JP2020015632A - グラフェン分散液の製造方法及び微粒化装置 - Google Patents

グラフェン分散液の製造方法及び微粒化装置 Download PDF

Info

Publication number
JP2020015632A
JP2020015632A JP2018137774A JP2018137774A JP2020015632A JP 2020015632 A JP2020015632 A JP 2020015632A JP 2018137774 A JP2018137774 A JP 2018137774A JP 2018137774 A JP2018137774 A JP 2018137774A JP 2020015632 A JP2020015632 A JP 2020015632A
Authority
JP
Japan
Prior art keywords
flow path
dispersion
graphene
dispersion liquid
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018137774A
Other languages
English (en)
Inventor
和彦 小野寺
Kazuhiko Onodera
和彦 小野寺
恵一 佐野
Keiichi Sano
恵一 佐野
佐々木 良一
Ryoichi Sasaki
良一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jokoh Co Ltd
Original Assignee
Jokoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jokoh Co Ltd filed Critical Jokoh Co Ltd
Priority to JP2018137774A priority Critical patent/JP2020015632A/ja
Publication of JP2020015632A publication Critical patent/JP2020015632A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】簡便かつ安全にグラフェン分散液を得ることができる。【解決手段】グラファイトを分散媒に分散させた分散液を略180MPa以上の高圧で流路に導入し、一直線上で対向衝突させる第1流路、第1流路に対して垂直に連結された第2流路、第2流路に対して垂直に連結された第3流路、の順に第1流路、第2流路及び第3流路の内部を分散液が流れる。【選択図】 図1

Description

本発明は、グラフェン分散液の製造方法及び微粒化装置に関する。
グラフェンは炭素原子が六角形格子構造に配列されたシート状の物質であり、電子材料や電極材料として注目を集めている。このようなグラフェンシートの製造には、積層構造を持つグラファイトをセロテープ(登録商標)など粘着テープで剥す方法(非特許文献1参照)や、化学的に酸化処理してグラフェンシートを剥がす方法(非特許文献2参照)、炭化ケイ素(SiC)の表面を熱分解する方法(非特許文献3参照)、CVD法などの方法(非特許文献4、非特許文献5参照)等、様々な方法が提案されている。
K.S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V.V. Khotkevich, S. V. Morozov, and A.K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. 102, No 30, (2005) 10451-10453 S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-based composite materials, Nature 442(2006) 282-286 C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogabazghi, R. Feng, A. Dai, A. N. Marchenkov, E. H. Conrad, P.N. First, and W.A. de Heer, UltrathinEpitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, J. Phys. Chem., B108 (2004) 19912-19916 Y. Wu, P. Qiao, T. Chong, and Z. Shen, Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition, Adv. Mater. 14, No. 1, (2002), 64-67 N.G. Shang, F. C. K. Au, X. M. Meng, C. S. Lee, I. Bello, S.T. Lee, Uniform Carbon Nanoflake Films and Their Field Emissions, Chem. Phys. Lett. 358(2002) 187-191
しかしながら、CVD法では、アルカリ性脱脂剤(ノンシリケート系、シリケート系等)、酸性脱脂剤(フッ素系、ノンフッ素系等)、溶剤系脱脂剤(パラフィン系、ケトン系溶媒、エーテル系溶媒、アルコール類、ハロゲン系溶媒、界面活性剤分散水溶液等)等の有害かつ危険な溶液を扱う必要がある。
また、粘着テープで剥がす方法は、再現性や量産性に問題がある。化学的に酸化する方法では、一層から数層のグラフェンシートを製造することが困難であり、グラファイトを原材料とすることからグラフェンの製造が複雑になるという問題がある。SiCを熱分解する方法では、SiC基板を使用する必要があり、しかも基板を1000℃以上に加熱しなければならないという問題がある。
本発明はこのような事情に鑑みてなされたもので、簡便かつ安全にグラフェン分散液を得ることができるグラフェン分散液の製造方法及び微粒化装置を提供することを目的とする。
上記課題を解決するために、本発明に係るグラフェン分散液の製造方法は、例えば、グラファイトを分散媒に分散させた分散液における前記グラファイトを微粒化してグラフェン分散液を得るグラフェン分散液の製造方法であって、一直線上で対向衝突させる第1流路と、前記第1流路に対して垂直に連結された第2流路と、前記第2流路に対して垂直に連結された第3流路と、を有する流路に略180MPa以上の高圧で前記分散液を導入し、前記第1流路、前記第2流路、前記第3流路の順で前記第1流路、前記第2流路及び前記第3流路の内部を前記分散液が流れるジェットミル処理工程を含むことを特徴とする。
本発明に係るグラフェン分散液の製造方法によれば、グラファイトを分散媒に分散させた分散液を略180MPa以上の高圧で流路に導入し、一直線上で対向衝突させる第1流路、第1流路に対して垂直に連結された第2流路、第2流路に対して垂直に連結された第3流路、の順に第1流路、第2流路及び第3流路の内部を分散液が流れる。これにより、簡便かつ安全にグラフェン分散液を得ることができる。
ここで、前記第1流路の断面積をA1、前記第2流路の断面積をA2、前記第3流路の断面積をA3とすると、A1<A2<A3であってもよい。これにより、第2流路で確実に微粒化を行うことができる。
ここで、前記ジェットミル処理工程を少なくとも2回繰り返し、2回目のジェットミル処理工程においては、1回目のジェットミル処理工程よりも前記流路の流路径を狭くし、前記1回目のジェットミル処理工程よりも前記分散液を前記流路に導入する圧力を高くしてもよい。これにより、ジェットミル処理工程の回数を減らすことができる。
ここで、最初のジェットミル処理工程は、前記第2流路の流路径が略0.3mmであり、前記流路に前記分散液を導入する圧力が略180MPaであり、最後のジェットミル処理工程は、前記第2流路の流路径が略0.1mmであり、前記流路に前記分散液を導入する圧力が略250MPaであってもよい。これにより、分散質にバルクグラファイトを用いても流路を詰まらせることなく、粒子径が小さいグラフェンを得ることができる。
ここで、前記ジェットミル処理工程の前に、ビーズを充填した容器内に前記分散液を入れ、前記ビーズに動きを与えるビーズミル処理工程を行ってもよい。これにより、より少ない工程数で、より大量に、より簡便にグラフェン分散液を得ることができる。
ここで、直径が略0.5mmの前記ビーズを用いて、前記ビーズミル処理工程を略120分以上行ってもよい。これにより、ビーズミル処理工程で分散質の粒子径を極力小さくし、効率よくグラフェン分散液を得ることができる。
ここで、前記第2流路の流路径を略0.1mmとし、前記流路に前記分散液を導入する圧力を略250MPaとして前記ジェットミル処理工程を1回行ってもよい。このようにビーズミル処理工程を先に行うことで、ジェットミル処理工程が1回で済み、効率がよい。
ここで、前記グラファイトの濃度は略10重量%であり、前記グラフェン分散液におけるグラフェンのメジアン径が略8μm〜略10μmであってもよい。
ここで、前記グラファイトの濃度は略10重量%であり、前記ビーズミル処理工程により、前記グラフェン分散液におけるグラフェンのメジアン径を略18μm〜略20μmとし、前記ジェットミル処理工程により、前記グラフェン分散液における前記グラフェンのメジアン径を略8μm〜略10μmとしてもよい。これにより、ジェットミル処理工程を1回とすることができる。
上記課題を解決するために、本発明に係る微粒化装置は、例えば、逆止弁と、グラファイトを分散媒に分散させた分散液が貯留される分散液タンクと、前記分散液を加圧する高圧ポンプと、前記分散液が流れる流路を有する微粒化ユニットと、を備え、前記流路は、一直線上で対向衝突させる第1流路と、前記第1流路に対して垂直に連結された第2流路と、前記第2流路に対して垂直に連結された第3流路と、を有し、前記高圧ポンプは、前記分散液を略180MPa以上の高圧で前記流路へ送り込むことを特徴とする。これにより、簡便かつ安全にグラフェン分散液を得ることができる。
ここで、前記微粒化ユニットは、前記第1流路が形成された第1ディスクと、前記第2流路が形成された第2ディスクと、前記第3流路が形成された第3ディスクと、が交換可能に設けられていてもよい。これにより、第1流路、第2流路、第3流路の流路径を変えることができる。
ここで、前記第1流路の断面積をA1、前記第2流路の断面積をA2、前記第3流路の断面積をA3とすると、A1<A2<A3となるように前記微粒化ユニットに前記流路が形成されていてもよい。これにより、第2流路で確実に微粒化を行うことができる。
本発明によれば、簡便かつ安全にグラフェン分散液を得ることができる。
本発明の一実施形態のグラフェン分散液の製造方法の処理の流れを示すフローチャートである。 微粒化装置1の概略構成を示す図である。 微粒化ユニット5の概略構成を示す図である。 本発明の一実施形態のグラフェン分散液の製造方法の処理の流れを示すフローチャートである。 ビーズミル装置10の概略構成を示す図である。 ビーズミル処理工程において、処理時間とグラフェンの粒径との関係を示すグラフである。 ビーズミル処理工程後及びジェットミル処理工程後のグラフェンの粒度分布を示すグラフである。
以下、本発明の実施形態を、図面を参照して詳細に説明する。
<第1の実施の形態>
図1は、本発明の一実施形態のグラフェン分散液の製造方法の処理の流れを示すフローチャートである。本実施の形態のグラフェン分散液の製造方法は、グラファイトを分散媒に分散させた分散液におけるグラファイトを微粒化してグラフェン分散液を得るものである。
図1に示すように、グラフェン分散液の製造方法は、準備工程(ステップS1)と、ジェットミル処理工程(ステップS2〜S6)と、を備える。
[準備工程(ステップS1)]
準備工程(ステップS1)では、分散媒である水又は有機溶媒に、分散媒であるグラファイトを分散させて分散液を作成する。有機溶媒は様々な種類があるが、有機溶媒としてNMP(N−メチル−2−ピロリドン)を用いることが好ましい。
グラファイトの濃度が高すぎるとジェットミル処理工程(ステップS2〜S6)において流路が詰まってしまう不具合が生じるため、分散液におけるグラファイトの濃度は、略30重量%以下とすることが望ましい。また、グラファイトの濃度が低すぎるとジェットミル処理工程(ステップS2〜S6)においてグラファイトの粒径が小さくならないという不具合が生じるため、分散液におけるグラファイトの濃度は、略10重量%であることが好ましい。
本実施の形態では、分散質として直径が略150μmのグラファイトを略75%以上含むバルクグラファイトを用いる。略2250gの分散媒に対して、略230gの分散媒を分散させる。
[ジェットミル処理工程(ステップS2〜S6)]
ジェットミル処理工程(ステップS2〜S6)は、粉末等の分散質を高圧下で衝突させて分散質を微粒化する微粒化装置1を用いて行われる。
ここで、微粒化装置1について説明する。図2は、微粒化装置1の概略構成を示す図である。微粒化装置1は、主として、逆止弁2と、分散液タンク3と、高圧ポンプ4と、微粒化ユニット5と、熱交換器6と、これらを連結する配管7と、を有する。
分散液タンク3には、準備工程(ステップS1)で生成された分散液Lが貯留される。分散液タンク3に貯留された分散液は、分散液タンク3と高圧ポンプ4との間に設けられた逆止弁2を通過して高圧ポンプ4に供給される。このとき、逆止弁2は開状態である。
高圧ポンプ4は、内部に分散液Lを引き込み、かつ、加圧して排出可能な構成となっている。分散液Lは、高圧ポンプ4により加圧され、微粒化ユニット5に供給される。このとき、逆止弁2は閉状態である。逆止弁2は、分散液Lが高圧ポンプ4から分散液タンク3に戻らないように、分散液Lの逆流を防止する。
本実施の形態では、分散液Lは、略180MPa以上の高圧で微粒化ユニット5に導入される。微粒化ユニット5では、分散液Lが微粒化ユニット5内に形成された流路を流れることにより微粒化される。
微粒化ユニット5を通過すると分散液Lは高温となり、高温となった分散液Lは、熱交換器6で温度が下げられ、分散液タンク3へ戻される。
次に、微粒化ユニット5について説明する。図3は、微粒化ユニット5の概略構成を示す図である。図3において、2点鎖線は分散液Lの流れを示す。微粒化ユニット5は、主として、略円板形状に形成された導入側ディスク51と、中間ディスク52と、排出側ディスク53と、を有する。導入側ディスク51、中間ディスク52、及び排出側ディスク53は、セラミックス、超硬合金、ダイヤモンド等の耐摩耗性部材により形成されている。また、導入側ディスク51、中間ディスク52、及び排出側ディスク53は、交換可能に設けられている。
導入側ディスク51と、中間ディスク52と、排出側ディスク53とは略同一の直径を有する。導入側ディスク51と排出側ディスク53とは略同一の板厚にて形成され、中間ディスク52は、導入側ディスク51及び排出側ディスク53の板厚よりも薄い板厚で形成されている。
導入側ディスク51と、中間ディスク52と、排出側ディスク53とは、中心軸axに沿って隣接して設けられている。中間ディスク52は、導入側ディスク51の下流側に設けられ、排出側ディスク53は、中間ディスク52の下流側に設けられており、導入側ディスク51と中間ディスク52とは密着しており、中間ディスク52と排出側ディスク53とは密着している。
導入側ディスク51には、流路の一部である貫通孔51a、51bが設けられている。貫通孔51aと貫通孔51bとは、略同一の内径を有し、導入側ディスク51の中心軸axに対して略対称の位置に配置されている。また、導入側ディスク51の中間ディスク52と当接する面51cには、一直線状の溝部51dが設けられている。溝部51dは、貫通孔51aと貫通孔51bとを連通する。
中間ディスク52には、貫通孔52aが設けられている。貫通孔52aの中心軸は、中間ディスク52の中心軸axと略一致している。
導入側ディスク51と中間ディスク52とを当接させると、溝部51dが分散液Lの流路となる。この溝部51dにより構成される流路は、分散液Lを一直線上で対向衝突させる衝突流路50a(図2参照)となる。衝突流路50aにおいて、貫通孔51a、51bに分かれて流れた分散液Lが衝突し、分散質(グラファイト又はグラフェン)が微粒化される。
また、導入側ディスク51と中間ディスク52とを当接させると、衝突流路50aと貫通孔52aとが連通する。貫通孔52aは衝突流路50aに対して垂直に連結されており、衝突流路50aを通過した分散液Lが貫通孔52aの内部を流れる。分散質が衝突しながら貫通孔52aの内部を流れることで、再度分散質の微粒化が行われる。
排出側ディスク53には、流路の一部である貫通孔53a、53bが設けられている。貫通孔53aと貫通孔53bとは、略同一の内径を有し、排出側ディスク53の中心軸axに対して略対称の位置に配置されている。また、排出側ディスク53の中間ディスク52と当接する面53cには、一直線状の溝部53dが設けられている。溝部53dは、貫通孔53aと貫通孔53bとを連通する。
排出側ディスク53と中間ディスク52とを当接させると、溝部53dが分散液Lの流路となる。溝部53dにより構成される流路は、貫通孔52aを通過した分散液Lが流れる排出流路50b(図2参照)である。排出流路50bは、貫通孔52aと連通しており、貫通孔52aに対して垂直に連結されている。排出流路50bを流れた分散液Lは、貫通孔53a、53bの内部を通って微粒化ユニット5の外側に流出する。
なお、溝部51dは、導入側ディスク51ではなく、中間ディスク52の導入側ディスク51と当接する側の表面に設けられていてもよい。また、溝部53dは、排出側ディスク53ではなく、中間ディスク52の排出側ディスク53と当接する側の表面に設けられていてもよい。さらに、導入側ディスク51に溝部51dを設け、中間ディスク52の導入側ディスク51と当接する側の表面に溝部(図示せず)を設け、導入側ディスク51と中間ディスク52とを当接させることで2つの溝部が対向して衝突流路50aを形成してもよい。また、排出側ディスク53に溝部53dを設け、中間ディスク52の導入側ディスク51と当接する側の表面に溝部(図示せず)を設け、排出側ディスク53と中間ディスク52とを当接させることで2つの溝部が対向して排出流路50bを形成してもよい。
また、溝部51d、53dの断面形状は、略円形状、略半円形状、略U字形状、略矩形形状等の様々な形態をとることができる。以下、溝部51dにより構成される排出流路50b及び溝部53dにより構成される排出流路50bの断面形状を略円形形状とする。
このように微粒化ユニット5には、貫通孔51a、51b、衝突流路50a(溝部51d)、貫通孔52a、排出流路50b(溝部53d)、及び貫通孔53a、53bが流路として形成されている。衝突流路50aの断面積をA1、貫通孔52aの断面積をA2、排出流路50bの断面積をA3とすると、A1<A2<A3である。本実施の形態では、衝突流路50aの流路径(直径)a1は、貫通孔52aの流路径a2より略0.01mm小さく、排出流路50bの流路径a3は、貫通孔52aの流路径a2より略0.01mm大きい。これにより、貫通孔52aで確実に微粒化を行うことができる。
図1の説明に戻る。本実施の形態では、ジェットミル処理工程を繰り返し行う(ステップS2〜S6)ことで、分散質の粒子径がナノメートル以下となるように分散質が微粒化される。
[ジェットミル処理工程:1回目(ステップS2)]
高圧ポンプ4で分散液Lを加圧して、分散液Lを略180MPaで微粒化ユニット5に導入する。微粒化ユニット5の内部では、貫通孔51a、51b、衝突流路50a(溝部51d)、貫通孔52a、排出流路50b(溝部53d)、及び貫通孔53a、53bの順に分散液Lが流れる。
1回目のジェットミル処理工程(ステップS2)では、衝突流路50aの流路径a1がφ0.29mmであり、貫通孔52aの流路径a2がφ0.3mmであり、排出流路50bの流路径a3がφ0.31mmである。このように流路径a1〜a3を大きくすることで、直径が略150μmのグラファイトを略75%以上含むバルクグラファイトを分散質として用いたとしても流路が詰まらない。
ここで、微粒化ユニット5の内部における分散液Lの流れについて説明する。このとき、分散液Lが導入側ディスク51に到達すると、分散液Lは貫通孔51a、51bに分かれて流れる。2つに分かれた分散液Lは、衝突流路50aにそれぞれ流入し、衝突流路50aの中心に向かって対向するように流れる。その結果、衝突流路50aの内部で分散液Lが衝突し、分散質(グラファイト又はグラフェン)が微粒化される。
衝突流路50a内で衝突した後の分散液Lは中間ディスク52に到達し、貫通孔52aの内部を流れる。貫通孔52aは衝突流路50aと略直交しているため、貫通孔52aの内部では分散液Lが乱流を維持したままである。つまり、分散液Lが貫通孔52aの内部を流れるときに分散質が衝突し、再度分散質の微粒化が行われる。
貫通孔52aの内部を流れた分散液Lは排出側ディスク53に到達し、排出流路50bの内部を流れる。排出流路50bは貫通孔52aと略直交しており、衝突流路50aと略平行であるため、排出流路50bにおいて分散液Lが2つに分かれ、分散質の微粒化は行われない。2つに分かれた分散液Lは、それぞれ貫通孔53a、53bの内部を流れて微粒化ユニット5から流出する。
その後、分散液Lは、熱交換器6を通って分散液タンク3へ戻される。これにより、1回目のジェットミル処理工程(ステップS2)が終了する。
[ジェットミル処理工程:2回目(ステップS3)]
まず、微粒化ユニット5の導入側ディスク51、中間ディスク52、及び排出側ディスク53を交換し、1回目のジェットミル処理工程(ステップS2)よりも流路の流路径(流路の直径)を狭くする。
2回目のジェットミル処理工程(ステップS2)では、衝突流路50aの流路径a1がφ0.19mmであり、貫通孔52aの流路径a2がφ0.2mmであり、排出流路50bの流路径a3がφ0.21mmである。
導入側ディスク51、中間ディスク52、及び排出側ディスク53を交換したら、高圧ポンプ4で分散液Lを加圧して、分散液Lを略200MPaで微粒化ユニット5に導入する。2回目のジェットミル処理工程(ステップS3)では、分散液Lを導入する圧力を1回目のジェットミル処理工程(ステップS2)よりも高くする。微粒化ユニット5の内部では、貫通孔51a、51b、衝突流路50a(溝部51d)、貫通孔52a、排出流路50b(溝部53d)、及び貫通孔53a、53bの順に分散液Lが流れ、分散質の微粒化が行われる。
[ジェットミル処理工程:3回目(ステップS4)]
まず、微粒化ユニット5の導入側ディスク51、中間ディスク52、及び排出側ディスク53を交換し、2回目のジェットミル処理工程(ステップS3)よりも流路の流路径を狭くする。
3回目のジェットミル処理工程(ステップS4)では、衝突流路50aの流路径a1がφ0.14mmであり、貫通孔52aの流路径a2がφ0.15mmであり、排出流路50bの流路径a3がφ0.16mmである。
導入側ディスク51、中間ディスク52、及び排出側ディスク53を交換したら、高圧ポンプ4で分散液Lを加圧して、分散液Lを略250MPaで微粒化ユニット5に導入する。3回目のジェットミル処理工程(ステップS4)では、分散液Lを導入する圧力を2回目のジェットミル処理工程(ステップS3)よりも高くする。微粒化ユニット5の内部では、貫通孔51a、51b、衝突流路50a(溝部51d)、貫通孔52a、排出流路50b(溝部53d)、及び貫通孔53a、53bの順に分散液Lが流れ、分散質の微粒化が行われる。
なお、分散液Lを微粒化ユニット5に導入する圧力と、微粒化ユニット5内部における分散液Lの流速とは比例する。つまり、分散液Lを導入する圧力を高くすることで、微粒化ユニット5内部における分散液Lの流速を速くしている。例えば、分散液Lを微粒化ユニット5に導入する圧力が略250MPaであるとすると、微粒化ユニット5内部における分散液Lの流速は略700m/秒である。分散液Lを微粒化ユニット5に導入する圧力を高くし、微粒化ユニット5内部における分散液Lの流速を速くすることで、分散質の衝突頻度が上がり、より微粒化しやすくなる。
[ジェットミル処理工程:4回目(ステップS5)]
まず、微粒化ユニット5の導入側ディスク51、中間ディスク52、及び排出側ディスク53を交換し、3回目のジェットミル処理工程(ステップS4)よりも流路の流路径を狭くする。
4回目のジェットミル処理工程(ステップS5)では、衝突流路50aの流路径a1がφ0.09mmであり、貫通孔52aの流路径a2がφ0.1mmであり、排出流路50bの流路径a3がφ0.11mmである。流路径を狭くすることで、微粒化ユニット5内部において分散質の衝突頻度が上がり、より微粒化しやすくなる。
導入側ディスク51、中間ディスク52、及び排出側ディスク53を交換したら、高圧ポンプ4で分散液Lを加圧して、分散液Lを略250MPaで微粒化ユニット5に導入する。4回目のジェットミル処理工程(ステップS5)では、3回目のジェットミル処理工程(ステップS4)と同様、分散液Lを導入する圧力を2回目のジェットミル処理工程(ステップS3)よりも高くする。微粒化ユニット5の内部では、貫通孔51a、51b、衝突流路50a(溝部51d)、貫通孔52a、排出流路50b(溝部53d)、及び貫通孔53a、53bの順に分散液Lが流れ、分散質の微粒化が行われる。
以上により、グラフェン分散液の製造工程を終了する。1〜4回目のジェットミル処理工程(ステップS2〜S5)が終わることにより、積層されたグラファイト層の多くが剥離されて数層からなるグラフェンとなり、グラフェンの粒径が略2.5μm〜略30μm、メジアン径が略8μm〜略10μmのグラフェン分散液が得られる。
本実施の形態によれば、分散液Lを高圧で流路内に導入し、流路内にて微粒化を行うことでグラフェン分散液を得るため、危険かつ有害な薬品を用いることなく、簡便かつ安全にグラフェン分散液を得ることができる。
また、本実施の形態によれば、ジェットミル処理工程を複数回繰り返すため、粒子径が小さいグラフェンを得ることができる。特に、ジェットミル処理工程の回数を重ねるに従い流路径を狭くし、かつ分散液Lを流路に導入する圧力を高くするため、ジェットミル処理工程の回数を減らすことができる。流路径や圧力を変化させない場合には、ジェットミル処理工程を10回程度行う必要があるが、本実施の形態のように流路径を漸次狭くし、かつ圧力を漸次高くすることで、ジェットミル処理工程の回数を少なく(本実施の形態では、5回)することができる。
なお、本実施の形態では、5回目のジェットミル処理工程(ステップS6)でグラフェン分散液の製造処理を終了したが、5回目のジェットミル処理工程(ステップS6)の後でジェットミル処理工程の繰り返しの有無を判断する判断工程を入れてもよい。判断工程において、分散液Lの一部をサンプリングしてグラフェンの粒径を測定し、グラフェンの粒径が所定の粒径より大きい場合には5回目のジェットミル処理工程(ステップS6)を繰り返してもよい。
<第2の実施の形態>
本発明の第1の実施の形態は、ジェットミル処理工程を複数回繰り返すことでグラフェン分散液を得たが、グラフェン分散液を得る方法はこれに限られない。以下、本発明の第2の実施の形態について図を用いて説明する。以下、第1の実施の形態と同一の部分については、同一の符号を付し、説明を省略する。
図4は、本発明の一実施形態のグラフェン分散液の製造方法の処理の流れを示すフローチャートである。図4に示すように、グラフェン分散液の製造方法は、準備工程(ステップS1)と、ビーズミル処理工程(ステップS11)と、ジェットミル処理工程(ステップS12)と、を備える。
[ビーズミル処理工程(ステップS11)]
ビーズミル処理工程(ステップS11)は、ビーズを使って粉末等の分散質を粉砕する湿式のビーズミル装置10を用いて行われる。
ここで、ビーズミル装置10について説明する。図5は、ビーズミル装置10の概略構成を示す図である。ビーズミル装置10は、主として、容器11と、回転軸12と、撹拌部13と、を有する。
容器11は、分散液L及びビーズ15が導入される導入部11aと、分散液L及びビーズ15が排出される排出部11bと、を有する。容器11の内部には分散液L及びビーズ15が入れられている。
ビーズ15は、直径が略0.015mm〜略2.0mmの略球体の物体である。本実施の形態では、ビーズ15として、ジルコニア製の直径が略0.5mmのものを用いる。また、ビーズ15の表面にスリットが形成されている。本実施の形態では、幅が略0.3mmのスリットがビーズ15の表面に形成されている。容器11の内部におけるビーズ15の充填密度は略3.8kg/リットルであり、容器11の内部に充填されたビーズ15の数は略970万個である。
また、容器11の内部には、回転軸12が挿入されている。回転軸12には、複数の撹拌部13が設けられている。本実施の形態では、撹拌部13はディスクであるが、撹拌部13はこれに限られない。例えば、撹拌部13として、ピンや翼状部材を用いてもよい。
回転軸12は、図示しないモータにより回転される。回転軸12を回転させることで撹拌部13が回転し、ビーズ15及び分散液Lに動きが与えられる。その結果、ビーズ15により分散質(グラファイト又はグラフェン)がすりつぶされ、分散質が粉砕、分散されることで、分散質が微粒化される。本実施の形態では、モータの出力は略3.7kwであり、モータの回転数は略500RPMである。モータの回転数は、分散液Lの濃度により適宜変更可能である。ビーズミル処理の内容は公知であるため、詳しい説明を省略する。
ビーズミル処理工程(ステップS11)は、略150分以上行われる。また、ビーズミル処理工程(ステップS11)では、毎分3リットルの分散液Lが処理される。略150分のジェットミル処理工程(ステップS12)が終わることにより、グラフェンの粒径が、略3μm〜略100μm、メジアン径が略18μm〜略20μmのグラフェン分散液が得られる。
図6は、ビーズミル処理工程(ステップS11)において、処理時間とグラフェンの粒径との関係を示すグラフである。図6において、実線は分布の中央値に対応する粒子径(メジアン径)であり、点線は平均径である。
ビーズミル処理の開始からしばらく(40分経過後くらいまで)は急激に微粒化が行われるため、メジアン径、平均径共にグラフの傾きが急になっている。本実施の形態では、図6における0分からビーズ15が充填された容器11へ分散液Lを投入し始め、10分の時点ですべての分散液Lが容器11に投入されるが、この間は回転軸12が回転しており、投入された一部の分散液Lについては微粒化が行われている。したがって、図6において、0分〜10分の間は10分〜20分の間よりグラフの傾きが緩やかになっている。また、ビーズミル処理の開始から40分経過後位からは微粒化の速度が低下し、グラフの傾きが緩やかになっている。
本実施の形態では、ビーズミル処理を150分行い、グラフェンのメジアン径を略20μm以下とする。ただし、ビーズミル処理工程(ステップS11)の時間は150分に限られない。図6のグラフより、120分経過後以降はメジアン径の変化が小さくなるため、ビーズミル処理の時間を略120分以上としてもよい。
[ジェットミル処理工程(ステップS12)]
ビーズミル処理工程(ステップS11)の後で、微粒化装置1を用いたジェットミル処理工程(ステップS12)を行う。高圧ポンプ4で分散液Lを加圧して、分散液Lを略250MPaで微粒化ユニット5に導入する。ジェットミル処理工程(ステップS12)において分散液Lを微粒化ユニット5に導入する圧力は、5回目のジェットミル処理工程(ステップS5)と略同一である。
また、ジェットミル処理工程(ステップS12)では、4回目のジェットミル処理工程(ステップS5)と同様、衝突流路50aの流路径a1がφ0.09mmであり、貫通孔52aの流路径a2がφ0.1mmであり、排出流路50bの流路径a3がφ0.11mmである。
微粒化ユニット5の内部では、貫通孔51a、51b、衝突流路50a(溝部51d)、貫通孔52a、排出流路50b(溝部53d)、及び貫通孔53a、53bの順に分散液Lが流れ、分散質の微粒化が行われる。ジェットミル処理工程(ステップS12)が終わることにより、グラフェンの粒径が略2.5μm〜略30μm、メジアン径が略8μm〜略10μmのグラフェン分散液が得られる。以上により、グラフェン分散液の製造工程を終了する。
図7は、ビーズミル処理工程(ステップS11)後及びジェットミル処理工程(ステップS12)後のグラフェンの粒度分布を示すグラフである。図7において、線a(太点線)はビーズミル処理工程(ステップS11)後の頻度分布を示し、線b(細点線)はビーズミル処理工程(ステップS11)後の通過分積算を示し、線c(太実線)はジェットミル処理工程(ステップS12)後の頻度分布を示し、線d(細実線)はジェットミル処理工程(ステップS12)後の通過分積算を示す。ここで、頻度分布は、各粒子径区間に存在する粒子量を%で示したものであり、通過分積算は、特定の粒子径以下の粒子量が全体の何%であるかを示したものである。
ビーズミル処理工程(ステップS11)後はメジアン径が略18μm〜略20μmであるが、ジェットミル処理工程(ステップS12)後はメジアン径が略8μm〜略10μmとなっており、ジェットミル処理工程(ステップS12)後はビーズミル処理工程(ステップS11)後に比べて粒子径が小さくなっている。また、ジェットミル処理工程(ステップS12)を行うことで、ビーズミル処理工程(ステップS11)後に比べて粒子径のばらつきを小さくすることができる。
本実施の形態によれば、ジェットミル処理工程の前にビーズミル処理工程を行うことで、より少ない工程数で、より簡便にグラフェン分散液を得ることができる。言い換えれば、1回のビーズミル処理により、3回分のジェットミル処理と同様の効果を得ることができる。また、ジェットミル処理工程の前ビーズミル処理工程を行うようにしたため、より大量に効率よくグラフェン分散液を得ることができる。さらに、ジェットミル処理工程の前にビーズミル処理工程を行うため、粒子径が大きいバルクグラファイトを分散質として用いることができる。
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
また、本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。例えば、略平行、略直交とは、厳密に平行、直交の場合には限られない。また、例えば、単に平行、直交等と表現する場合においても、厳密に平行、直交等の場合のみでなく、略平行、略直交等の場合を含むものとする。
1 :微粒化装置
2 :逆止弁
3 :分散液タンク
4 :高圧ポンプ
5 :微粒化ユニット
6 :熱交換器
7 :配管
10 :ビーズミル装置
11 :容器
11a :導入部
11b :排出部
12 :回転軸
13 :撹拌部
15 :ビーズ
50a :衝突流路
50b :排出流路
51 :導入側ディスク
52 :中間ディスク
53 :排出側ディスク
51a、51b、52a、53a、53b:貫通孔
51c、53c:面
51d、53d:溝部

Claims (12)

  1. グラファイトを分散媒に分散させた分散液における前記グラファイトを微粒化してグラフェン分散液を得るグラフェン分散液の製造方法であって、
    一直線上で対向衝突させる第1流路と、前記第1流路に対して垂直に連結された第2流路と、前記第2流路に対して垂直に連結された第3流路と、を有する流路に略180MPa以上の高圧で前記分散液を導入し、前記第1流路、前記第2流路、前記第3流路の順で前記第1流路、前記第2流路及び前記第3流路の内部を前記分散液が流れるジェットミル処理工程を含む
    ことを特徴とするグラフェン分散液の製造方法。
  2. 前記第1流路の断面積をA1、前記第2流路の断面積をA2、前記第3流路の断面積をA3とすると、A1<A2<A3である
    ことを特徴とする請求項1に記載のグラフェン分散液の製造方法。
  3. 前記ジェットミル処理工程を少なくとも2回繰り返し、
    2回目のジェットミル処理工程においては、1回目のジェットミル処理工程よりも前記流路の流路径を狭くし、前記1回目のジェットミル処理工程よりも前記分散液を前記流路に導入する圧力を高くする
    ことを特徴とする請求項1又は2に記載のグラフェン分散液の製造方法。
  4. 最初のジェットミル処理工程は、前記第2流路の流路径が略0.3mmであり、前記流路に前記分散液を導入する圧力が略180MPaであり、
    最後のジェットミル処理工程は、前記第2流路の流路径が略0.1mmであり、前記流路に前記分散液を導入する圧力が略250MPaである
    ことを特徴とする請求項3に記載のグラフェン分散液の製造方法。
  5. 前記ジェットミル処理工程の前に、ビーズを充填した容器内に前記分散液を入れ、前記ビーズに動きを与えるビーズミル処理工程を行う
    ことを特徴とする請求項1又は2に記載のグラフェン分散液の製造方法。
  6. 直径が略0.5mmの前記ビーズを用いて、前記ビーズミル処理工程を略120分以上行う
    ことを特徴とする請求項5に記載のグラフェン分散液の製造方法。
  7. 前記第2流路の流路径を略0.1mmとし、前記流路に前記分散液を導入する圧力を略250MPaとして前記ジェットミル処理工程を1回行う
    ことを特徴とする請求項5又は6に記載のグラフェン分散液の製造方法。
  8. 前記グラファイトの濃度は略10重量%であり、
    前記グラフェン分散液におけるグラフェンのメジアン径が略8μm〜略10μmである
    ことを特徴とする請求項1から7のいずれか一項に記載のグラフェン分散液の製造方法。
  9. 前記グラファイトの濃度は略10重量%であり、
    前記ビーズミル処理工程により、前記グラフェン分散液におけるグラフェンのメジアン径を略18μm〜略20μmとし、
    前記ジェットミル処理工程により、前記グラフェン分散液における前記グラフェンのメジアン径を略8μm〜略10μmとする
    ことを特徴とする請求項5から7のいずれか一項に記載のグラフェン分散液の製造方法。
  10. 逆止弁と、
    グラファイトを分散媒に分散させた分散液が貯留される分散液タンクと、
    前記分散液を加圧する高圧ポンプと、
    前記分散液が流れる流路を有する微粒化ユニットと、
    を備え、
    前記流路は、一直線上で対向衝突させる第1流路と、前記第1流路に対して垂直に連結された第2流路と、前記第2流路に対して垂直に連結された第3流路と、を有し、
    前記高圧ポンプは、前記分散液を略180MPa以上の高圧で前記流路へ送り込む
    ことを特徴とする微粒化装置。
  11. 前記微粒化ユニットは、前記第1流路が形成された第1ディスクと、前記第2流路が形成された第2ディスクと、前記第3流路が形成された第3ディスクと、が交換可能に設けられている
    ことを特徴とする請求項10に記載の微粒化装置。
  12. 前記第1流路の断面積をA1、前記第2流路の断面積をA2、前記第3流路の断面積をA3とすると、A1<A2<A3となるように前記微粒化ユニットに前記流路が形成されている
    ことを特徴とする請求項10又は11に記載の微粒化装置。
JP2018137774A 2018-07-23 2018-07-23 グラフェン分散液の製造方法及び微粒化装置 Pending JP2020015632A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018137774A JP2020015632A (ja) 2018-07-23 2018-07-23 グラフェン分散液の製造方法及び微粒化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018137774A JP2020015632A (ja) 2018-07-23 2018-07-23 グラフェン分散液の製造方法及び微粒化装置

Publications (1)

Publication Number Publication Date
JP2020015632A true JP2020015632A (ja) 2020-01-30

Family

ID=69581269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018137774A Pending JP2020015632A (ja) 2018-07-23 2018-07-23 グラフェン分散液の製造方法及び微粒化装置

Country Status (1)

Country Link
JP (1) JP2020015632A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022163756A (ja) * 2021-04-15 2022-10-27 株式会社常光 薄片化黒鉛の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022163756A (ja) * 2021-04-15 2022-10-27 株式会社常光 薄片化黒鉛の製造方法
JP7466125B2 (ja) 2021-04-15 2024-04-12 株式会社常光 薄片化黒鉛の製造方法

Similar Documents

Publication Publication Date Title
Yi et al. A review on mechanical exfoliation for the scalable production of graphene
Yi et al. Fluid dynamics: an emerging route for the scalable production of graphene in the last five years
CN112823137B (zh) 液相剥离纳米材料
Mahbubul Preparation, characterization, properties, and application of nanofluid
JP7094024B2 (ja) 圧縮流による剥離された2d層状材料の連続製造
Ye et al. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer
CN108137328B (zh) 批量生产包括石墨烯的原子级薄二维材料的设备和方法
US20220219132A1 (en) Hydrophilic and hydrophobic composite packing-based rotating packed bed and system
JP6908049B2 (ja) 複合樹脂材料の製造方法および成形体の製造方法
JP2020015632A (ja) グラフェン分散液の製造方法及び微粒化装置
Arif et al. Experimental and theoretical approach to evaluation of nanostructured carbon particles derived from phenolic resin via spray pyrolysis
US11820665B2 (en) High-pressure homogenizer and method for manufacturing graphene using the same
JP2018070709A (ja) 複合樹脂材料の製造方法および成形体の製造方法
TW201925086A (zh) 石墨稀粉末製造系統及製法
Bansal et al. Beyond coffee ring: Anomalous self-assembly in evaporating nanofluid droplet on a sticky biomimetic substrate
JP6688398B2 (ja) 高圧均質化装置およびこれを利用したグラフェンの製造方法
EP2419230A2 (en) Method and system of feeding a carbon nano tubes (cnts) to a fluid for forming a composite material
US10994280B2 (en) Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
Asanuma et al. Deagglomeration of spray-dried submicron particles by low-power aqueous sonication
US10106419B2 (en) Method of making graphene nanocomposites by multiphase fluid dynamic dispersion
Grishchuk et al. Mechanical dispersion methods for carbon nanotubes in aerospace composite matrix systems
JP7470939B2 (ja) 電磁波遮蔽シート
JP2018118868A (ja) グラフェン分散液の製造方法、グラフェン分散液製造装置及びグラフェン分散液
Tao et al. Theoretical Study of the Effect of Instrument Parameters on the Flow Field of Air‐Flow Impacting Based Mechanochemical Synthesis
JP7466125B2 (ja) 薄片化黒鉛の製造方法