JP2020024818A - Aeronautical light control device - Google Patents

Aeronautical light control device Download PDF

Info

Publication number
JP2020024818A
JP2020024818A JP2018147813A JP2018147813A JP2020024818A JP 2020024818 A JP2020024818 A JP 2020024818A JP 2018147813 A JP2018147813 A JP 2018147813A JP 2018147813 A JP2018147813 A JP 2018147813A JP 2020024818 A JP2020024818 A JP 2020024818A
Authority
JP
Japan
Prior art keywords
temperature
control device
current value
light
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018147813A
Other languages
Japanese (ja)
Other versions
JP7132020B2 (en
Inventor
正和 東野
Masakazu Tono
正和 東野
博則 市川
Hironori Ichikawa
博則 市川
古澤 博行
Hiroyuki Furusawa
博行 古澤
俊英 妙川
Shiyunei Taekawa
俊英 妙川
健二 宮
Kenji Miya
健二 宮
正臣 吉川
Masaomi Yoshikawa
正臣 吉川
鮫田 芳富
Yoshitomi Sameda
芳富 鮫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Infrastructure Systems and Solutions Corp
Oki Communication Systems Co Ltd
Original Assignee
Toshiba Infrastructure Systems and Solutions Corp
Oki Communication Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Infrastructure Systems and Solutions Corp, Oki Communication Systems Co Ltd filed Critical Toshiba Infrastructure Systems and Solutions Corp
Priority to JP2018147813A priority Critical patent/JP7132020B2/en
Publication of JP2020024818A publication Critical patent/JP2020024818A/en
Application granted granted Critical
Publication of JP7132020B2 publication Critical patent/JP7132020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

To provide an aeronautical light control device in which heat evolution accompanying turning on/off control of an aeronautical light can be suppressed and a life operation number of times can be extended to improve safety, reliability, and a life.SOLUTION: A light control device 12 is housed in a completely tightly closed rubber mold frame 11. In a turning on/off circuit of an aeronautical light 1, an FET4 and an auxiliary relay 3 are provided. A current value determination unit 7, a temperature determination unit 9, and a control unit 10 are provided. The current value determination unit 7 determines whether a measured value of current flowing through the turning on/off circuit is larger or smaller than a reference value. The temperature determination unit 9 determines whether a measured temperature in the rubber mold frame 11 is higher or lower than a reference temperature. On the basis of determination results of the current value determination unit 7 and the temperature determination unit 9, the control unit 10 controls the FET 4 and the auxiliary relay 3 by performing switching over between a combination mode in which the FET 4 and the auxiliary relay 3 are used together and a single mode in which only the FET 4 is used.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、航空灯火の点消灯制御を行う航空灯火制御装置に関するものである。   An embodiment of the present invention relates to an aviation light control device that performs on / off control of aviation light.

空港のフィールドに設置された端末子局には、航空灯火制御装置が設けられており、航空灯火の点消灯制御が行われている。従来の航空灯火制御装置では、航空灯火の点消灯回路に補助リレーなどの機械的スイッチを組み込んだ機構が採用されている。補助リレーは、閉路時の発熱は小さく、完全短絡できるといったメリットがある。   An airplane light control device is provided in a terminal substation installed in a field of an airport, and is used to control turning on and off the airplane light. A conventional aeronautical light control device employs a mechanism in which a mechanical switch such as an auxiliary relay is incorporated in a circuit for turning on and off an aerial light. Auxiliary relays have the advantage that they generate less heat when closed and can be completely short-circuited.

しかし、補助リレーは、電流開閉における寿命動作回数が少ない。灯器にLEDが採用されつつある現在、製品全体の期待寿命を長期化させたいという要請が強く、寿命動作回数の少なさは大きなデメリットとなっている。そこで、航空灯火の点消灯回路に、電解効果トランジスタ(以下、FETと呼ぶ)などの半導体スイッチを組み込んだ機構が提案されている。   However, the auxiliary relay has a small number of lifetime operations in current switching. At present, as LEDs are being used in lamps, there is a strong demand to extend the expected life of the entire product, and the small number of life operations is a major disadvantage. Therefore, a mechanism has been proposed in which a semiconductor switch such as a field effect transistor (hereinafter, referred to as an FET) is incorporated in a lighting / lighting circuit of an aeronautical light.

ところがFETは、寿命動作回数が多いというメリットを持つ反面、閉路した際の抵抗値が大きい。そのため、FETでは、発熱が大きく、また、電流が分流して完全な短絡ができないといったデメリットがある。   However, the FET has a merit that the number of lifetime operations is large, but has a large resistance value when closed. For this reason, the FET has disadvantages that it generates a large amount of heat and that a current is shunted to complete a short circuit.

特に、FETを用いた航空灯火制御装置を屋外で使用する場合には、発熱が大きいことが問題となる。なぜなら、屋外用の航空灯火制御装置は、優れた防水性を確保すべく完全に密閉したゴムモールド筐体内に収納しているので、筐体から熱を逃がすことが難しく、FETの放熱性が低いからである。   In particular, when an aeronautical light control device using an FET is used outdoors, a large heat generation becomes a problem. This is because the outdoor aeronautical lighting control device is housed in a completely sealed rubber mold housing to ensure excellent waterproofness, so it is difficult to release heat from the housing and the heat dissipation of the FET is low. Because.

特開2000−150174号公報JP 2000-150174 A

従来の航空灯火制御装置では、FETなどの半導体スイッチにて航空灯火の点消灯制御を行うと、発熱性が高く、特に密閉された筐体内に収納する場合は放熱性の低さが問題となっている。また、補助リレーなどの機械的スイッチを用いる場合には、開閉動作寿命が短いといった不具合が指摘されていた。   In the conventional aeronautical light control device, if the on / off control of the aeronautical light is performed by a semiconductor switch such as an FET, the heat generation is high, and the low heat radiation property becomes a problem especially when housed in a closed housing. ing. In addition, when a mechanical switch such as an auxiliary relay is used, it has been pointed out that the switching operation life is short.

本実施形態は、上記問題点を解決するために提案されたものであり、航空灯火の点消灯制御に伴う発熱を抑えることができると同時に寿命動作回数を延ばすことができ、安全性及び信頼性の向上並びに長寿命化を図った灯火制御装置を提供することを課題とする。   The present embodiment has been proposed to solve the above-mentioned problem, and it is possible to suppress heat generation due to the control of turning on and off the aviation light, and at the same time, it is possible to extend the number of lifetime operations, thereby improving safety and reliability. It is an object of the present invention to provide a lamp control device which improves the life and extends the life.

上記の課題を達成するために、本発明の実施形態の灯火制御装置は、次の構成要素(a)、(b)を備える。
(a) 航空灯火の点消灯回路に対し並列に接続される半導体スイッチ及び機械的スイッチ。
(b)前記半導体スイッチ及び前記機械的スイッチを併用する併用モードと、前記半導体スイッチのみを用いる単独モードとを切り替えて、前記半導体スイッチ及び前記機械的スイッチを制御する制御部。
In order to achieve the above object, a lamp control device according to an embodiment of the present invention includes the following components (a) and (b).
(a) A semiconductor switch and a mechanical switch connected in parallel to a circuit for turning on and off an aircraft light.
(b) a control unit that controls the semiconductor switch and the mechanical switch by switching between a combined mode using both the semiconductor switch and the mechanical switch and a single mode using only the semiconductor switch.

第1の実施形態の構成を示す図FIG. 2 shows a configuration of the first embodiment. 第1の実施形態における電流値に基づく消灯制御処理のフローチャートFlowchart of light-off control processing based on current value in the first embodiment 第1の実施形態における温度に基づく消灯制御処理のフローチャートFlowchart of light-off control processing based on temperature in the first embodiment 他の実施形態の構成を示す図Diagram showing the configuration of another embodiment

(第1の実施形態)
[構成]
以下、本発明の第1の実施形態について、図1を参照して具体的に説明する。図1に示すように、第1の実施形態に係る灯火制御装置12は、空港のフィールド内の端末子局に配置されている。
(First embodiment)
[Constitution]
Hereinafter, a first embodiment of the present invention will be specifically described with reference to FIG. As shown in FIG. 1, the light control device 12 according to the first embodiment is disposed in a terminal station in a field of an airport.

灯火制御装置12は、航空灯火1及び電源2に接続されており、航空灯火1の点消灯回路が設けられている。電源2としては、サイリスタスイッチングによる電流調整が可能なCCRなどが一般的である。航空灯火1の点消灯回路には、半導体スイッチであるFET4と、機械的スイッチである補助リレー3とが、並列に接続されている。FET4及び補助リレー3は、電源2から航空灯火1への回路をショートさせ、電源供給を制御することで航空灯火1を点消灯させるものである。   The light control device 12 is connected to the aviation light 1 and the power supply 2, and is provided with a circuit for turning on and off the aviation light 1. As the power supply 2, a CCR or the like capable of adjusting current by thyristor switching is generally used. In the lighting / lighting circuit of the aircraft light 1, an FET 4 as a semiconductor switch and an auxiliary relay 3 as a mechanical switch are connected in parallel. The FET 4 and the auxiliary relay 3 short-circuit the circuit from the power supply 2 to the aviation light 1 and turn on / off the aviation light 1 by controlling the power supply.

また、航空灯火1の点消灯回路には、CT5を介して航空灯火1への電流値を計測する電流計測部6が接続されている。電流計測部6には電流値判定部7が接続されている。電流値判定部7は、電流計測部6による計測電流値と予め設定された基準値との大小を判定する。電流の基準値としては5Aなど適宜選択可能である。   Further, a current measuring unit 6 for measuring a current value to the aviation light 1 via the CT 5 is connected to the lighting / light-off circuit of the aviation light 1. The current measuring section 6 is connected to a current value judging section 7. The current value determining unit 7 determines the magnitude of the current value measured by the current measuring unit 6 and a preset reference value. The reference value of the current can be appropriately selected, such as 5 A.

灯火制御装置12は、完全に密閉されたゴムモールド筐体11に収納されている。ゴムモールド筐体11には、ゴムモールド筐体11内の温度を計測する温度計測部8が設置されている。温度計測部8には温度判定部9が接続されている。温度判定部9は、温度計測部8にて計測された計測温度と予め設定された基準温度との大小を判定する。基準温度については自由に選択することが可能である。   The light control device 12 is housed in a completely sealed rubber mold housing 11. A temperature measurement unit 8 that measures the temperature inside the rubber mold housing 11 is installed in the rubber mold housing 11. The temperature measuring unit 8 is connected to a temperature determining unit 9. The temperature determining unit 9 determines the magnitude of the measured temperature measured by the temperature measuring unit 8 and a preset reference temperature. The reference temperature can be freely selected.

電流値判定部7及び温度判定部9には制御部10が接続されている。制御部10は、FET4及び補助リレー3を併用する併用モードと、FET4のみを用いる単独モードとを切り替えて、FET4及び補助リレー3を制御する。   A control unit 10 is connected to the current value judgment unit 7 and the temperature judgment unit 9. The control unit 10 controls the FET 4 and the auxiliary relay 3 by switching between a combined mode using both the FET 4 and the auxiliary relay 3 and a single mode using only the FET 4.

制御部10は、電流値判定部7の判定結果が電流値≧基準値である時、あるいは温度判定部9の判定結果が計測温度≧設定温度である時、併用モードとなり、FET4及び補助リレー3に制御指令を出力する。また、制御部10は、電流値判定部7の判定結果が電流値<基準値である時、あるいは温度判定部9の判定結果が計測温度<設定温度である時、単独モードとなり、FET4にのみ制御指令を出力する。   When the determination result of the current value determination unit 7 satisfies the relationship of current value ≧ reference value or the determination result of the temperature determination unit 9 satisfies the measurement temperature ≧ set temperature, the control unit 10 enters the combined mode, and sets the FET 4 and the auxiliary relay 3. To output a control command. When the determination result of the current value determination unit 7 satisfies the current value <reference value, or when the determination result of the temperature determination unit 9 satisfies the measurement temperature <set temperature, the control unit 10 enters the single mode. Outputs control commands.

さらに、制御部10は、航空灯火1の点消灯回路を閉路とする時の併用モードでは、FET4を先に閉じ、次に補助リレー3を閉じるように制御する。また、制御部10は、航空灯火1の点消灯回路を開路とする時の併用モードでは、補助リレー3を先に開放し、次にFET4を開放するように制御する。   Further, the control unit 10 controls the FET 4 to be closed first, and then the auxiliary relay 3 to be closed in the combined mode when the circuit for turning on and off the aircraft light 1 is closed. Further, in the combined mode when the circuit for turning on and off the aircraft light 1 is opened, the control unit 10 controls the auxiliary relay 3 to be opened first, and then the FET 4 to be opened.

(作用)
第1の実施形態では、航空灯火1の点消灯回路における電流値あるいは筐体11内の温度に基づいて、次のような消灯制御処理を実施する。まず、図2のフローチャートを用いて、電流値に基づく消灯制御処理について説明する。
(Action)
In the first embodiment, the following turn-off control processing is performed based on the current value in the lighting / turn-off circuit of the aviation light 1 or the temperature in the housing 11. First, a light-off control process based on a current value will be described with reference to the flowchart in FIG.

ST01では電源2がON状態、ST02では、制御部10はFET4のみに制御指令を出力する単独モードとなり、FET4がON状態、補助リレー3はOFF状態である。ON状態であるFET4は、電源2から航空灯火1への回路をショートさせて、航空灯火1を消灯させる。ST03では、CT5及び電流計測部6が点消灯回路に流れる電流値を計測する。   In ST01, the power supply 2 is ON, and in ST02, the control unit 10 is in the single mode in which the control command is output only to the FET 4, the FET 4 is ON, and the auxiliary relay 3 is OFF. The FET 4 in the ON state short-circuits the circuit from the power supply 2 to the aviation light 1 and turns off the aviation light 1. In ST03, the CT 5 and the current measuring unit 6 measure the value of the current flowing in the lighting circuit.

ST04では、電流値判定部7が、電流計測部6による計測電流値と予め設定された基準値との大小を判定し、計測電流値≧基準値となる時(ST04のYES)、制御部10は単独モードを切り替えて併用モードとなり、補助リレー3に制御指令を出力する。すなわち、計測電流値≧基準値となると、制御部10により補助リレー3はOFF状態からON状態になる(ST05)。   In ST04, current value determining section 7 determines the magnitude of the current value measured by current measuring section 6 and a preset reference value, and when measured current value ≧ reference value (YES in ST04), control section 10 determines the current value. Switches the single mode to the combined mode, and outputs a control command to the auxiliary relay 3. That is, when the measured current value ≧ the reference value, the control unit 10 switches the auxiliary relay 3 from the OFF state to the ON state (ST05).

ONとなった補助リレー3は、電源2から航空灯火1への回路をショートさせる。このため、FET4に流れる電流値の上昇を抑えながら、消灯制御が完了する(ST06)。また、電流値判定部7の判定結果が計測電流値<基準値であれば(ST04のNO)、制御部10は単独モードを維持して、FET4だけがONのままで、消灯制御は完了する(ST06)。   When the auxiliary relay 3 is turned ON, the circuit from the power supply 2 to the aviation light 1 is short-circuited. Therefore, the light-off control is completed while suppressing the rise in the value of the current flowing through the FET 4 (ST06). If the determination result of the current value determination unit 7 is the measured current value <the reference value (NO in ST04), the control unit 10 maintains the single mode, only the FET 4 remains ON, and the light-off control is completed. (ST06).

続いて、図3のフローチャートを用いて、筐体内温度に基づく消灯制御処理について説明する。ST11では電源2がON状態であり、ST12では制御部10はFET4のみに制御指令を出力する単独モードとなり、FET4がON状態、補助リレー3はOFF状態である。ON状態であるFET4は、電源2から航空灯火1への回路をショートさせて、航空灯火1を消灯させる。ST13では温度計測部8がゴムモールド筐体11内の温度を計測する。   Next, a light-off control process based on the temperature in the housing will be described with reference to the flowchart in FIG. In ST11, the power supply 2 is ON, and in ST12, the control unit 10 is in the single mode of outputting a control command to only the FET 4, the FET 4 is ON, and the auxiliary relay 3 is OFF. The FET 4 in the ON state short-circuits the circuit from the power supply 2 to the aviation light 1 and turns off the aviation light 1. In ST13, the temperature measurement section 8 measures the temperature inside the rubber mold housing 11.

ST14では、温度判定部9が、温度計測部8による計測温度と予め設定された基準温度との大小を判定し、計測温度≧基準温度となる時(ST14のYES)、制御部10は単独モードを切り替えて併用モードとなり、補助リレー3に制御指令を出力する。すなわち、計測温度≧基準温度となると、制御部10により補助リレー3はOFF状態からON状態になる(ST15)。   In ST14, the temperature determination section 9 determines the magnitude of the temperature measured by the temperature measurement section 8 and a preset reference temperature, and when the measured temperature ≥ the reference temperature (YES in ST14), the control section 10 sets the single mode. Is switched to the combined mode, and a control command is output to the auxiliary relay 3. That is, when the measured temperature ≥ the reference temperature, the auxiliary relay 3 is changed from the OFF state to the ON state by the control unit 10 (ST15).

ONとなった補助リレー3は、電源2から航空灯火1への回路をショートさせる。このため、FET4に流れる電流値の上昇を抑えつつ、消灯制御が完了する(ST16)。また、温度判定部9の判定結果が計測温度<基準温度であれば(ST14のNO)、制御部10は単独モードを維持して、FET4だけがONのままで消灯制御は完了する(ST16)。   When the auxiliary relay 3 is turned on, the circuit from the power supply 2 to the aviation light 1 is short-circuited. Therefore, the turning-off control is completed while suppressing an increase in the value of the current flowing through the FET 4 (ST16). If the determination result of the temperature determination unit 9 is the measured temperature <the reference temperature (NO in ST14), the control unit 10 maintains the single mode, and the light-off control is completed while only the FET 4 remains ON (ST16). .

(効果)
上述したように、第1の実施形態においては、航空灯火1の点消灯回路にFET4及び補助リレー3を設け、制御部10が、FET4及び補助リレー3を併用する併用モードと、FET4のみを用いる単独モードとを切り替えて、FET4及び補助リレー3を制御する。そのため、第1の実施形態では、寿命動作回数が多いFET4のみを用いる単独モードを実施することで、寿命動作回数が少ない補助リレー3の使用機会を減らすことができる。従って、補助リレー3の使用を限定することができ、製品全体における長寿命化に寄与することが可能となる。
(effect)
As described above, in the first embodiment, the FET 4 and the auxiliary relay 3 are provided in the lighting and extinguishing circuit of the aviation light 1, and the control unit 10 uses only the FET 4 and the auxiliary relay 3 in the combined mode. The FET 4 and the auxiliary relay 3 are controlled by switching to the single mode. Therefore, in the first embodiment, the opportunity to use the auxiliary relay 3 having a small number of life operations can be reduced by performing the single mode using only the FET 4 having a long life operation number. Therefore, the use of the auxiliary relay 3 can be limited, and it is possible to contribute to prolonging the life of the entire product.

また、制御部10では、単独モードとなってFET4だけが通電している場合、航空灯火1の点消灯回路を流れる電流値は基準値よりも小さい。また、ゴムモールド筐体11内の計測温度も設定温度よりは低い。そのため、灯火制御装置12がゴムモールド筐体11に収納されていても、FET4の発熱が大きな問題を引き起こす心配がない。従って、灯火制御装置12は優れた安全性及び信頼性を確保することができる。   Further, in the control unit 10, in the single mode, when only the FET 4 is energized, the current value flowing through the lighting / lighting circuit of the aviation light 1 is smaller than the reference value. Further, the measured temperature inside the rubber mold housing 11 is also lower than the set temperature. Therefore, even if the light control device 12 is housed in the rubber mold housing 11, there is no fear that heat generation of the FET 4 causes a serious problem. Therefore, the light control device 12 can ensure excellent safety and reliability.

さらに、第1の実施形態では、電流値≧基準値、あるいは計測温度≧設定温度となって、FET4の発熱が問題となる可能性が高まった場合には、制御部10が、FET4のみを用いる単独モードから、FET4及び補助リレー3を併用する併用モードに切り替える。そのため、FET4だけではなく補助リレー3もONになり、補助リレー3がONになった分だけFET4に流れる電流値の上昇を抑えことができる。これにより、FET4の発熱を抑制することが可能である。   Further, in the first embodiment, when the current value ≧ the reference value or the measured temperature ≧ the set temperature, and the possibility that heat generation of the FET 4 becomes a problem increases, the control unit 10 uses only the FET 4. The mode is switched from the single mode to the combined mode using the FET 4 and the auxiliary relay 3 together. Therefore, not only the FET 4 but also the auxiliary relay 3 is turned ON, and the rise of the current flowing through the FET 4 can be suppressed by the amount of the ON of the auxiliary relay 3. Thereby, it is possible to suppress heat generation of the FET 4.

従って、灯火制御装置12がゴムモールド筐体11に収納された場合でも、灯火制御装置12は発熱せず、優れた安全性及び信頼性を確保することができる。このような灯火制御装置12によれば、ゴムモールド筐体11内にFET4を組み込んでいても、ゴムモールド筐体11の放熱性の低さが、さして問題とならず、屋外で使用する装置として最適である。   Therefore, even when the light control device 12 is housed in the rubber mold housing 11, the light control device 12 does not generate heat, and excellent safety and reliability can be secured. According to such a light control device 12, even if the FET 4 is incorporated in the rubber molded case 11, the low heat radiation of the rubber molded case 11 does not cause any problem. Optimal.

また、第1の実施形態では、制御部10が併用モードである場合、閉路動作時つまり航空灯火1の消灯制御時にはFET4を補助リレー3よりも先に動作させ、開路動作時つまり航空灯火1の点灯制御時には、反対に補助リレー3の後からFET4が動作させている。そのため、FET4は良好なスイッチング動作性能を、効果的に発揮することができる。   In the first embodiment, when the control unit 10 is in the combined mode, the FET 4 is operated before the auxiliary relay 3 at the time of closing operation, that is, at the time of controlling the turning off of the aviation light 1, and at the time of opening operation, that is, when the aviation light 1 is turned off. At the time of lighting control, on the contrary, the FET 4 is operated after the auxiliary relay 3. Therefore, the FET 4 can effectively exhibit good switching operation performance.

(他の実施形態)
以上説明した実施形態は、本発明の実施形態の一例として提示したものであり、発明の範囲を限定することは意図していない。本発明の実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等な範囲に含まれる。
(Other embodiments)
The embodiment described above is presented as an example of the embodiment of the present invention, and is not intended to limit the scope of the invention. The embodiment of the present invention can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

例えば、航空灯火監視制御システムでは電力線搬送通信を採用している。電力線搬送信号には通常、航空灯火1の点消灯回路に流れる電流値の情報が含まれる。そこで、制御部10がこの電流値の情報を受け取り、電流値の情報に基づいて併用モードと単独モードとを切り替えるようにしてもよい(図4参照)。   For example, airline light monitoring and control systems employ power line carrier communication. The power line carrier signal usually contains information on the value of the current flowing through the lighting / lighting circuit of the aviation light 1. Therefore, the control unit 10 may receive the current value information and switch between the combined mode and the single mode based on the current value information (see FIG. 4).

この実施形態によれば、制御部10が電力線搬送信号に含まれる電流値の情報に基づいて併用モードと単独モードとを切り替えることができるので、電流計測部6及び電流値判定部7を省略することができ、構成の簡略化を進めることができる。その結果、ゴムモールド筐体11を収納する航空灯火制御装置を、よりコンパクト化することが可能となる。   According to this embodiment, since the control unit 10 can switch between the combined mode and the single mode based on the information on the current value included in the power line carrier signal, the current measurement unit 6 and the current value determination unit 7 are omitted. The configuration can be simplified. As a result, the aeronautical light control device that houses the rubber mold housing 11 can be made more compact.

また、上記の第1の実施形態では、併用モードにおいて、閉路動作時にはFET4を補助リレー3よりも先行して動作させ、開路動作時にはFET4を補助リレー3の後から動作させるようにしたが、これに限定されるものではなく、補助リレー3及びFET4の動作タイミングは適宜変更可能である。また、半導体スイッチとしてはFET4以外であっても良いし、機械的スイッチとしては補助リレー以外であっても良い。   In the first embodiment, in the combined mode, the FET 4 is operated before the auxiliary relay 3 during the closing operation, and the FET 4 is operated after the auxiliary relay 3 during the opening operation. However, the operation timing of the auxiliary relay 3 and the FET 4 can be appropriately changed. The semiconductor switch may be other than the FET 4, and the mechanical switch may be other than the auxiliary relay.

1…航空灯火
2…電源
3…補助リレー
4…FET
5…CT
6…電流計測部
7…電流値判定部
8…温度計測部
9…温度判定部
10…制御部
11…ゴムモールド筐体
12…航空灯火制御装置
1 ... Aviation lights 2 ... Power supply 3 ... Auxiliary relay 4 ... FET
5 ... CT
6 Current measuring unit 7 Current value judging unit 8 Temperature measuring unit 9 Temperature judging unit 10 Control unit 11 Rubber mold casing 12 Aviation light control device

Claims (9)

航空灯火の点消灯回路に対し並列に接続される半導体スイッチ及び機械的スイッチと、
前記半導体スイッチ及び前記機械的スイッチを併用する併用モードと、前記半導体スイッチのみを用いる単独モードとを切り替えて、前記半導体スイッチ及び前記機械的スイッチを制御する制御部と、を備えた航空灯火制御装置。
A semiconductor switch and a mechanical switch connected in parallel with the lighting circuit of the aeronautical light;
An aeronautical light control device comprising: a control unit that switches between a combined mode using both the semiconductor switch and the mechanical switch and a single mode using only the semiconductor switch to control the semiconductor switch and the mechanical switch. .
前記航空灯火の点消灯回路に流れる電流値と予め設定された基準値との大小を判定する電流値判定部を備え、
前記制御部は、
前記電流値判定部の判定結果が前記電流値≧前記基準値である時、前記併用モードとなり、
前記電流値判定部の判定結果が前記電流値<前記基準値である時、前記単独モードとなる請求項1に記載の航空灯火制御装置。
A current value determining unit that determines the magnitude of a current value flowing through the lighting / lighting circuit of the aeronautical light and a preset reference value,
The control unit includes:
When the determination result of the current value determination unit is the current value ≧ the reference value, the combination mode is set,
2. The aviation light control device according to claim 1, wherein the single mode is set when a determination result of the current value determination section satisfies the current value <the reference value.
前記航空灯火の点消灯回路における電流値を計測する電流計測部を備えた請求項2に記載の航空灯火制御装置。   The aeronautical light control device according to claim 2, further comprising a current measuring unit that measures a current value in the aeronautical light on / off circuit. 前記制御部は、前記航空灯火の点消灯回路に流れる電流値の情報を含む電力線搬送信号を受け取り、当該電流値の情報に基づいて前記併用モードと前記単独モードとを切り替える請求項2に記載の航空灯火制御装置。   3. The control unit according to claim 2, wherein the control unit receives a power line carrier signal including information on a current value flowing in the lighting / lighting circuit of the aircraft light, and switches between the combined mode and the single mode based on the information on the current value. 4. Aviation light control device. 密閉された筐体に収納された航空灯火制御装置であって、
前記筐体内の温度を計測する温度計測部と、
前記温度計測部にて計測された計測温度と予め設定された基準温度との大小を判定する温度判定部と、を備え、
前記制御部は、
前記温度判定部の判定結果が前記計測温度≧前記基準温度である時、前記併用モードとなり、
前記温度判定部の判定結果が前記計測温度<前記基準温度である時、前記単独モードとなる請求項1に記載の航空灯火制御装置
An aviation light control device housed in a sealed housing,
A temperature measurement unit that measures the temperature inside the housing,
A temperature determination unit that determines the magnitude of the measured temperature measured by the temperature measurement unit and a preset reference temperature,
The control unit includes:
When the determination result of the temperature determination unit is the measured temperature ≧ the reference temperature, the combination mode is set,
2. The aircraft light control device according to claim 1, wherein the single mode is set when a determination result of the temperature determination unit satisfies the measurement temperature <the reference temperature. 3.
前記筐体はゴムモールド筐体である請求項5に記載の航空灯火制御装置。   The aviation light control device according to claim 5, wherein the housing is a rubber molded housing. 前記制御部は、前記航空灯火の点消灯回路を閉路とする時の前記併用モードでは、前記半導体スイッチを先に閉じ、次に前記機械的スイッチを閉じるように制御する請求項1〜6のいずれかに記載の航空灯火制御装置。   The control unit controls the semiconductor switch to be closed first and then the mechanical switch to be closed in the combined mode when the circuit for turning on and off the aeronautical light is closed. An aviation light control device according to any of the claims. 前記制御部は、前記航空灯火の点消灯回路を開路とする時の前記併用モードでは、前記機械的スイッチを先に開放し、次に前記半導体スイッチを開放するように制御する請求項1〜7のいずれかに記載の航空灯火制御装置。   The said control part performs control so that the said mechanical switch may be opened first, and then the said semiconductor switch may be opened in the said combination mode when the lighting circuit of the aeronautical light is opened. The aviation light control device according to any one of the above. 前記半導体スイッチは電解効果トランジスタであり、
前記機械的スイッチは補助リレーである請求項1〜8のいずれかに記載の航空灯火制御装置。
The semiconductor switch is a field effect transistor,
The aircraft light control device according to any one of claims 1 to 8, wherein the mechanical switch is an auxiliary relay.
JP2018147813A 2018-08-06 2018-08-06 Aircraft lighting controller Active JP7132020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018147813A JP7132020B2 (en) 2018-08-06 2018-08-06 Aircraft lighting controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018147813A JP7132020B2 (en) 2018-08-06 2018-08-06 Aircraft lighting controller

Publications (2)

Publication Number Publication Date
JP2020024818A true JP2020024818A (en) 2020-02-13
JP7132020B2 JP7132020B2 (en) 2022-09-06

Family

ID=69618886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018147813A Active JP7132020B2 (en) 2018-08-06 2018-08-06 Aircraft lighting controller

Country Status (1)

Country Link
JP (1) JP7132020B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473202A (en) * 1992-06-05 1995-12-05 Brian Platner Control unit for occupancy sensor switching of high efficiency lighting
JPH11204269A (en) * 1998-01-09 1999-07-30 Hitachi Ltd Lamp control communication device
JP2003137196A (en) * 2001-11-05 2003-05-14 Toshiba Corp Airport facility monitoring control system using power line carrier
JP2006261085A (en) * 2005-02-17 2006-09-28 Toshiba Lighting & Technology Corp Beacon light
JP2009296826A (en) * 2008-06-06 2009-12-17 Yazaki Corp Relay control device
JP2011119228A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Hybrid relay

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473202A (en) * 1992-06-05 1995-12-05 Brian Platner Control unit for occupancy sensor switching of high efficiency lighting
JPH11204269A (en) * 1998-01-09 1999-07-30 Hitachi Ltd Lamp control communication device
JP2003137196A (en) * 2001-11-05 2003-05-14 Toshiba Corp Airport facility monitoring control system using power line carrier
JP2006261085A (en) * 2005-02-17 2006-09-28 Toshiba Lighting & Technology Corp Beacon light
JP2009296826A (en) * 2008-06-06 2009-12-17 Yazaki Corp Relay control device
JP2011119228A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Hybrid relay

Also Published As

Publication number Publication date
JP7132020B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
US8861162B2 (en) High power solid state power controller (SSPC) solution for primary power distribution applications
ATE473553T1 (en) SELF-PROTECTIVE ELECTRICAL SWITCHING DEVICE
EP2149895B1 (en) A power and control unit for a low or medium voltage apparatus
KR102351067B1 (en) Power supply aparatus for electric vehicle and power supply method using it
JP2020024818A (en) Aeronautical light control device
US1701357A (en) Circuit-controlling device
WO2015154558A1 (en) Transient interruption trigger device for alternating-current power source
CN203871850U (en) Protection device of power system and power system thereof
CN207251571U (en) Possesses the current limliting time delayed turn-off on-off circuit of the repeatable triggering of overcurrent memory function
CN102815219A (en) Relay protection circuit used during emergency ventilation switching of air conditioner of railway vehicle
HK1090758A1 (en) A supply unit for a driver circuit and operating method therefor
CN109417282B (en) Semiconductor cutting apparatus
KR101895124B1 (en) The limiting device for short circuit current in submarine and the limiting method for short circuit current using thereof
RU2343580C1 (en) Electromagnetic drive
CN107346965A (en) Possesses the current limliting time delayed turn-off on-off circuit of the repeatable triggering of excessively stream memory function
CN203811773U (en) HD4 breaker switch bridging circuit
RU2014139650A (en) ELECTRIC DRIVE TOOL AND SYSTEM FOR PREVENTING ITS RE-STARTING
CN104835692A (en) Breaker operation mechanism control device and operation box thereof
CN208400786U (en) A kind of band warning lamp double-contact relay
KR20140062845A (en) Complex switch and switching method using the same
CN202169946U (en) Relay protection circuit for emergency ventilation switch of air conditioner on rail vehicle
CN219457772U (en) Current divider heat dissipation module and battery pack
CN206602698U (en) A kind of controllable mercury xenon lamp light-source system of power
CN103972858A (en) Overcurrent protection device
JP2007116777A (en) Device for breaking input of power supply input of robot system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7132020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150