JP2020019020A - Sludge dewatering method - Google Patents

Sludge dewatering method Download PDF

Info

Publication number
JP2020019020A
JP2020019020A JP2019203645A JP2019203645A JP2020019020A JP 2020019020 A JP2020019020 A JP 2020019020A JP 2019203645 A JP2019203645 A JP 2019203645A JP 2019203645 A JP2019203645 A JP 2019203645A JP 2020019020 A JP2020019020 A JP 2020019020A
Authority
JP
Japan
Prior art keywords
sludge
solid
fine bubbles
dewatering
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019203645A
Other languages
Japanese (ja)
Inventor
高裕 三田
Takahiro Mita
高裕 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2019203645A priority Critical patent/JP2020019020A/en
Publication of JP2020019020A publication Critical patent/JP2020019020A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a sludge dewatering method of dewatering sludge by a solid-liquid separator in a state of containing fine bubbles in the sludge.SOLUTION: There is provided a sludge dewatering method, including: supplying fine bubbles of 50 microns or less generated in a fine bubble generating section 5 to sludge; mixing the sludge and the fine bubbles with a line mixer; thereafter supplying the sludge containing the fine bubbles to a solid-liquid separator 4; and separating into dewatering cake and a filtrate by the solid-liquid separator 4. A filtrate passage is formed between cake particles in a filtration chamber of the solid-liquid separator, and internal water is discharged through the filtrate passage, and dewatering efficiency is improved.SELECTED DRAWING: Figure 1

Description

この発明は、汚泥を固液分離して脱水ケーキを生成する方法において、汚泥に微細気泡を包含させた状態で固液分離装置にて脱水する汚泥の脱水方法に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dewatered cake by separating sludge from solid and liquid, and to a method for dewatering sludge in which a sludge contains fine bubbles and is dehydrated by a solid-liquid separator.

従来、上水等の無機性汚泥や、下水、し尿、食品生産加工排水等の有機性汚泥を濃縮・脱水する固液分離装置は知られている。無機性汚泥はフィルタープレスで加圧脱水し、有機性汚泥は高分子凝集剤で凝集した後にベルトプレスやスクリュープレスで加圧脱水して脱水ケーキとろ液とに分離している。 2. Description of the Related Art Conventionally, a solid-liquid separation device for concentrating and dewatering inorganic sludge such as clean water, and organic sludge such as sewage, human waste, and wastewater for processing food production has been known. The inorganic sludge is dewatered under pressure by a filter press, and the organic sludge is coagulated by a polymer coagulant and then dewatered under pressure by a belt press or a screw press to separate a dewatered cake and a filtrate.

そして、脱水ケーキの水分をさらに低下させる技術として、ろ板のろ液の排出口から高圧空気を供給して脱水ケーキ中に高圧空気を通過させ、機械的な圧搾圧力では押出しが困難な脱水ケーキ粒子間の水分を高圧空気で同伴排除するエアーブロー装置は、例えば特許文献1に記載されているように公知である。その他、同様の技術にてケーキ洗浄を目的としてエアーあるいは洗浄水を通水させている技術もある。 As a technique for further reducing the water content of the dewatered cake, high-pressure air is supplied from the filtrate outlet of the filter plate to allow high-pressure air to pass through the dewatered cake. An air blow device that removes moisture between particles with high-pressure air is known, for example, as described in Patent Document 1. In addition, there is a technique in which air or washing water is passed through for the purpose of cake washing by the same technique.

また、微細気泡を利用して固液分離を行う技術として、汚泥処理槽に微細気泡を供給し、微細気泡の付着により汚泥を浮上させて濃縮する方法が特許文献2に記載されている。その他、汚泥処理分野では汚泥の改質、洗浄、あるいは生物処理等に微細気泡が用いられている。 Further, as a technique for performing solid-liquid separation using fine bubbles, Patent Document 2 discloses a method of supplying fine bubbles to a sludge treatment tank and causing the sludge to float by the attachment of the fine bubbles to concentrate the sludge. In addition, in the sludge treatment field, fine bubbles are used for sludge reforming, washing, biological treatment, and the like.

特公平2−24567号公報Japanese Patent Publication No. 2-24567 実開平5−009700号公報Japanese Utility Model Laid-Open No. 5-09700

一般的に、固液分離装置で加圧・圧搾等の外圧が付与された際に、固形物は圧密され、固形物(粒子)間に介在する水分が押し出され、ろ過面を透過して外部に排出される。しかし、ろ過面から離れた位置に供給された汚泥は、その場で圧密されて固形物と水分とに分離されるが、圧搾により汚泥の粒子間は圧密されており、水分がろ過面へと移動する間隙がなく、十分に含水率を低下させることができないこともある。 In general, when an external pressure such as pressurization or squeezing is applied by a solid-liquid separation device, solids are compacted, moisture intervening between solids (particles) is extruded, and permeates through a filtration surface to pass through the outside. Is discharged. However, the sludge supplied to a position distant from the filtration surface is compacted on the spot and separated into solid matter and moisture, but the sludge particles are compacted by squeezing, and the moisture is transferred to the filtration surface. In some cases, there is no gap to move, and the water content cannot be sufficiently reduced.

特許文献1は、エアーブローにてケーキ粒子間の水分を高圧空気で同伴排除するものであるが、圧密されたケーキ間に高圧空気が通過できる間隙がなく、十分にケーキ間の水分を排出できないことがある。また、ケーキ間の隙間が狭いと、通過させるために高圧の空気が必要で、大型のコンプレッサーや電気代が必要となる。 Patent Literature 1 removes moisture between cake particles by high-pressure air by air blowing, but there is no gap through which high-pressure air can pass between the compacted cakes, and the moisture between the cakes cannot be sufficiently discharged. Sometimes. If the gap between the cakes is small, high-pressure air is required to pass the cake, and a large compressor and electricity bill are required.

特許文献2は、微細気泡を利用して固液分離を行うものであるが、含水率が高い浮上濃縮への適用であるため、汚泥処理の前処理としては有効であるが、含水率が高いため2次処理、3次処理が必要となる。 Patent Document 2 discloses that solid-liquid separation is performed using microbubbles. However, since it is applied to flotation concentration with a high water content, it is effective as a pretreatment for sludge treatment, but has a high water content. Therefore, secondary processing and tertiary processing are required.

この発明は、汚泥に微細気泡を包含させた状態で固液分離装置にて脱水することにより、微細気泡により汚泥間にろ液通路を形成し、脱水効率を向上させ低含水率の脱水ケーキを生成する汚泥の脱水方法を提供する。   The present invention provides a filtrate passage between sludge by fine bubbles by dewatering in a solid-liquid separator in a state in which fine bubbles are contained in the sludge, thereby improving the dewatering efficiency and forming a dewatered cake having a low water content. Provided is a method for dewatering sludge to be generated.

この発明は、微細気泡発生部で生成した50ミクロン以下の微細気泡を汚泥に供給し、汚泥と微細気泡をラインミキサーで混合した後、汚泥に微細気泡を包含させた状態で固液分離装置に供給し、固液分離装置により脱水ケーキとろ液とに分離するもので、固液分離装置のろ過室内のケーキ粒子間にろ液通路が形成され、ろ液通路を通して内部の水分が排出され、脱水効率が向上する。 The present invention supplies fine bubbles of 50 μm or less generated in a fine bubble generation section to sludge, and mixes the sludge and the fine bubbles with a line mixer, and then in a solid-liquid separation device in a state where the fine bubbles are included in the sludge. The filtrate is supplied and separated into a dewatered cake and a filtrate by a solid-liquid separator. A filtrate passage is formed between the cake particles in the filtration chamber of the solid-liquid separator, and the internal water is discharged through the filtrate passage to dehydrate. Efficiency is improved.

また、微細気泡発生部で生成した50ミクロン以下の微細気泡を汚泥に供給し、汚泥と微細気泡を凝集混和槽で混合した後、汚泥に微細気泡を包含させた状態で固液分離装置に供給し、固液分離装置により脱水ケーキとろ液とに分離するもので、固液分離装置のろ過室内のケーキ粒子間にろ液通路が形成され、ろ液通路を通して内部の水分が排出され、脱水効率が向上するとともに、汚泥の凝集効率を向上させ、高分子凝集剤の使用量を削減できる。In addition, fine bubbles of 50 microns or less generated in the fine bubble generating section are supplied to the sludge, and the sludge and the fine bubbles are mixed in the coagulation mixing tank, and then supplied to the solid-liquid separator in a state where the sludge contains the fine bubbles. The filtrate is separated into a dewatered cake and a filtrate by a solid-liquid separation device. A filtrate passage is formed between the cake particles in the filtration chamber of the solid-liquid separation device. And the efficiency of sludge flocculation is improved, and the amount of the polymer flocculant used can be reduced.

微細気泡を凝集混和槽に供給して汚泥と混合すると、汚泥の凝集効率を向上させ、高分子凝集剤の使用量を削減できる。 When the fine bubbles are supplied to the coagulation mixing tank and mixed with the sludge, the coagulation efficiency of the sludge is improved, and the amount of the polymer coagulant used can be reduced.

固液分離装置を、加圧式、減圧式、あるいは遠心式とすると、加圧式ではフィルタープレス、ベルトプレス、スクリュープレスが適用でき、減圧式では真空脱水機が適用でき、遠心式では遠心脱水機が適用できる。 If the solid-liquid separator is a pressurized type, a depressurized type, or a centrifugal type, a filter press, a belt press, or a screw press can be applied in the pressurized type, a vacuum dehydrator can be applied in the depressurized type, and a centrifugal dehydrator can be used in the centrifugal type. Applicable.

加圧式の固液分離装置による脱水後、ろ過室内にて脱水ケーキに高圧空気を供給、あるいは、固液分離装置による脱水後、ろ過室内にて脱水ケーキを減圧すると、微細気泡により脱水ケーキ間に通気路が形成されており空気が通りやすく、この通気路から容易に水分が排出され、さらに含水率を低下させることができる。 After dehydration by the pressurized solid-liquid separation device, high-pressure air is supplied to the dehydration cake in the filtration chamber, or after dehydration by the solid-liquid separation device, when the dehydration cake is depressurized in the filtration room, fine bubbles are generated between the dehydration cakes. An air passage is formed so that air can easily pass through, moisture is easily discharged from this air passage, and the water content can be further reduced.

この発明によれば、汚泥を固液分離する際に、汚泥に微細気泡を供給して混合することで、汚泥に微細気泡を包含させた状態で固液分離装置に供給して脱水することにより、ろ過室内のケーキ粒子間にろ液通路が形成され、ろ液通路を通して内部の水分が排出され、脱水効率が向上する。
また、脱水後のケーキ粒子間には微細気泡によるろ液通路が形成されているので、外部からのエアーブローによりケーキ粒子間の水分を排除し易くなる。
According to the present invention, when sludge is separated into solid and liquid, by supplying and mixing the sludge with microbubbles , the sludge is supplied to the solid-liquid separation device in a state where the sludge contains microbubbles and dewatered. In addition, a filtrate passage is formed between the cake particles in the filtration chamber, and the internal water is discharged through the filtrate passage, thereby improving the dewatering efficiency.
In addition, since a filtrate passage is formed by fine bubbles between cake particles after dehydration, moisture between cake particles can be easily removed by air blowing from the outside.

本発明に係る汚泥の脱水方法のフロー図である。It is a flow figure of the sludge dewatering method concerning the present invention. 本発明に係る他の実施例1の汚泥の脱水方法のフロー図である。It is a flow figure of the sludge dewatering method of other Example 1 concerning the present invention. 同じく、他の実施例2の汚泥の脱水方法のフロー図である。FIG. 9 is a flow chart of a sludge dewatering method according to another embodiment 2; 本発明に係る固液分離装置のろ過室内の断面図である。It is sectional drawing in the filtration chamber of the solid-liquid separation apparatus which concerns on this invention. 本発明に係る脱水ケーキをエアーブローする概略図である。It is the schematic which air blows the dehydrated cake which concerns on this invention. 同じく、脱水ケーキを減圧する概略図である。Similarly, it is the schematic which decompresses a dehydration cake.

図1は汚泥の脱水方法のフロー図である。
無機性汚泥や、下水、し尿、食品生産加工排水等の有機性汚泥(以下「汚泥」という。)を一時的に貯留している汚泥貯留槽1から汚泥供給ポンプ2により汚泥供給管3を介して固液分離装置4に汚泥を移送する。
FIG. 1 is a flow chart of the sludge dewatering method.
The sludge storage tank 1 that temporarily stores inorganic sludge, organic sludge (hereinafter, referred to as “sludge”) such as sewage, night soil, food production processing wastewater, etc., is passed through a sludge supply pipe 3 by a sludge supply pump 2. To transfer the sludge to the solid-liquid separator 4.

微細気泡発生部5では、水を供給した微細気泡混合槽6で微細気泡発生装置7により微細気泡を生成する。微細気泡は微細気泡供給ポンプ8により微細気泡供給管9を介して汚泥供給管3に移送する。 In the fine bubble generating section 5, fine bubbles are generated by the fine bubble generator 7 in the fine bubble mixing tank 6 supplied with water. The fine bubbles are transferred to the sludge supply pipe 3 via the fine bubble supply pipe 9 by the fine bubble supply pump 8.

固液分離装置4の前段の汚泥供給管3にて汚泥と微細気泡を混合させ、微細気泡を含有した汚泥を固液分離装置4に供給する。固液分離装置4では微細気泡を含有した汚泥を固液分離しており、ろ液と脱水ケーキとに分離する。 The sludge and the fine bubbles are mixed in the sludge supply pipe 3 at the preceding stage of the solid-liquid separator 4, and the sludge containing the fine bubbles is supplied to the solid-liquid separator 4. In the solid-liquid separator 4, sludge containing fine bubbles is subjected to solid-liquid separation, and is separated into a filtrate and a dewatered cake.

なお、微細気泡を汚泥内に拡散し易くするために、汚泥と微細気泡を混合した後、固液分離装置4の前段にラインミキサーを配設してもよい。 Note that, in order to facilitate the diffusion of the fine bubbles into the sludge, a line mixer may be provided in front of the solid-liquid separator 4 after mixing the sludge and the fine bubbles.

<微細気泡発生装置>
微細気泡発生装置7は、およそ50ミクロン以下の気泡を発生させる装置であって、薬液法、過飽和法、気液2相流旋回法等の公知の装置が存在するが、汚泥性状や固液分離装置4の仕様に応じて適宜選択できる。本実施例では、外部からエアーを取り込み、取り込んだエアーを装置内の回転機構による乱流生成及び攪拌せん断によって微細気泡化して放出する気液2相流旋回法を用いている。
<Microbubble generator>
The microbubble generator 7 is a device for generating bubbles of about 50 microns or less, and there are known devices such as a chemical solution method, a supersaturation method, and a gas-liquid two-phase flow swirling method. It can be appropriately selected according to the specifications of the device 4. In the present embodiment, a gas-liquid two-phase flow swirling method is used in which air is taken in from the outside, and the taken-in air is formed into turbulent flow by a rotating mechanism in the apparatus and formed into microbubbles by shearing and being released.

固液分離装置4は、水分を含有した汚泥を固液分離して、ろ液と脱水ケーキとを生成するもので、固液分離装置4が備える圧力可変手段により汚泥にかかる圧力を調整して汚泥から水分を分離するものをいう。 The solid-liquid separator 4 separates water-containing sludge into solid and liquid to generate a filtrate and a dewatered cake. The solid-liquid separator 4 adjusts the pressure applied to the sludge by a variable pressure means provided in the solid-liquid separator 4. It separates water from sludge.

固液分離装置4としては、例えば、加圧式ではフィルタープレス、ベルトプレス、スクリュープレス等の脱水機が適用できる。また、例えば減圧式では真空脱水機が適用でき、遠心式では遠心脱水機が適用できる。 As the solid-liquid separation device 4, for example, a dehydrator such as a filter press, a belt press, and a screw press can be applied in a pressure type. Further, for example, a vacuum dehydrator can be applied in a decompression type, and a centrifugal dehydrator can be applied in a centrifugal type.

ここでいう脱水ケーキとは、固液分離装置4の脱水作用により生成した脱水ケーキを強固に圧密した結果、およそ60〜90%の含水率を有する固形物質としたものであって、固形物濃度が1〜4%の濃縮汚泥(スラリー)とは相違する。 The dewatered cake referred to here is a solid substance having a water content of about 60 to 90% as a result of firmly consolidating the dewatered cake generated by the dehydration action of the solid-liquid separation device 4, and having a solid content of about 60 to 90%. Is different from concentrated sludge (slurry) of 1 to 4%.

図2は他の実施例1の汚泥の脱水方法のフロー図である。
固液分離装置からろ液供給管10を介してろ液を微細気泡混合槽6に返送し、微細気泡を生成している。固液分離装置4から排出されるろ液を再利用でき、微細気泡発生部5の水分を外部から供給する必要がない。
FIG. 2 is a flowchart of a sludge dewatering method according to another embodiment 1.
The filtrate is returned from the solid-liquid separator 4 to the fine bubble mixing tank 6 via the filtrate supply pipe 10 to generate fine bubbles. The filtrate discharged from the solid-liquid separation device 4 can be reused, and there is no need to supply the water in the microbubble generating section 5 from outside.

図3は他の実施例2の汚泥の脱水方法のフロー図である。
固液分離装置4の前段に凝集混和槽11を配設し、微細気泡発生部5で生成した微細気泡を凝集混和槽11に移送している。凝集混和槽11は攪拌翼12により汚泥と高分子凝集剤を攪拌し、汚泥を凝集させる装置である。微細気泡は凝集混和槽11にて適度に攪拌され、効率よく汚泥の凝集フロックに付着し、微細気泡を包含している状態で凝集汚泥供給管13にて固液分離装置4に供給される。微細気泡は負の電荷を帯びているため、汚泥の凝集効率を向上させ、高分子凝集剤の使用量を削減できる。
FIG. 3 is a flowchart of a sludge dewatering method according to another embodiment 2.
A coagulation mixing tank 11 is provided in a stage preceding the solid-liquid separation device 4, and the fine bubbles generated in the microbubble generating section 5 are transferred to the coagulation mixing tank 11. The flocculation / mixing tank 11 is a device for stirring the sludge and the polymer flocculant by the stirring blades 12 to flocculate the sludge. The fine bubbles are appropriately stirred in the flocculation mixing tank 11, efficiently adhere to the flocculated flocs of the sludge, and supplied to the solid-liquid separation device 4 through the flocculated sludge supply pipe 13 while containing the fine bubbles. Since the fine bubbles have a negative charge, the efficiency of flocculation of sludge can be improved and the amount of the polymer flocculant used can be reduced.

また、図2のように固液分離装置4からろ液を微細気泡混合槽に返送すれば、ろ液中に残存する未凝集の高分子凝集剤を有効に再利用できる。
なお、微細気泡発生装置7を凝集混和槽11に並設あるいは内設し、凝集混和槽11にて直接的に微細気泡を生成してもよい。
If the filtrate is returned from the solid-liquid separator 4 to the fine bubble mixing tank 6 as shown in FIG. 2, the unagglomerated polymer flocculant remaining in the filtrate can be effectively reused.
The microbubble generator 7 may be provided side by side or inside the coagulation mixing tank 11 to directly generate microbubbles in the coagulation mixing tank 11.

図4は固液分離装置のろ過室内の断面図である。
本実施例では、固液分離装置4として加圧式のフィルタープレスを用いている。フィルタープレスのろ過室14に供給された微細気泡を含有した汚泥は、圧入圧力あるいは圧搾等による1次脱水に伴って小さな汚泥粒子が互いに圧密され、粒子間の水分がろ過面15へと移動して排出される。
FIG. 4 is a sectional view of the inside of the filtration chamber of the solid-liquid separation device.
In this embodiment, a pressure-type filter press is used as the solid-liquid separation device 4. In the sludge containing fine bubbles supplied to the filtration chamber 14 of the filter press, small sludge particles are compacted together with the primary dehydration by press-in pressure or squeezing, and the water between the particles moves to the filtration surface 15. Is discharged.

微細気泡は負の電荷を帯びているため、汚泥粒子の表面に付着しやすく、汚泥粒子が圧密された際に、付着した微細気泡が汚泥粒子間に空隙を形成して水分の通路となる。したがって、ろ過室14内部で圧密された汚泥粒子間から水分が効率よくろ過面15へと排出され、脱水効率が向上する。 Since the microbubbles have a negative charge, they tend to adhere to the surface of the sludge particles. When the sludge particles are compacted, the attached microbubbles form voids between the sludge particles and serve as water passages. Therefore, moisture is efficiently discharged to the filtration surface 15 from between the sludge particles compacted inside the filtration chamber 14, and the dewatering efficiency is improved.

また、微細気泡を含有することで汚泥の密度が低下し、汚泥粒子間の水分の表面張力が低下する。その結果、汚泥粒子間あるいは汚泥粒子内部に残存する水分が外部に排出され易くなり、脱水効率が向上する。 Further, by containing the fine bubbles, the density of the sludge decreases, and the surface tension of the water between the sludge particles decreases. As a result, water remaining between sludge particles or inside sludge particles is easily discharged to the outside, and the dewatering efficiency is improved.

加圧式のベルトプレス、スクリュープレスも、ろ過室14に供給された微細気泡を含有した汚泥が加圧により圧密され、汚泥粒子間から水分が効率よくろ過面15へと排出される。 In the pressurized belt press and screw press as well, the sludge containing fine bubbles supplied to the filtration chamber 14 is compacted by pressurization, and moisture is efficiently discharged from the sludge particles to the filtration surface 15.

減圧式の真空脱水機では、ろ過面15から吸引された微細気泡を含有した汚泥がろ過面15上で圧密堆積され、汚泥粒子間から水分が効率よくろ過面15へと吸引排出される。 In the decompression type vacuum dehydrator, sludge containing fine air bubbles sucked from the filtration surface 15 is compacted and deposited on the filtration surface 15, and water is efficiently sucked and discharged from between the sludge particles to the filtration surface 15.

遠心式の遠心脱水機では、遠心作用により回転筒内壁に微細気泡を含有した汚泥が圧密堆積され、汚泥粒子間から水分が効率よく排出される。 In a centrifugal centrifugal dewatering machine, sludge containing fine bubbles is compacted and deposited on the inner wall of the rotary cylinder by centrifugal action, and moisture is efficiently discharged between sludge particles.

図5は脱水ケーキをエアーブローする概略図である。
固液分離装置による1次脱水後、脱水ケーキの一方から高圧空気(エアーブロー)を供給し、脱水ケーキ中に高圧空気を通過させ、汚泥粒子間の水分をろ過面15から同伴排出する。汚泥粒子間に微細気泡を含有した状態で脱水ケーキ化しているため、通気路が形成されており空気が通りやすく、この通気路から容易に水分が排出され、さらに含水率を低下させることができる。
FIG. 5 is a schematic diagram of air-blowing a dehydrated cake.
After the primary dehydration by the solid-liquid separator 4 , high-pressure air (air blow) is supplied from one side of the dewatered cake, high-pressure air is passed through the dewatered cake, and moisture between the sludge particles is discharged from the filtration surface 15 together. Since the dewatered cake is formed in a state where fine bubbles are contained between the sludge particles, an air passage is formed and air is easily passed through, and moisture is easily discharged from the air passage, and the water content can be further reduced. .

他の方式の固液分離装置4でも同様の技術を適用でき、特にフィルタープレスの圧入圧力あるいは圧搾等による1次脱水後に適用すると高い効果を得られる。
また、前記技術は脱水ケーキを生成したろ過室14に洗浄水を高圧供給するケーキ洗浄技術にも適用できる。
The same technique can be applied to the solid-liquid separation device 4 of another system, and a high effect can be obtained particularly when the solid-liquid separation device 4 is applied after primary dehydration by press-in pressure or pressing of a filter press.
In addition, the above-described technique can be applied to a cake washing technique in which washing water is supplied at a high pressure to the filtration chamber 14 where the dewatered cake is generated.

図6は脱水ケーキを減圧する概略図である。
固液分離装置による1次脱水後、ろ過室14の一方から吸引し、脱水ケーキを減圧することにより、汚泥粒子間の水分をろ過面15から排出する。汚泥粒子間に微細気泡を含有した状態で脱水ケーキ化しているため、通気路が形成されており水分が通りやすく、この通気路から容易に水分が排出され、さらに含水率を低下させることができる。
他の方式の固液分離装置4でも同様の技術を適用でき、特にベルトプレスの圧搾等による1次脱水後に適用すると高い効果を得られる。
FIG. 6 is a schematic diagram of depressurizing the dewatered cake.
After the primary dehydration by the solid-liquid separation device 4 , the water between the sludge particles is discharged from the filtration surface 15 by sucking from one of the filtration chambers 14 and depressurizing the dewatered cake. Since the sludge particles are dehydrated and caked while containing fine air bubbles, an air passage is formed and moisture easily passes therethrough, and the moisture is easily discharged from the air passage, thereby further reducing the water content. .
The same technique can be applied to the solid-liquid separation device 4 of another system, and a high effect can be obtained particularly when applied after primary dehydration by pressing of a belt press or the like.

この発明に係る汚泥の脱水方法は、汚泥を固液分離装置で圧搾する際に、汚泥に微細気泡を包含させた状態で脱水することにより汚泥の脱水効率を向上させることができる優れた方法である。固形物の脱水助材を用いないので、脱水助材の在庫管理や保管場所の心配がなく、脱水ケーキの排出量も増加せず、脱水ケーキの後処理に負担がかからない。また、特別な薬品を用いないので、コスト的にも負担が軽く、脱水ケーキの2次使用も多方面に適用可能である。   The method for dewatering sludge according to the present invention is an excellent method that can improve the dewatering efficiency of sludge by dewatering the sludge in a state in which fine bubbles are included when the sludge is squeezed by a solid-liquid separation device. is there. Since no solid material dewatering aid is used, there is no need to worry about inventory management and storage locations of the dewatering aid, the amount of dewatered cake discharged does not increase, and no burden is placed on post-treatment of dewatered cake. In addition, since no special chemical is used, the burden is light in terms of cost, and the secondary use of the dehydrated cake can be applied to various fields.

4 固液分離装置
5 微細気泡発生部
11 凝集混和槽
14 ろ過室
4 Solid-liquid separation device 5 Fine bubble generation unit 11 Coagulation mixing tank 14 Filtration chamber

Claims (2)

微細気泡発生部(5)で生成した50ミクロン以下の微細気泡を汚泥に供給し、
汚泥と微細気泡をラインミキサーで混合した後、
汚泥に微細気泡を包含させた状態で固液分離装置(4)に供給し、
固液分離装置(4)により脱水ケーキとろ液とに分離する
ことを特徴とする汚泥の脱水方法。
The fine bubbles of 50 microns or less generated in the fine bubble generating section (5) are supplied to the sludge,
After mixing sludge and fine bubbles with a line mixer,
The sludge containing fine bubbles is supplied to the solid-liquid separation device (4),
A method for dewatering sludge, comprising separating a dewatered cake and a filtrate by a solid-liquid separation device (4).
微細気泡発生部(5)で生成した50ミクロン以下の微細気泡を汚泥に供給し、
汚泥と微細気泡を凝集混和槽(11)で混合した後、
汚泥に微細気泡を包含させた状態で固液分離装置(4)に供給し、
固液分離装置(4)により脱水ケーキとろ液とに分離する
ことを特徴とする汚泥の脱水方法。
The fine bubbles of 50 microns or less generated in the fine bubble generating section (5) are supplied to the sludge,
After mixing sludge and fine bubbles in the coagulation mixing tank (11),
The sludge containing fine bubbles is supplied to the solid-liquid separation device (4),
A method for dewatering sludge, comprising separating a dewatered cake and a filtrate by a solid-liquid separation device (4).
JP2019203645A 2019-11-11 2019-11-11 Sludge dewatering method Pending JP2020019020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203645A JP2020019020A (en) 2019-11-11 2019-11-11 Sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203645A JP2020019020A (en) 2019-11-11 2019-11-11 Sludge dewatering method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017034903A Division JP6635270B2 (en) 2017-02-27 2017-02-27 Sludge dewatering method

Publications (1)

Publication Number Publication Date
JP2020019020A true JP2020019020A (en) 2020-02-06

Family

ID=69589382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203645A Pending JP2020019020A (en) 2019-11-11 2019-11-11 Sludge dewatering method

Country Status (1)

Country Link
JP (1) JP2020019020A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267150A (en) * 1975-12-02 1977-06-03 Susumu Hashimoto Sludge treating method
JPS5367173A (en) * 1976-11-29 1978-06-15 Mitsubishi Heavy Ind Ltd Filter press
JPS6044085A (en) * 1983-08-22 1985-03-08 Shinryo Air Conditioning Co Ltd Concentrating method of sludge
JPS60225685A (en) * 1984-04-24 1985-11-09 Ouki Technical:Kk Method and apparatus for floating treatment of sludge
JPH0418999A (en) * 1990-05-14 1992-01-23 Mitsui Eng & Shipbuild Co Ltd Method for thickening sludge
JPH07112199A (en) * 1993-10-18 1995-05-02 Ee Double Eng:Kk Dehydrator
JP2002200486A (en) * 2000-09-27 2002-07-16 Tokyo Flow Meter Kenkyusho:Kk Apparatus for treating microbe-containing subject to be treated
JP2007167789A (en) * 2005-12-22 2007-07-05 Shinshu Univ Mud taking-out method and its taking-out apparatus
JP2008018378A (en) * 2006-07-14 2008-01-31 Kurita Water Ind Ltd Organic sludge treatment method and equipment
JP2009072747A (en) * 2007-09-25 2009-04-09 Sato Kogyo Co Ltd Water treatment apparatus utilizing microbubbles and water treatment method
JP2009119374A (en) * 2007-11-15 2009-06-04 Panasonic Corp Treatment apparatus and method of drainage

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267150A (en) * 1975-12-02 1977-06-03 Susumu Hashimoto Sludge treating method
JPS5367173A (en) * 1976-11-29 1978-06-15 Mitsubishi Heavy Ind Ltd Filter press
JPS6044085A (en) * 1983-08-22 1985-03-08 Shinryo Air Conditioning Co Ltd Concentrating method of sludge
JPS60225685A (en) * 1984-04-24 1985-11-09 Ouki Technical:Kk Method and apparatus for floating treatment of sludge
JPH0418999A (en) * 1990-05-14 1992-01-23 Mitsui Eng & Shipbuild Co Ltd Method for thickening sludge
JPH07112199A (en) * 1993-10-18 1995-05-02 Ee Double Eng:Kk Dehydrator
JP2002200486A (en) * 2000-09-27 2002-07-16 Tokyo Flow Meter Kenkyusho:Kk Apparatus for treating microbe-containing subject to be treated
JP2007167789A (en) * 2005-12-22 2007-07-05 Shinshu Univ Mud taking-out method and its taking-out apparatus
JP2008018378A (en) * 2006-07-14 2008-01-31 Kurita Water Ind Ltd Organic sludge treatment method and equipment
JP2009072747A (en) * 2007-09-25 2009-04-09 Sato Kogyo Co Ltd Water treatment apparatus utilizing microbubbles and water treatment method
JP2009119374A (en) * 2007-11-15 2009-06-04 Panasonic Corp Treatment apparatus and method of drainage

Similar Documents

Publication Publication Date Title
CN104245601B (en) Method for treating a waste stream using a bioreactor and a membrane filter
JP6635270B2 (en) Sludge dewatering method
CN103785198A (en) Efficient deep cone sludge thickener
KR20160090343A (en) Method and device for treating liquid sludge and filter cakes obtained by said method
JP2009165964A (en) Method and system for dehydrating sludge
JP2017170434A (en) Turbid water treatment apparatus and method
KR102009452B1 (en) sludge concentrating and dehydrating system in Wastewater treatment process and method of the same
JP2017205713A (en) Coagulation-settlement device
EA033771B1 (en) Method and device for treating organic effluents
JP2011200811A (en) System and method for reducing volume of sludge
JP2020019020A (en) Sludge dewatering method
JP6395877B2 (en) Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
JP6920056B2 (en) Sludge dewatering system and sludge dewatering method
CN202961994U (en) High-efficiency deep cone sludge thickening device
JP2637325B2 (en) Sludge dewatering method and apparatus
JPS63182009A (en) Solid and liquid separator of raw water such as sludge
JP2015054287A (en) Sludge treatment method
KR101999329B1 (en) sludge concentrating and dehydrating system in Wastewater treatment process and and method of maintaining performance the same
JPH0731999A (en) Dehydrating method of sludge
JP4973461B2 (en) Waste water treatment apparatus and waste water treatment method
JPH06343999A (en) Dehydration process for sludge
JP5745897B2 (en) Sludge dewatering method
JP2012135736A (en) Sludge dehydration system and sludge dehydration method
CN219637068U (en) Sludge organic matter and inorganic matter separation system
JP2001070997A (en) Treatment method for filtrate and washing waste water in sludge dehydrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210402