion of particles having a particle size of 10 μm or less in aluminum sulfate C was 30% or more, storage deterioration was confirmed, and when it was less than 30%, no particular storage deterioration was confirmed. ..
 次に、表11に示す種類の硫酸アルミニウム100部とカルシウムアルミネートAを1000部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表11に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表11に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 11, 1000 parts of calcium aluminate A, and 20 parts of various alkaline admixtures were mixed and mixed to prepare a cement admixture, and the number of days shown in Table 11 was determined. After storage at a temperature of 20 ° C. and a humidity of 60%, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of a cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011

 
Figure JPOXMLDOC01-appb-T000011

 
 表11に示すように、混和剤種別毎に保管日数に伴い材齢28日強度は変化するが、硫酸アルミニウムAと各種のアルカリ性混和剤の組合せは保管日数に伴い、強度が低下した。一方、硫酸アルミニウムCと各種のアルカリ性混和剤の組合せは、貯蔵安定性がよく、保管日数に関係なく、強度も低下しないことが確認された。 As shown in Table 11, the strength of the material age 28 days changed with the number of storage days for each type of admixture, but the strength of the combination of aluminum sulfate A and various alkaline admixtures decreased with the number of storage days. On the other hand, it was confirmed that the combination of aluminum sulfate C and various alkaline admixtures had good storage stability and the strength did not decrease regardless of the number of storage days.
 次に、上記で調製した表12に示す種類の硫酸アルミニウム100部とカルシウムアルミネートAを1000部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表12に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。なお、アルカリ性混和剤アとオを混合した場合(実験No.30、31)のこれらの比(ア:オ)は50:50とした。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表12に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 12 prepared above, 1000 parts of calcium aluminate A, and 20 parts of various alkaline admixtures were mixed and mixed to prepare a cement admixture, and Table 12 After storage at 20 ° C. and 60% humidity for the number of days shown in the above, a hydraulic composition consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained. When the alkaline admixtures A and O were mixed (Experiments No. 30 and 31), the ratio (A: O) of these was 50:50.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012

 
Figure JPOXMLDOC01-appb-T000012

 
 表6に示すように、硫酸アルミニウムAは混和剤種別をア、オを組み合わせても保管日数により、強度低下が確認されたが、硫酸アルミニウムCをア、オと組み合わせると、強度が更に増進することを確認した。 As shown in Table 6, it was confirmed that the strength of aluminum sulfate A decreased depending on the number of storage days even when the admixture types were combined with a and o, but when aluminum sulfate C was combined with a and o, the strength was further increased. It was confirmed.
 次に、表9、表10に示す実験No.3、No.6~17について、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表13に示す。
Next, the experimental numbers shown in Tables 9 and 10 are shown. 3, No. For 6 to 17, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture, except that the temperature (test temperature) for obtaining the hydraulic composition was set to 20 ° C. to 10 ° C. or 30 ° C. A hydraulic composition consisting of 10 parts was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013

 
Figure JPOXMLDOC01-appb-T000013

 
 表13に示すように、本発明の範囲にある硫酸アルミニウムを用いた混和剤では、低温(5℃)から高温(30℃)まで幅広い温度範囲で使用できるため、夏でも冬でも安定して適用可能である。 As shown in Table 13, the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), and therefore can be stably applied in both summer and winter. It is possible.
 実験No.3の例で、カルシウムアルミネートAの代わりに下記のカルシウムアルミネートB~Eをそれぞれ使用して、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表14に示す。
Experiment No. In the example of 3, the following calcium aluminates B to E were used instead of calcium aluminate A, and the temperature (test temperature) at the time of obtaining the hydraulic composition was set to 20 ° C. to 10 ° C. or 30 ° C. In the same manner except for the above, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of a cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 14.
 カルシウムアルミネートB:CaO/Alモル比2.5となるように原料(CaCO及びAl)を粉砕混合し、電気炉で溶融し、急冷して、ガラス化率90%、ブレーン5500cm/g、pH12、及び平均粒径0.4μmのカルシウムアルミネートを調製した。
 カルシウムアルミネートC:CaO/Alモル比2.5となるように原料(CaCO及びAl)を粉砕混合し、電気炉で溶融し、急冷して、ガラス化率90%、ブレーン5500cm/g、pH12、及び平均粒径2μmのカルシウムアルミネートを調製した。
 カルシウムアルミネートD:CaO/Alモル比2.5となるように原料(CaCO及びAl)を粉砕混合し、電気炉で溶融し、急冷して、ガラス化率90%、ブレーン5500cm/g、pH12、及び平均粒径230μmのカルシウムアルミネートを調製した。
 カルシウムアルミネートE:CaO/Alモル比2.5となるように原料(CaCO及びAl)を粉砕混合し、電気炉で溶融し、急冷して、ガラス化率90%、ブレーン5500cm/g、pH11、及び平均粒径300μmのカルシウムアルミネートを調製した。
Calcium aluminate B: Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, rapidly cooled, and vitrified by 90%. , Brain 5500 cm 2 / g, pH 12, and calcium aluminate having an average particle size of 0.4 μm were prepared.
Calcium aluminate C: Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, rapidly cooled, and vitrified by 90%. , Brain 5500 cm 2 / g, pH 12, and calcium aluminate having an average particle size of 2 μm were prepared.
Calcium aluminate D: Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, rapidly cooled, and vitrified by 90%. , Brain 5500 cm 2 / g, pH 12, and calcium aluminate having an average particle size of 230 μm were prepared.
Calcium aluminate E: Raw materials (CaCO 3 and Al 2 O 3 ) are pulverized and mixed so as to have a CaO / Al 2 O 3 molar ratio of 2.5, melted in an electric furnace, rapidly cooled, and vitrified by 90%. , Brain 5500 cm 2 / g, pH 11, and calcium aluminate having an average particle size of 300 μm were prepared.
Figure JPOXMLDOC01-appb-T000014

 
Figure JPOXMLDOC01-appb-T000014

 
 表14に示すように、カルシウムアルミネートの平均粒径を1~250μmとすることで、温度条件が5℃、30℃でも、凝結始発時間や圧縮強度が良好であることが確認できた。 As shown in Table 14, it was confirmed that by setting the average particle size of calcium aluminate to 1 to 250 μm, the condensation initiation time and the compressive strength were good even under the temperature conditions of 5 ° C. and 30 ° C.
 以上の結果からわかるように、第2の発明によれば、水硬性組成物に予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することができる。また、第2の発明によれば、貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することができる。 As can be seen from the above results, according to the second invention, the hydraulic composition which has ultra-fast hardness and high strength of the cured product, as well as the storage stability is unlikely to decrease even if it is blended in the hydraulic composition in advance. A cement admixture capable of feeding can be provided. Further, according to the second invention, it is possible to provide a hydraulic composition which has ultra-fast hardness and high strength of a cured product while the storage stability is unlikely to decrease.
[第3の発明に係る実施例]
<粉末ケイ酸ソーダA>
 粉末ケイ酸ソーダは、市販品で、SiO/NaOモル比が1.0、ブレーン比表面積が600cm/gで、平均粒径が250μmの無水塩を使用した。
[Example according to the third invention]
<Powdered sodium silicate A>
As the powdered sodium silicate, an anhydrous salt having a SiO 2 / Na 2 O molar ratio of 1.0, a brain specific surface area of 600 cm 2 / g, and an average particle size of 250 μm was used as a commercially available product.
「実験例1」
 次に、上記で調製した表1に示す種類の硫酸アルミニウム100部と粉末ケイ酸ソーダA25部とを含むセメント混和剤に、表15に示すアルカリ性混和剤アを20部配合し混合してアルカリ入りセメント混和剤を調製し、表15に示す日数、温度20℃、湿度60%に保管した。その後、普通ポルトランドセメント(pH14、工業品)100部、アルカリ入りセメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表15に示す。
"Experimental Example 1"
Next, 20 parts of the alkaline admixture A shown in Table 15 are mixed and mixed with the cement admixture containing 100 parts of aluminum sulfate of the type shown in Table 1 and 25 parts of powdered sodium silicate A prepared above to contain alkali. A cement admixture was prepared and stored at the number of days shown in Table 15, a temperature of 20 ° C., and a humidity of 60%. Then, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of an alkali-containing cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 15.
 なお、本実施例におけるアルカリ性混和剤ア、イ、ウ、エ、オ、カ、キ、クは、第1の発明に係る実施例で使用したものと同様である。 The alkaline admixtures a, b, c, d, o, mosquito, ki, and ku in this example are the same as those used in the example according to the first invention.
Figure JPOXMLDOC01-appb-T000015

 
Figure JPOXMLDOC01-appb-T000015

 
 表15に示すように、硫酸アルミニウムAを用いることで、保管日数に伴い凝結時間が変化した。これは、該化合物と、混和剤が貯蔵劣化したものと考える。しかし、硫酸アルミニウムB~Eであれば、貯蔵劣化は見られず、特に促進的な効果が得られやすいのは、硫酸アルミニウムB~Dであることが確認された。 As shown in Table 15, by using aluminum sulfate A, the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture. However, it was confirmed that the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径100μm以上の粒子の割合を表16となるように調整したもの100部と粉末ケイ酸ソーダA25部と、表16に示す種類のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表16に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表16に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 100 μm or more is shown in Table 16, 25 parts of powdered sodium silicate A, and the types of alkaline admixtures shown in Table 16. 20 parts are mixed and mixed to prepare a cement admixture, and after storing at the number of days shown in Table 16, temperature 20 ° C. and humidity 60%, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture A hydraulic composition consisting of 10 parts was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 16.
Figure JPOXMLDOC01-appb-T000016

 
Figure JPOXMLDOC01-appb-T000016

 
 表16に示すように、硫酸アルミニウムの粒径100μm以上の粒子の割合が71%、99%では凝結始発時間が遅くなることが確認された。また、硫酸アルミニウムの粒径100μm以上の粒子の割合が70%以下ではいずれも、凝結性及び強度が良好であった。 As shown in Table 16, it was confirmed that when the proportion of particles of aluminum sulfate having a particle size of 100 μm or more was 71% and 99%, the condensation initiation time was delayed. Further, when the proportion of particles having a particle size of 100 μm or more of aluminum sulfate was 70% or less, the cohesiveness and strength were good.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径10μm以下の粒子の割合を表17となるように調整したもの100部と粉末ケイ酸ソーダA25部と、表17に示す種類のアルカリ性混和剤20部とを配合し、混合してセメント混和剤を調製し、表4に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表17に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 10 μm or less is shown in Table 17, 25 parts of powdered sodium silicate A, and the types of alkaline admixtures shown in Table 17 20 parts are mixed and mixed to prepare a cement admixture, and after storing at the number of days shown in Table 4, temperature 20 ° C. and humidity 60%, 100 parts of ordinary Portland cement (pH 14, industrial product) and cement admixture are mixed. A hydraulic composition consisting of 10 parts of the agent was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 17.
Figure JPOXMLDOC01-appb-T000017

 
Figure JPOXMLDOC01-appb-T000017

 
 表17に示すように、硫酸アルミニウムCで粒径10μm以下の粒子の割合が30%以上であると、貯蔵劣化が確認され、30%未満であると、特に貯蔵劣化は確認されないことがわかった。 As shown in Table 17, it was found that when the proportion of particles having a particle size of 10 μm or less in aluminum sulfate C was 30% or more, storage deterioration was confirmed, and when it was less than 30%, no particular storage deterioration was confirmed. ..
 次に、表18に示す種類の硫酸アルミニウム100部と粉末ケイ酸ソーダA25部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表18に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表18に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 18, 25 parts of powdered sodium silicate A, and 20 parts of various alkaline admixtures were mixed and mixed to prepare a cement admixture, and the number of days and temperature shown in Table 18 were obtained. After storage at 20 ° C. and 60% humidity, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 18.
Figure JPOXMLDOC01-appb-T000018

 
 
Figure JPOXMLDOC01-appb-T000018

 
 
 表18に示すように、混和剤種別毎に保管日数に伴い材齢28日強度は変化するが、硫酸アルミニウムAと各種のアルカリ性混和剤の組合せは保管日数に伴い、強度が低下した。一方、硫酸アルミニウムCと各種のアルカリ性混和剤の組合せは、貯蔵安定性がよく、保管日数に関係なく、強度も低下しないことが確認された。 As shown in Table 18, the strength of the material age 28 days changed with the number of storage days for each type of admixture, but the strength of the combination of aluminum sulfate A and various alkaline admixtures decreased with the number of storage days. On the other hand, it was confirmed that the combination of aluminum sulfate C and various alkaline admixtures had good storage stability and the strength did not decrease regardless of the number of storage days.
 次に、上記で調製した表19に示す種類の硫酸アルミニウム100部と粉末ケイ酸ソーダA25部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表19に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。なお、アルカリ性混和剤アとオを混合した場合(実験No.30、31)のこれらの比(ア:オ)は50:50とした。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表19に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 19 prepared above, 25 parts of powdered sodium silicate A, and 20 parts of various alkaline admixtures were mixed and mixed to prepare a cement admixture, and Table 19 shows. After storage at the indicated number of days, temperature 20 ° C., and humidity 60%, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained. When the alkaline admixtures A and O were mixed (Experiments No. 30 and 31), the ratio (A: O) of these was 50:50.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 19.
Figure JPOXMLDOC01-appb-T000019

 
Figure JPOXMLDOC01-appb-T000019

 
 表19に示すように、硫酸アルミニウムAは混和剤種別をア、オを組み合わせても保管日数により、強度低下が確認されたが、硫酸アルミニウムCをア、オと組み合わせると、強度が更に増進することを確認した。 As shown in Table 19, it was confirmed that the strength of aluminum sulfate A decreased depending on the number of storage days even when the admixture types were combined with a and o, but when aluminum sulfate C was combined with a and o, the strength was further increased. It was confirmed.
 次に、表16、表17に示す実験No.3、No.6~17について、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表20に示す。
Next, the experimental numbers shown in Tables 16 and 17 are shown. 3, No. For 6 to 17, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture, except that the temperature (test temperature) for obtaining the hydraulic composition was set to 20 ° C. to 10 ° C. or 30 ° C. A hydraulic composition consisting of 10 parts was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 20.
Figure JPOXMLDOC01-appb-T000020

 
Figure JPOXMLDOC01-appb-T000020

 
 表20に示すように、本発明の範囲にある硫酸アルミニウムを用いた混和剤では、低温(5℃)から高温(30℃)まで幅広い温度範囲で使用できるため、夏でも冬でも安定して適用可能である。 As shown in Table 20, the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), and therefore can be stably applied in both summer and winter. It is possible.
 実験No.3の例で、粉末ケイ酸ソーダAの代わりに下記表21に示す平均粒径の粉末ケイ酸ソーダB~Eをそれぞれ使用して、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表21に示す。
Experiment No. In the example of 3, instead of the powdered soda A, the powdered sodas B to E having the average particle size shown in Table 21 below are used, respectively, and the temperature (test temperature) for obtaining the hydraulic composition is 20. A hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained in the same manner except that the temperature was changed from ° C. to 10 ° C. or 30 ° C.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 21.
Figure JPOXMLDOC01-appb-T000021

 
Figure JPOXMLDOC01-appb-T000021

 
 表21に示すように、粉末ケイ酸ソーダの平均粒径を1~300μmとすることで、各保管日数における凝結時間及び圧縮強度が良好であることが確認できた。 As shown in Table 21, it was confirmed that by setting the average particle size of the powdered sodium silicate to 1 to 300 μm, the setting time and the compressive strength were good in each storage day.
「実験例2」
 表22に示すように、ケイ酸ソーダのSiO/NaOモル比が異なるものを使用した以外は全て実験例1と同様にして試験を実施した。粉末状急結剤の組成は、実験No.1-5の配合となるように調製した。
 モルタルに粉末状急結剤80gを加えて急結モルタルを調製したときからの流動性低下時間、凝結時間、圧縮強度を測定した。結果を下記表22に併記する。
"Experimental Example 2"
As shown in Table 22, all tests were carried out in the same manner as in Experimental Example 1 except that sodium silicates having different SiO 2 / Na 2 O molar ratios were used. The composition of the powdered quick-setting admixture was described in Experiment No. It was prepared to have a composition of 1-5.
The fluidity decrease time, the setting time, and the compressive strength from the time when 80 g of the powdered quick-setting agent was added to the mortar to prepare the quick-setting mortar were measured. The results are also shown in Table 22 below.
Figure JPOXMLDOC01-appb-T000022

 
Figure JPOXMLDOC01-appb-T000022

 
 表22より、好ましい性状を示す珪酸ソーダのSiO/NaOモル比の範囲が存在することがわかる。 From Table 22, it can be seen that there is a range of SiO 2 / Na 2 O molar ratio of sodium silicate showing preferable properties.
「実験例3」
 表23に示す種類のケイ酸ソーダの水和物を使用した以外は全て実験例1と同様にして試験を実施した。粉末状急結剤の組成は、実験No.1-5の配合となるように調製した。
 モルタルに粉末状急結剤80gを加えて急結モルタルを調製したときからの流動性低下時間、凝結時間、圧縮強度を測定した。結果を表23に併記する。
"Experimental Example 3"
The test was carried out in the same manner as in Experimental Example 1 except that the hydrates of sodium silicates shown in Table 23 were used. The composition of the powdered quick-setting admixture was described in Experiment No. It was prepared to have a composition of 1-5.
The fluidity decrease time, the setting time, and the compressive strength from the time when 80 g of the powdered quick-setting agent was added to the mortar to prepare the quick-setting mortar were measured. The results are also shown in Table 23.
Figure JPOXMLDOC01-appb-T000023

 
Figure JPOXMLDOC01-appb-T000023

 
 表23よりケイ酸ソーダの水和物の種類がいずれであっても、粉末状急結剤として有効であることが考えられる。 From Table 23, it is considered that any type of sodium silicate hydrate is effective as a powdered quick-setting agent.
「実験例4」
 セメント360kg、水216kg、細骨材1049kg、粗骨材(新潟県姫川水系6号砕石、密度2.67g/cm)716kgのコンクリート(吹付けコンクリート)を調製した。MAYCO社(Suprema)のコンクリートポンプで5m/hの設定でコンクリートをポンプ圧送し、途中で別系統からの圧縮空気と混合合流させて空気搬送した。さらに、吐出前3m地点で下記表24に示す粉状急結剤を搬送装置Werner Mader社(WM-14 FU)でセメント100部に対して10部となるように、当該粉末状急結剤を空気搬送されたコンクリートと混合合流させて急結材料とし、ノズル先より鉄板に吹付けた。吹付けてからの初期強度、長期強度、リバウンド率、ひび割れ修復率を表24に示す。なお、急結剤搬送装置への急結剤の供給はSpiroflow社(FLEXIBLE SCREW CONVEYOR)の装置を用い、それぞれの装置は電気信号にて連動して制御されている。
"Experimental Example 4"
Concrete (sprayed concrete) of 360 kg of cement, 216 kg of water, 1049 kg of fine aggregate, and 716 kg of coarse aggregate (Himekawa water system No. 6 crushed stone, Niigata prefecture, density 2.67 g / cm 3 ) was prepared. A concrete pump manufactured by MAYCO (Suprema) pumped concrete at a setting of 5 m 3 / h, and mixed and merged with compressed air from another system on the way to carry air. Further, at 3 m before discharge, the powdered quick-setting admixture shown in Table 24 below is applied by the transport device Werner Mader (WM-14 FU) so that the amount of the powdered quick-setting admixture is 10 parts per 100 parts of cement. It was mixed and merged with air-conveyed concrete to form a quick-bonding material, which was sprayed onto an iron plate from the tip of the nozzle. Table 24 shows the initial strength, long-term strength, rebound rate, and crack repair rate after spraying. It should be noted that the supply of the quick-setting admixture to the quick-setting admixture carrier uses a device of Spiroflow Co., Ltd. (FLEXIBLE SCREW CONVEYOR), and each device is controlled in conjunction with an electric signal.
「試験方法」
 初期強度:JSCE-G561に準じて型枠に吹付けて、材齢10分、3時間、1日時点での引き抜き強度より、圧縮強度に換算し、初期強度を測定した。
"Test method"
Initial strength: The initial strength was measured by spraying on a mold according to JSCE-G561 and converting the pull-out strength at the age of 10 minutes, 3 hours, and 1 day into compression strength.
 長期強度:JSCE-F561、JIS A1107に準じて型枠に吹付けて、材齢7日、28日時点でコアを採取して、圧縮強度を測定した。 Long-term strength: Sprayed onto a mold according to JISCE-F561 and JIS A1107, cores were collected at 7 and 28 days of age, and the compressive strength was measured.
 リバウンド:JSCE-F563に準じて、掘削断面15mの模擬トンネルに3分間吹付けときのはね返りを測定し、使用した吹付けコンクリートからのリバウンド率を下記式から求めた。 Rebound: According to JSCE-F563, the rebound when sprayed into a simulated tunnel with an excavation cross section of 15 m 2 for 3 minutes was measured, and the rebound rate from the used sprayed concrete was calculated from the following formula.
(式) リバウンド率=落下した吹付けコンクリート量(kg)/吹付けに使用した吹付けコンクリート量(kg)×100(%)とした。
 なお、リバウンド率は、20%以下であることが好ましい。
(Equation) Rebound rate = amount of dropped concrete sprayed (kg) / amount of concrete sprayed used for spraying (kg) x 100 (%).
The rebound rate is preferably 20% or less.
 ひび割れ修復率:10cm×10cm×40cmの型枠2個のそれぞれに吹付けコンクリートを吹付けて試験体を作製した。作製の直後より、2つの試験体の40cm面を並列にして隙間が0.1mmとなるように固定し、20℃で水中養生を6ヶ月間実施し、マイクロスコープで観察し、0.1mm幅の隙間に対する修復率を求めた。
 なお、ひび割れ修復率は、50%以上であることが好ましい。
Crack repair rate: A test piece was prepared by spraying sprayed concrete onto each of two 10 cm × 10 cm × 40 cm molds. Immediately after production, the 40 cm surfaces of the two specimens were placed in parallel and fixed so that the gap was 0.1 mm, and underwater curing was carried out at 20 ° C. for 6 months, observed with a microscope, and 0.1 mm width. The repair rate for the gap was calculated.
The crack repair rate is preferably 50% or more.
Figure JPOXMLDOC01-appb-T000024

 
Figure JPOXMLDOC01-appb-T000024

 
 表24より、実施例は、初期強度、長期強度、ひび割れ修復率が全て良好であった。 From Table 24, in the examples, the initial strength, the long-term strength, and the crack repair rate were all good.
 以上の結果からわかるように、第3の発明によれば、水硬性組成物に予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することができる。また、第3の発明によれば、貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することができる。 As can be seen from the above results, according to the third invention, the hydraulic composition which has ultra-fast hardness and high strength of the cured product, as well as the storage stability is unlikely to decrease even if it is blended in the hydraulic composition in advance. A cement admixture capable of feeding can be provided. Further, according to the third invention, it is possible to provide a hydraulic composition having ultrafast hardness and high strength of a cured product, while the storage stability is unlikely to decrease.
[第4の発明に係る実施例]
<硫酸カルシウムA>
 天然無水セッコウで、ブレーン4500cm/g、平均粒径70μmの粉砕品を用いた。
[Example according to the fourth invention]
<Calcium sulfate A>
A pulverized product of natural anhydrous gypsum having a brain of 4500 cm 2 / g and an average particle size of 70 μm was used.
 次に、上記で調製した表1に示す種類の硫酸アルミニウム100部と硫酸カルシウムA1000部とを含むセメント混和剤に、表25に示すアルカリ性混和剤アを20部配合し混合してアルカリ入りセメント混和剤を調製し、表25に示す日数、温度20℃、湿度60%に保管した。その後、普通ポルトランドセメント(pH14、工業品)100部、アルカリ入りセメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表25に示す。
Next, 20 parts of the alkaline admixture A shown in Table 25 are mixed and mixed with the cement admixture containing 100 parts of aluminum sulfate and 1000 parts of calcium sulfate A prepared above and mixed with the alkali-containing cement. The preparation was prepared and stored at the number of days shown in Table 25, a temperature of 20 ° C., and a humidity of 60%. Then, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of an alkali-containing cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 25.
 なお、本実施例におけるアルカリ性混和剤ア、イ、ウ、エ、オ、カ、キ、クは、第1の発明に係る実施例で使用したものと同様である。 The alkaline admixtures a, b, c, d, o, mosquito, ki, and ku in this example are the same as those used in the example according to the first invention.
Figure JPOXMLDOC01-appb-T000025

 
Figure JPOXMLDOC01-appb-T000025

 
 表25に示すように、硫酸アルミニウムAを用いることで、保管日数に伴い凝結時間が変化した。これは、該化合物と、混和剤が貯蔵劣化したものと考える。しかし、硫酸アルミニウムB~Eであれば、貯蔵劣化は見られず、特に促進的な効果が得られやすいのは、硫酸アルミニウムB~Dであることが確認された。 As shown in Table 25, by using aluminum sulfate A, the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture. However, it was confirmed that the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径100μm以上の粒子の割合を表26となるように調整したもの100部と硫酸カルシウムA1000部と、表26に示す種類のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表26に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表26に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 100 μm or more is shown in Table 26, 1000 parts of calcium sulfate A, and 20 parts of the alkaline admixture of the type shown in Table 26. To prepare a cement admixture by blending and mixing with, and storing at the number of days shown in Table 26, temperature 20 ° C., and humidity 60%, then 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture. A hydraulic composition comprising the above was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 26.
Figure JPOXMLDOC01-appb-T000026

 
Figure JPOXMLDOC01-appb-T000026

 
 表26に示すように、硫酸アルミニウムの粒径100μm以上の粒子の割合が71%、99%では凝結始発時間が遅くなることが確認された。また、硫酸アルミニウムの粒径100μm以上の粒子の割合が70%以下ではいずれも、凝結性及び強度が良好であった。 As shown in Table 26, it was confirmed that when the proportion of particles of aluminum sulfate having a particle size of 100 μm or more was 71% and 99%, the condensation initiation time was delayed. Further, when the proportion of particles having a particle size of 100 μm or more of aluminum sulfate was 70% or less, the cohesiveness and strength were good.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径10μm以下の粒子の割合を表27となるように調整したもの100部と硫酸カルシウムA1000部と、表27に示す種類のアルカリ性混和剤20部とを配合し、混合してセメント混和剤を調製し、表27に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表27に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 10 μm or less is shown in Table 27, 1000 parts of calcium sulfate A, and 20 parts of the alkaline admixture of the type shown in Table 27. To prepare a cement admixture by blending and mixing with, and storing at the number of days shown in Table 27, temperature 20 ° C., and humidity 60%, then 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture 10 A hydraulic composition consisting of parts was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 27.
Figure JPOXMLDOC01-appb-T000027

 
Figure JPOXMLDOC01-appb-T000027

 
 表27に示すように、硫酸アルミニウムCで粒径10μm以下の粒子の割合が30%以上であると、貯蔵劣化が確認され、30%未満であると、特に貯蔵劣化は確認されないことがわかった。 As shown in Table 27, it was found that when the proportion of particles having a particle size of 10 μm or less in aluminum sulfate C was 30% or more, storage deterioration was confirmed, and when it was less than 30%, no particular storage deterioration was confirmed. ..
 次に、表28に示す種類の硫酸アルミニウム100部と硫酸カルシウムA1000部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表28に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表28に示す。
Next, 100 parts of aluminum sulfate, 1000 parts of calcium sulfate A, and 20 parts of various alkaline admixtures of the types shown in Table 28 are mixed and mixed to prepare a cement admixture, and the number of days and the temperature of 20 ° C. shown in Table 28 are shown. After storage at a humidity of 60%, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of a cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 28.
Figure JPOXMLDOC01-appb-T000028

 
Figure JPOXMLDOC01-appb-T000028

 
 表28に示すように、混和剤種別毎に保管日数に伴い材齢28日強度は変化するが、硫酸アルミニウムAと各種のアルカリ性混和剤の組合せは保管日数に伴い、強度が低下した。一方、硫酸アルミニウムCと各種のアルカリ性混和剤の組合せは、貯蔵安定性がよく、保管日数に関係なく、強度も低下しないことが確認された。 As shown in Table 28, the strength of 28 days of material age changed with the number of storage days for each type of admixture, but the strength of the combination of aluminum sulfate A and various alkaline admixtures decreased with the number of storage days. On the other hand, it was confirmed that the combination of aluminum sulfate C and various alkaline admixtures had good storage stability and the strength did not decrease regardless of the number of storage days.
 次に、上記で調製した表29に示す種類の硫酸アルミニウム100部と硫酸カルシウムA1000部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表29に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。なお、アルカリ性混和剤アとオを混合した場合(実験No.30、31)のこれらの比(ア:オ)は50:50とした。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表29に示す。
Next, 100 parts of aluminum sulfate, 1000 parts of calcium sulfate A, and 20 parts of various alkaline admixtures prepared above are mixed and mixed to prepare a cement admixture, and the number of days shown in Table 29 is obtained. After storage at a temperature of 20 ° C. and a humidity of 60%, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of a cement admixture was obtained. When the alkaline admixtures A and O were mixed (Experiments No. 30 and 31), the ratio (A: O) of these was 50:50.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 29.
Figure JPOXMLDOC01-appb-T000029

 
Figure JPOXMLDOC01-appb-T000029

 
 表29に示すように、硫酸アルミニウムAは混和剤種別をア、オを組み合わせても保管日数により、強度低下が確認されたが、硫酸アルミニウムCをア、オと組み合わせると、強度が更に増進することを確認した。 As shown in Table 29, it was confirmed that the strength of aluminum sulfate A decreased depending on the number of storage days even when the admixture types were combined with a and o, but when aluminum sulfate C was combined with a and o, the strength was further increased. It was confirmed.
 次に、表26、表27に示す実験No.3、No.6~17について、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表30に示す。
Next, the experimental numbers shown in Tables 26 and 27. 3, No. For 6 to 17, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture, except that the temperature (test temperature) for obtaining the hydraulic composition was set to 20 ° C. to 10 ° C. or 30 ° C. A hydraulic composition consisting of 10 parts was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 30.
Figure JPOXMLDOC01-appb-T000030

 
Figure JPOXMLDOC01-appb-T000030

 
 表30に示すように、本発明の範囲にある硫酸アルミニウムを用いた混和剤では、低温(5℃)から高温(30℃)まで幅広い温度範囲で使用できるため、夏でも冬でも安定して適用可能である。 As shown in Table 30, the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), and therefore can be stably applied in both summer and winter. It is possible.
 実験No.3の例で、硫酸カルシウムAの代わりに下記表31に示す平均粒径の硫酸カルシウムB~Eをそれぞれ使用して、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表31に示す。
Experiment No. In the example of 3, the temperature (test temperature) for obtaining the hydraulic composition was set to 20 ° C. to 10 ° C. by using calcium sulfates B to E having the average particle diameter shown in Table 31 below instead of calcium sulfate A. Alternatively, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of a cement admixture was obtained in the same manner except that the temperature was set to 30 ° C.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 31.
Figure JPOXMLDOC01-appb-T000031

 
Figure JPOXMLDOC01-appb-T000031

 
 表31に示すように、カルシウムアルミネートの平均粒径を1~150μmとすることで、各保管日数における始発や圧縮強度が良好であることが確認できた。 As shown in Table 31, it was confirmed that by setting the average particle size of calcium aluminate to 1 to 150 μm, the initial firing and the compressive strength at each storage day were good.
 以上の結果からわかるように、第4の発明によれば、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することができる。また、第4の発明によれば、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することができる。 As can be seen from the above results, according to the fourth invention, it is possible to provide a cement admixture capable of providing a hydraulic composition having ultrafast hardness and high strength of a cured product. Further, according to the fourth invention, it is possible to provide a hydraulic composition having ultrafast hardness and high strength of a cured product.
[第5の発明に係る実施例]
<副生消石灰A>
 副生消石灰として、カーバイド滓(ブレーン2000cm/g、平均粒径250μm)を使用した。
[Example according to the fifth invention]
<By-product slaked lime A>
As by-product slaked lime, carbide slag (brain 2000 cm 2 / g, average particle size 250 μm) was used.
 次に、上記で調製した表1に示す種類の硫酸アルミニウム100部と副生消石灰A20部とを含むセメント混和剤に、表32に示すアルカリ性混和剤アを20部配合し混合してアルカリ入りセメント混和剤を調製し、表32に示す日数、温度20℃、湿度60%に保管した。その後、普通ポルトランドセメント(pH14、工業品)100部、アルカリ入りセメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表32に示す。
Next, 20 parts of the alkaline admixture A shown in Table 32 is mixed and mixed with the cement admixture containing 100 parts of aluminum sulfate and 20 parts of by-product slaked lime A of the types shown in Table 1 prepared above, and the cement containing alkali is mixed. The admixture was prepared and stored at the number of days shown in Table 32, a temperature of 20 ° C., and a humidity of 60%. Then, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of an alkali-containing cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 32.
 なお、本実施例におけるアルカリ性混和剤ア、イ、ウ、エ、オ、カ、キ、クは、第1の発明に係る実施例で使用したものと同様である。 The alkaline admixtures a, b, c, d, o, mosquito, ki, and ku in this example are the same as those used in the example according to the first invention.
Figure JPOXMLDOC01-appb-T000032

 
Figure JPOXMLDOC01-appb-T000032

 
 表32に示すように、硫酸アルミニウムAを用いることで、保管日数に伴い凝結時間が変化した。これは、該化合物と、混和剤が貯蔵劣化したものと考える。しかし、硫酸アルミニウムB~Eであれば、貯蔵劣化は見られず、特に促進的な効果が得られやすいのは、硫酸アルミニウムB~Dであることが確認された。 As shown in Table 32, by using aluminum sulfate A, the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture. However, it was confirmed that the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径100μm以上の粒子の割合を表3となるように調整したもの100部と副生消石灰A20部と、表33に示す種類のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表33に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表33に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 100 μm or more is shown in Table 3, 20 parts of by-product slaked lime A, and the alkaline admixture 20 of the type shown in Table 33. A cement admixture is prepared by mixing and mixing with parts, and after storing at the number of days shown in Table 33, temperature 20 ° C., and humidity 60%, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture 10 A hydraulic composition consisting of parts was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 33.
Figure JPOXMLDOC01-appb-T000033

 
Figure JPOXMLDOC01-appb-T000033

 
 表33に示すように、硫酸アルミニウムの粒径100μm以上の粒子の割合が71%、99%では凝結始発時間が遅くなることが確認された。また、硫酸アルミニウムの粒径100μm以上の粒子の割合が70%以下ではいずれも、凝結性及び強度が良好であった。 As shown in Table 33, it was confirmed that when the proportion of particles of aluminum sulfate having a particle size of 100 μm or more was 71% and 99%, the condensation initiation time was delayed. Further, when the proportion of particles having a particle size of 100 μm or more of aluminum sulfate was 70% or less, the cohesiveness and strength were good.
 次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径10μm以下の粒子の割合を表34となるように調整したもの100部と副生消石灰A20部と、表34に示す種類のアルカリ性混和剤20部とを配合し、混合してセメント混和剤を調製し、表34に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
 凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表34に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 10 μm or less is shown in Table 34, 20 parts of by-product slaked lime A, and the type of alkaline admixture 20 shown in Table 34. A cement admixture is prepared by blending and mixing with parts, and after storing at the number of days shown in Table 34, temperature 20 ° C., and humidity 60%, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture A hydraulic composition consisting of 10 parts was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition, and a coagulation test and a measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 34.
Figure JPOXMLDOC01-appb-T000034

 
Figure JPOXMLDOC01-appb-T000034

 
 表34に示すように、硫酸アルミニウムCで粒径10μm以下の粒子の割合が30%以上であると、貯蔵劣化が確認され、30%未満であると、特に貯蔵劣化は確認されないことがわかった。 As shown in Table 34, it was found that when the proportion of particles having a particle size of 10 μm or less in aluminum sulfate C was 30% or more, storage deterioration was confirmed, and when it was less than 30%, no particular storage deterioration was confirmed. ..
 次に、表35に示す種類の硫酸アルミニウム100部と副生消石灰A20部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表35に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表35に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 35, 20 parts of by-product slaked lime A, and 20 parts of various alkaline admixtures are mixed and mixed to prepare a cement admixture, and the number of days and temperature 20 shown in Table 35 are 20. After storage at ° C. and humidity of 60%, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 35.
Figure JPOXMLDOC01-appb-T000035

 
Figure JPOXMLDOC01-appb-T000035

 
 表35に示すように、混和剤種別毎に保管日数に伴い材齢28日強度は変化するが、硫酸アルミニウムAと各種のアルカリ性混和剤の組合せは保管日数に伴い、強度が低下した。一方、硫酸アルミニウムCと各種のアルカリ性混和剤の組合せは、貯蔵安定性がよく、保管日数に関係なく、強度も低下しないことが確認された。 As shown in Table 35, the strength of the material age 28 days changed with the number of storage days for each type of admixture, but the strength of the combination of aluminum sulfate A and various alkaline admixtures decreased with the number of storage days. On the other hand, it was confirmed that the combination of aluminum sulfate C and various alkaline admixtures had good storage stability and the strength did not decrease regardless of the number of storage days.
 次に、上記で調製した表36に示す種類の硫酸アルミニウム100部と副生消石灰A20部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表36に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。なお、アルカリ性混和剤アとオを混合した場合(実験No.30、31)のこれらの比(ア:オ)は50:50とした。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
 上記の各評価の結果を表36に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 36 prepared above, 20 parts of by-product slaked lime A, and 20 parts of various alkaline admixtures are mixed and mixed to prepare a cement admixture, which is shown in Table 36. After storage at 20 ° C. and 60% humidity for the number of days, a hydraulic composition consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained. When the alkaline admixtures A and O were mixed (Experiments No. 30 and 31), the ratio (A: O) of these was 50:50.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was performed in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 36.
Figure JPOXMLDOC01-appb-T000036

 
Figure JPOXMLDOC01-appb-T000036

 
 表36に示すように、硫酸アルミニウムAは混和剤種別をア、オを組み合わせても保管日数により、強度低下が確認されたが、硫酸アルミニウムCをア、オと組み合わせると、強度が更に増進することを確認した。 As shown in Table 36, it was confirmed that the strength of aluminum sulfate A decreased depending on the number of storage days even when the admixture types were combined with a and o, but when aluminum sulfate C was combined with a and o, the strength was further increased. It was confirmed.
 次に、表33及び表34に示す実験No.3、No.6~17について、水硬性組成物を得る際の温度(試験温度)を20℃から5℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表37に示す。
Next, the experimental numbers shown in Tables 33 and 34. 3, No. For 6 to 17, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture, except that the temperature (test temperature) for obtaining the hydraulic composition was set to 20 ° C. to 5 ° C. or 30 ° C. A hydraulic composition consisting of 10 parts was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 37.
Figure JPOXMLDOC01-appb-T000037

 
Figure JPOXMLDOC01-appb-T000037

 
 表37に示すように、本発明の範囲にある硫酸アルミニウムを用いた混和剤では、低温(5℃)から高温(30℃)まで幅広い温度範囲で使用できるため、夏でも冬でも安定して適用可能である。 As shown in Table 37, the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), and therefore can be stably applied in both summer and winter. It is possible.
 実験No.3の例で、副生消石灰Aの代わりに下記の粒度の異なる副生消石灰B~Eをそれぞれ使用して、水硬性組成物を得る際の温度(試験温度)を20℃から5℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
 その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
 凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
 上記の各評価の結果を表38に示す。
Experiment No. In the example of 3, the temperature (test temperature) at the time of obtaining the hydraulic composition by using the following by-product slaked limes B to E having different particle sizes instead of the by-product slaked lime A is set to 20 ° C. to 5 ° C. or 30 ° C. A hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained in the same manner except that the temperature was set to ° C.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The condensation test measured the onset time of condensation.
The results of each of the above evaluations are shown in Table 38.
Figure JPOXMLDOC01-appb-T000038

 
Figure JPOXMLDOC01-appb-T000038

 
 表38に示すように、カルシウムアルミネートの平均粒径を1~250μmとすることで、各保管日数における凝結時間及び圧縮強度が良好であることが確認できた。 As shown in Table 38, it was confirmed that by setting the average particle size of calcium aluminate to 1 to 250 μm, the setting time and the compressive strength were good in each storage day.
 以上の結果からわかるように、第5の発明によれば、水硬性組成物に予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することができる。また、第5の発明によれば、貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することができる。 As can be seen from the above results, according to the fifth invention, the hydraulic composition which has ultra-fast hardness and high strength of the cured product, as well as the storage stability is unlikely to decrease even if it is blended in the hydraulic composition in advance. A cement admixture capable of feeding can be provided. Further, according to the fifth invention, it is possible to provide a hydraulic composition having ultra-fast hardness and high strength of a cured product, while the storage stability is unlikely to decrease.
 本発明は、特に土木分野、建築分野等で用いられるセメント混和剤に好適に適用できる。
 

 
The present invention can be suitably applied to cement admixtures used in the fields of civil engineering, construction and the like.


Claims (13)

  1.  下記(1)~(4)を満たす硫酸アルミニウムを含むセメント混和剤。
    (1)前記硫酸アルミニウムが非晶質である。
    (2)前記硫酸アルミニウムの固体27Al-NMRによって得られるスペクトルにおいて、化学シフト-0.20~-20.00ppmにピークを有し、当該ピークの半値幅が10.00~35.00ppmである。
    (3)前記硫酸アルミニウムのpHが1~6である。
    (4)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
    A cement admixture containing aluminum sulfate that satisfies the following (1) to (4).
    (1) The aluminum sulfate is amorphous.
    (2) The solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, the chemical shift has a peak at -0.20 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
    (3) The pH of the aluminum sulfate is 1 to 6.
    (4) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
  2.  pHが8以上であるアルカリ性混和剤が混合される請求項1に記載のセメント混和剤。 The cement admixture according to claim 1, wherein an alkaline admixture having a pH of 8 or more is mixed.
  3.  カルシウムアルミネート、粉末珪酸ソーダ、硫酸カルシウム、及び副生消石灰のいずれかを含む請求項1又は2に記載のセメント混和材。 The cement admixture according to claim 1 or 2, which comprises any of calcium aluminate, powdered sodium silicate, calcium sulfate, and by-product slaked lime.
  4.  前記カルシウムアルミネートを含み、該カルシウムアルミネートのpHが10~14である請求項3に記載のセメント混和材。 The cement admixture according to claim 3, which contains the calcium aluminate and has a pH of the calcium aluminate of 10 to 14.
  5.  前記カルシウムアルミネートの平均粒径が1~250μmである請求項4に記載のセメント混和材。 The cement admixture according to claim 4, wherein the calcium aluminate has an average particle size of 1 to 250 μm.
  6.  前記粉末珪酸ソーダを含有し、該粉末珪酸ソーダの平均粒径が1~300μmである請求項3に記載のセメント混和剤。 The cement admixture according to claim 3, which contains the powdered soda silicate and has an average particle size of 1 to 300 μm.
  7.  前記粉末珪酸ソーダにおけるSiOとNaOとのモル比(SiO/NaO)が0.5~5である請求項6に記載のセメント混和剤。 The cement admixture according to claim 6, wherein the molar ratio (SiO 2 / Na 2 O) of SiO 2 and Na 2 O in the powdered sodium silicate is 0.5 to 5.
  8.  前記硫酸カルシウムを含有し、該硫酸カルシウムの平均粒径が1~150μmである請求項3に記載のセメント混和剤。 The cement admixture according to claim 3, which contains the calcium sulfate and has an average particle size of the calcium sulfate of 1 to 150 μm.
  9.  前記硫酸カルシウムが無水セッコウである請求項8に記載のセメント混和剤。 The cement admixture according to claim 8, wherein the calcium sulfate is anhydrous gypsum.
  10.  前記副生消石灰を含有し、該副生消石灰の平均粒径が1~300μmである請求項3に記載のセメント混和剤。 The cement admixture according to claim 3, which contains the by-product slaked lime and has an average particle size of the by-product slaked lime of 1 to 300 μm.
  11.  前記アルカリ性混和剤がアルカリ金属炭酸塩を含む請求項2~10のいずれか1項に記載のセメント混和剤。 The cement admixture according to any one of claims 2 to 10, wherein the alkaline admixture contains an alkali metal carbonate.
  12.  前記アルカリ性混和剤がアルカリ土類金属水酸化物を含む請求項2~11のいずれか1項に記載のセメント混和剤。 The cement admixture according to any one of claims 2 to 11, wherein the alkaline admixture contains an alkaline earth metal hydroxide.
  13.  請求項1~12のいずれか1項に記載のセメント混和剤と、水硬性物質とを含む水硬性組成物。
     
     

     
    A hydraulic composition containing the cement admixture according to any one of claims 1 to 12 and a hydraulic substance.



PCT/JP2020/028848 2019-08-02 2020-07-28 Cement admixture and hydraulic composition WO2021024853A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2019-142847 2019-08-02
JP2019142847A JP6675033B1 (en) 2019-08-02 2019-08-02 Cement admixture and hydraulic composition
JP2020-047886 2020-03-18
JP2020047886A JP6902643B1 (en) 2020-03-18 2020-03-18 Cement admixture and hydraulic composition
JP2020047902A JP6972214B2 (en) 2020-03-18 2020-03-18 Cement admixture and hydraulic composition
JP2020-047915 2020-03-18
JP2020-047902 2020-03-18
JP2020047873A JP6972213B2 (en) 2020-03-18 2020-03-18 Cement admixture and hydraulic composition
JP2020-047873 2020-03-18
JP2020047915A JP6902644B1 (en) 2020-03-18 2020-03-18 Cement admixture and hydraulic composition

Publications (1)

Publication Number Publication Date
WO2021024853A1 true WO2021024853A1 (en) 2021-02-11

Family

ID=74504078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028848 WO2021024853A1 (en) 2019-08-02 2020-07-28 Cement admixture and hydraulic composition

Country Status (1)

Country Link
WO (1) WO2021024853A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773012A (en) * 2021-08-18 2021-12-10 辽宁壹立方砂业有限责任公司 Additive composition for 3D printing, mortar material and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101389A (en) * 1996-10-02 1998-04-21 Chichibu Onoda Cement Corp Accelerator for cement
JPH10265248A (en) * 1997-03-24 1998-10-06 Denki Kagaku Kogyo Kk Cement admixture and cement composition using the same
KR100518682B1 (en) * 2003-02-04 2005-10-05 주식회사 실크로드시앤티 Composition of accelerator for shotcrete
JP2011037688A (en) * 2009-08-18 2011-02-24 Denki Kagaku Kogyo Kk Spray construction method for quick-setting spray cement concrete
JP2012017235A (en) * 2010-07-09 2012-01-26 Denki Kagaku Kogyo Kk Foamed quick-setting agent, spraying material, and spraying method using the same
JP2012224519A (en) * 2011-04-20 2012-11-15 Denki Kagaku Kogyo Kk Spraying material and spraying method
JP2014111516A (en) * 2012-12-05 2014-06-19 Denki Kagaku Kogyo Kk Quick setting agent for cement, cement composition, material to be sprayed, and spraying construction method
JP2015522516A (en) * 2012-07-18 2015-08-06 マペイ ソシエタ ペル アチオニMAPEI S.p.A. Powder-shaped setting hardening accelerator for shotcrete
JP2019043806A (en) * 2017-08-31 2019-03-22 デンカ株式会社 Quick-hardening material and quick-hardening cement composition
JP2019043805A (en) * 2017-08-31 2019-03-22 デンカ株式会社 Cement admixture, and hydraulic composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101389A (en) * 1996-10-02 1998-04-21 Chichibu Onoda Cement Corp Accelerator for cement
JPH10265248A (en) * 1997-03-24 1998-10-06 Denki Kagaku Kogyo Kk Cement admixture and cement composition using the same
KR100518682B1 (en) * 2003-02-04 2005-10-05 주식회사 실크로드시앤티 Composition of accelerator for shotcrete
JP2011037688A (en) * 2009-08-18 2011-02-24 Denki Kagaku Kogyo Kk Spray construction method for quick-setting spray cement concrete
JP2012017235A (en) * 2010-07-09 2012-01-26 Denki Kagaku Kogyo Kk Foamed quick-setting agent, spraying material, and spraying method using the same
JP2012224519A (en) * 2011-04-20 2012-11-15 Denki Kagaku Kogyo Kk Spraying material and spraying method
JP2015522516A (en) * 2012-07-18 2015-08-06 マペイ ソシエタ ペル アチオニMAPEI S.p.A. Powder-shaped setting hardening accelerator for shotcrete
JP2014111516A (en) * 2012-12-05 2014-06-19 Denki Kagaku Kogyo Kk Quick setting agent for cement, cement composition, material to be sprayed, and spraying construction method
JP2019043806A (en) * 2017-08-31 2019-03-22 デンカ株式会社 Quick-hardening material and quick-hardening cement composition
JP2019043805A (en) * 2017-08-31 2019-03-22 デンカ株式会社 Cement admixture, and hydraulic composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773012A (en) * 2021-08-18 2021-12-10 辽宁壹立方砂业有限责任公司 Additive composition for 3D printing, mortar material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4906346B2 (en) Liquid quick setting agent, spraying material, and spraying method using the same
JPWO2005019131A1 (en) Spraying material and spraying method using the same
KR20140043493A (en) Neutralization-preventive high-early-strength cement composition
JP2016190752A (en) Cement clinker and cement composition
JP2007031193A (en) Quick hardening clinker and cement composition
JP7037879B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
JP6972213B2 (en) Cement admixture and hydraulic composition
JP2016190751A (en) Cement clinker and cement composition
WO2021024853A1 (en) Cement admixture and hydraulic composition
CN112601726A (en) Hardening agent for quick-hardening concrete delivered in ready-mixed concrete mode, quick-hardening concrete material delivered in ready-mixed concrete mode, quick-hardening concrete composition delivered in ready-mixed concrete mode and preparation method thereof
JP6675033B1 (en) Cement admixture and hydraulic composition
JP6902643B1 (en) Cement admixture and hydraulic composition
JP6770658B1 (en) Rapid binder for spraying
JP3549645B2 (en) Cement admixture and cement composition
JP2020203800A (en) Mortar or concrete composition and production method therefor
WO2021215509A1 (en) Cement admixture, expansion material, and cement composition
JP6902644B1 (en) Cement admixture and hydraulic composition
JP6988689B2 (en) Cement composition and its manufacturing method, cement mortar manufacturing method
JP6972214B2 (en) Cement admixture and hydraulic composition
JP3810350B2 (en) Cement admixture and cement composition
JP3949091B2 (en) Spraying method
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP3957672B2 (en) Spraying method
JP7254418B2 (en) Accelerating agent for cement composition
JP6801699B2 (en) Fast-hardening admixture for cement, its manufacturing method and quick-hardening cement composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849837

Country of ref document: EP

Kind code of ref document: A1