JP2020020575A - 熱交換システム - Google Patents

熱交換システム Download PDF

Info

Publication number
JP2020020575A
JP2020020575A JP2019202560A JP2019202560A JP2020020575A JP 2020020575 A JP2020020575 A JP 2020020575A JP 2019202560 A JP2019202560 A JP 2019202560A JP 2019202560 A JP2019202560 A JP 2019202560A JP 2020020575 A JP2020020575 A JP 2020020575A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
liquid
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019202560A
Other languages
English (en)
Other versions
JP6783369B2 (ja
Inventor
大智 吉井
Daichi Yoshii
大智 吉井
大谷 雄一
Yuichi Otani
雄一 大谷
毅 金子
Takeshi Kaneko
毅 金子
長谷川 泰士
Hiroshi Hasegawa
泰士 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2019202560A priority Critical patent/JP6783369B2/ja
Publication of JP2020020575A publication Critical patent/JP2020020575A/ja
Application granted granted Critical
Publication of JP6783369B2 publication Critical patent/JP6783369B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】サイズ低減を図ることができる熱交換システムを提供する。【解決手段】熱交換システム10は、互いに間隔をあけて積層配置された複数のプレート121を有し、複数のプレート121によって、冷媒が流通する冷媒流路と冷水が流通する冷水流路とが交互に形成された第一熱交換器100と、第一熱交換器100の冷媒流路に冷媒を供給する冷媒供給部80と、第一熱交換器100の冷水流路に冷水を供給する冷水供給部90と、冷媒流路を通過した冷媒から気相分を分離させる気液分離部30と、気液分離部30を通過した冷媒の液相分が接触する伝熱管310を有する第二熱交換器300とを備える。【選択図】図4

Description

本発明は、熱交換システムに関する。
冷凍機等の冷却装置用の蒸発器の一つにプレート式熱交換器がある。プレート式熱交換器は熱交換器の体積当たりの流路断面積が大きいため、熱伝達率が高く、熱交換器自体のサイズ低減を図ることができる。
このようなプレート式熱交換器として、以下の特許文献1に記載のプレート式熱交換器が知られている。このプレート式熱交換器は、プレート式熱交換器の内部に導入された冷水と冷媒との熱交換を行う。導入された冷媒は、冷水からの熱を吸収することによって蒸発し、冷媒ガスとなり、プレート式熱交換器から排出される。
特許第3658677号公報
しかしながら、上記特許文献1のようなプレート式熱交換器は、冷媒である冷媒液を蒸発させて冷媒ガスにして排出する構成である。このため、熱交換途中において、冷媒は、冷媒液と冷媒ガスとが混合した二相流状態となる。プレート式熱交換器内における冷媒の蒸発が進むと、二相流状態の冷媒のうち、冷媒液に対する冷媒ガスの割合が高くなり過ぎるため、熱伝達率が極端に低下する。その結果、過剰の伝熱面積が必要となり、熱交換器自体のサイズが大きくなってしまう。
本発明は、サイズ低減を図ることができる熱交換システムを提供することを目的とする。
第1の態様の熱交換システムは、互いに間隔をあけて積層配置された複数のプレートを有し、前記複数のプレートによって、冷媒が流通する冷媒流路と冷水が流通する冷水流路とが交互に形成された第一熱交換器と、前記第一熱交換器の前記冷媒流路に前記冷媒を供給する冷媒供給部と、前記第一熱交換器の前記冷水流路に前記冷水を供給する冷水供給部と、前記冷媒流路を通過した前記冷媒から気相分を分離させる気液分離部と、前記気液分離部を通過した前記冷媒の液相分が接触する伝熱管を有する第二熱交換器と備える。
本態様では、第一熱交換器から排出された二相流の冷媒の気液分離を行い、分離された冷媒の液相分を第二熱交換器においてさらに蒸発させるため、第一熱交換器のサイズを低減することができ、限られた面積空間の中で冷媒から冷水への熱交換を充分に行うことができる。
第2の態様の熱交換システムは、前記第一熱交換器の上方に配置され、前記第一熱交換器から前記気液分離部へ前記冷媒流路を通過した前記冷媒を流通する二相流冷媒供給部と、前記第二熱交換器の上方に配置され、前記第二熱交換器に前記冷媒の液相分を供給する液相分供給部とをさらに備えた第1の態様の熱交換システムである。
本態様では、第一熱交換器の上方に二相流冷媒供給部を配置し、第二熱交換器の上方に液相分供給部を配置するので、第一熱交換器から第二熱交換器へ冷媒の導通経路を短くすることができる。
第3の態様の熱交換システムは、前記液相分を散布する散布部をさらに備え、前記伝熱管の上方から前記液相分を散布する第1又は第2の態様の熱交換システムである。
本態様では、伝熱管の上方から液相分を均一に散布することができる。
第4の態様の熱交換システムは、前記伝熱管が、それぞれ水平方向に延びるように配置され、上下に並べられた複数の伝熱管からなる第1から第3のいずれかの態様の熱交換システムである。
本態様では、複数の伝熱管の広範囲にわたって、冷媒の液相分を接触させることができる。
第5の態様の熱交換システムは、前記冷水供給部が、前記第一熱交換器と並列に、前記第二熱交換器の前記伝熱管に前記冷水を供給する第1から第4のいずれかの態様の熱交換システムである。
本態様では、第一熱交換器及び第二熱交換器において、並列に熱交換を行うことができるため、高速な熱交換処理が可能となる。
第6の態様の熱交換システムは、前記第二熱交換器の下方にポンプをさらに備え、前記第二熱交換器の下部に溜まった前記冷媒の液相分を前記ポンプで揚液し、前記伝熱管に接触させる第1から第5のいずれかの態様の熱交換システムである。
本態様では、第二熱交換器の下部に冷媒の液相分が溜まることを抑制できるので、液膜式熱交換を維持することができる。さらに、第二熱交換器の下部に溜まった冷媒の液相分を再び伝熱管に接触させるので、第二熱交換器の下部に溜まった液相分を再利用できる。
第7の態様の熱交換システムは、前記第二熱交換器は、下部に前記冷媒の液相分を内部に溜める冷媒貯留部をさらに備え、前記冷媒貯留部の内部に、前記伝熱管の少なくとも一部が配置された第1から第5のいずれかの態様の熱交換システムである。
本態様では、第二熱交換器の少なくとも下部において、満液式熱交換を行うことが可能となる。
本発明の熱交換システムによれば、サイズ低減した熱交換システムを提供することができる。
本発明の第一実施形態の熱交換システム10における冷水と冷媒との間での熱交換の概念を示す説明図である。 対向流型のプレート式熱交換器920の構造を説明する図である。 プレート式熱交換器920の熱伝達率曲線を示すグラフである。 本発明に係る第一実施形態における熱交換システム10の構造を示す図である。 本発明に係る第一実施形態における第一熱交換器100の斜視図である。 本発明に係る第一実施形態における伝熱管式熱交換器の構造を示す図である。 本発明に係る第二実施形態における熱交換システム10´の構造を示す図である。
以下、本発明に係る各種実施形態について、図面を用いて説明する。
「第一実施形態」
本発明に係る熱交換システムの第一実施形態について、図1〜図6を参照して説明する。
図1は、本実施形態の熱交換システム10における、冷水と冷媒との間の熱交換の概念を示したものである。
熱交換システム10は、冷媒液Clを導入する冷媒入口40、冷水Wiを導入する冷水入口50、冷媒ガスCgを排出する冷媒出口60、冷水Woを排出する冷水出口70及び熱交換器20を備えている。
本実施形態の場合、冷媒入口40から飽和液である冷媒液Clで導入され、飽和ガスである冷媒ガスCgを冷媒出口60から排出するように構成されている。すなわち、熱交換器20に導入された冷媒の冷媒液Clは、熱交換器20に導入された冷水Wiからの熱を吸収することによって蒸発してガスとなり、プレート式熱交換器から冷媒ガスCgとして排出される。熱交換システム10を冷凍機に用いる場合、冷媒出口60へ排出された冷媒ガスCgは、圧縮機へ導かれる。
冷水入口50から導入された冷水Wiは、熱交換器20に導入された冷媒液Clに熱を奪われることにより冷却されて、冷水出口70から冷水Woとして排出される。
熱交換システム10は、熱交換器20として、第一熱交換器100及び第二熱交換器300を備える。本実施形態の場合、第一熱交換器100は対向流型のプレート式熱交換器であり、第二熱交換器300は伝熱管式熱交換器である。
ここで、熱交換システム10の詳しい構造を説明する前に、第一熱交換器100及び第二熱交換器300を備える熱交換システムではなく、一つのプレート式熱交換器920で構成した熱交換システムについて説明する。プレート式熱交換器920は、第一熱交換器100を構成するプレート式熱交換器と基本構造は同じであるが、プレート式熱交換器のX軸方向の長さが異なっている。冷媒液Clを充分に気化できるように、プレート式熱交換器920のX軸方向の長さは、Lfとなっている。
図2によって、対向流型のプレート式熱交換器920の構造を簡単に説明する。図2に示すように、プレート式熱交換器920のうち、溶媒の上流端を、第1端920aとし、溶媒の下流端を第2端920bとする。第1端920aにおいて、冷媒液Clを導入する冷媒供給路980が接続され、第2端920bにおいて、冷媒ガスCgを排出する冷媒排出路960が接続されている。また、第1端920aにおいて、冷水Woを排出する冷水排出路970が接続され、第2端920bにおいて、冷水Wiを導入する冷水供給路950が接続されている。
対向流型のプレート式熱交換器920は、複数のプレート921を備えている。複数のプレート921は、熱伝導材料で構成され、プレート両面間で熱交換可能となっている。複数のプレート921が互いに間隔をあけて積層配置されることによって、プレート式熱交換器920内部に、積層された複数の流路が形成される。さらに、冷媒と冷水とが互いに対向方向に流れるように、積層された複数の流路に対し、冷媒と冷水とが交互に流される。
複数のプレート921は、順にプレート921a、921b、921c、921d、921eからなり、互いに間隔をあけて積層配置されている。したがって、積層配置された各プレートの間には、順に流路922ab、流路922bc、流路922cd、流路922deが形成されている。図2に示すように、冷媒供給路980から冷媒排出路960に向かって、流路922ab、流路922cdに冷媒が流され、冷水供給路950から冷水排出路970に向かって、流路922bc、流路922deに冷水が流される。プレート式熱交換器920内に流される冷媒及び冷水は互いに、熱伝導材料であるプレート921b、921c、921dを介して熱交換が行われる。
冷媒と冷水との熱交換に関して説明を加える。
冷媒は、第1端920aに飽和液(蒸発寸前の液体)の状態で供給される。供給された冷媒は、冷媒の流れる方向fc(図2のX軸逆方向)に向かうに従って冷水との熱交換が進む。熱交換が進むことによって、冷媒の蒸発が進み、冷媒に含まれる冷媒ガスの割合が多くなる。
流れる冷媒全体に対する気相の冷媒(冷媒ガス)の割合は、クオリティχと呼ばれ、以下の式(1)で表される。
χ=Gg/(Gg+Gl)=Gg/G ・・・(1)
ここで、Gは流れる冷媒全体の質量流量、Ggは当該冷媒全体のうちの気相の冷媒の質量流量、Glは当該冷媒全体のうち液相の冷媒(冷媒液)の質量流量を表す。冷媒の蒸発が進むと、冷媒全体の質量流量Gのうち、気相の冷媒の質量流量Ggが大きくなるため、クオリティχが大きくなり1に近づいてくる。
図3は、プレート式熱交換器920内における冷媒の流れる方向fcと平行な方向(X軸方向)の各位置と、冷媒と冷水との間の熱伝達率h([W/K・m])との関係を示したグラフである。プレート式熱交換器920内の冷媒は、第1端920aから第2端920bに向かって蒸発が進む。蒸発が進むと流れる冷媒全体に対する気相の冷媒の割合が高くなるので、冷媒のクオリティχが大きくなる。
よって、プレート式熱交換器920内において、冷媒のクオリティχは、第1端920aから第2端920bに向かって(X軸逆方向に向かって)高くなるように分布し、第2端920bにおいて、最も高くなる。
他方、プレート式熱交換器920内において、第1端920aからプレート式熱交換器920中央に向かって、熱伝達率hは高くなり、プレート式熱交換器920中央付近でピークを示す。さらに、プレート式熱交換器920中央から第2端920bに向かって、熱伝達率hは極端に減少した後、一定値に向かって漸減する。ここで、冷媒の流れの速さ、冷媒の温度、冷媒の種類(水、油等)によってピークのX軸方向の位置は変わる。
このとき、プレート式熱交換器920のうち、熱伝達率hがピークを示すプレート式熱交換器920中央から第1端920aまでの領域を低クオリティ領域QLとし、熱伝達率hがピークを示すプレート式熱交換器920中央から第2端920bまでの領域を高クオリティ領域QHとする。
高クオリティ領域QHにおいて、冷媒の流れる方向fcに向かうほど、冷媒の蒸発は一層進み、冷媒は噴霧流の状態(気相の中に液滴が分散して存在する状態)へと変化する。冷媒が噴霧流となると、空間中の冷媒の液滴が少なくなることで、伝熱面積が小さくなったり、プレートの壁面と接触する冷媒の液滴の面積が小さくなったりすることで、伝達効率が極端に低下する。この結果、高クオリティ領域QHにおいて、冷媒の熱伝達率hは、冷媒の流れる方向fcに向かって極端に減少する。図3に、プレート式熱交換器920の熱伝達率曲線の変曲点Piを示す。熱伝達率hは変曲点Pi前後において極端に減少する。第1端920aから第2端920bまでの距離をLfとすると、第1端920aから変曲点Pi前後までの距離はLsとなっている。
また、低クオリティ領域QLにおいて、噴霧流に至らない程度に冷媒の蒸発が進み、冷媒の体積流量が大きくなるため、冷媒の熱伝達率hは上昇する。この結果、図3のグラフに示されるように、低クオリティ領域QLでは、冷媒の流れる方向fcに向かって、冷媒の熱伝達率hは緩やかに上昇する。
特に高クオリティ領域QHの熱伝達率hが極端に低くなった領域は、他の領域に比べて熱交換効率が劣っている。この結果、プレート式熱交換器920に、過剰の伝熱面積が必要となり、プレート式熱交換器920のサイズが大きくなってしまう。
そこで、以下の図4に示す本実施形態の熱交換システム10の構成とすることで、プレート式熱交換器920の過剰の伝熱面積にわたる熱交換が必要なくなり、プレート式熱交換器920のX軸方向の長さを短くすることができる。
本実施形態の熱交換システム10の構造について説明する。
図4に示すように、本実施形態の熱交換システム10は、第一熱交換器100及び第二熱交換器300を含む熱交換器20を備える。A領域において、第一熱交換器100が設けられ、B領域において第二熱交換器300が設けられる。
また、熱交換システム10は、第一熱交換器100の冷媒流路に冷媒を供給する冷媒供給部80、第一熱交換器100の冷水流路に冷水を供給する冷水供給部90及び冷媒流路を通過した冷媒から気相分を分離させる気液分離部30を備える。
さらに、熱交換システム10は、冷水出口70、第一冷水排出路170及び第二冷水排出路370、ポンプ400、第一冷媒排出路210、第二冷媒排出路220及び冷媒出口60を備える。
第一熱交換器100の構造について説明する。
本実施形態において、第一熱交換器100は、等しい間隔で積層された複数のプレート121を備えるプレート式熱交換器である。よって、本実施形態のプレート式熱交換器は、複数のプレートの間隔を等しくなるように構成しているので、プレート式熱交換器を組み立て部品が共通化されるために、製造工程を単純化できるとともに、生産コストを抑えることができる。複数のプレート121は、熱伝導材料で構成され、プレート両面間で熱交換可能となっている。
さらに、図2で説明した対向流型のプレート式熱交換器920と同様に、第一熱交換器100は、内部に積層形成された複数の流路を備えている。熱交換システム10は、第一熱交換器100内部の積層形成された複数の流路に対し、冷媒と冷水とを互いに対向方向に流している。さらに、熱交換システム10は、第一熱交換器100内部の積層形成された複数の流路に対し、冷媒と冷水と積層方向に交互に流している。したがって、第一熱交換器100内部に、冷媒液Clと冷水Wiとが、積層方向に対して交互に流され且つ対向方向に流されることによって、第一熱交換器100は、対向流型のプレート式熱交換器を構成している。
第一熱交換器100の長さについて説明する。
下記に説明するように、本実施形態の熱交換システム10は、第一熱交換器100と第二熱交換器300の間で気液分離を行うことで、冷媒ガスCg(気相成分)を排出しながら、熱交換を行っている。冷媒ガスCgを排出しながら熱交換を行っているので、第一熱交換器100で充分気化する必要がない。したがって、次に示すとおり第一熱交換器100のうち、高クオリティ領域QHに対応する部分を縮小することが可能である。
すなわち、一つのプレート式熱交換器で冷媒液Clを充分に気化し、冷媒ガスCgにして排出する場合、必要なプレート式熱交換器の長さは、Lfとなる。図3に示すように、高クオリティ領域QHのうち、熱伝達率hが極端に低くなった領域は、他の領域に比べて熱交換効率が劣っており、熱交換器全体からみて有効利用できていない領域である。これに対し、本実施形態の第一熱交換器100は、二相流状態の冷媒Cmを排出するから、長さLfとする必要がない。よって、本実施形態の第一熱交換器100は、高クオリティ領域QHのうち、有効利用できていない領域に対応する部分を省いた構成とすることができる。プレート式熱交換器のプレートの積層数は、N1としている。
したがって、本実施形態の第一熱交換器100の長さは、図5に示すように、Lfより短いLsとしている。第一熱交換器100の長さLsは、第一熱交換器100の下端100aのX軸位置から、第一熱交換器100の熱伝達率曲線の変曲点Pi前後のX軸位置までの距離に等しい。
冷媒の経路構成について説明する。
冷媒供給部80は、冷媒入口40及び第一冷媒供給路140を備えている。
熱交換システム10で熱交換される冷媒液Clが、熱交換システム10に導入される。熱交換システム10に導入される冷媒液Clは、冷媒入口40から導入される。第一冷媒供給路140の上流端は、冷媒入口40に接続されている。よって、冷媒入口40へ導入された冷媒液Cl(飽和液)は、第一冷媒供給路140へ導入される。第一冷媒供給路140の下流端は、第一熱交換器100の下端100aにおいて、第一熱交換器100へ接続されている。よって、冷媒液Clは、第一冷媒供給路140を介して、冷媒入口40から第一熱交換器100へ導入される。二相流冷媒供給路160の上流端は、第一熱交換器100の上端100bにおいて、第一熱交換器100へ接続されている。よって、第一熱交換器100は、二相流冷媒供給路160へ二相流状態の冷媒Cmを排出する。
冷水の経路構成について説明する。
冷水供給部90は、冷水入口50、第一冷水供給路150及び第二冷水供給路350を備えている。
熱交換される冷水Wiが、熱交換システム10に導入される。熱交換システム10に導入される冷水Wiは、冷水入口50から導入される。第一冷水供給路150の上流端は、冷水入口50に接続されている。よって、冷水入口50へ導入された冷水Wiは、第一冷水供給路150へ導入される。第二冷水供給路350の上流端は、冷水入口50に接続されている。よって、冷水入口50へ導入された冷水Wiは、第二冷水供給路350へ導入される。
図4に示すように、冷水入口50は、第一冷水供給路150の上流端及び第二冷水供給路350の上流端に、分岐接続されている。
第一冷水供給路150の下流端は、第一熱交換器100の上端100bにおいて、第一熱交換器100に分岐接続されている。よって、冷水Wiは、第一冷水供給路150を介して、冷水入口50から第一熱交換器100へ導入される。第一冷水排出路170の上流端は、第一熱交換器100の下端100aにおいて、第一熱交換器100へ分岐接続されている。よって、冷水Woは、第一冷水排出路170を介して、第一熱交換器100から排出される。
第二冷水供給路350は、下流側で複数の下流端に分岐されている。分岐した第二冷水供給路350の各下流端は、第二熱交換器300の各伝熱管310の上流端に並列に接続されている。よって、第二冷水供給路350に導入された冷水Wiは、第二熱交換器300の各伝熱管310へ導入される。
第二冷水排出路370は、下流側で複数の下流端に分岐されている。分岐した第二冷水排出路370の各下流端は、第二熱交換器300の各伝熱管310の下流端へ並列に分岐接続されている。よって、第二熱交換器300の各伝熱管310から排出された冷水Woは、第二冷水排出路370を介して合流され、排出される。
したがって、複数の伝熱管310は、冷水入口50及び冷水出口70に、並列に接続される。
冷水出口70は、第一冷水排出路170の下流端及び第二冷水排出路370の下流端に分岐接続されている。よって、第一熱交換器100及び第二熱交換器300から排出された冷水Woは、第一冷水排出路170及び第二冷水排出路370を介して合流され、冷水出口70へ排出される。
したがって、図4に示すとおり、熱交換システム10に導入された冷水は、冷水入口50から、分岐する第一冷水供給路150及び第二冷水供給路350→合流する第一冷水排出路170及び第二冷水排出路370を経由することによって、冷水を第一熱交換器100及び第二熱交換器300に並列的に冷水を流通させている。
ここで、冷媒や冷水の経路において、第一熱交換器100に冷媒液Clと冷水Wiが供給され、第一熱交換器100から二相流状態の冷媒Cm及び冷水Woに変換されて排出される理由について説明する。
第一熱交換器100に導入された冷媒液Cl及び冷水Wiは、第一熱交換器100内部において、積層方向に対して交互に流され且つ対向方向に流されることによって、互いに熱交換を行う。熱交換された冷媒液Clは、冷水Wiの熱を吸収して(冷水Wiに加熱されて)二相流状態の冷媒Cmに変換されて、第一熱交換器100から排出される。熱交換された冷水Wiは、冷媒液Clに熱を放出して(冷媒液Clに冷却されて)冷水Woとなり、第一熱交換器100から排出される。
また、第二熱交換器300に冷媒液Cl及び冷水Wiが供給され、第二熱交換器300から冷媒ガスCg及び冷水Woに変換されて排出される理由について説明する。
第二熱交換器300に導入された冷媒液Clと冷水Wiは、第二熱交換器300内部において、互いに熱交換を行う。熱交換された冷媒液Clは、冷水Wiの熱を吸収して(冷水Wiに加熱されて)冷媒ガスCgに変換されて、第二熱交換器300から排出される。熱交換された冷水Wiは、冷媒液Clに熱を放出して(冷媒液Clに冷却されて)冷水Woとなり、第二熱交換器300から排出される。
気液分離部30及びその周辺の構成について説明する。
気液分離部30は、二相流冷媒供給路160の下流端と第二冷媒供給路240の上流端との間に設けられる。第二冷媒供給路240は、下流側で複数の下流端に分岐される。分岐した第二冷媒供給路240の各下流端は、以下に説明する液相分導入部320の複数のスプレー320aにそれぞれ接続される。
したがって、気液分離部30は、第一熱交換器100から二相流冷媒供給路160へ排出された(気液相からなる)二相流状態の冷媒Cmを、冷媒ガスCg(気相成分)と冷媒液Cl(液相成分)とに分離する。
また、気液分離部30で分離された冷媒液Clは、第二冷媒供給路240及び液相分導入部320を介して、第二熱交換器300へ導入される。
さらに、気液分離部30で分離された冷媒ガスCgは、冷媒出口60へ接続される第一冷媒排出路210を介して、冷媒出口60へ排出される。
したがって、本実施形態の熱交換システム10は、第一熱交換器100と第二熱交換器300の間で気液分離を行い、冷媒ガスCg(気相成分)を排出しながら、熱交換を行っている。
第二熱交換器300及びその周辺の構造について説明する。
第二熱交換器300は、中空の空間Ssを有しており、熱交換されて蒸発した冷媒ガスCgを空間Ssに保持できるように密封構造を構成している。
第二冷媒排出路220の上流端は、空間Ssと流通するように第二熱交換器300に接続され、第二冷媒排出路220の下流端は、冷媒出口60に接続される。よって、第二熱交換器300の空間Ssに保持された冷媒ガスCgは、第二冷媒排出路220を介して、冷媒出口60へ排出される。
第二熱交換器300は、空間Ssに複数の伝熱管310で形成された複数の流路を備えている。第二熱交換器300に供給される冷水Wiは、伝熱管310内に流される。また第二熱交換器300は、上方に液相分導入部320を備え、複数の伝熱管310の外周表面に冷媒液Clを供給している。
本実施形態において、液相分導入部320は、散布部として複数のスプレー320aを備える。各スプレー320aは、第二熱交換器300内部の複数の伝熱管310に向かって冷媒液Clを散布する。散布された冷媒液Clは、複数の伝熱管310の外周表面に接触する。
複数の伝熱管310は、熱伝導材料で構成され、伝熱管310の外周表面と伝熱管310内との間で熱交換可能となっている。よって、散布された冷媒液Clを複数の伝熱管310の外周表面に接触させることによって、第二熱交換器300は、伝熱管310表面に供給される冷媒液Clと伝熱管310内に流される冷水Wiとの間で互いに熱交換を行う。
各伝熱管310は、図4、図6に示すように、Y軸方向(水平方向)に管軸が延びるように配置される。複数の伝熱管310は、XZ平面視において、互いに上下及び左右(X軸方向及びZ軸方向)について格子状に並べられる。本実施形態では、図4、図6に示すように、上下に7段、左右に3列、計21本の伝熱管310が、格子状に並べられている。
ポンプ400及びその周辺の構造について説明する。
ポンプ400は、第二熱交換器300の下方に設置される。
ポンプ400の上流は、ポンプ供給流路401の下流端に接続され、ポンプ400の下流は、ポンプ排出流路402の上流端に接続される。ポンプ供給流路401の上流端は、空間Ssと流通するように第二熱交換器300の下部に接続される。ポンプ排出流路402の下流端は、図4に示すように、第二冷媒供給路240の下流側における分岐箇所より上流側で、第二冷媒供給路240に接続される。
よって、ポンプ400は、ポンプ供給流路401及びポンプ排出流路402を介して、第二熱交換器の下部に溜まった冷媒液Clを揚液し、第二冷媒供給路240に供給する。第二冷媒供給路240に供給された冷媒液Clは、液相分導入部320を介して、第二熱交換器300内部へ再度導入される。したがって、揚液された冷媒液Clは、第二冷媒供給路240に再度供給されることによって、複数の伝熱管310に再度接触する。
第二熱交換器300の作用について説明する。
第二冷媒供給路240を介して液相分導入部320に導入された冷媒液Clは、複数のスプレー320aによって、複数の伝熱管310に向かって散布される。複数のスプレー320aは、複数の伝熱管310のうち、最上段の3本の伝熱管310aの外周表面に向かって冷媒液Clを散布する。
伝熱管310aに散布された冷媒液Clは、伝熱管310aの外周表面を伝いながら、下方の伝熱管310bへ流れ落ちる。下方の伝熱管310bへ流れ落ちた冷媒液Clは、伝熱管310bの外周表面を伝いながら、さらに次の下方の伝熱管へ流れ落ちる。
伝熱管310に充分な冷媒液Clを散布することによって、最上段から最下段の伝熱管310にわたって、冷媒液Clは途切れることなく流れ落ちる。途切れることなく流れ落ちる冷媒液Clは、上下方向及び伝熱管310の管軸方向に広がる面(XY平面)を有する液膜Cstとなる。液膜Cstは、伝熱管310の各列に形成される。本実施形態では3列の伝熱管310に対応して、3枚の液膜Cstが形成される。
液膜Cstが形成されるように冷媒液Clを充分に散布することによって、伝熱管310の外周のほぼ全周にわたって冷媒液Clが接触する。伝熱管310の外周のほぼ全周にわたって冷媒液Clを接触させれば、伝熱管310の外周のほぼ全周で熱交換を行うことができので、高効率な熱交換が可能となる。
各伝熱管310の外周表面を伝う冷媒液Clの一部は、熱交換によって蒸発し気化して冷媒ガスCgとなる。気化した冷媒ガスCgは、空間Ssに保持されつつ、第二冷媒排出路220を介して、冷媒出口60へ排出される。
したがって、第二熱交換器300は、液膜式熱交換器として作用する。
冷媒液Clは、最下段の伝熱管310から第二熱交換器300の下部に流れ落ちる程度に多めに散布する。第二熱交換器300の下部に流れ落ちた冷媒液Clは、第二熱交換器300の下部に溜められる。溜められた冷媒液Clは、ポンプ400によって揚液し、複数の伝熱管310に再度接触させる。
したがって、第二熱交換器300の下部に流れ落ちた冷媒液Clを再利用するため、冷媒液Clを有効に利用することができる。
図4に示すように、散布する冷媒液Clを適切に微調整することによって、最下段の伝熱管310で冷媒液Clが全て蒸発し、最下段の伝熱管310から流れ落ちる冷媒液Clがないように構成してもよい。この場合、ポンプ400を設ける必要がなくなる。
以上のとおり、本実施形態では、第一熱交換器100のプレート式熱交換器のX軸方向の長さを短くすることができる。また、本実施形態では、第一熱交換器100が気相化できなかった冷媒液だけを第二熱交換器300で気相化するので、伝熱管310の本数が減らせることができ、第二熱交換器300の規模を小さくすることもできる。規模が大きくなると伝熱管310の本数が増えてコストがかかる。このような伝熱管式熱交換器にとって、第二熱交換器300の規模を小さくすることができることは有効である。
したがって、本実施形態では、第一熱交換器100と第二熱交換器300を組み合わせることによって、第一熱交換器100のX軸方向の長さを短くすることができると共に、第二熱交換器300に規模を小さくできる。
さらに、本実施形態では、第一熱交換器100から排出された二相流状態の冷媒Cmから冷媒ガスCgを分離した冷媒液Cl、すなわち飽和液を、第二熱交換器300の冷媒に利用している。したがって、飽和液からなる冷媒液Clを第二熱交換器300に導入できるので、効率のよい熱交換が可能であるという相乗効果も有する。
「第二実施形態」
本発明に係る熱交換システムの第二実施形態について、図7を参照して説明する。
本実施形態の熱交換システム10´の構造は、第一実施形態の構造と基本的に同じであるが、液膜式熱交換器と満液式熱交換器を併用している点で異なる。その他の構成については第一実施形態と同様である。
図7に示すように、本実施形態の熱交換システム10´の第二熱交換器300´は、液膜式熱交換器301´及び満液式熱交換器302´を備える。第二熱交換器300´のB領域において、液膜式熱交換器301´が設けられ、第二熱交換器300´のC領域において、満液式熱交換器302´が設けられる。
液膜式熱交換器301´は、B領域において、第一実施形態と同様に、伝熱管310の各列に液膜Cstを形成している。
満液式熱交換器302´は、少なくとも四つの側面(XY側面及びZX側面)及び下面が閉塞された冷媒貯留部302a´を備えている。冷媒貯留部302a´は、四つの側面及び下面が閉塞されたC領域を内部に形成しており、C領域に冷媒液Clが溜めることができるように構成されている。C領域には、複数の伝熱管310の一部が設けられており、本実施形態の場合、上下に4段、左右に3段、計12本の伝熱管310が設けられている。
液膜Cstから流れ落ちた冷媒液Clは、満液式熱交換器302´のC領域に溜まる。C領域の伝熱管310が、溜まった冷媒液Clに浸かることによって、溜まった冷媒液Clは、C領域の伝熱管310の外周表面と接触する。したがって、C領域の伝熱管310表面と接触する冷媒液Clと伝熱管310内に流される冷水Wiとの間で互いに熱交換を行う。
本実施形態では、プレート式熱交換器に液膜式熱交換器及び満液式熱交換器を組み合わせた熱交換システムを構成することができ、最適な面積、体積、規模に合わせた熱交換システムを提供することができる。
以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成は上記実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本実施形態では、第一熱交換器100の複数のプレート121は、等しい間隔で積層されているが、組み立て部品の共通化、製造工程の単純化が重要でないときは、等しい間隔でなくても構わない。
また、第一熱交換器100の複数のプレート121について、冷水流路のプレートの間隔と、冷媒流路のプレートの間隔は、それぞれ異なってもよい。
本実施形態は、第一熱交換器及び第二熱交換器に対して、同じ冷水入口50から並列に冷水を供給しているが、第一熱交換器100及び第二熱交換器それぞれに、異なる冷水源から個別に冷水を供給しても構わない。
各伝熱管310に配置するスプレー320aは、1つでもよい。さらに各伝熱管310に配置するスプレー320aは、管軸方向に複数並べてもよい。管軸方向に複数並べれば、伝熱管310の外周表面を有効利用することができる。
本実施形態は、複数のスプレー320aによって伝熱管に冷媒液Clを散布したが、伝熱管表面に冷媒液Clを均等に供給できるなら、散布部としてシャワーやスプリンクラーを設けることによって、冷媒液Clを散布してもよい。さらに、伝熱管表面に冷媒液Clを均等に供給できるなら、配管の端部又は配管側面の開口から冷媒液Clの液滴を滴下させることによって、伝熱管表面に冷媒液Clを供給してもよい。
第二実施形態において、液膜式熱交換器301´及び満液式熱交換器302´を備える第二熱交換器300´を用いたが、全ての伝熱管を冷媒液Clに浸からせる構成とすることによって、第二熱交換器を満液式熱交換器だけで構成しても構わない。
各冷媒導入路、冷媒排出路、冷水導入路及び冷水排出路と各熱交換器との分岐接続について、実施形態では、図4、図7に示すように、各プレート式熱交換器の外部で分岐して接続しているが、各プレート式熱交換器の外部で分岐せず接続し、各熱交換器の内部で分岐するものであってもよい。
本実施形態では、複数の伝熱管310を上下に7段、左右に3列、計21本並べているが、上下や左右にどのような本数で並べてもよい。
各伝熱管310は、Y軸方向に管軸を向けて配置しているが、YZ平面に沿う方向であればどのような方向でもよく、例えばZ軸方向に管軸を向けて配置してもよい。この場合、複数の伝熱管は、XY平面視において、互いに上下及び左右の格子状に並べると、複数の伝熱管の外周表面を有効利用できる。
本実施形態では、第一熱交換器100の長さを、プレート式熱交換器の熱伝達率曲線の変曲点Pi前後のX位置に対応させてLsとしたが、少なくともプレート式熱交換器の下端100aのX位置から、熱伝達率曲線のピークのX位置を超える長さであればどのような長さでも構わない。第一熱交換器100の長さを短くすればするほど、第一熱交換器100の過剰な伝熱面積を減らすことができ、第一熱交換器100の長さを長くすればするほど、第一熱交換器100の積層数を減らすことができる。また第一熱交換器100の長さを長くすればするほど、第二熱交換器300での熱変換の負担を減らすこともできる。
本実施形態の第一熱交換器のプレート及び第二熱交換器の伝熱管で用いる熱伝導材料としては、アルミニウム、グラファイト、銅、セラミックス等、どのような材料でも構わない。
本実施形態の冷媒としては、アンモニア、HFC等、どのような冷媒を用いてもよい。
本実施形態は、冷水を冷却する装置であるが、常温水、温水等を冷却する装置に適用してもよいし、油を冷却する装置に適用してもよい。
気液分離部としては、重力分離方式、遠心分離方式、フィルタ方式等、様々なものを用いることができる。
第一熱交換器で用いるプレート式熱交換器は、対向型に限らず、冷媒が流通する冷媒流路と冷水が流通する冷水流路とが直交配置する直交型でも構わない。さらに、直交配置に限らず、冷媒が流通する冷媒流路と冷水が流通する冷水流路とが交差する配置であれば、どのような角度で交差しても構わない。
第一熱交換器で用いるプレート式熱交換器は、プレートにプレートフィンを用いることによって、プレート表面に伝熱促進効果のあるプレートフィン熱交換器としてもよい。プレートフィン熱交換器とすることで、伝熱性能を向上し、熱交換器の小型化を図ることが可能となる。
第二熱交換器で用いる伝熱管は、内面、外面、又は内外面に伝熱促進構造のある伝熱管を採用してもよい。伝熱促進構造のある伝熱管を採用することで、伝熱性能を向上し、熱交換器の小型化を図ることが可能となる。
10:熱交換システム
20:熱交換器
30:気液分離部
40:冷媒入口
50:冷水入口
60:冷媒出口
70:冷水出口
80:冷媒供給部
90:冷水供給部
100:第一熱交換器
100a:下端
100b:上端
121:複数のプレート
140:第一冷媒供給路
150:第一冷水供給路
160:二相流冷媒供給路
170:第一冷水排出路
210:第一冷媒排出路
220:第二冷媒排出路
240:第二冷媒供給路
300:第二熱交換器
300´:第二熱交換器
301:液膜式熱交換器
301´:液膜式熱交換器
302´:満液式熱交換器
302a´:冷媒貯留部
310:伝熱管
310a:伝熱管
310b:伝熱管
320:液相分導入部
320a:スプレー
350:第二冷水供給路
370:第二冷水排出路
400:ポンプ
401:ポンプ供給流路
402:ポンプ排出流路
920:プレート式熱交換器
920a:第1端
920b:第2端
921:複数のプレート
921a:プレート
921b:プレート
921c:プレート
921d:プレート
921e:プレート
922ab:流路
922bc:流路
922cd:流路
922de:流路
950:冷水供給路
960:冷媒排出路
970:冷水排出路
980:冷媒供給路
Cg:冷媒ガス
Cl:冷媒液
Cm:二相流状態の冷媒
Cst:液膜
fc:冷媒の流れる方向
h:熱伝達率
Pi:変曲点
QH:高クオリティ領域
QL:低クオリティ領域
Ss:空間
Wi:冷水
Wo:冷水

Claims (7)

  1. 互いに間隔をあけて積層配置された複数のプレートを有し、前記複数のプレートによって、第一冷媒が流通する第一冷媒流路と第二冷媒が流通する第二冷媒流路とが形成されたプレート式熱交換器と、
    前記プレート式熱交換器の前記第一冷媒流路に前記第一冷媒を供給する第一冷媒供給部と、
    前記プレート式熱交換器の前記第二冷媒流路に前記第二冷媒を供給する第二冷媒供給部と、
    前記第一冷媒流路を通過した前記第一冷媒から気相分を分離させる気液分離部と、
    前記気液分離部を通過した前記第一冷媒の液相分が接触する伝熱管を有する液膜式熱交換器と、
    を備える熱交換システム。
  2. 前記プレート式熱交換器の上方に配置され、前記プレート式熱交換器から前記気液分離部へ前記第一冷媒流路を通過した前記第一冷媒を流通する二相流冷媒供給部と、
    前記液膜式熱交換器の上方に配置され、前記液膜式熱交換器に前記液相分を供給する液相分供給部と、
    をさらに備えた請求項1に記載の熱交換システム。
  3. 前記伝熱管の上方から前記液相分を散布する散布部をさらに備えた
    請求項1又は請求項2に記載の熱交換システム。
  4. 前記伝熱管は、水平方向に延びるように配置され、上下に複数並べられている
    請求項1から請求項3のいずれか一項に記載の熱交換システム。
  5. 前記第二冷媒供給部は、前記プレート式熱交換器と並列に、前記液膜式熱交換器の前記伝熱管に前記第二冷媒を供給する
    請求項1から請求項4のいずれか一項に記載の熱交換システム。
  6. 前記液膜式熱交換器の下方にポンプをさらに備え、
    前記液膜式熱交換器の下部に溜まった前記液相分を前記ポンプで揚液し、前記伝熱管に接触させる
    請求項1から請求項5のいずれか一項に記載の熱交換システム。
  7. 前記液膜式熱交換器は、下部に前記液相分を内部に溜める冷媒貯留部をさらに備え、
    前記冷媒貯留部の内部に、前記伝熱管の少なくとも一部が配置された
    請求項1から請求項5のいずれか一項に記載の熱交換システム。
JP2019202560A 2019-11-07 2019-11-07 熱交換システム Active JP6783369B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019202560A JP6783369B2 (ja) 2019-11-07 2019-11-07 熱交換システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202560A JP6783369B2 (ja) 2019-11-07 2019-11-07 熱交換システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016041152A Division JP6616213B2 (ja) 2016-03-03 2016-03-03 熱交換システム

Publications (2)

Publication Number Publication Date
JP2020020575A true JP2020020575A (ja) 2020-02-06
JP6783369B2 JP6783369B2 (ja) 2020-11-11

Family

ID=69588434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202560A Active JP6783369B2 (ja) 2019-11-07 2019-11-07 熱交換システム

Country Status (1)

Country Link
JP (1) JP6783369B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502016A (ja) * 2001-05-04 2005-01-20 アメリカン スタンダード インターナショナル インコーポレイテッド フローイングプールシェル及び管状エバポレータ
WO2007032220A1 (ja) * 2005-09-16 2007-03-22 Sasakura Engineering Co., Ltd. 蒸発装置
US20100139898A1 (en) * 2008-12-04 2010-06-10 Industrial Technology Research Instutute Pressure-adjustable multi-tube spraying device
JP2013011432A (ja) * 2011-04-27 2013-01-17 Denso Thermal Systems Spa 車両用の凝縮器−アキュムレータ−副クーラアセンブリ
JP2014020754A (ja) * 2012-07-23 2014-02-03 Daikin Ind Ltd 流下液膜式蒸発器
JP2016001099A (ja) * 2014-05-23 2016-01-07 株式会社デンソー 積層型熱交換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502016A (ja) * 2001-05-04 2005-01-20 アメリカン スタンダード インターナショナル インコーポレイテッド フローイングプールシェル及び管状エバポレータ
WO2007032220A1 (ja) * 2005-09-16 2007-03-22 Sasakura Engineering Co., Ltd. 蒸発装置
US20100139898A1 (en) * 2008-12-04 2010-06-10 Industrial Technology Research Instutute Pressure-adjustable multi-tube spraying device
JP2013011432A (ja) * 2011-04-27 2013-01-17 Denso Thermal Systems Spa 車両用の凝縮器−アキュムレータ−副クーラアセンブリ
JP2014020754A (ja) * 2012-07-23 2014-02-03 Daikin Ind Ltd 流下液膜式蒸発器
JP2016001099A (ja) * 2014-05-23 2016-01-07 株式会社デンソー 積層型熱交換器

Also Published As

Publication number Publication date
JP6783369B2 (ja) 2020-11-11

Similar Documents

Publication Publication Date Title
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
JP6701372B2 (ja) 熱交換器
US6688137B1 (en) Plate heat exchanger with a two-phase flow distributor
US8302426B2 (en) Heat exchanger
JP5850099B2 (ja) 流下液膜式蒸発器
US9541314B2 (en) Heat exchanger
US20100314090A1 (en) Heat exchanger
JP6769870B2 (ja) 熱交換器
WO2017179630A1 (ja) 蒸発器、これを備えたターボ冷凍装置
US20150013951A1 (en) Heat exchanger
US20180034119A1 (en) Cooling Device for Stored Energy Sources
JP6616213B2 (ja) 熱交換システム
EP2313733A2 (en) Integrated multi-circuit microchannel heat exchanger
JP2016525205A5 (ja)
CN105650927B (zh) 装置
JP5733866B1 (ja) 冷媒熱交換器
CN104748592B (zh) 具有流体流动以与不同的制冷剂回路串联地热交换的钎焊换热器
JP2020020575A (ja) 熱交換システム
EP3004755B1 (en) Distributor for use in a vapor compression system
US10508844B2 (en) Evaporator with redirected process fluid flow
JP6639959B2 (ja) 熱交換システム
US9903663B2 (en) Brazed heat exchanger with fluid flow to serially exchange heat with different refrigerant circuits
JP2013185757A (ja) 冷媒分配器およびヒートポンプ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150