JPS60225685A - Method and apparatus for floating treatment of sludge - Google Patents

Method and apparatus for floating treatment of sludge

Info

Publication number
JPS60225685A
JPS60225685A JP59082483A JP8248384A JPS60225685A JP S60225685 A JPS60225685 A JP S60225685A JP 59082483 A JP59082483 A JP 59082483A JP 8248384 A JP8248384 A JP 8248384A JP S60225685 A JPS60225685 A JP S60225685A
Authority
JP
Japan
Prior art keywords
sludge
tank
water
separation tank
solids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59082483A
Other languages
Japanese (ja)
Inventor
Yoshio Okutsu
奥津 善央
Masao Kise
黄木 正男
Terumi Kise
黄木 光珠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OUKI TECHNICAL KK
Original Assignee
OUKI TECHNICAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OUKI TECHNICAL KK filed Critical OUKI TECHNICAL KK
Priority to JP59082483A priority Critical patent/JPS60225685A/en
Publication of JPS60225685A publication Critical patent/JPS60225685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To recover a high concn. sludge solid within a short time with good efficiency, by electrochemically performing the adsorption of air bubbles and the sludge solid while supplying said sludge solid to a separation tank from a reaction tank by dynamic water pressure. CONSTITUTION:An aqueous solution of a flocculant capable of being charged to charge corresponding to the characteristic of a sludge solid having to receive concn. treatment is sent to a mixing apparatus 6 along with air and mixed with air under stirring. Next, the resulting mixture is sent to a foaming tank 7 and stirred under atmospheric pressure to generate fine air bubbles and guided to a reaction tank 3 to be mixed with dirty water supplied by a sludge supply pump 2. At this time, the surfaces of fine air bubbles are electrochemically adsorbed with that of sludge solid particles to each other by the action of the flucculant and, because a gradually rising water level forms a water head pressure between said water level and that in a separation tank 11, said solid particles are flowed into the separation tank 11 and floated to the upper part in the separation tank 11 by the action of fine air bubbles. By this method, the concn. sludge solid is separated from lower clear water.

Description

【発明の詳細な説明】 本発明は汚泥の浮上処理方法及びその装置に係わり、更
1こ詳しくは汚泥の浮上濃縮工程に特徴を有する処理方
法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sludge flotation treatment method and its apparatus, and more particularly to a treatment method and its apparatus characterized by a sludge flotation and concentration step.

従来の技術 周知の通り、汚泥濃縮技術としては、沈殿濃縮、浮上濃
縮等がある。上記の浮上濃縮技術は、一般的には沈殿濃
縮技術に比し、より効果的な汚泥濃縮結果が得られる場
合があるとされ、近時汚泥処理施設、下水処理施設等で
用いられている。
Conventional Technology As is well known, sludge concentration techniques include sedimentation concentration, flotation concentration, and the like. The flotation concentration technology described above is generally considered to be able to provide more effective sludge concentration results than sedimentation concentration technology, and has recently been used in sludge treatment facilities, sewage treatment facilities, and the like.

然しなから従来の汚泥浮上濃縮技術は、はとんど加圧浮
上濃縮方法又は装置である。即ち、循環水の中に空気を
加圧状態で溶解させ、その水をポンプによって分離槽下
部に送る過程で大気圧に戻して濃縮すべき汚泥と一緒に
分離槽の下部に導入し、形成された空気の微細な気泡に
より固形物を汚泥固形物の吸着形態が物理的である為、
多くの実験によれば可能な濃縮汚泥濃度は、4%から5
%が限度であって、より濃度の高い汚泥固形物を濃縮す
るには限度がある。又■分離槽内に導入される水はポン
プによって加圧された状態なので分離槽内に於いて回流
が生じ、汚泥界面が乱される為、フロス厚を厚くすると
汚泥固形分回収率が低下する傾向にある。更に■高濃縮
とする為には比較的、分離槽内に於ける滞留時間が長い
。従って効果的な濃縮に限度がある。又@一般的に、浮
上したフロスは、下部からの圧密効果を受け濃縮が進行
するため、フロス厚を厚くした方が濃縮効果は高いとさ
れているが、加圧浮上濃縮装置の面積負荷は、浮上汚泥
を水面に押し上げる力が弱いため、フロス厚を厚くとっ
ても汚泥濃度は高くならない。■多くの実験によれば、
この装置の面積負荷は20Kg−D 、 S 、 /r
n’、 hが限度であり、発明が解決しようとする問題
点 従って本発明は■気泡と汚泥固形物の吸着力を強固とす
ることにより十分大きな気固比を設定可能とし高濃度の
汚泥固形物を濃縮できる方法及び装置を提供するにあり
、又■汚泥界面の乱れを生ずることなく、汚泥固形分回
収率を向上できる方法及び装置を提供するにあり、更に
■分離槽内に於ける短時間な滞留で高濃縮が可能な方法
及び装置を提供するにある。又■大量の気泡によって水
面上に押し上げられた汚泥をよりよく圧密し、高濃度の
汚泥固形物を濃縮できる方法及び装置を提供するにある
。そして■面積負荷にかかわらず、汚泥回収率をほぼ一
定にでき、特に■設置の為の占有面積が小さく、コンパ
クトであると共に、保守点検も容易なる装置を提供する
にある。
However, conventional sludge flotation concentration technology is mostly a pressurized flotation concentration method or device. In other words, air is dissolved in circulating water under pressure, and in the process of sending the water to the bottom of the separation tank by a pump, it is returned to atmospheric pressure and introduced into the bottom of the separation tank together with the sludge to be concentrated. Because the adsorption form of sludge solids is physical, solids are absorbed by fine air bubbles.
According to many experiments, possible thickened sludge concentrations range from 4% to 5%.
%, and there is a limit to the concentration of sludge solids with higher concentrations. Also, since the water introduced into the separation tank is pressurized by the pump, circulation occurs within the separation tank and the sludge interface is disturbed, so increasing the thickness of the floss will reduce the sludge solid content recovery rate. There is a tendency. Furthermore, in order to achieve high concentration, the residence time in the separation tank is relatively long. Therefore, there are limits to effective concentration. Also, in general, floating floss is concentrated due to the consolidation effect from below, so it is said that the thicker the floss, the higher the concentration effect, but the area load of the pressurized flotation concentrator is Since the force that pushes the floating sludge to the water surface is weak, the sludge concentration does not increase even if the floss is thick. ■According to many experiments,
The area load of this device is 20Kg-D, S, /r
n' and h are the limits, and the problem to be solved by the invention.Therefore, the present invention is: 1. By strengthening the adsorption power of air bubbles and sludge solids, it is possible to set a sufficiently large air-solid ratio, and a high concentration of sludge solids can be obtained. The purpose of the present invention is to provide a method and device that can improve the sludge solid content recovery rate without causing disturbance of the sludge interface, and furthermore, It is an object of the present invention to provide a method and apparatus capable of achieving high concentration with a long residence time. Another object of the present invention is to provide a method and apparatus capable of better compacting sludge pushed up to the water surface by a large amount of air bubbles and concentrating highly concentrated sludge solids. and (1) to provide a device that can maintain a substantially constant sludge recovery rate regardless of the area load, and (3) to provide a device that occupies a small area for installation, is compact, and is easy to maintain and inspect.

問題点を解決するための手段及び作用 これらの目的を達成する為に本願の汚泥浮上外の電荷と
反対の電荷に帯電された微細気泡を生成し、この微細気
泡と汚濁水を反応せしめて汚泥固形物を凝集させつつ汚
泥固形物と微細気泡を電気化学的に吸着せしめこれを動
水圧によって順次分離工程に送り、分離工程に於いて汚
泥固形物を浮上濃縮し、それを掻取ることにより汚濁水
を濃縮固形物と下澄水に分離するように構成したもので
あり、又本願の汚泥の浮上処理装置は、発泡性を有する
凝集剤水溶液と空気を混合する為の混合装置と、これら
を撹拌して、生成乱流により微細気泡を生成する為の起
泡槽より成り、処理すべき汚泥固形物表面の電荷と反対
の電荷に帯電された微細気泡を供給する凝集剤供給管系
と、汚濁水給送ポンプより成る汚濁水供給管系とを、撹
拌手段を有していて上記汚濁水中の汚泥固形物の凝集を
開始させると共に、凝集汚泥固形物と微細気泡を電気化
学的に吸着せしめる為の反応槽に連ね該反応掻取手段が
設けられていると共に、下部には下澄水の放流系統が接
続されていることを特徴とする構成を有する。
Means and operation for solving the problems In order to achieve these objectives, microbubbles charged with an opposite charge to the charge outside the floating sludge of the present application are generated, and the microbubbles and polluted water are reacted to form sludge. Sludge solids and microbubbles are electrochemically adsorbed while coagulating solids, and then sent to a separation process using hydrodynamic pressure. In the separation process, sludge solids are floated and concentrated, and they are scraped off to remove pollution. The sludge flotation treatment device of the present application is configured to separate water into concentrated solids and bottom clear water, and the sludge flotation treatment device of the present application includes a mixing device for mixing an aqueous flocculant solution with foaming properties and air, and a mixing device for mixing these with air. It consists of a bubbling tank for generating fine bubbles through generated turbulent flow, and a flocculant supply pipe system that supplies fine bubbles charged to the opposite charge to the surface charge of the sludge solids to be treated, and a condensing agent supply pipe system. A polluted water supply pipe system consisting of a water supply pump is equipped with a stirring means to start coagulation of the sludge solids in the polluted water, and to electrochemically adsorb the coagulated sludge solids and fine bubbles. The reactor has a structure characterized in that the reaction scraping means is provided in series with the reaction tank, and a discharge system for clear water is connected to the lower part.

実施例 次に添付図面に従かい本発明の実施例を詳述する。Example Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図中1は汚泥供給管を示し、汚泥給送ポンプ2を介して
反応槽3に接続されている。
In the figure, 1 indicates a sludge supply pipe, which is connected to a reaction tank 3 via a sludge feed pump 2.

他方この反応槽3へは凝集剤供給管系が連なっている。On the other hand, a flocculant supply pipe system is connected to this reaction tank 3.

即ち、凝集剤供給管系は」二流より順次凝集剤水溶液タ
ンク4、凝集剤給送ポンプ5、混合装置6、起泡槽7を
連らねると共に、給送ポンプ5と起泡槽7の間に送風機
8によって送りこまれる空気供給管9が接続されたもの
であって、」−記凝集剤水溶液タンク4には発泡性を有
し、且っ起泡槽7内に於いて濃縮処理すべき汚泥固形物
表面の電荷と反対の電荷に帯電された微細起泡を生ずる
0°捻った形であり、その捻り方向を右又は左に成した
エレメントを、右捻りエレメントと左捻りエレメントを
交互に並べ、且つ左右ニレメントラ各々906になる様
固定して成る連続混合撹拌装置として構成され、更に上
記起泡槽7は、タンクと、電動機駆動の撹拌手段より成
る。
That is, the flocculant supply pipe system sequentially connects the flocculant aqueous solution tank 4, flocculant feed pump 5, mixing device 6, and foaming tank 7 from the second stream, and also connects the flocculant aqueous solution tank 4, flocculant feed pump 5, mixing device 6, and foaming tank 7 between the feed pump 5 and the foaming tank 7. The flocculant aqueous solution tank 4 is connected to an air supply pipe 9 that is fed by a blower 8, and the flocculant aqueous solution tank 4 contains sludge that has foaming properties and is to be concentrated in the foaming tank 7. It has a 0° twisted shape that produces microbubbles charged with an electric charge opposite to the electric charge on the surface of the solid object, and elements with the twist direction to the right or left are arranged alternately as right-handed elements and left-handed elements. , and is configured as a continuous mixing/stirring device which is fixed so as to form left and right double strands 906, respectively, and the foaming tank 7 further comprises a tank and a stirring means driven by an electric motor.

さて、」二記反応槽3は電動機駆動の撹拌手段より成る
ものであるが、該反応槽3は管lOを介して次段の分離
槽11に接続されている。分離槽11は、上記管lOの
先端が下部に開口するとともに、その上部水面付近は掻
取手段17が配されている。この掻取手段12は、例え
ば複数の掻取羽根を電動機によってエンドレス状に駆動
するようにした掻取装置の幾つかを槽上部に放射線状に
配し、更に槽−り部の周縁に円周状に収集溝を形成し、
その収集溝内に別個の掻取羽根を円周に沿って作動せし
めるよにしたものを設ける。
Now, the reaction tank 3 described in section 2 is composed of a stirring means driven by an electric motor, and is connected to the next-stage separation tank 11 via a pipe IO. In the separation tank 11, the tip of the pipe IO opens at the bottom, and a scraping means 17 is arranged near the upper water surface. This scraping means 12 includes, for example, several scraping devices in which a plurality of scraping blades are driven endlessly by an electric motor, arranged in a radial manner on the upper part of the tank, and further arranged around the circumferential edge of the tank part. A collection groove is formed in the shape of
Separate scraping blades are provided within the collection groove for circumferential movement.

泡と汚泥水を反応せしめて汚泥固形物の凝集を開始せし
めると共に、汚泥固形物と微細気泡を電気化学的に吸着
せしめた後、これを分離槽11へ送るにあたり1反応槽
3に於ける水頭と分離槽9に於ける水頭の差によって送
るようにしたもので、反応槽3の水位と分離槽11の水
位は略同程度に保たれ、反応槽3内に汚濁水等が供給さ
れた時に、その供給量に相当する上昇水位の水頭によっ
て、それらを分離槽11へ送るようにしたちので、分離
槽11からは後述するように汚泥固形物及び下澄水が順
次分離排出されているので、上記の水頭差による供給、
即ち動水圧による供給は連続的に行われる。さて、上記
分離槽llに対しては、その掻取手段12が配設されて
いる位置に対応させて、中途に給送ポンプ13を有する
汚泥固形物配出管14が接続されていると共に下部には
下澄水配出管15が接続され、その配出管15に統に連
なっている。
After reacting the foam and sludge water to start coagulation of sludge solids and electrochemically adsorbing the sludge solids and fine bubbles, the water head in 1 reaction tank 3 is increased to send the foam to separation tank 11. The water level in the reaction tank 3 and the water level in the separation tank 11 are maintained at approximately the same level, and when polluted water, etc. is supplied to the reaction tank 3, , the water head of the rising water level corresponding to the supplied amount sends them to the separation tank 11, and the sludge solids and bottom clear water are sequentially separated and discharged from the separation tank 11 as described later. supply by the difference in water head,
That is, the supply by hydraulic pressure is carried out continuously. Now, to the separation tank ll, a sludge solids discharging pipe 14 having a feed pump 13 is connected in the middle corresponding to the position where the scraping means 12 is disposed, and a sludge solids discharging pipe 14 is connected to the lower part. A bottom clear water distribution pipe 15 is connected to the drain pipe 15, and the pipe 15 is continuously connected to the discharge pipe 15.

上記水位調節装置16は、上下動可能なノズルを外部か
ら上下に可調節するようにしたもので、ノズルの位置に
よって水位が定まるので、この水位によって前記の分離
槽11の水位が調節される。
The water level adjustment device 16 has a vertically movable nozzle that can be adjusted vertically from the outside.The water level is determined by the position of the nozzle, so the water level in the separation tank 11 is adjusted based on this water level.

更に上記浮遊物質濾過器は、槽内にエンドレス状に駆動
する網を配したものである。
Further, the above-mentioned suspended solids filter has an endlessly driven mesh arranged inside the tank.

而してこの例に於いては分離された下澄水を放流系統に
導く手前に於いて、水分の中に混入せる凝集剤を回収す
べく、給送ポンプ19の二次側と、混合装置6の一次側
の間を回収管20によって接続すると共に、分離槽11
の底部と汚泥供給管lの間に汚泥戻り管21を接続した
例を示しである。
In this example, before introducing the separated bottom clear water to the discharge system, the secondary side of the feed pump 19 and the mixing device 6 are used to recover the flocculant mixed into the water. A recovery pipe 20 connects the primary side of the separation tank 11.
This figure shows an example in which a sludge return pipe 21 is connected between the bottom of the sludge supply pipe 1 and the sludge supply pipe 1.

次にこの実施例の動作を説明する。Next, the operation of this embodiment will be explained.

凝集剤水溶液タンク4に貯えられた発泡性を有し、且つ
濃縮処理すべき汚泥固形物が有機性の場合には、その表
面はマイナスに、無機性の場合にはプラスに滞電してい
るので、その性質に応じ、次工程以後に於いて生成する
気泡の表面を汚泥固形物表面の電荷と反対の電荷に滞電
できるような凝集剤水溶液を給送ポンプ5によって混合
装置6へ送る。その過程で、凝縮剤水溶液の中に送風機
によって吸入された空気が溶解され混合装置6へ送られ
る。混合装置6に於いては、流れの分割、右捻り、左捻
りへの流れの反転、中心部より壁部へ、壁部より中心部
への流れの転換作用を受けて、凝集剤水溶液と空気がよ
りよく混合撹拌され、凝集剤水溶液中へ微細な空気粒が
均一に混入せしめられ1次の起泡槽7に導かれる。起泡
槽7に於いては、常圧に於いて撹拌することにより、乱
流域が形成され、その乱流のせん断力により300から
500ミリミクロン程度の微細気泡が生ずる。次いで生
成した微細気泡は反応槽3へ導かれ、そこで汚泥供給ポ
ンプ2によって送られてくる汚濁水と混合せしめられ、
凝集剤の作用により汚濁水中の汚泥固形物粒子が凝集を
始めると共に、微細気泡の表面と汚泥固形物粒子の表面
が互いに電気的に反対に荷電しているので、それらは互
いに電気化学的に吸着する。そして反応槽3内に汚濁水
及び凝集剤気泡液が供給されると、その都度反応槽の水
位が上Rし、分離槽11の水位との間に水位差が生じて
水頭圧を生ずるから、その水頭圧によって反応槽3から
分離槽11へ向かう流れが生じ、凝集を開始し、且つ微
細気泡が付着せる汚泥固形物を懸濁せる汚濁水が順次分
離槽11へ導かれる。分離槽11に於いては、凝集し且
つ微細気泡によって把えられた汚泥固形物が、分離槽1
1の下部へ流入すると、上記微細気泡の作用により分離
槽11の」二部へ浮上せしめられ、分離槽の11上部に
汚泥固形物が濃縮され、他方水分は下部に下澄水として
分離される。
If the solid sludge stored in the aqueous coagulant solution tank 4 has foaming properties and is to be concentrated and is organic, its surface is negatively charged, and if it is inorganic, it is positively charged. Therefore, depending on its properties, an aqueous flocculant solution is sent to the mixing device 6 by the feed pump 5 so that the surface of the bubbles generated in the next step and thereafter can be charged at an electric charge opposite to that of the surface of the sludge solids. In the process, the air sucked in by the blower is dissolved in the aqueous condensate solution and sent to the mixing device 6. In the mixing device 6, the flocculant aqueous solution and air are divided by the action of dividing the flow, reversing the flow to right-handed and left-handed twisting, and converting the flow from the center to the wall and from the wall to the center. The flocculant aqueous solution is better mixed and stirred, and fine air particles are uniformly mixed into the flocculant aqueous solution, which is then led to the primary foaming tank 7. In the foaming tank 7, a turbulent region is formed by stirring at normal pressure, and the shear force of the turbulent flow generates fine bubbles of about 300 to 500 millimicrons. The generated microbubbles are then led to the reaction tank 3, where they are mixed with polluted water sent by the sludge supply pump 2,
Due to the action of the coagulant, the sludge solid particles in the polluted water begin to coagulate, and since the surfaces of the micro bubbles and the surfaces of the sludge solid particles are electrically oppositely charged to each other, they electrochemically adsorb to each other. do. When the polluted water and the flocculant bubble liquid are supplied into the reaction tank 3, the water level in the reaction tank rises each time, and a water level difference occurs between the water level in the separation tank 11 and a water head pressure. The head pressure causes a flow from the reaction tank 3 to the separation tank 11, and the polluted water that starts coagulation and suspends the sludge solids to which fine bubbles are attached is sequentially guided to the separation tank 11. In the separation tank 11, the sludge solids that have aggregated and are captured by fine bubbles are collected in the separation tank 11.
When the sludge flows into the lower part of the tank 1, it is floated to the second part of the separation tank 11 by the action of the fine bubbles, and solid sludge is concentrated in the upper part of the separation tank 11, while water is separated in the lower part as bottom water.

上記の反応槽3から分離槽11への流入は、動水圧で押
し出されるようにして行なわれるので、分離槽ll内に
乱流等を生ずることがないから、分離槽11の液面の乱
れがない。従って浮上中の汚泥固形物から気泡を引き離
すが如くの作用がなく、固形物の沈降を呼ばないから汚
泥固形物の浮上作用がより確かに行なわれ、濃縮汚泥濃
度を高くすることができる。
Since the flow from the reaction tank 3 to the separation tank 11 described above is carried out by being pushed out by hydrodynamic pressure, no turbulence is generated in the separation tank 11, so that the liquid level in the separation tank 11 is not disturbed. do not have. Therefore, there is no effect of separating air bubbles from the floating sludge solids, and since the solids do not settle, the sludge solids float more reliably, and the concentrated sludge concentration can be increased.

又、凝集汚泥固形物と微細気泡の吸着様態は上述したよ
うに、加圧浮上方法等の物理的吸着と異なり電気化学的
吸着なので強固である。従って気固比を十分大きく設定
でき、高濃度の汚泥固形物を得ることができる。又短時
間の分離槽内滞留で高濃度が可能にされる。更に分離槽
内には前工程に於ける起泡槽で生じ、反応槽を経てきた
大量の気泡が導入されるので、上記したように水面に押
し上げられた汚泥に圧密が効果的にかかるから、浮上汚
泥が圧縮され、高濃度の汚泥固形物を分離できるもので
ある。
Further, as mentioned above, the adsorption mode of the flocculated sludge solids and fine bubbles is strong because it is electrochemical adsorption, unlike physical adsorption such as a pressure flotation method. Therefore, the gas-solid ratio can be set sufficiently large, and sludge solids with a high concentration can be obtained. In addition, high concentration can be achieved by residence in the separation tank for a short time. Furthermore, a large amount of air bubbles generated in the foaming tank in the previous process and passed through the reaction tank are introduced into the separation tank, which effectively consolidates the sludge pushed up to the water surface as described above. The floating sludge is compressed and highly concentrated sludge solids can be separated.

さて、分離槽11の上部に濃縮された汚泥固形物は、掻
取手段12の掻取作用により収集されて、ポンプ13に
よって送られ常法に従かい脱水処理される。他方分離槽
11下部の分離された下澄水は、分離槽水位調節装置1
6を経て、浮遊物質濾過器17に送られ、そこで含有浮
遊物質が除去された後、タンク18を介してポンプ19
により排出系統へ導かれる。Hつその一部は、管20を
介して混合装置6の手前に戻され、含有凝集剤の再利用
が図られる。
Now, the sludge solids concentrated in the upper part of the separation tank 11 are collected by the scraping action of the scraping means 12, and sent by the pump 13 to be dewatered according to a conventional method. On the other hand, the separated bottom clear water at the bottom of the separation tank 11 is transferred to the separation tank water level adjustment device 1.
6, the suspended solids are sent to a suspended solids filter 17, where the contained suspended solids are removed, and then passed through a tank 18 to a pump 19.
is led to the exhaust system. A portion of the H is returned to the front of the mixing device 6 via the pipe 20, so that the flocculant contained therein can be reused.

上記工程に於いて、反応槽3から分離槽11内への流れ
は反応槽の水位と分離槽11の水位の差に基く水頭圧に
よって生ずるものであるが、その水頭圧は上記分離槽水
位調節装置16のノズル高さを外部から変えて分離槽l
lの水位を変えることによって必要に応じて調節できる
In the above process, the flow from the reaction tank 3 into the separation tank 11 is caused by the head pressure based on the difference between the water level of the reaction tank and the water level of the separation tank 11. Separation tank l by changing the nozzle height of the device 16 from the outside
It can be adjusted as necessary by changing the water level.

以上詳述した如く、本願の第一の発明は発泡性を有する
凝集剤水溶液と空気を混合し、次いで大気圧下に於いて
撹拌することにより乱流を生ぜしめて、吸着すべき汚泥
固形物表面の電荷と反対の電荷に帯電された微細気泡を
生成し、この微細気泡と汚濁水を反応せしめて汚泥固形
物を凝集させつつ汚泥固形物と微細気泡を電気化学的に
吸着せしめ、これを動水圧によって順次分離工程に送り
、分離工程に於いて汚泥固形物を浮上濃縮し、それを掻
取ることにより汚濁水を濃縮固形物と下澄水に分離する
ようにしたことを特徴とする汚泥の浮上処理方法であり
、 又本願の第二の発明は発泡性を有する凝集剤水溶液と空
気を混合する為の混合装置と、これらを撹拌して、生成
乱流により微細気泡を生成する為の起泡槽より成り、処
理すべき汚泥固形物表面の電荷と反対の電荷に帯電され
た微細気泡を供給する凝集剤供給管系と、汚濁水給送ポ
ンプより成る汚濁水供給管系とを、撹拌手段を有してい
て上記汚濁水中の汚泥固形物の凝集を開始させると共に
、凝集汚泥固形物と微細気泡を電気化学的に吸着せしめ
る為の反応槽に連ね該反応槽から動水圧によって流入せ
る微細気泡が付着せる汚泥固形物を浮上濃縮させると共
に下澄水を分離する分離槽を有し上記分離槽の水面域伺
近には掻取手段が設けられていると共に、下部には下澄
水の放流系統が接続されていることを特徴とする汚泥の
浮−I−処理装置なので、 発明の効果 ■気泡と汚泥固形物の吸着が電気化学的であってその吸
着力は強固であるから、安定力等の制約条件がない為十
分気固比を大きくでき高濃度の汚泥固形物を濃縮でき、
又■反応槽から分離槽への送給は、動水圧によって行な
うので、汚泥界面の乱れが全つく生ぜず、汚泥固形物に
付着せる気泡を引き離す如き作用がないから汚泥固形分
回収率を格段と向上でき、更に■分離槽内に於ける短時
間滞留で高濃度が可能であり、又■火星気泡によって水
面上に押し」=げられた汚泥をよりよく圧密し、高濃度
の汚泥固形物を濃縮でき、更に■面積負荷にかかわらず
汚泥回収率をほぼ一定にでき、特に■従来の加圧浮上法
等と比して、分離槽の回りに、加圧ポンプや、圧力タン
ク又は圧力調整器等の付帯機器を設ける必要がない等の
理由により装置全体をコンパクトにすることができ、占
有面積も小なので、省スペースを図ることができ、又■
装置全体の構成が単純である為に保守点検が容易である
等実用工種々の利点を有するものである。
As described in detail above, the first invention of the present application mixes an aqueous flocculant solution having foaming properties with air, and then stirs the mixture under atmospheric pressure to generate turbulent flow, thereby creating a turbulent flow on the surface of the sludge solids to be adsorbed. Microbubbles charged to the opposite charge are generated, and the microbubbles react with the polluted water to coagulate the sludge solids while electrochemically adsorbing the sludge solids and the microbubbles. A sludge flotation system characterized in that the sludge is sent to a separation process sequentially by water pressure, the sludge solids are floated and concentrated in the separation process, and the sludge is scraped off to separate the polluted water into concentrated solids and bottom clear water. The second invention of the present application is a mixing device for mixing an aqueous flocculant solution having a foaming property with air, and a foaming device for stirring these to generate fine bubbles through the generated turbulent flow. A flocculant supply pipe system consisting of a tank and supplying microbubbles charged with a charge opposite to that of the surface of the sludge solids to be treated, and a polluted water supply pipe system consisting of a polluted water feed pump are connected to each other by a stirring means. microbubbles that are connected to a reaction tank and flowed in by hydraulic pressure from the reaction tank to start coagulation of the sludge solids in the polluted water and to electrochemically adsorb the flocculated sludge solids and the microbubbles. It has a separation tank that floats and concentrates the sludge solids that adhere to it and separates the bottom clear water, and a scraping means is provided near the water surface area of the separation tank, and a bottom clear water discharge system is provided at the bottom. Because it is a sludge floating-I treatment device characterized by the fact that it is connected to the Since there are no restrictive conditions, the gas-solid ratio can be sufficiently increased and highly concentrated sludge solids can be concentrated.
In addition, since the feeding from the reaction tank to the separation tank is carried out by hydraulic pressure, there is no disturbance at the sludge interface, and there is no action to separate air bubbles that adhere to the sludge solids, so the sludge solid content recovery rate is greatly improved. In addition, it is possible to achieve a high concentration with a short residence time in the separation tank, and it is possible to better consolidate the sludge pushed onto the water surface by Mars bubbles, resulting in a high concentration of sludge solids. In addition, ■ the sludge recovery rate can be kept almost constant regardless of the area load, especially ■ compared to the conventional pressurized flotation method, there is no need for pressure pumps, pressure tanks, or pressure adjustment around the separation tank. Because there is no need to install incidental equipment such as a
Since the overall structure of the device is simple, it has various advantages in practical use, such as easy maintenance and inspection.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施例を示す装置系統図であり、図
中1は汚濁水供給管、2は汚濁水給送ポンプ、3は反応
槽、4は凝集剤水溶液タンク、5は凝集剤給送ポンプ、
6は混合装置、7は起泡槽、8は送風機、9は空気供給
管、10は管、11は分離槽、12は掻取手段、13は
給送ポンプ、14は汚泥固形物給送管、15は下澄水排
出管、16は分離槽水位調節装置、17は浮遊物質濾過
器、18は貯蓄タンク、19は給送ポンプ、20は回収
管、21は汚泥戻り管である。
The attached drawing is an apparatus system diagram showing an embodiment of the present invention, in which 1 is a polluted water supply pipe, 2 is a polluted water feed pump, 3 is a reaction tank, 4 is a coagulant aqueous solution tank, and 5 is a coagulant supply pipe. feeding pump,
6 is a mixing device, 7 is a foaming tank, 8 is a blower, 9 is an air supply pipe, 10 is a pipe, 11 is a separation tank, 12 is a scraping means, 13 is a feed pump, 14 is a sludge solids feed pipe , 15 is a bottom clear water discharge pipe, 16 is a separation tank water level adjustment device, 17 is a suspended solids filter, 18 is a storage tank, 19 is a feed pump, 20 is a recovery pipe, and 21 is a sludge return pipe.

Claims (1)

【特許請求の範囲】 ■発泡性を有する凝集剤水溶液と空気を混合し、次いで
大気圧下に於いて撹拌することにより乱流を生ぜしめて
、吸着すべき汚泥固形物表面の電荷と反対の電荷に帯電
された微細気泡を生成し、この微細気泡と汚濁水を反応
せしめて汚泥固形物を凝集させつつ汚泥固形物と微細気
泡を電気化学的に吸着せしめ、これを動水圧によって順
次分離工程に送り、分離二「程に於いて汚泥固形物を浮
」−濃縮し、それを掻取ることにより汚濁水を濃縮固形
物と下澄水に分画するようにしたことを特徴とする汚泥
の浮上処理方法。 ■発泡性を有する凝集剤水溶液と空気を混合する為の混
合装置と、これらを撹拌して、生成乱流により微細気泡
を生成する為の起泡槽より成り、処理すべき汚泥固形物
表面の電荷と反対の電荷に帯電された微細気泡を供給す
る凝集剤供給管系と、汚濁水給送ポンプより成る汚濁水
供給管系とを、撹拌手段を有してい工上記汚濁水中の汚
泥固形物の凝集を開始させると共に、凝集汚泥固形物と
微細気泡を電気化学的に吸着せしめる為の反応槽に連ね
該反応槽から動水圧によって流入せる微細気泡が付着せ
る汚泥固形物を浮上濃縮させると共に下澄水を分離する
分離槽を有し」二記分離槽の水面
[Claims] ■ A turbulent flow is created by mixing an aqueous flocculant solution with foaming properties and air, and then stirring the mixture under atmospheric pressure, so that a charge opposite to that of the surface of the sludge solids to be adsorbed is created. Electrified microbubbles are generated, and the microbubbles and polluted water are reacted to coagulate the sludge solids, while the sludge solids and microbubbles are electrochemically adsorbed, which are sequentially subjected to a separation process using hydraulic pressure. A sludge flotation treatment characterized in that the sludge solids are concentrated and scraped to separate the sludge solids into the concentrated solids and the bottom clear water. Method. ■It consists of a mixing device for mixing an aqueous flocculant solution with foaming properties and air, and a foaming tank for stirring these and generating fine bubbles through the generated turbulence. A flocculant supply pipe system that supplies microbubbles charged with an opposite electric charge and a polluted water supply pipe system consisting of a polluted water feed pump are connected to each other by means of stirring means. At the same time, the flocculated sludge solids and fine air bubbles are connected to a reaction tank for electrochemical adsorption, and the fine air bubbles that flow in from the reaction tank by hydraulic pressure float and concentrate the sludge solids to which they adhere. It has a separation tank that separates clear water, and the water surface of the separation tank is
JP59082483A 1984-04-24 1984-04-24 Method and apparatus for floating treatment of sludge Pending JPS60225685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082483A JPS60225685A (en) 1984-04-24 1984-04-24 Method and apparatus for floating treatment of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082483A JPS60225685A (en) 1984-04-24 1984-04-24 Method and apparatus for floating treatment of sludge

Publications (1)

Publication Number Publication Date
JPS60225685A true JPS60225685A (en) 1985-11-09

Family

ID=13775756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082483A Pending JPS60225685A (en) 1984-04-24 1984-04-24 Method and apparatus for floating treatment of sludge

Country Status (1)

Country Link
JP (1) JPS60225685A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108529835A (en) * 2018-04-19 2018-09-14 东北大学 A kind of device and method of employing periodic reverse electrocoagulation reinforcement sludge dehydration
CN110655244A (en) * 2019-10-22 2020-01-07 广东广深环保科技有限公司 MCR membrane chemical separation device
JP2020019020A (en) * 2019-11-11 2020-02-06 株式会社石垣 Sludge dewatering method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854639A (en) * 1981-09-29 1983-03-31 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854639A (en) * 1981-09-29 1983-03-31 Fujitsu Ltd Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108529835A (en) * 2018-04-19 2018-09-14 东北大学 A kind of device and method of employing periodic reverse electrocoagulation reinforcement sludge dehydration
CN110655244A (en) * 2019-10-22 2020-01-07 广东广深环保科技有限公司 MCR membrane chemical separation device
JP2020019020A (en) * 2019-11-11 2020-02-06 株式会社石垣 Sludge dewatering method

Similar Documents

Publication Publication Date Title
JP4802305B2 (en) Floating separation apparatus and method, and manufacturing method of product using the same
US5702612A (en) Method and apparatus for flotation separation
US4156648A (en) Flotation device with pretreatment
CN102701483B (en) Oily wastewater pretreatment system and high-efficiency oil eliminator arranged in system
CN201492972U (en) Gas-energy flocculation reactor
CN101613164A (en) Inclined tube floating device for waste water treatment
CN101423262A (en) Air-floated water treatment device
CN109502834B (en) Treatment method of mineral processing wastewater containing sodium dodecyl sulfate
CN105384230B (en) A kind of cellulose sewage pretreatment device and application
CN211368642U (en) Novel algae-laden water separation ship
CN211813962U (en) High-density clarification tank
KR19980043088A (en) Water treatment system and method linking sedimentation and flotation
FI79792B (en) FLOTATIONSANORDNING OCH -FOERFARANDE.
JPS60225685A (en) Method and apparatus for floating treatment of sludge
JP4246087B2 (en) Oil-containing wastewater treatment equipment
CN110436661A (en) A kind of method and apparatus removing surfactant in water removal using foam enrichment
CN102910703B (en) Ultrasonic air floatation system
KR100315903B1 (en) waste water process system used microbubble generator
CN210419615U (en) Magnetic powder sludge separation structure and sewage sedimentation system
CN108383349B (en) Device and method for recycling carbon source of residual activated sludge
CN201362625Y (en) Waste water disposal pipe chute floating and sinking device
CN215559480U (en) Petrochemical wastewater pretreatment system
KR101045878B1 (en) High-efficiency hybrid sedimentation basin for processing water elevation
CN221370790U (en) Sled dress integral type high-efficient sedimentation tank
FI95234C (en) Method and apparatus for purifying aqueous solutions or the like