JP6902644B1 - Cement admixture and hydraulic composition - Google Patents

Cement admixture and hydraulic composition Download PDF

Info

Publication number
JP6902644B1
JP6902644B1 JP2020047915A JP2020047915A JP6902644B1 JP 6902644 B1 JP6902644 B1 JP 6902644B1 JP 2020047915 A JP2020047915 A JP 2020047915A JP 2020047915 A JP2020047915 A JP 2020047915A JP 6902644 B1 JP6902644 B1 JP 6902644B1
Authority
JP
Japan
Prior art keywords
aluminum sulfate
admixture
hydraulic composition
cement admixture
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020047915A
Other languages
Japanese (ja)
Other versions
JP2021147271A (en
Inventor
博貴 水野
博貴 水野
貴光 室川
貴光 室川
岩崎 昌浩
昌浩 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2020047915A priority Critical patent/JP6902644B1/en
Priority to PCT/JP2020/028848 priority patent/WO2021024853A1/en
Application granted granted Critical
Publication of JP6902644B1 publication Critical patent/JP6902644B1/en
Publication of JP2021147271A publication Critical patent/JP2021147271A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、良好な凝結性を示し、極初期から高い強度を得ることができる水硬性組成物を与えることが可能なセメント混和剤を提供する。【解決手段】副生消石灰と、下記(1)〜(3)を満たす酸性の硫酸アルミニウムとを含むセメント混和剤である。(1)前記硫酸アルミニウムが非晶質である。(2)前記硫酸アルミニウムの固体27Al−NMRによって得られるスペクトルにおいて、化学シフト−0.20〜−20.00ppmにピークを有し、当該ピークの半値幅が10.00〜35.00ppmである。(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。【選択図】なしPROBLEM TO BE SOLVED: To provide a hydraulic composition capable of obtaining high strength from the very early stage, showing good cohesiveness and hardly lowering storage stability even if it is previously blended with an alkaline admixture in the hydraulic composition. Provide a cement admixture capable. A cement admixture containing by-product slaked lime and acidic aluminum sulfate satisfying the following (1) to (3). (1) The aluminum sulfate is amorphous. (2) In the spectrum obtained by the solid 27Al-NMR of aluminum sulfate, the spectrum has a peak at a chemical shift of -0.2 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. (3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass. [Selection diagram] None

Description

本発明は、土木分野、建築分野等で用いられるセメント混和剤及び水硬性組成物に関する。 The present invention relates to a cement admixture and a hydraulic composition used in the fields of civil engineering, construction and the like.

近年、土木分野、建築分野などにおいて、水硬性組成物に多種多様な性能が要求されている。その中でも施工の簡略化は、作業員の安全性を考慮する上で非常に重要な要素となっている。ここで、施工の簡略化とは、例えば、施工スピードの向上、材料の一材化及び取扱性の向上などの総合的な合理化を指すことをいう。施工の簡略化を達成するために、例えば、水硬性組成物の硬化速度の向上、プレミックス化等を行うことが鍵となっており、実際、凝結が速く強度発現性も高い、いわゆる超速硬性を有する様々な水硬性組成物が提案されている(例えば、特許文献1〜3)。また最近では、施工の簡略化の更なる改善、及び新たな用途への対応に伴い、水硬性組成物に要求される性能も益々高まっている。 In recent years, a wide variety of performances have been required for hydraulic compositions in the fields of civil engineering and construction. Among them, simplification of construction is a very important factor in considering the safety of workers. Here, the simplification of construction means, for example, comprehensive rationalization such as improvement of construction speed, unification of materials, and improvement of handleability. In order to achieve simplification of construction, for example, it is important to improve the curing speed of the hydraulic composition, premix it, etc., and in fact, it is so-called ultrafast hardness, which has high condensation and high strength development. Various hydraulic compositions having the above have been proposed (for example, Patent Documents 1 to 3). In recent years, the performance required for hydraulic compositions has been increasing more and more with further improvement in simplification of construction and support for new applications.

特開平3−12350号公報Japanese Unexamined Patent Publication No. 3-12350 特開平1−230455号公報Japanese Unexamined Patent Publication No. 1-230455 特開平11−139859号公報Japanese Unexamined Patent Publication No. 11-139859

水硬性組成物には、硬化速度などの各種特性の向上を目的としてセメント混和剤が配合されている。セメント混和剤としては、従来はアルカリ性の混和剤が使用されてきたが、安全性の観点から、酸性の混和剤を使用することが望まれている。
しかしながら、セメントのような水硬性物質は強アルカリ性のため、酸性のセメント混和剤と組み合わせることが難しく、所望の特性を有する水硬性組成物が得られないという問題がある。実際、硬化速度の向上及びプレミックス化に適した従来の酸性のセメント混和剤を水硬性組成物に配合すると、水硬性組成物の貯蔵安定性が低下したり、良好な凝結性及び極初期からの高い強度が得られなかったりすることがある。
The hydraulic composition contains a cement admixture for the purpose of improving various properties such as curing speed. Conventionally, an alkaline admixture has been used as the cement admixture, but from the viewpoint of safety, it is desired to use an acidic admixture.
However, since a hydraulic substance such as cement is strongly alkaline, it is difficult to combine it with an acidic cement admixture, and there is a problem that a hydraulic composition having desired properties cannot be obtained. In fact, when a conventional acidic cement admixture suitable for improving the curing rate and premixing is added to the hydraulic composition, the storage stability of the hydraulic composition is lowered, and the condensing property is good and from the very early stage. High strength may not be obtained.

本発明は、上記のような問題を解決するためになされたものであり、水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、良好な凝結性を示し、極初期から高い強度を得ることができる水硬性組成物を与えることが可能なセメント混和剤を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and even if it is premixed with an alkaline admixture in a hydraulic composition, the storage stability does not easily decrease and it exhibits good cohesiveness. It is an object of the present invention to provide a cement admixture capable of providing a hydraulic composition capable of obtaining high strength from the very early stage.

本発明者らは、上記のような問題を解決するために鋭意研究を行った結果、副生消石灰と特定の性質を有する硫酸アルミニウムとを含むセメント混和剤が上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、下記のとおりである。
As a result of diligent research to solve the above problems, the present inventors have found that a cement admixture containing by-product slaked lime and aluminum sulfate having specific properties can solve the above problems. The invention was completed.
That is, the present invention is as follows.

[1] 副生消石灰と、下記(1)〜(3)を満たす酸性の硫酸アルミニウムとを含むセメント混和剤。
(1)前記硫酸アルミニウムが非晶質である。
(2)前記硫酸アルミニウムの固体27Al−NMRによって得られるスペクトルにおいて、化学シフト−0.20〜−20.00ppmにピークを有し、当該ピークの半値幅が10.00〜35.00ppmである。
(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
[2] 前記硫酸アルミニウムのpHが1〜6である[1]に記載のセメント混和剤。
[3] 前記副生消石灰の平均粒径が1〜300μmである[1]又は[2]に記載のセメント混和剤。
[4] [1]〜[3]のいずれかに記載のセメント混和剤と、水硬性物質とを含む水硬性組成物。
[1] A cement admixture containing by-product slaked lime and acidic aluminum sulfate satisfying the following (1) to (3).
(1) The aluminum sulfate is amorphous.
(2) The solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, it has a peak at a chemical shift of -0.2 to -20.00 ppm, and the half price range of the peak is 10.00 to 35.00 ppm. ..
(3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
[2] The cement admixture according to [1], wherein the pH of the aluminum sulfate is 1 to 6.
[3] The cement admixture according to [1] or [2], wherein the by-product slaked lime has an average particle size of 1 to 300 μm.
[4] A hydraulic composition containing the cement admixture according to any one of [1] to [3] and a hydraulic substance.

本発明によれば、水硬性組成物にアルカリ性の混和剤とともに予め配合しても貯蔵安定性が低下し難いと共に、良好な凝結性を示し、極初期から高い強度を得ることができるセメント混和剤を提供することができる。
特に、低温環境下での凝結や初期強度発現性も安定して得られ、また、セメントへの添加時期で物性への影響を与えないことが可能となる
According to the present invention, a cement admixture that does not easily reduce storage stability even when preliminarily blended with an alkaline admixture in a hydraulic composition, exhibits good cohesiveness, and can obtain high strength from the very beginning. Can be provided.
In particular, condensation and initial strength development in a low temperature environment can be stably obtained, and it is possible to prevent the physical properties from being affected by the timing of addition to cement.

以下、本発明の実施形態(本実施形態)について詳細に説明する。なお、本明細書で使用する部や%は特に規定のない限り質量基準である。
[セメント混和剤]
本実施形態に係るセメント混和材剤は、副生消石灰と、特定の酸性の硫酸アルミニウムとを含む。
Hereinafter, embodiments of the present invention (the present embodiment) will be described in detail. The parts and% used in this specification are based on mass unless otherwise specified.
[Cement admixture]
The cement admixture according to the present embodiment contains by-product slaked lime and specific acidic aluminum sulfate.

(副生消石灰)
副生消石灰は、極初期の流動性低下や長期強度発現性の担保するものとして有効な材料である。副生消石灰とはカーバイドが水和した際に生じるカーバイド滓をいう。なお、市販されている水酸化カルシウムを適宜併用可能である。副生消石灰の含有量は粉末状急結剤100部中、5〜30部であることが好ましく、10〜25部であることがより好ましい。5部以上であることで、急結性状や長期強度発現性を担保することができる。20部以下であることで、良好な初期強度発現性が得られやすくなる。
(By-product slaked lime)
By-product slaked lime is an effective material for ensuring the decrease in fluidity in the very early stage and the long-term strength development. By-product slaked lime refers to the carbide slag produced when the carbide is hydrated. Commercially available calcium hydroxide can be used in combination as appropriate. The content of by-product slaked lime is preferably 5 to 30 parts, more preferably 10 to 25 parts, out of 100 parts of the powdered quick-setting admixture. By having 5 or more parts, it is possible to ensure the quick-setting property and the long-term strength development. When the number of parts is 20 or less, good initial strength development can be easily obtained.

副生消石灰のブレーン比表面積は、1000〜3000cm/gであることが好ましく、1500〜2500cm/gであることがより好ましい。1000〜3000cm/gであることで、急結性状や長期強度発現性を担保することができ、良好な初期強度発現性を得られやすくすることができる。なお、ブレーン比表面積とは、JIS R 5201「セメントの物理試験方法」に記載された比表面積試験に基づいて測定されたものである。 Blaine specific surface area of the by-product calcium hydroxide is preferably 1000~3000cm 2 / g, more preferably 1500~2500cm 2 / g. When it is 1000 to 3000 cm 2 / g, it is possible to secure the quick-setting property and the long-term strength development, and it is possible to easily obtain a good initial strength development. The brain specific surface area is measured based on the specific surface area test described in JIS R 5201 “Physical test method for cement”.

副生消石灰の平均粒径は、後述する特定の硫酸アルミニウムとの混合性と混合による良好な効果の発現の観点から、1〜300μmであることが好ましく、1〜250μmであることがより好ましい。
なお、平均粒径は、例えば、HORIBA社製のレーザー回折/散乱式粒子径分布測定装置を用いることで求めることができる。
The average particle size of the by-product slaked lime is preferably 1 to 300 μm, more preferably 1 to 250 μm, from the viewpoint of mixing with specific aluminum sulfate described later and exhibiting a good effect by mixing.
The average particle size can be determined by using, for example, a laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA.

(特定の酸性の硫酸アルミニウム)
本実施形態に係る硫酸アルミニウムは、下記(1)〜(4)を満たす酸性の硫酸アルミニウムである。
(1)硫酸アルミニウムが非晶質である。
硫酸アルミニウムが非晶質でない場合、セメントのような強アルカリ性を示す水硬性物質とプレミックス化することが難しいと共に、プレミックス化できたとしても水硬性組成物の貯蔵安定性が低下する。
ここで、硫酸アルミニウムが非晶質であるか否かは、X線回折分析によって判断することができる。具体的には、硫酸アルミニウムのX線回折スペクトルがブロードであれば、非晶質であると判断することができる。硫酸アルミニウムは2θ=20〜30°の範囲で明確なピークが確認できるが、ピークが得られないものは非晶質とした。
(Specific acidic aluminum sulfate)
The aluminum sulfate according to the present embodiment is acidic aluminum sulfate that satisfies the following (1) to (4).
(1) Aluminum sulfate is amorphous.
When aluminum sulfate is not amorphous, it is difficult to premix it with a hydraulic substance showing strong alkalinity such as cement, and even if it can be premixed, the storage stability of the hydraulic composition is lowered.
Here, whether or not aluminum sulfate is amorphous can be determined by X-ray diffraction analysis. Specifically, if the X-ray diffraction spectrum of aluminum sulfate is broad, it can be determined to be amorphous. A clear peak can be confirmed in the range of 2θ = 20 to 30 ° for aluminum sulfate, but those without a peak are considered amorphous.

(2)硫酸アルミニウムの固体27Al−NMRによって得られるスペクトルにおいて、化学シフト−0.20〜−20.00ppmにピークを有し、当該ピークの半値幅が10.00〜35.00ppmである。
ピークの化学シフトが−0.20ppmよりも大きいと、水硬性物質とプレミックス化することが難しいと共に、プレミックス化できたとしても水硬性組成物の貯蔵安定性が低下する場合がある。一方、ピークの化学シフトが−20.00ppmよりも小さいと、pHが8以上を呈すアルカリ性の混和剤と相乗効果が得られない場合がある。
ピークの化学シフトは−1.00〜−16.00ppmであることが好ましく、−2〜−15ppmであることがより好ましい。
(2) Solid of Aluminum Sulfate 27 In the spectrum obtained by Al-NMR, it has a peak at a chemical shift of -0.2 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm.
If the chemical shift of the peak is larger than −0.20 ppm, it is difficult to premix with the hydraulic substance, and even if the premix can be achieved, the storage stability of the hydraulic composition may decrease. On the other hand, if the peak chemical shift is less than -20.00 ppm, a synergistic effect with an alkaline admixture having a pH of 8 or more may not be obtained.
The chemical shift of the peak is preferably −1.00 to -16.00 ppm, more preferably -2 to -15 ppm.

また、当該ピークの半値幅が上記範囲を外れると、水硬性組成物の硬化速度が十分に得られない場合がある。当該ピークの半値幅は10〜35ppmであることが好ましく、25〜32ppmであることがより好ましい。 Further, if the half width of the peak is out of the above range, the curing rate of the hydraulic composition may not be sufficiently obtained. The half width of the peak is preferably 10 to 35 ppm, more preferably 25 to 32 ppm.

ここで、硫酸アルミニウムの固体27Al−NMR測定は、市販の測定装置、例えば、日本電子株式会社製の超伝導核磁気共鳴装置「ECX−400」などを用い、下記の条件で行うことができる。
観測核:27Al
試料管回転数:10KHz
測定温度:室温
パルス幅:3.3μsec(90°パルス)
待ち時間:5秒
外部標準:硝酸アルミニウム
Here, the solid 27 Al-NMR measurement of aluminum sulfate can be carried out under the following conditions using a commercially available measuring device, for example, a superconducting nuclear magnetic resonance device “ECX-400” manufactured by JEOL Ltd. ..
Observation nucleus: 27 Al
Sample tube rotation speed: 10 KHz
Measurement temperature: Room temperature Pulse width: 3.3 μsec (90 ° pulse)
Waiting time: 5 seconds External standard: Aluminum nitrate

上記(1)及び(2)の要件を満たす硫酸アルミニウムを得るには、例えば、各種原料からなある混合物を加熱する際の加熱温度を調整すればよい。 In order to obtain aluminum sulfate that satisfies the above requirements (1) and (2), for example, the heating temperature when heating a mixture of various raw materials may be adjusted.

(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。粒径100μm以上の粒子が70%を超えると、水硬性物質の硬化速度が十分に得られず、粒径10μm以下の粒子が30%以上であると、pHが8以上を呈すアルカリ性の混和剤と共存させることで、貯蔵劣化が顕著になる。
粒径100μm以上の粒子は、50%以下が好ましく、30%以下がより好ましい。また、粒径10μm以下の粒子は、40%以上が好ましく、50%以上がより好ましい。なお、粒径は例えば、篩によって調整することができる。
なお、(3)の範囲にある硫酸アルミニウムを用いた混和剤では、低温から高温まで硬化速度が十分に得られないということがなく、特に高温においては、硬化速度が速まることが予想されるが、pH8以上のアルカリ性物質の共存により、硬化速度がコントロールできると考えられるため、低温(5℃以下)から高温(30℃以上)まで幅広い温度範囲で使用できるため、夏でも冬でも安定して適用可能である。
(3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass. If the particle size of 100 μm or more exceeds 70%, the curing rate of the water-hard substance cannot be sufficiently obtained, and if the particles having a particle size of 10 μm or less are 30% or more, an alkaline admixture having a pH of 8 or more. By coexisting with, storage deterioration becomes remarkable.
The particles having a particle size of 100 μm or more are preferably 50% or less, more preferably 30% or less. Further, the particles having a particle size of 10 μm or less are preferably 40% or more, more preferably 50% or more. The particle size can be adjusted by, for example, a sieve.
It should be noted that the admixture using aluminum sulfate in the range of (3) does not mean that a sufficient curing rate can be obtained from low temperature to high temperature, and it is expected that the curing rate will increase particularly at high temperature. Since it is thought that the curing rate can be controlled by the coexistence of alkaline substances with pH 8 or higher, it can be used in a wide temperature range from low temperature (5 ° C or lower) to high temperature (30 ° C or higher), so it can be applied stably in both summer and winter. It is possible.

硫酸アルミニウムのpHは1〜6であることが好ましい。硫酸アルミニウムのpHが上記の範囲内であることで、水硬性組成物の硬化速度を良好にすることができる。pHは2〜5が好ましく、2〜4がより好ましい。また、硫酸アルミニウムのpHを1〜6とするには、上記の加熱温度を調整すればよい。
なお、本明細書においてpHは、pHメータを用いて、20±2℃で水100mlに10g添加し、500rpmで撹拌して測定することができる。
The pH of aluminum sulfate is preferably 1-6. When the pH of aluminum sulfate is within the above range, the curing rate of the hydraulic composition can be improved. The pH is preferably 2-5, more preferably 2-4. Further, in order to adjust the pH of aluminum sulfate to 1 to 6, the above heating temperature may be adjusted.
In the present specification, the pH can be measured by adding 10 g to 100 ml of water at 20 ± 2 ° C. and stirring at 500 rpm using a pH meter.

既述の(1)〜(3)を満たす硫酸アルミニウムは、Al源とSO源とを用いて、Al源及びSO源等の原料を混合して混合物とした後に加熱処理する方法、Al源とSO源とを直接化学反応させる方法、Al源及びSO源を純水などの溶媒中に投入して混合した後に化学反応させる方法等を用いることができる。これらの方法において、製造条件を制御することにより、上記のような(1)〜(3)を満たす硫酸アルミニウムを得ることができる。 Aluminum sulfate satisfying the above-mentioned (1) to (3) is prepared as a mixture by mixing raw materials such as Al 2 O 3 source and SO 3 source using Al 2 O 3 source and SO 3 source. a method of heating treatment, a method of directly chemically reacting Al 2 O 3 source and SO 3 source, a method is a chemical reaction after mixing was charged with Al 2 O 3 source and SO 3 source in a solvent such as pure water or the like Can be used. In these methods, by controlling the production conditions, aluminum sulfate satisfying the above-mentioned (1) to (3) can be obtained.

Al源としては、特に限定されないが、アルミニウムの硫酸塩、アルミン酸塩、及びその他の無機アルミニウム化合物、有機アルミニウム化合物、並びにアルミニウム錯体を用いることができる。 The Al 2 O 3 source is not particularly limited, but aluminum sulfate, aluminate, and other inorganic aluminum compounds, organoaluminum compounds, and aluminum complexes can be used.

アルミニウムの硫酸塩としては、特に限定されないが、例えば、アンモニウム明礬、ヒドロキシ硫酸アルミニウム、及び硫酸アルミニウムなどが挙げられる。
アルミン酸塩としては、特に限定されないが、例えば、アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸カルシウム、及びアルミン酸マグネシウムなどが挙げられる。
その他の無機アルミニウム化合物としては、特に限定されないが、例えば、ボーキサイト、酸化アルミニウム、水酸化アルミニウム、塩化アルミニウム、リン酸アルミニウム、硝酸アルミニウム、フッ化アルミニウム、ポリ塩化アルミニウム、炭酸水酸化アルミニウム、合成ヒドロタルサイト、及びメタケイ酸アルミニウムなどが挙げられる。
The sulfate of aluminum is not particularly limited, and examples thereof include ammonium alum, aluminum hydroxysulfate, and aluminum sulfate.
The alumate is not particularly limited, and examples thereof include lithium aluminate, sodium aluminate, potassium aluminate, calcium aluminate, and magnesium aluminate.
Other inorganic aluminum compounds are not particularly limited, but are, for example, bokisite, aluminum oxide, aluminum hydroxide, aluminum chloride, aluminum phosphate, aluminum nitrate, aluminum fluoride, polyaluminum chloride, aluminum carbonate, synthetic hydrotal. Sight, aluminum metasilicate and the like.

有機アルミニウム化合物としては、特に限定されないが、例えば、ステアリン酸アルミニウム、シュウ酸アルミニウム、アルミニウムイソプロポキシド、及びギ酸アルミニウムなどが挙げられる。
アルミニウム錯体としては、特に限定されないが、例えば、トリス(8−ヒドロキシキノリナト)アルミニウムなどが挙げられる。
Al源としては、単一種を用いることができるが、2種以上を組み合わせて用いてもよい。また、上記の様々なAl源の中でも、水への溶解性が高く、製造コストが安く且つ凝結性に優れる点からアルミニウムの硫酸塩が好ましいが、水酸化アルミニウムも好ましい。
The organoaluminum compound is not particularly limited, and examples thereof include aluminum stearate, aluminum oxalate, aluminum isopropoxide, and aluminum formate.
The aluminum complex is not particularly limited, and examples thereof include tris (8-hydroxyquinolinato) aluminum.
As the Al 2 O 3 source, a single species can be used, but two or more species may be used in combination. Among the various Al 2 O 3 sources described above, aluminum sulfate is preferable because it has high solubility in water, low production cost, and excellent cohesiveness, but aluminum hydroxide is also preferable.

SO源としては、特に限定されないが、イオウ及びイオウ華などの元素状態のイオウの他に、硫化物、硫酸、硫酸塩、亜硫酸、亜硫酸塩、チオ硫酸、チオ硫酸塩、及び有機イオウ化合物などを用いることができる。
硫化物としては、特に限定されないが、例えば、硫化マグネシウム、硫化カルシウム、硫化鉄、及び五硫化リンなどが挙げられる。
硫酸塩としては、特に限定されないが、例えば、硫酸アニリン、硫酸アルミニウム、硫酸アンモニウム、硫酸マグネシウム、硫酸マンガン、硫酸バリウム、硫酸カルシウム、ナトリウム明礬、カリウム明礬、アンモニウム明礬、及び硫酸ヒドロキシルアミンなどが挙げられる。
The SO 3 source, but are not limited to, in addition to elemental sulfur, such as sulfur and sulfur oxide, sulfide, sulfate, sulfate, sulfite, sulfite, thiosulfate, sulfate, and organic sulfur compounds such as Can be used.
The sulfide is not particularly limited, and examples thereof include magnesium sulfide, calcium sulfide, iron sulfide, and phosphorus pentasulfide.
The sulfate is not particularly limited, and examples thereof include aniline sulfate, aluminum sulfate, ammonium sulfate, magnesium sulfate, manganese sulfate, barium sulfate, calcium sulfate, sodium sulphate, potassium sulphate, ammonium sulphate, and hydroxylamine sulfate.

亜硫酸塩としては、特に限定されないが、例えば、亜硫酸水素アンモニウム及び亜硫酸カルシウムなどが挙げられる。
チオ硫酸塩としては、特に限定されないが、例えば、チオ硫酸アンモニウム及びチオ硫酸バリウムなどが挙げられる。
有機イオウ化合物としては、特に限定されないが、例えば、スルホン酸誘導体、スルホン酸誘導体の塩、メルカプタン、チオフェン、チオフェン誘導体、ポリサルホン、ポリエーテルサルホン、及びポリフェニレンサルファイドなどの樹脂が挙げられる。
SO源としては、単一種を用いることができるが、2種以上を組み合わせて用いてもよい。また、上記の様々なSO源の中でも、水への溶解性が高く、製造コストが安く且つ凝結性に優れる点から、硫酸又は硫酸塩が好ましく、硫酸又はアンモニウム明礬が最も好ましい。
The sulfite salt is not particularly limited, and examples thereof include ammonium hydrogen sulfite and calcium sulfite.
The thiosulfate is not particularly limited, and examples thereof include ammonium thiosulfate and barium thiosulfate.
The organic sulfur compound is not particularly limited, and examples thereof include resins such as a sulfonic acid derivative, a salt of a sulfonic acid derivative, mercaptan, thiophene, a thiophene derivative, polysulfone, polyethersulfone, and polyphenylene sulfide.
The SO 3 source, can be used single type may be used in combination of two or more. Among the various SO 3 source of the high solubility in water, from the viewpoint of excellent cheap and caking manufacturing cost, preferably sulfuric acid or sulfates, and most preferably sulfuric acid or ammonium alum.

ここで、得られた硫酸アルミニウムは、例えば、公知のミル等により粉砕して、篩分け等によって(3)の要件を満たすようにすることが好ましい。 Here, it is preferable that the obtained aluminum sulfate is pulverized by, for example, a known mill or the like so as to satisfy the requirement (3) by sieving or the like.

本実施形態に係る副生消石灰と酸性の硫酸アルミニウムとの混合比率(副生消石灰/酸性の硫酸アルミニウム:質量比)は、互いの効果を十分に発揮させる観点から、10/30〜30/10であることが好ましく、10/30〜20/10であることがより好ましい。 The mixing ratio of by-product slaked lime and acidic aluminum sulfate (by-product slaked lime / acidic aluminum sulfate: mass ratio) according to the present embodiment is 10/30 to 30/10 from the viewpoint of fully exerting mutual effects. It is preferably 10/30 to 20/10, and more preferably.

本発明に係るセメント混和剤には、pHが8以上であるアルカリ性混和剤が混合されることが好ましい。当該アルカリ性の混和剤としては、アルカリ金属アルミン酸塩、アルカリ土類金属アルミン酸塩、アルカリ土類金属炭酸塩、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属水酸化物等が挙げられ、なかでもアルカリ金属炭酸塩、アルカリ土類金属水酸化物が含有されることが好ましい。 The cement admixture according to the present invention is preferably mixed with an alkaline admixture having a pH of 8 or more. Examples of the alkaline admixture include alkali metal aluminate, alkaline earth metal aluminate, alkaline earth metal carbonate, alkali metal hydroxide, alkali metal carbonate, alkaline earth metal hydroxide and the like. Of these, alkali metal carbonates and alkaline earth metal hydroxides are preferably contained.

アルカリ金属炭酸塩はセメントにさらなる凝結性や急硬性を付与することができる。アルカリ金属炭酸塩としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸リチウム、炭酸水素リチウム、炭酸ベリリウム、炭酸マグネシウム等が挙げられ、なかでも炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム、炭酸カリウムが好ましい。アルカリ性混和剤中のアルカリ金属炭酸塩の含有量は、50%以上であることが好ましく、80%以上であることがより好ましい。 Alkali metal carbonates can impart further cohesiveness and rapid hardness to cement. Examples of the alkali metal carbonate include sodium carbonate, sodium hydrogen carbonate, calcium carbonate, potassium carbonate, lithium carbonate, lithium hydrogen carbonate, beryllium carbonate, magnesium carbonate, etc. Among them, sodium carbonate, sodium hydrogen carbonate, calcium carbonate, and carbon dioxide. Potassium is preferred. The content of the alkali metal carbonate in the alkaline admixture is preferably 50% or more, more preferably 80% or more.

アルカリ土類金属水酸化物はセメントにさらなる凝結性、急硬性、長期強度発現性を付与することができる。アルカリ土類金属水酸化物としては、水酸化カルシウム、水酸化マグネシウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ベリリウム等が挙げられ、なかでも水酸化カルシウム、水酸化マグネシウム、水酸化ナトリウム、水酸化カリウムが好ましい。アルカリ性混和剤中のアルカリ土類金属水酸化物の含有量は、50%以上であることが好ましく、80%以上であることがより好ましい。 Alkaline earth metal hydroxides can impart further cohesiveness, rapid hardness, and long-term strength development to cement. Examples of the alkaline earth metal hydroxide include calcium hydroxide, magnesium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydroxide, beryllium hydroxide and the like, among which calcium hydroxide, magnesium hydroxide and hydroxide are used. Sodium and potassium hydroxide are preferable. The content of the alkaline earth metal hydroxide in the alkaline admixture is preferably 50% or more, more preferably 80% or more.

本発明に係るセメント混和剤に用いられるアルカリ性混和剤は、アルカリ金属炭酸塩とアルカリ土類金属水酸化物との組合せを含むことが好ましい。この組合せにより、著しいセメントの凝結、急硬、強度発現性の付与が可能となる。アルカリ性混和剤中のアルカリ金属炭酸塩とアルカリ土類金属水酸化物との組合せは、50%以上であることが好ましく、80%以上であることがより好ましい。また、当該組み合わせにおける、アルカリ金属炭酸塩とアルカリ土類金属水酸化物との質量比は、アルカリ金属炭酸塩/アルカリ土類金属水酸化物で、30/70〜70/30であることが好ましく、40/60〜60/40であることがより好ましい。 The alkaline admixture used in the cement admixture according to the present invention preferably contains a combination of an alkali metal carbonate and an alkaline earth metal hydroxide. This combination makes it possible to impart remarkable cement coagulation, rapid hardening, and strength development. The combination of the alkali metal carbonate and the alkaline earth metal hydroxide in the alkaline admixture is preferably 50% or more, more preferably 80% or more. The mass ratio of alkali metal carbonate to alkaline earth metal hydroxide in the combination is preferably 30/70 to 70/30 for alkali metal carbonate / alkaline earth metal hydroxide. , 40/60 to 60/40, more preferably.

本発明に係るセメント混和剤とアルカリ性混和剤とは、水硬性物質に添加する際に混合することが好ましいが、本発明に係るセメント混和剤はアルカリに対する貯蔵安定性に優れるため、水硬性物質に添加する2〜3週間前に混合することが好ましい。 The cement admixture and the alkaline admixture according to the present invention are preferably mixed when added to the hydraulic substance, but since the cement admixture according to the present invention has excellent storage stability with respect to alkali, it can be used as a hydraulic substance. It is preferable to mix 2-3 weeks before the addition.

[水硬性組成物]
本発明に係る水硬性組成物は、本発明に係るセメント混和剤と水硬性物質とを含み、さらに既述のアルカリ性混和剤を含むことが好ましい。
本発明に係るセメント混和剤は、様々な水硬性物質と共に用いて水硬性組成物を調製することができる。特に、本発明に係るセメント混和剤は、酸性であるにも関わらず、アルカリ性の水硬性物質と共に用いることが可能である。一般的に、酸性のセメント混和剤は、アルカリ性の水硬性物質と共に用いて水硬性組成物を調製すると、貯蔵安定性が低下し易いが、本発明に係るセメント混和材は、アルカリ性の水硬性物質と共に用い水硬性組成物を調製しても貯蔵安定性が低下し難い。そのため、本発明に係るセメント混和材を用いて調製された水硬性組成物は、特殊な保存方法、施工方法又は取扱方法を行わなくても長期保存が可能である。また、この水硬性組成物は、超速硬性を有し、強度が高い硬化体を形成することができる。したがって、この水硬性組成物を用いることにより、施工の簡略化が可能となる。
[Hydraulic composition]
The hydraulic composition according to the present invention contains the cement admixture and the hydraulic substance according to the present invention, and preferably further contains the above-mentioned alkaline admixture.
The cement admixture according to the present invention can be used together with various hydraulic substances to prepare a hydraulic composition. In particular, the cement admixture according to the present invention can be used together with an alkaline hydraulic substance even though it is acidic. Generally, when an acidic cement admixture is used together with an alkaline hydraulic substance to prepare a hydraulic composition, the storage stability tends to decrease, but the cement admixture according to the present invention is an alkaline hydraulic substance. Even if a hydraulic composition is prepared, the storage stability is unlikely to decrease. Therefore, the hydraulic composition prepared by using the cement admixture according to the present invention can be stored for a long period of time without any special storage method, construction method or handling method. In addition, this hydraulic composition has ultrafast hardness and can form a cured product having high strength. Therefore, by using this hydraulic composition, it is possible to simplify the construction.

水硬性組成物に用いられる水硬性物質としては、特に限定されないが、例えば、普通、早強、中庸熱、低熱、白色などの各種ポルトランドセメント;都市ゴミ焼却灰、下水汚泥焼却灰を原料として製造されるエコセメント;高炉スラグ、シリカヒューム、石灰石、フライアッシュ、石膏などを含む混合セメントなどが挙げられる。
水硬性物質のpHとしては、特に限定されないが、好ましくは7超、より好ましくは8以上、さらに好ましくは10以上である。
The water-hardening substance used in the water-hardening composition is not particularly limited, but for example, various Portland cements such as ordinary, fast-strength, moderate heat, low heat, and white; manufactured from urban waste incineration ash and sewage sludge incineration ash as raw materials. Eco-cement to be used; examples include mixed cement containing blast furnace slag, silica fume, limestone, fly ash, gypsum and the like.
The pH of the hydraulic substance is not particularly limited, but is preferably more than 7, more preferably 8 or more, and further preferably 10 or more.

水硬性組成物には、本発明の効果を阻害しない範囲において、一般的に配合され得る公知の添加剤を含有することができる。添加剤としては、特に限定されないが、防錆剤、着色剤、ポリマー、繊維、流動化剤、中性化抑制剤、防水剤、増粘剤、防水剤、遅延剤、早強剤、促進剤、減水剤、高性能(AE)減水剤、起泡剤、発泡剤、AE剤、乾燥収縮低減剤、急結剤、膨張剤、耐寒促進剤、エフロレッセンス防止剤、アルカリ骨材反応抑制剤、黒色むら低減剤、環境浄化混和剤などが挙げられる。これらの添加剤は、単独又は2種以上を組み合わせて用いることができる。 The hydraulic composition can contain known additives that can be generally blended as long as the effects of the present invention are not impaired. The additive is not particularly limited, but is a rust preventive, a colorant, a polymer, a fiber, a fluidizing agent, a neutralization inhibitor, a waterproofing agent, a thickener, a waterproofing agent, a retarding agent, an early strengthening agent, and an accelerator. , Water reducing agent, high performance (AE) water reducing agent, foaming agent, foaming agent, AE agent, drying shrinkage reducing agent, quick-setting agent, leavening agent, cold resistance accelerator, efflorescence inhibitor, alkaline aggregate reaction inhibitor, Examples include black unevenness reducing agents and environmental purification admixtures. These additives can be used alone or in combination of two or more.

水硬性組成物中の本発明に係るセメント混和剤は、1〜30質量%であることが好ましく、2〜20質量%であることがより好ましい。また、既述のアルカリ性混和剤を含む場合、本発明に係るセメント混和剤100部に対して、アルカリ性混和剤を2〜30部とすることが好ましく、2〜20部とすることがより好ましい。 The cement admixture according to the present invention in the hydraulic composition is preferably 1 to 30% by mass, more preferably 2 to 20% by mass. When the above-mentioned alkaline admixture is contained, the amount of the alkaline admixture is preferably 2 to 30 parts, more preferably 2 to 20 parts, based on 100 parts of the cement admixture according to the present invention.

以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as it does not deviate from the gist thereof.

<硫酸アルミニウムA〜Eの調製>
原料として下記の物質を使用した。
Al源:水酸化アルミニウム、試薬、純度99%
SO源:硫酸、試薬、純度99%
溶媒:純水
<Preparation of aluminum sulfates A to E>
The following substances were used as raw materials.
Al 2 O 3 source: aluminum hydroxide, reagent, purity 99%
SO 3 source: sulfuric acid, reagent, purity 99%
Solvent: pure water

Al源とSO源と溶媒とを2:3:10のモル比で混合し、混合物を表1に示す各温度に加熱して反応させることにより、硫酸アルミニウムA〜Eを調製した。その後、ボールミルを用いて粉砕し、篩によって粒径が100μm以上の粒子が30%、粒径が10μm以下の粒子が20%となるように粉砕した。
上記で調製した硫酸アルミニウムについて、X線回折、固体27Al−NMR、及びpHの評価を行った。
Aluminum sulfates A to E were prepared by mixing an Al 2 O 3 source, an SO 3 source, and a solvent at a molar ratio of 2: 3:10, and heating and reacting the mixture at each temperature shown in Table 1. .. Then, it was pulverized using a ball mill, and pulverized by a sieve so that the particles having a particle size of 100 μm or more were 30% and the particles having a particle size of 10 μm or less were 20%.
The aluminum sulfate prepared above was subjected to X-ray diffraction, solid 27 Al-NMR, and pH evaluation.

X線回折は、リガク社製のMulti−Flexを用いて測定した。測定は、管電圧−管電流を40KV−40mAとし、2θ=5°〜60°、5°/分の条件で行った。また、解析ソフトはPDXLを用いた。X線回折の評価において、X線回折スペクトルがブロードであれば非晶質、それ以外を結晶質と判定した。結果を表1に示す。 X-ray diffraction was measured using a Multi-Flex manufactured by Rigaku. The measurement was carried out under the conditions of 2θ = 5 ° to 60 ° and 5 ° / min with the tube voltage-tube current set to 40 KV-40 mA. In addition, PDXL was used as the analysis software. In the evaluation of X-ray diffraction, if the X-ray diffraction spectrum was broad, it was determined to be amorphous, and if it was not, it was determined to be crystalline. The results are shown in Table 1.

固体27Al−NMRは、日本電子株式会社製の超伝導核磁気共鳴装置(ECX−400)を用いて上記した条件で行い、ピークの化学シフト及び半値幅を測定した。結果を表1に示す。 Solid 27 Al-NMR was carried out under the above conditions using a superconducting nuclear magnetic resonance apparatus (ECX-400) manufactured by JEOL Ltd., and the chemical shift and full width at half maximum of the peak were measured. The results are shown in Table 1.

pHは、上記方法で調整した硫酸アルミニウムをHORIBA社製のpH測定計(D−53S)を用いて、既述の方法にて測定した。結果を表1に示す。 The pH of aluminum sulfate adjusted by the above method was measured by the method described above using a pH measuring meter (D-53S) manufactured by HORIBA. The results are shown in Table 1.

Figure 0006902644
Figure 0006902644

<副生消石灰A>
副生消石灰として、カーバイド滓(ブレーン2000cm/g、平均粒径250μm)を使用した。
<By-product slaked lime A>
Carbide slag (brain 2000 cm 2 / g, average particle size 250 μm) was used as by-product slaked lime.

次に、上記で調製した表1に示す種類の硫酸アルミニウム100部と副生消石灰A20部とを含むセメント混和剤に、表2に示すアルカリ性混和剤アを20部配合し混合してアルカリ入りセメント混和剤を調製し、表2に示す日数、温度20℃、湿度60%に保管した。その後、普通ポルトランドセメント(pH14、工業品)100部、アルカリ入りセメント混和剤10部からなる水硬性組成物を得た。
その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
上記の各評価の結果を表2に示す。
Next, 20 parts of the alkaline admixture A shown in Table 2 is mixed and mixed with the cement admixture containing 100 parts of aluminum sulfate of the type shown in Table 1 and 20 parts of by-product slaked lime A prepared above to contain alkali. A cement admixture was prepared and stored at the number of days shown in Table 2, a temperature of 20 ° C., and a humidity of 60%. Then, a hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of an alkali-containing cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The coagulation test measured the onset time of coagulation.
The results of each of the above evaluations are shown in Table 2.

アルカリ性混和剤ア:炭酸ナトリウム、試薬、pH11
アルカリ性混和剤イ:炭酸水素ナトリウム、試薬、pH8.3
アルカリ性混和剤ウ:炭酸カルシウム、試薬、pH10
アルカリ性混和剤エ:炭酸カリウム、試薬、pH12
アルカリ性混和剤オ:水酸化カルシウム、試薬、pH10
アルカリ性混和剤カ:水酸化マグネシウム、試薬、pH10.5
アルカリ性混和剤キ:水酸化ナトリウム、試薬、pH14
アルカリ性混和剤ク:水酸化カリウム、試薬、pH13
Alkaline admixture a: Sodium carbonate, reagent, pH11
Alkaline admixture a: Sodium hydrogen carbonate, reagent, pH 8.3
Alkaline admixture c: Calcium carbonate, reagent, pH10
Alkaline admixture d: Potassium carbonate, reagent, pH12
Alkaline admixture E: Calcium hydroxide, reagent, pH10
Alkaline admixture F: Magnesium hydroxide, reagent, pH 10.5
Alkaline admixture: sodium hydroxide, reagent, pH14
Alkaline admixture: Potassium hydroxide, reagent, pH13

Figure 0006902644
Figure 0006902644

表2に示すように、硫酸アルミニウムAを用いることで、保管日数に伴い凝結時間が変化した。これは、該化合物と、混和剤が貯蔵劣化したものと考える。しかし、硫酸アルミニウムB〜Eであれば、貯蔵劣化は見られず、特に促進的な効果が得られやすいのは、硫酸アルミニウムB〜Dであることが確認された。 As shown in Table 2, by using aluminum sulfate A, the setting time changed with the number of storage days. This is considered to be due to storage deterioration of the compound and the admixture. However, it was confirmed that the aluminum sulfates B to E did not show any storage deterioration, and that the aluminum sulfates B to D were particularly likely to have a promoting effect.

次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径100μm以上の粒子の割合を表3となるように調整したもの100部と、表3に示す種類のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表3に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
上記の各評価の結果を表3に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted so that the proportion of particles having a particle size of 100 μm or more is shown in Table 3 and 20 parts of an alkaline admixture of the type shown in Table 3 are mixed and mixed. Then, the cement admixture is prepared and stored at the number of days shown in Table 3, the temperature at 20 ° C., and the humidity at 60%, and then a hydraulic composition consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of the cement admixture. I got something. Then, 40 parts by mass of water (tap water) was further mixed with this water-hard composition, and a coagulation test and a compressive strength measurement were performed.
The setting test and the measurement of compressive strength were carried out in accordance with JIS R5201 "Physical test method for cement". The coagulation test measured the onset time of coagulation.
The results of each of the above evaluations are shown in Table 3.

Figure 0006902644
Figure 0006902644

表3に示すように、硫酸アルミニウムの粒径100μm以上の粒子の割合が71%、99%では凝結始発時間が遅くなることが確認された。また、硫酸アルミニウムの粒径100μm以上の粒子の割合が70%以下ではいずれも、凝結性及び強度が良好であった。 As shown in Table 3, it was confirmed that when the proportion of particles having a particle size of 100 μm or more of aluminum sulfate was 71% and 99%, the condensation initiation time was delayed. Further, when the proportion of particles having a particle size of 100 μm or more of aluminum sulfate was 70% or less, the cohesiveness and strength were good.

次に、硫酸アルミニウムC、又は硫酸アルミニウムCで粒径10μm以下の粒子の割合を表4となるように調整したもの100部と、表4に示す種類のアルカリ性混和剤20部とを配合し、混合してセメント混和剤を調製し、表4に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
上記の各評価の結果を表4に示す。
Next, 100 parts of aluminum sulfate C or aluminum sulfate C adjusted for the proportion of particles having a particle size of 10 μm or less so as to be shown in Table 4 and 20 parts of an alkaline admixture of the type shown in Table 4 were blended. After mixing to prepare a cement admixture and storing it at the number of days shown in Table 4, temperature 20 ° C., and humidity 60%, hydraulic property consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture The composition was obtained. Then, 40 parts by mass of water (tap water) was further mixed with this water-hard composition, and a coagulation test and a compressive strength measurement were performed.
The setting test and the measurement of compressive strength were carried out in accordance with JIS R5201 "Physical test method for cement". The coagulation test measured the onset time of coagulation.
The results of each of the above evaluations are shown in Table 4.

Figure 0006902644
Figure 0006902644

表4に示すように、硫酸アルミニウムCで粒径10μm以下の粒子の割合が30%以上であると、貯蔵劣化が確認され、30%未満であると、特に貯蔵劣化は確認されないことがわかった。 As shown in Table 4, it was found that when the proportion of particles having a particle size of 10 μm or less in aluminum sulfate C was 30% or more, storage deterioration was confirmed, and when it was less than 30%, no particular storage deterioration was confirmed. ..

次に、表5に示す種類の硫酸アルミニウム100部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表5に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
上記の各評価の結果を表5に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 5 and 20 parts of various alkaline admixtures are mixed and mixed to prepare a cement admixture, and the number of days shown in Table 5, temperature 20 ° C., and humidity 60% are adjusted. After storage, a hydraulic composition consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was carried out in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 5.

Figure 0006902644
Figure 0006902644

表5に示すように、混和剤種別毎に保管日数に伴い材齢28日強度は変化するが、硫酸アルミニウムAと各種のアルカリ性混和剤の組合せは保管日数に伴い、強度が低下した。一方、硫酸アルミニウムCと各種のアルカリ性混和剤の組合せは、貯蔵安定性がよく、保管日数に関係なく、強度も低下しないことが確認された。 As shown in Table 5, the strength of the material age 28 days changed with the number of storage days for each type of admixture, but the strength of the combination of aluminum sulfate A and various alkaline admixtures decreased with the number of storage days. On the other hand, it was confirmed that the combination of aluminum sulfate C and various alkaline admixtures had good storage stability and the strength did not decrease regardless of the number of storage days.

次に、上記で調製した表6に示す種類の硫酸アルミニウム100部と、各種のアルカリ性混和剤20部とを配合し混合してセメント混和剤を調製し、表6に示す日数、温度20℃、湿度60%に保管してから、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。なお、アルカリ性混和剤アとオを混合した場合(実験No.30、31)のこれらの比(ア:オ)は50:50とした。
その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、強度試験を行った。強度試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。強度試験は、水硬性組成物に水を添加してから28日後の強度を測定した。
上記の各評価の結果を表6に示す。
Next, 100 parts of aluminum sulfate of the type shown in Table 6 prepared above and 20 parts of various alkaline admixtures were mixed and mixed to prepare a cement admixture. After storage at a humidity of 60%, a hydraulic composition consisting of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of a cement admixture was obtained. When the alkaline admixtures A and O were mixed (Experiments No. 30 and 31), the ratio (A: O) of these was 50:50.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a strength test was conducted. The strength test was carried out in accordance with JIS R5201 “Physical test method for cement”. In the strength test, the strength was measured 28 days after the addition of water to the hydraulic composition.
The results of each of the above evaluations are shown in Table 6.

Figure 0006902644
Figure 0006902644

表6に示すように、硫酸アルミニウムAは混和剤種別をア、オを組み合わせても保管日数により、強度低下が確認されたが、硫酸アルミニウムCをア、オと組み合わせると、強度が更に増進することを確認した。 As shown in Table 6, the strength of aluminum sulfate A was confirmed to decrease depending on the number of storage days even when the admixture types were combined with a and o, but when aluminum sulfate C was combined with a and o, the strength was further increased. It was confirmed.

次に、実験No.3、No.6〜17について、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
上記の各評価の結果を表7に示す。
Next, Experiment No. 3, No. For 6 to 17, 100 parts of ordinary Portland cement (pH 14, industrial product), cement admixture, were made in the same manner except that the temperature (test temperature) for obtaining the hydraulic composition was set to 20 ° C. to 10 ° C. or 30 ° C. A hydraulic composition consisting of 10 parts was obtained.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The coagulation test measured the onset time of coagulation.
The results of each of the above evaluations are shown in Table 7.

Figure 0006902644
Figure 0006902644

表7に示すように、本発明の範囲にある硫酸アルミニウムを用いた混和剤では、低温(5℃)から高温(30℃)まで幅広い温度範囲で使用できるため、夏でも冬でも安定して適用可能である。 As shown in Table 7, the admixture using aluminum sulfate within the range of the present invention can be used in a wide temperature range from low temperature (5 ° C) to high temperature (30 ° C), so that it can be stably applied in both summer and winter. It is possible.

実験No.3の例で、副生消石灰Aの代わりに下記の粒度の異なる副生消石灰B〜Eをそれぞれ使用して、水硬性組成物を得る際の温度(試験温度)を20℃から10℃又は30℃とした以外は同様にして、普通ポルトランドセメント(pH14、工業品)100部、セメント混和剤10部からなる水硬性組成物を得た。
その後、この水硬性組成物に水(上水道水)40質量部を更に配合して混合し、凝結試験を行った。
凝結試験は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発時間を測定した。
上記の各評価の結果を表8に示す。
Experiment No. In the example of 3, the temperature (test temperature) at the time of obtaining the hydraulic composition by using the following by-product slaked limes B to E having different particle sizes instead of the by-product slaked lime A is set to 20 ° C. to 10 ° C. or 30 ° C. A hydraulic composition composed of 100 parts of ordinary Portland cement (pH 14, industrial product) and 10 parts of cement admixture was obtained in the same manner except that the temperature was set to ° C.
Then, 40 parts by mass of water (tap water) was further mixed with this hydraulic composition and mixed, and a coagulation test was conducted.
The setting test was carried out in accordance with JIS R5201 “Physical test method for cement”. The coagulation test measured the onset time of coagulation.
The results of each of the above evaluations are shown in Table 8.

Figure 0006902644
Figure 0006902644

表8に示すように、カルシウムアルミネートの平均粒径を1〜250μmとすることで、各保管日数における凝結時間及び圧縮強度が良好であることが確認できた。 As shown in Table 8, it was confirmed that the setting of the average particle size of calcium aluminate was 1 to 250 μm, that the setting time and the compressive strength were good in each storage day.

以上の結果からわかるように、本発明によれば、水硬性組成物に予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することができる。また、本発明によれば、貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することができる。 As can be seen from the above results, according to the present invention, a hydraulic composition having ultrafast hardness and high strength of a cured product, which is unlikely to deteriorate in storage stability even when preliminarily blended with the hydraulic composition, can be obtained. A cement admixture that can be given can be provided. Further, according to the present invention, it is possible to provide a hydraulic composition having ultrafast hardness and high strength of a cured product, while the storage stability is unlikely to decrease.

本発明は、特に土木分野、建築分野等で用いられるセメント混和剤に好適に使用できる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used especially for cement admixtures used in the fields of civil engineering, construction and the like.

Claims (4)

副生消石灰と、下記(1)〜(3)を満たす酸性の硫酸アルミニウムとを含むセメント混和剤。
(1)前記硫酸アルミニウムが非晶質である。
(2)前記硫酸アルミニウムの固体27Al−NMRによって得られるスペクトルにおいて、化学シフト−0.20〜−20.00ppmにピークを有し、当該ピークの半値幅が10.00〜35.00ppmである。
(3)粒径100μm以上の粒子が70質量%以下で、かつ、粒径10μm以下の粒子が30質量%未満である。
A cement admixture containing by-product slaked lime and acidic aluminum sulfate satisfying the following (1) to (3).
(1) The aluminum sulfate is amorphous.
(2) The solid aluminum sulfate 27 In the spectrum obtained by Al-NMR, it has a peak at a chemical shift of -0.2 to -20.00 ppm, and the half width of the peak is 10.00 to 35.00 ppm. ..
(3) Particles having a particle size of 100 μm or more are 70% by mass or less, and particles having a particle size of 10 μm or less are less than 30% by mass.
前記硫酸アルミニウムのpHが1〜6である請求項1に記載のセメント混和剤。 The cement admixture according to claim 1, wherein the pH of the aluminum sulfate is 1 to 6. 前記副生消石灰の平均粒径が1〜300μmである請求項1又は2に記載のセメント混和剤。 The cement admixture according to claim 1 or 2, wherein the by-product slaked lime has an average particle size of 1 to 300 μm. 請求項1〜3のいずれか1項に記載のセメント混和剤と、水硬性物質とを含む水硬性組成物。


A hydraulic composition containing the cement admixture according to any one of claims 1 to 3 and a hydraulic substance.


JP2020047915A 2019-08-02 2020-03-18 Cement admixture and hydraulic composition Active JP6902644B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020047915A JP6902644B1 (en) 2020-03-18 2020-03-18 Cement admixture and hydraulic composition
PCT/JP2020/028848 WO2021024853A1 (en) 2019-08-02 2020-07-28 Cement admixture and hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047915A JP6902644B1 (en) 2020-03-18 2020-03-18 Cement admixture and hydraulic composition

Publications (2)

Publication Number Publication Date
JP6902644B1 true JP6902644B1 (en) 2021-07-14
JP2021147271A JP2021147271A (en) 2021-09-27

Family

ID=76753140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047915A Active JP6902644B1 (en) 2019-08-02 2020-03-18 Cement admixture and hydraulic composition

Country Status (1)

Country Link
JP (1) JP6902644B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518682B1 (en) * 2003-02-04 2005-10-05 주식회사 실크로드시앤티 Composition of accelerator for shotcrete
JP5164315B2 (en) * 2005-07-22 2013-03-21 電気化学工業株式会社 Spraying material and spraying method using the same
JP5674543B2 (en) * 2011-04-20 2015-02-25 電気化学工業株式会社 Spraying method
ITMI20121255A1 (en) * 2012-07-18 2014-01-19 Mapei Spa ADDITIONAL ADDITIVES OF GRIPPING AND HARDENING
JP6488340B2 (en) * 2017-08-31 2019-03-20 デンカ株式会社 Quick hardening material and quick hardening cement composition
JP7209001B2 (en) * 2018-08-31 2023-01-19 デンカ株式会社 Curing agent for concrete composition and curing method for concrete composition

Also Published As

Publication number Publication date
JP2021147271A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP6488340B2 (en) Quick hardening material and quick hardening cement composition
JP6429126B2 (en) Cement clinker and cement composition
JP4616113B2 (en) Quick-hardening clinker and cement composition
JP6972213B2 (en) Cement admixture and hydraulic composition
JP6429125B2 (en) Cement clinker and cement composition
US8663384B2 (en) Cement admixture and cement composition
JP2019043805A (en) Cement admixture, and hydraulic composition
JP7037879B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
JP6675033B1 (en) Cement admixture and hydraulic composition
JP6902644B1 (en) Cement admixture and hydraulic composition
WO2021024853A1 (en) Cement admixture and hydraulic composition
JP6972214B2 (en) Cement admixture and hydraulic composition
JP6902643B1 (en) Cement admixture and hydraulic composition
JP6387002B2 (en) Cement rapid hardwood manufacturing method
JP3549645B2 (en) Cement admixture and cement composition
JP2001064053A (en) Cement admixture and cement composition
JPH09110490A (en) Cement admixture and cement composition
JP7180742B1 (en) Cement composition and its manufacturing method
JP3949091B2 (en) Spraying method
JP6801699B2 (en) Fast-hardening admixture for cement, its manufacturing method and quick-hardening cement composition
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP5701546B2 (en) Spraying material and spraying method using the same
JP7037878B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
JP2023081472A (en) Hydraulic composition, producing method of hydraulic composition, and method of increasing compressive strength of hydraulic composition
WO2022070761A1 (en) Ground-improving material slurry, ground-improving material cured product, and ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6902644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150