JP2020015303A - Image processing device, method for controlling the same and program - Google Patents

Image processing device, method for controlling the same and program Download PDF

Info

Publication number
JP2020015303A
JP2020015303A JP2019087725A JP2019087725A JP2020015303A JP 2020015303 A JP2020015303 A JP 2020015303A JP 2019087725 A JP2019087725 A JP 2019087725A JP 2019087725 A JP2019087725 A JP 2019087725A JP 2020015303 A JP2020015303 A JP 2020015303A
Authority
JP
Japan
Prior art keywords
dither matrix
image data
density
dots
dot pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019087725A
Other languages
Japanese (ja)
Other versions
JP7336255B2 (en
JP2020015303A5 (en
Inventor
亮介 大谷
Ryosuke Otani
亮介 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US16/507,766 priority Critical patent/US10965836B2/en
Priority to EP22171995.8A priority patent/EP4084457A1/en
Priority to EP19185674.9A priority patent/EP3598729B1/en
Publication of JP2020015303A publication Critical patent/JP2020015303A/en
Priority to US17/197,407 priority patent/US11503184B2/en
Publication of JP2020015303A5 publication Critical patent/JP2020015303A5/ja
Application granted granted Critical
Publication of JP7336255B2 publication Critical patent/JP7336255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To suppress deviation of the number of discharge dots for each recording element.SOLUTION: An image processing device that includes a recording head in which a plurality of recording elements are arrayed in a first direction, and generates image data forming an image on a recording medium conveyed in a second direction vertical to the first direction includes: an acquisition part which acquires multi-value input image data; a correction processing part which subjects the input image data to concentration unevenness correction processing according to characteristics for each recording element; and a conversion part which converts input image data subjected to concentration unevenness correction processing by the correction processing part using a dither matrix to half-tone image data indicating presence/absence of dots. The dither matrix is a dispersion type dither matrix, and has characteristics such that in a gradation that is an object of the concentration unevenness correction processing among gradations that can be taken by the input image data, the numbers of dots included in a predetermined range in a second direction at each position in a first direction are the same at the time of conversion from the input image data of uniform gradation into binary half-tone image data.SELECTED DRAWING: Figure 1

Description

本発明は、多階調の画像を当該画像よりも階調数よりも低い階調数の画像に変換する技術に関するものである。   The present invention relates to a technique for converting a multi-tone image into an image having a lower number of tones than the image.

従来から、コンピュータの出力装置としてのインクジェット記録装置が知られている。インクジェット記録装置は、複数のインク吐出口(ノズル)が配列された記録ヘッドを有し、この記録ヘッドを記録媒体に対して相対移動させ、ノズルからインク滴(ドット)を吐出することで、その記録媒体上に所望の画像を形成するものである。   2. Description of the Related Art Conventionally, an ink jet recording apparatus has been known as an output apparatus of a computer. The ink jet recording apparatus has a recording head in which a plurality of ink ejection ports (nozzles) are arranged, and the recording head is relatively moved with respect to a recording medium to eject ink droplets (dots) from the nozzles. A desired image is formed on a recording medium.

特に商業印刷向けのインクジェット方式のプリンタはプリント生産性が求められることもあって、シングルパスで描画する方式(フルライン方式またはフルマルチ方式とも呼ばれる)が多く採用されている。シングルパス描画方式は、記録媒体の搬送方向(以下「搬送方向」又は「x方向」という。)と垂直な記録媒体幅方向(以下「記録媒体幅方向」又は「y方向」という。)について描画領域の全範囲をカバーするノズル配列を備えた長尺のラインヘッドを用い、このラインヘッドを記録媒体の搬送方向に対して垂直方向に延在させる構成を採用する。ラインヘッドに対して記録媒体を1回だけ相対移動すればよいため、複数回の走査で画像を完成させるマルチパス方式と比べて、シングルパス描画方式は印刷速度が速いという特徴がある。   In particular, inkjet printers for commercial printing often require a single-pass drawing method (also called a full-line method or a full multi-method) because of the demand for print productivity. In the single-pass drawing method, drawing is performed in a recording medium width direction (hereinafter, referred to as a “recording medium width direction” or “y direction”) perpendicular to a recording medium conveyance direction (hereinafter, referred to as “conveying direction” or “x direction”). A configuration is adopted in which a long line head having a nozzle array covering the entire area is used, and the line head extends in a direction perpendicular to the recording medium conveyance direction. Since the recording medium needs to be moved only once with respect to the line head, the single-pass drawing method has a feature that the printing speed is faster than the multi-pass method in which an image is completed by a plurality of scans.

このようなプリンタで印刷する際には、印刷しようとする原画像データの階調値をドットのオン・オフで表す画像処理、いわゆるハーフトーン処理が行われる。そして、プリンタは、このハーフトーン処理後の画像データに従って印刷処理を実行することになる。   When printing is performed by such a printer, image processing in which the tone value of the original image data to be printed is represented by on / off of dots, that is, halftone processing is performed. Then, the printer executes a printing process according to the image data after the halftone process.

ハーフトーン処理には種々の方法が提案されており、その代表的な手法の一つにディザ法がある。ディザ法とは、互いに異なる閾値が配置された所定サイズのディザマトリクスを用いるものである。具体的には、このディザマトリクスを画像データ上にタイル状に繰り返し展開し、入力される画像の階調値(画素値)と対応する閾値との大小比較を行う。そして、階調値が閾値よりも大きければドットをオンに、階調値が閾値以下であればドットをオフにして階調表現を行う、というものである。   Various methods have been proposed for halftone processing, and a dither method is one of the typical methods. The dither method uses a dither matrix of a predetermined size in which different threshold values are arranged. Specifically, this dither matrix is repeatedly developed in tiles on the image data, and the magnitude of the tone value (pixel value) of the input image is compared with the corresponding threshold value. Then, if the gradation value is larger than the threshold value, the dot is turned on, and if the gradation value is equal to or less than the threshold value, the dot is turned off to perform the gradation expression.

このようなディザ法では、ディザマトリクスで生成されるドットパターンにおいて、ノズル毎の吐出ドット数(吐出頻度)に偏りが発生することがあり、頻繁にインクを吐出するノズルの寿命が短くなり、ヘッドそのものの寿命が短くなってしまうという問題がある。   In such a dither method, in the dot pattern generated by the dither matrix, the number of ejection dots (ejection frequency) for each nozzle may be biased, and the life of the nozzle that frequently ejects ink is shortened. There is a problem that the life of the device itself is shortened.

特許文献1は、この問題を解決する画像記録装置として、ディザマトリクスを従来のようにタイル状に展開するのではなく、記録媒体幅方向にシフトさせて展開する方法を提案している。これにより、ノズル毎の吐出ドット数に偏りを抑制することができる。   Patent Document 1 proposes, as an image recording apparatus that solves this problem, a method in which a dither matrix is developed by shifting in the width direction of a recording medium, instead of being developed in a tile shape as in the related art. Accordingly, it is possible to suppress a deviation in the number of ejection dots for each nozzle.

特開2005−161817号公報JP 2005-161817 A

しかしながら、空間周波数分布を人間が知覚しにくいある一定周波数以上に偏らせて高画質化を図ったいわゆるドット分散型ディザマトリクスを使用する場合、特許文献1の方法では、十分にノズル毎の吐出ドット数の偏りを抑制できない場合がある。   However, in the case of using a so-called dot dispersion type dither matrix in which the spatial frequency distribution is biased to a certain frequency or more that is difficult for humans to perceive to achieve high image quality, the method of Patent Document 1 requires a sufficient amount of ejection dots for each nozzle. In some cases, it is not possible to suppress the number bias.

ドット分散型ディザマトリクスの例として、ブルーノイズ特性を有するブルーノイズディザマトリクスや、グリーンノイズ特性を有するグリーンノイズディザマトリクスがある。ブルーノイズディザマトリクスは、人間の視覚特性を考慮して、ドットが分散するように閾値の格納位置が調整されたディザマトリクスである。これにより、ドット配置の空間周波数が高周波に偏り、粒状感を抑制することができる。また、グリーンノイズディザマトリクスは、数ドット単位で隣接してドットが形成されながら、全体としてはドットの固まりが分散するように閾値の格納位置が調整されたディザマトリクスである。1画素程度の微細なドットを安定して形成することが困難なプリンタでは、こうしたグリーンノイズマトリクスを参照してドット形成の有無を判断することで、孤立したドットの発生を抑制することができる。   Examples of the dot dispersion type dither matrix include a blue noise dither matrix having blue noise characteristics and a green noise dither matrix having green noise characteristics. The blue noise dither matrix is a dither matrix in which storage positions of thresholds are adjusted so that dots are dispersed in consideration of human visual characteristics. As a result, the spatial frequency of the dot arrangement is biased toward a high frequency, and the granularity can be suppressed. The green noise dither matrix is a dither matrix in which the storage positions of the threshold values are adjusted so that the clusters of dots are dispersed as a whole while dots are formed adjacently in units of several dots. In a printer in which it is difficult to stably form fine dots of about one pixel, the occurrence of isolated dots can be suppressed by judging the presence or absence of dot formation with reference to such a green noise matrix.

このようなドット分散型ディザマトリクスでは比較的大きなサイズのディザマトリクスが使用される。例えば記録媒体の搬送方向に256画素、記録媒体の搬送方向に直交する方向に256画素のサイズのディザマトリクスを使用する場合、ノズル使用率を完全に均一化するには、搬送方向に65536画素幅(搬送方向に256画素幅のマトリクスを記録媒体方向に256回シフトして展開)が必要となる。一方、描画する原画像データの画像オブジェクトが、例えば搬送方向に20mm(1200dpi)の場合のとき、画像オブジェクトのサイズは945画素程度である。そのため、展開されたディザマトリクスの一部分の閾値でドットが生成され、ノズル使用率の偏りを抑制することができなかった。即ち、記録媒体幅方向にシフトさせて展開されたディザマトリクスに対して、原画像データの画像オブジェクトが比較的小さい場合、ノズル毎の吐出ドット数を十分に均一化することができないという課題があった。   In such a dot dispersion type dither matrix, a dither matrix having a relatively large size is used. For example, when a dither matrix having a size of 256 pixels in the transport direction of the recording medium and 256 pixels in a direction orthogonal to the transport direction of the recording medium is used, in order to completely equalize the nozzle use rate, 65536 pixels in the transport direction are required. (Developing a matrix having a width of 256 pixels in the transport direction by shifting it 256 times in the direction of the recording medium). On the other hand, when the image object of the original image data to be drawn is, for example, 20 mm (1200 dpi) in the transport direction, the size of the image object is about 945 pixels. Therefore, a dot is generated at a threshold value of a part of the developed dither matrix, and it is not possible to suppress the bias of the nozzle usage rate. That is, when the image object of the original image data is relatively small with respect to the dither matrix expanded and shifted in the width direction of the recording medium, there is a problem that the number of ejection dots for each nozzle cannot be made sufficiently uniform. Was.

本発明は上記の課題に鑑みてなされたものであり、ディザマトリクスを用いたハーフトーン処理における、ノズル等の記録素子毎の吐出ドット数の偏りを抑制する技術を提供しようとするものである。   The present invention has been made in view of the above problems, and has as its object to provide a technique for suppressing a deviation in the number of ejection dots for each recording element such as a nozzle in halftone processing using a dither matrix.

この課題を解決するため、例えば本発明の画像処理装置は以下の構成を備える。すなわち、
複数の記録素子が第1の方向に配列された記録ヘッドを有し、前記第1の方向に対して垂直な第2の方向に沿って相対的に搬送される記録媒体に向けて前記記録ヘッドが有する記録素子からインクを吐出させるにより前記記録媒体上に画像を形成する画像形成装置のための画像データを生成する画像処理装置であって、
多値の入力画像データを取得する取得手段と、
前記入力画像データに対して、前記記録素子毎の特性に応じた濃度ムラ補正処理を実行する補正処理手段と、
ディザマトリクスを用いて、前記補正処理手段により濃度ムラ補正処理を実行された前記入力画像データを、ドットの有無を示すハーフトーン画像データに変換する変換手段を有し、
前記ディザマトリクスは、
分散型ディザマトリクスであって、
前記入力画像データがとり得る階調のうち前記濃度ムラ補正処理の対象となる階調について、均一階調の入力画像データから2値のハーフトーン画像データに変換した際の、前記第1の方向の各位置における前記第2の方向の所定の範囲に含まれるドット数が同じになる特性を有することを特徴とする。
In order to solve this problem, for example, an image processing apparatus of the present invention has the following configuration. That is,
A recording head having a plurality of recording elements arranged in a first direction, the recording head being directed toward a recording medium conveyed relatively along a second direction perpendicular to the first direction; An image processing apparatus that generates image data for an image forming apparatus that forms an image on the recording medium by discharging ink from a recording element that has
Acquiring means for acquiring multi-valued input image data;
Correction processing means for executing, on the input image data, density unevenness correction processing in accordance with the characteristics of each of the recording elements;
Using a dither matrix, the input image data that has been subjected to density unevenness correction processing by the correction processing means, converting means for converting to halftone image data indicating the presence or absence of dots,
The dither matrix is
A distributed dither matrix,
The first direction when converting uniform input image data into binary halftone image data from grayscale to be subjected to the density unevenness correction processing among grayscales that can be obtained by the input image data. The characteristic is that the number of dots included in the predetermined range in the second direction at each position is the same.

本発明により、ノズル等の記録素子毎の吐出ドット数の偏りを抑制することが可能になる。   According to the present invention, it is possible to suppress the deviation of the number of ejection dots for each recording element such as a nozzle.

第1実施形態の画像処理装置及び画像形成装置の構成を示すブロック図。FIG. 1 is a block diagram illustrating a configuration of an image processing apparatus and an image forming apparatus according to a first embodiment. 第1実施形態のハーフトーン処理部を示すブロック図。FIG. 2 is a block diagram illustrating a halftone processing unit according to the first embodiment. 第1実施形態の記録ヘッドを説明する図。FIG. 2 is a diagram illustrating a recording head according to the first embodiment. 第1実施形態のハーフトーン処理を説明する図。FIG. 3 is a diagram illustrating a halftone process according to the first embodiment. 第1実施形態に適用するディザトリクスの作成手順を示すフローチャート。9 is a flowchart illustrating a procedure for creating dither metrics applied to the first embodiment. ディザトリクスの作成における初期パターンの手順を示すフローチャート。9 is a flowchart illustrating a procedure of an initial pattern in creating dither metrics. 第1実施形態に適用するディザトリクスで生成されるドットパターンの特徴を示す図。FIG. 4 is a diagram illustrating characteristics of a dot pattern generated by dithering applied to the first embodiment. 第2実施形態の画像処理装置及び画像形成装置の構成を示すブロック図。FIG. 9 is a block diagram illustrating a configuration of an image processing apparatus and an image forming apparatus according to a second embodiment. 第2実施形態の濃度測定用テストチャートの例を示す図。FIG. 8 is a diagram illustrating an example of a test chart for density measurement according to the second embodiment. 第2実施形態の濃度ムラ補正パラメータの作成手順を示すフローチャート。9 is a flowchart illustrating a procedure for creating density unevenness correction parameters according to the second embodiment.

以下、添付図面に従って本発明に係る実施形態を詳細に説明する。なお、以下に示す実施形態における構成は一例に過ぎず、本発明は図示された構成に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the configurations in the embodiments described below are merely examples, and the present invention is not limited to the illustrated configurations.

[第1実施形態]
図1は、第1実施形態に適用可能な画像処理装置および画像形成装置の構成を示したブロック図である。図1において、画像処理装置10と画像形成装置20はインタフェース又は回路によって接続されている。画像処理装置10は、例えば、プリンタドライバがインストールされた一般的なパーソナルコンピュータである。その場合、以下に説明する画像処理装置10内の各部は、コンピュータが所定のプログラムを実行することにより実現される。ただし、画像形成装置20が画像処理装置10を含む構成としてもよい。
[First Embodiment]
FIG. 1 is a block diagram illustrating a configuration of an image processing apparatus and an image forming apparatus applicable to the first embodiment. In FIG. 1, an image processing apparatus 10 and an image forming apparatus 20 are connected by an interface or a circuit. The image processing apparatus 10 is, for example, a general personal computer in which a printer driver is installed. In that case, each unit in the image processing apparatus 10 described below is realized by a computer executing a predetermined program. However, the image forming apparatus 20 may include the image processing apparatus 10.

画像処理装置10は、画像データ入力部101から入力された出力対象の画像データを入力画像バッファ102に格納する。画像データ入力部101に入力される画像データの形式は特に制限されないが、ここでは説明を簡単にするために、画像形成装置20で使用されるインク色と同じ色種、色数並びに解像度を持った階調画像であるとする。例えば、画像形成装置20が、シアン(C)、マゼンタ(M)、イエロー(Y)、黒(K)の4色インクを用いて出力解像度1200dpiを実現するインクジェット印刷システムの場合、画像データはCMYKの各色それぞれ8bit(256階調)を持った多値の画像データである。なお、印刷しようとする画像の画像データの形式は種々のものがあり得る。画像形成装置20で使用するインク色の種類や解像度と異なる色の組み合わせや解像度の形式で特定される画像データを印刷する場合には、画像データ入力部101の前段において、図示しない前処理部により、色変換や解像度変換などの処理を行い、印画像形成装置20で使用するインク色及び解像度の画像データに変換した後に、画像データ入力部101から入力すれば良い。   The image processing apparatus 10 stores the output target image data input from the image data input unit 101 in the input image buffer 102. Although the format of the image data input to the image data input unit 101 is not particularly limited, here, for the sake of simplicity, the same color type, number of colors, and resolution as the ink colors used in the image forming apparatus 20 are used. It is assumed that the image is a gradation image. For example, when the image forming apparatus 20 is an inkjet printing system that achieves an output resolution of 1200 dpi using four color inks of cyan (C), magenta (M), yellow (Y), and black (K), the image data is CMYK. Is multi-valued image data having 8 bits (256 gradations) for each color. Note that there are various types of image data formats of the image to be printed. When printing image data specified in the form of a combination or resolution different from the type and resolution of the ink colors used in the image forming apparatus 20, a pre-processing unit (not shown) After performing processing such as color conversion and resolution conversion, and converting the image data into image data of the ink color and resolution used in the stamp image forming apparatus 20, the image data may be input from the image data input unit 101.

ハーフトーン処理部103は、入力画像バッファ102に格納された画像データに対して、ディザマトリクスを用いて、画像形成装置20が直接表現可能な階調数への変換(ハーフトーン)処理とノズル群が形成するドット配置の決定を行い、ハーフトーン画像データを作成する。ディザマトリクスは、疑似的に表現可能な階調数に応じて閾値群が配置されている。ディザマトリクスに存在する、閾値として用いられる値の数によって、疑似的に表現可能な階調数が決められる。ディザマトリクスの詳細な生成方法については、後述する。ハーフトーン処理部103は、作成したハーフトーン画像データをハーフトーン画像バッファ104に出力する。格納されたハーフトーン画像データは、出力端子105より画像形成装置20へ出力される。   The halftone processing unit 103 uses a dither matrix to convert the image data stored in the input image buffer 102 into the number of tones that can be directly expressed by the image forming apparatus 20 (halftone processing) and a nozzle group. Is determined, and halftone image data is created. In the dither matrix, threshold groups are arranged according to the number of gradations that can be represented in a pseudo manner. The number of tones that can be represented in a pseudo manner is determined by the number of values used as thresholds that exist in the dither matrix. A detailed method of generating the dither matrix will be described later. The halftone processing unit 103 outputs the created halftone image data to the halftone image buffer 104. The stored halftone image data is output from the output terminal 105 to the image forming apparatus 20.

画像形成装置20は、画像処理装置10から入力端子201を介して受信したハーフトーン画像データに基づいて、記録紙等の記録媒体を記録ヘッド203に対して相対的に移動させつつ、その記録媒体上にドットを生成することにより、記録媒体上に画像を形成する。ここで記録ヘッド203はインクジェット記録方式のものであり、インクを吐出可能な記録素子を複数配列した記録素子列を備える。図3は、記録ヘッド203の構成例を示す図である。なお記録ヘッドは典型的にはシアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の4種類のインク用のノズルを搭載するが、説明の簡易化のためブラック(K)のみ図示されている。ノズル配列は記録媒体の搬送方向(y方向)と垂直な記録媒体幅方向(x方向)について描画領域の全範囲をカバーする長尺のラインヘッドであり、記録媒体を1回相対移動しつつインクを吐出することで印刷画像が形成される。ヘッド駆動部202は、ハーフトーン画像データに基づいて、記録ヘッド203を制御するための駆動信号を生成する。記録ヘッド203は駆動信号に基づき、実際に記録媒体上へ各インクドットの記録を行う。なお、シアン(C)、マゼンタ(M)、イエロー(Y)の記録ヘッドの記録素子も、図示とブラックのヘッドと平行に配列されているものとする。   The image forming apparatus 20 moves the recording medium such as recording paper relative to the recording head 203 based on the halftone image data received from the image processing apparatus 10 via the input terminal 201, and An image is formed on a recording medium by generating dots thereon. Here, the recording head 203 is of an inkjet recording type, and includes a recording element array in which a plurality of recording elements capable of discharging ink are arranged. FIG. 3 is a diagram illustrating a configuration example of the recording head 203. Note that the recording head typically has nozzles for four types of ink, cyan (C), magenta (M), yellow (Y), and black (K). Only one is shown. The nozzle array is a long line head that covers the entire range of the drawing area in the recording medium width direction (x direction) perpendicular to the recording medium conveyance direction (y direction). Is ejected to form a print image. The head driving unit 202 generates a driving signal for controlling the recording head 203 based on the halftone image data. The recording head 203 actually records each ink dot on the recording medium based on the drive signal. It is assumed that the recording elements of the cyan (C), magenta (M), and yellow (Y) recording heads are also arranged in parallel with the illustrated and black heads.

以下、本実施形態におけるハーフトーン処理部103を詳細に説明する。   Hereinafter, the halftone processing unit 103 in the present embodiment will be described in detail.

図2は、ハーフトーン処理部103の詳細な構成を示すブロック図である。ハーフトーン処理部103は、入力画像バッファ102に格納された画像データを、ノズル群ごとの2値(1bit)のデータに変換して出力する。この処理のためハーフトーン処理部103は、比較器1031、ディザマトリクス1032(ROM等で構成される)、出力データ生成器1033を有する。   FIG. 2 is a block diagram showing a detailed configuration of the halftone processing unit 103. The halftone processing unit 103 converts the image data stored in the input image buffer 102 into binary (1 bit) data for each nozzle group and outputs the data. For this processing, the halftone processing unit 103 has a comparator 1031, a dither matrix 1032 (comprising a ROM or the like), and an output data generator 1033.

ここで、入力バッファ102に格納された入力画像データをIinと定義し、そのx方向(ここでは記録媒体の搬送方向とする)の画素数をW,y方向(記録媒体の搬送方向に対して直交する方向(以下、単に幅方向とする)の画素数をH画素とする。そして、入力画像Iinの座標(x,y)(0≦x≦W−1、0≦y≦H−1)の画素値をIin(x,y)と表すことにする。また、ディザマトリクス1032はSx行(x方向のサイズ)、Sy列(y方向のサイズ)を有するものとし、そのディザマトリクス内の座標(i,j)の閾値をM(i,j)と表す。そして、出力データ生成器1033が生成する出力画像データ(2値画像データ)をIoutと定義し、その座標(x,y)の出力値をIout(x,y)とする。また、整数“a”を整数“b”で除算した際の剰余を「a % b」と表す。   Here, the input image data stored in the input buffer 102 is defined as Iin, and the number of pixels in the x direction (here, the conveyance direction of the recording medium) is defined as W and y directions (with respect to the conveyance direction of the recording medium). The number of pixels in the orthogonal direction (hereinafter simply referred to as the width direction) is assumed to be H. The coordinates (x, y) of the input image Iin (0 ≦ x ≦ W−1, 0 ≦ y ≦ H−1) Is represented as Iin (x, y). The dither matrix 1032 has Sx rows (size in the x direction) and Sy columns (size in the y direction), and coordinates in the dither matrix. The threshold value of (i, j) is represented as M (i, j), and the output image data (binary image data) generated by the output data generator 1033 is defined as Iout, and the coordinates (x, y) of Let the output value be Iout (x, y), and replace the integer "a" with the integer "b". In the remainder upon dividing expressed as "a% b".

比較器1031は、入力画像バッファ102から入力画像データIinの座標(x、y)の画素値Iin(x,y)と、ディザマトリクスの閾値M(x % Sx、y % Sy)との大小判定を行い、その判定結果(比較結果)を出力データ生成器1033に出力する。出力データ生成器1033は、Iin(x,y)が閾値M(x % Sx、y % Sy)より大きいとき、黒ドットを打つことを示す“BLACK”を出力値Iout(x,y)として生成する。また、出力データ生成器1033は、Iin(x,y)が閾値M(x % Sx、y% Sy)以下の場合、ドットを打たないことを示す“WHITE”を出力値Iout(x,y)として生成する。なお、以下の説明で、ドットを打つ/打たないを、「ドットをON/OFFする」とも表現する。   The comparator 1031 determines the magnitude of the pixel value Iin (x, y) of the coordinates (x, y) of the input image data Iin from the input image buffer 102 and the threshold M (x% Sx, y% Sy) of the dither matrix. And outputs the determination result (comparison result) to the output data generator 1033. When Iin (x, y) is larger than threshold value M (x% Sx, y% Sy), output data generator 1033 generates “BLACK” indicating that a black dot is to be formed as output value Iout (x, y). I do. When Iin (x, y) is equal to or smaller than the threshold value M (x% Sx, y% Sy), the output data generator 1033 outputs “WHITE” indicating that no dot is to be output to the output value Iout (x, y). ). Note that in the following description, whether or not a dot is hit is also expressed as "turn on / off a dot".

ハーフトーン処理部103の処理を整理して示せば次の通りである。
Iout(x,y)=BLACK if Iin(x,y) > M(x % Sx, y % Sy)
Iout(x,y)=WHITE if Iin(x,y) ≦ M(x % Sx, y % Sy)
なお、実際には、出力データ生成器1033は、出力値“BLACK”を例えば1ビットの“1”、“WHITE”を“0”とする2値画像を生成するものである。
The processing of the halftone processing unit 103 is summarized and shown as follows.
Iout (x, y) = BLACK if Iin (x, y)> M (x% Sx, y% Sy)
Iout (x, y) = WHITE if Iin (x, y) ≤ M (x% Sx, y% Sy)
Actually, the output data generator 1033 generates a binary image in which the output value “BLACK” is, for example, 1-bit “1” and “WHITE” is “0”.

ここで、上記のハーフトーン処理の一例を、図4を参照して説明する。図4における参照符号401は入力画像データの一部を、参照符号402はディザマトリクスMの一部と、そして、参照符号403は出力データの一部を示している。入力画像データ401は、1画素が例えば8ビットで表現されており、各画素の取り得る範囲は0〜255の値である。   Here, an example of the above halftone processing will be described with reference to FIG. Reference numeral 401 in FIG. 4 indicates a part of the input image data, reference numeral 402 indicates a part of the dither matrix M, and reference numeral 403 indicates a part of the output data. In the input image data 401, one pixel is represented by, for example, 8 bits, and the possible range of each pixel is a value from 0 to 255.

ディザマトリクス402は、x方向に256個、y方向に256個の合計65536個の閾値を有し、それら閾値は値0〜255の範囲から万遍なく選択された閾値となっているものとする。   The dither matrix 402 has a total of 65,536 thresholds of 256 in the x direction and 256 in the y direction, and these thresholds are assumed to be thresholds uniformly selected from the range of values 0 to 255. .

ここで、入力画像データの画素値が対応する閾値を超える場合にはBLACK(黒ドットを打つ)が出力値として決定され、画素値が対応する閾値以下の場合にはWHITE(ドットを打たない)が出力値として決定される。従って、図示のディザマトリクス402を使った場合、256階調のドット配置を得られる。すなわちディザマトリクス402を用いてハーフトーン処理すると、出力データとしては、256画素×256画素の範囲において0〜255までの256段階の階調を疑似的に表現することができる。図示では、入力画像401は単一の画素値“33”を持つ画像であり、ディザマトリクス402を用いた場合、図示の出力データ403が得られる。   Here, if the pixel value of the input image data exceeds the corresponding threshold, BLACK (stroke a black dot) is determined as the output value, and if the pixel value is less than the corresponding threshold, WHITE (do not strike a dot) ) Is determined as the output value. Therefore, when the illustrated dither matrix 402 is used, a dot arrangement of 256 gradations can be obtained. That is, when halftone processing is performed using the dither matrix 402, 256 levels of gradation from 0 to 255 can be simulated as output data in a range of 256 pixels × 256 pixels. In the figure, the input image 401 is an image having a single pixel value “33”, and when a dither matrix 402 is used, the illustrated output data 403 is obtained.

上記からもわかるように、ディザマトリクスの閾値が小さい画素位置では、ドットがONになる確率が高く、逆に閾値が大きい画素位置はドットOFFになる確率が高くなると言える。そのため、ディザマトリクスの比較的小さい閾値が特定のノズル列に偏ると、そのノズルは頻繁にインクを吐出することとなり、そのノズルの寿命を短くしてしまう。   As can be seen from the above, it can be said that at a pixel position where the threshold value of the dither matrix is small, the probability of turning on the dot is high, and conversely, at a pixel position where the threshold value is high, the probability of turning off the dot is high. Therefore, when a relatively small threshold value of the dither matrix is biased toward a specific nozzle row, the nozzle frequently ejects ink, and the life of the nozzle is shortened.

記録ヘッドをできる限り長く使用可能とするためには、各ノズルが吐出するインクのドット数に偏りを無くし均一化することで、インクの吐出数が極端に多いノズルの発生を抑制すると良い。このためには、同一の入力階調値に対して各ノズルで形成されるドットの生成頻度が均一になるようにディザマトリクスの閾値配置を調整することが有効と言える。   In order to make the recording head usable as long as possible, it is preferable to suppress the occurrence of nozzles having an extremely large number of ink ejections by eliminating and uniforming the number of dots of ink ejected from each nozzle. To this end, it can be said that it is effective to adjust the threshold arrangement of the dither matrix so that the generation frequency of dots formed by each nozzle is uniform for the same input tone value.

そこで、以降では、各ノズルで形成されるドットの生成頻度が均一になるように調整されたドット分散型のディザマトリクスの作成方法について述べる。以下の説明では、生成過程または、生成後のディザマトリクスをMとする。ディザマトリクスMは、x方向(記録媒体の搬送方向)に並ぶ閾値数(サイズ)をSx、y方向(記録媒体の幅方向)に並ぶ閾値数をSyとする、二次元の配列であり、Sx,Syは自然数である。ディザマトリクスのサイズ(Sx,Sy)は任意であるが、典型的には2のべき乗の辺の長さをもつ四角形で、各辺が256以上(例えば256×256や512×512)が好適である。本実施形態では、Sxを256、Syを256とする。本実施形態で作成するディザマトリクスMには、0〜65535の閾値が格納されている。これにより、ディザマトリクスMを用いてハーフトーン処理すると、Sx×Syの領域において疑似的に256階調を再現することができる。   Therefore, hereinafter, a method of creating a dot-dispersion type dither matrix adjusted so that the generation frequency of dots formed by each nozzle is uniform will be described. In the following description, the generation process or the generated dither matrix is denoted by M. The dither matrix M is a two-dimensional array in which the number of thresholds (size) arranged in the x direction (conveying direction of the recording medium) is Sx, and the number of thresholds arranged in the y direction (width direction of the recording medium) is Sy. , Sy are natural numbers. Although the size (Sx, Sy) of the dither matrix is arbitrary, it is typically a rectangle having the length of a power of 2 and each side is preferably 256 or more (for example, 256 × 256 or 512 × 512). is there. In the present embodiment, Sx is 256 and Sy is 256. In the dither matrix M created in the present embodiment, threshold values of 0 to 65535 are stored. Thus, when halftone processing is performed using the dither matrix M, 256 gradations can be reproduced in a pseudo manner in the Sx × Sy region.

ドット分散型ディザマトリクスを生成可能な方法としてVoid&Cluster法が知られている。Void&Cluster法は、ローパスフィルタを適用して平滑化濃度画像を求め、局所的な濃度変動を抑える様にドットを追加/削除すべき配置を決定する。本実施形態でも同様な方法により、ドット分散型のブルーノイズ特性を有するディザマトリクスを生成する。   The Void & Cluster method is known as a method capable of generating a dot dispersion type dither matrix. The Void & Cluster method obtains a smoothed density image by applying a low-pass filter, and determines an arrangement where dots should be added / deleted so as to suppress local density fluctuation. Also in the present embodiment, a dither matrix having a dot dispersion type blue noise characteristic is generated by a similar method.

この過程で生成されるドットパターンをd(x、y)とする。d(x、y)は二次元の配列で、サイズはM(x、y)と同じである。d(x、y)の各画素の値は、ドットが存在するときは“1”、ドットが存在しないときは“0”の2値表現とする。   The dot pattern generated in this process is d (x, y). d (x, y) is a two-dimensional array and the size is the same as M (x, y). The value of each pixel of d (x, y) is represented by a binary expression of “1” when a dot exists, and “0” when a dot does not exist.

ドットパターンd(x、y)は、反復過程において変化する。反復過程によれば、ドット数が0個のドットパターンから、ドット数がSx×Sy個までの、Sx×Sy+1通りのドットパターンが生成される。そのため、ドットパターンd(x、y)におけるドット数をgとしたとき、このgを用いれば、反復過程における、ある1つの時点を特定できる。以下の説明では、ドット数gを、階調値gと呼ぶことにする。また、以下の説明では、階調値がgのときのドットパターンd(x、y)を、d(g、x、y)、あるいはx、yを省略して、d(g)とも表記する。上述の通り本実施形態では、疑似的に256階調再現可能なディザマトリクスを作成するため、以下の処理において階調gには、0〜Sx×Sy−1のすべての自然数の値が設定される。   The dot pattern d (x, y) changes during the repetition process. According to the repetition process, Sx × Sy + 1 types of dot patterns are generated from a dot pattern having 0 dots to Sx × Sy dots. Therefore, when the number of dots in the dot pattern d (x, y) is g, this g can be used to identify a certain point in the repetition process. In the following description, the number g of dots is referred to as a tone value g. In the following description, the dot pattern d (x, y) when the tone value is g is also referred to as d (g), omitting d (g, x, y) or x, y. . As described above, in the present embodiment, in order to create a dither matrix capable of reproducing 256 gradations in a pseudo manner, in the following processing, values of all natural numbers from 0 to Sx × Sy−1 are set for the gradation g. You.

以下、図5を参照して本実施形態の詳細を説明する。同図はディザマトリクス生成方法の全体の流れを示すフローチャートであり、図1の画像処理装置10の不図示のCPUが、ハーフトーン処理部103で利用するディザマトリクスの生成処理を示している。なおディザマトリクスを次回の印刷処理で再利用できるようにするため、不図示の不揮発性メモリに格納するのであれば、初回時だけ実行すればよい。なお、画像処理装置10が、パーソナルコンピュータ等の情報処理装置の場合には、図示のフローチャートに係るプログラムは、アプリケーション或いはプリンタドライバの一部を示すことになる。   Hereinafter, the details of the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing the entire flow of the dither matrix generation method, and shows a dither matrix generation process used by the CPU (not shown) of the image processing apparatus 10 in FIG. If the dither matrix is to be stored in a non-volatile memory (not shown) so that it can be reused in the next printing process, the dither matrix need only be executed at the first time. When the image processing apparatus 10 is an information processing apparatus such as a personal computer, the program according to the illustrated flowchart indicates an application or a part of a printer driver.

S100にて、CPUは、階調値が所定階調g0の初期ドットパターンd(g0)を生成する。本実施形態では、初期ドットパターンの階調数g0は、Sx×Sx×0.5=256×256×0.5=32768とする。初期ドットパターンの生成方法は後述する。なお、初期ドットパターンd(g0)を、ドットが1つも存在しない階調数g0=0の画像とすることもできる。その場合、S100は実施されない。   In S100, the CPU generates an initial dot pattern d (g0) having a gradation value of a predetermined gradation g0. In this embodiment, the gradation number g0 of the initial dot pattern is set to Sx × Sx × 0.5 = 256 × 256 × 0.5 = 32768. A method for generating the initial dot pattern will be described later. Note that the initial dot pattern d (g0) may be an image with the number of gradations g0 = 0 where no dot exists. In that case, S100 is not performed.

S101からS107は、初期ドットパターンを起点としてドット追加を反復する処理である。また、S201からS207は、初期ドットパターンを起点としてドット削除を反復する処理である。なお、ドット追加を反復する際は、ドット削除は行わない。逆に、ドット削除を反復する際は、ドット追加は行わない。   Steps S101 to S107 are processes for repeating dot addition starting from the initial dot pattern. Steps S201 to S207 are processes for repeating dot deletion starting from the initial dot pattern. In addition, when repeating dot addition, dot deletion is not performed. Conversely, when repeating dot deletion, dot addition is not performed.

S101とS107はループ端を示し、ループ端で囲まれるS102からS106の処理が、階調値gがgMAXに達するまで繰り返されることを示している。S102からS106までの処理は、階調値がgのドットパターンにドットを1つ追加することで、連続する階調値、すなわち階調値がg+1のドットパターンを生成する処理である。また、処理の終了条件を決定するgMAXは、gMAX≧g0であって、本実施形態では、gMAX=Sx×Sy−1=65535とする。   S101 and S107 indicate loop ends, and indicate that the processing from S102 to S106 surrounded by the loop ends is repeated until the tone value g reaches gMAX. The processes from S102 to S106 are processes for generating a continuous tone value, that is, a dot pattern having a tone value of g + 1 by adding one dot to the dot pattern having the tone value of g. Further, gMAX for determining the condition for terminating the processing is gMAX ≧ g0, and in the present embodiment, gMAX = Sx × Sy−1 = 65535.

同様に、S201とS207はループ端を示し、そのループ端で囲まれるS202からS206の処理が、階調値gがgMINに達するまで繰り返されることを示している。S202からS206までの処理は階調値がgのドットパターンからドットを1つ削除し、連続する階調値、すなわち階調値がg−1のドットパターンを生成する処理である。gMIN≦g0であり、本実施形態ではgMIN=0とする。このようにドット追加の反復と、ドット削除の反復を行うことにより、全階調のドットパターンを生成する。   Similarly, S201 and S207 indicate loop ends, and indicate that the processing from S202 to S206 surrounded by the loop ends is repeated until the tone value g reaches gMIN. The processing from S202 to S206 is processing for deleting one dot from the dot pattern with the gradation value g and generating a continuous gradation value, that is, a dot pattern with the gradation value g-1. gMIN ≦ g0, and gMIN = 0 in this embodiment. In this way, by repeating the addition of dots and the deletion of dots, a dot pattern of all gradations is generated.

S102とS202の処理は、処理内容が同じため、以下ではS102について説明する。S102にて、CPUは、階調値gに対応するドットパターンd(g)に対してローパスフィルタを適用し、濃度変動マップn(g)を算出する。以下の説明では、濃度変動マップn(g)を濃度変動n(g)と略称する。   Since the processing contents of S102 and S202 are the same, S102 will be described below. In S102, the CPU applies a low-pass filter to the dot pattern d (g) corresponding to the tone value g, and calculates a density variation map n (g). In the following description, the density fluctuation map n (g) is abbreviated as density fluctuation n (g).

濃度変動n(g)は、階調値がgのドットパターンd(g)における、ドットの粗密の評価に使用する。濃度変動n(g)の値が小さい場所ほど平滑化濃度が低くドットが疎だと評価され、逆に、濃度変動n(g)の値が大きい場所ほど平滑化濃度が高くドットが密だと評価される。後述するS104では、濃度変動n(g)の値が小さい、ドットが疎な位置にドットが追加される。また、S204では、濃度変動n(g)の値が大きい、ドットが密な位置からドットが削除される。これにより、局所的な濃度の変動を抑えて低粒状性を実現する。   The density fluctuation n (g) is used for evaluating dot density in a dot pattern d (g) having a gradation value of g. If the value of the density variation n (g) is smaller, the smoothed density is lower and the dots are evaluated as sparse. Conversely, if the value of the density variation n (g) is larger, the smoothed density is higher and the dots are denser. Be evaluated. In S104 described later, a dot is added at a position where the value of the density fluctuation n (g) is small and the dot is sparse. In S204, dots are deleted from positions where the value of the density fluctuation n (g) is large and the dots are dense. Thereby, low granularity is realized by suppressing local density fluctuation.

濃度変動n(g)は、ドットパターンd(g)と同じサイズの二次元配列であり、ドットパターンd(g)と同様に、配列の値が階調値gによって変化する。以下の説明では、n(g)をn(g、x、y)とも表記する。ディザマトリクスは入力画像に対して周期的に適用されることを想定している。このため、CPUは、S103のフィルタ処理で、濃度変動n(g)を、ドットパターンd(g)とフィルタ係数との巡回畳み込み演算によって生成する。巡回畳み込み演算は、通常の畳み込み演算を、周期的境界条件を設定したドットパターンd(g)と、フィルタ係数との間で行う演算である。なお、S103で使用するフィルタ係数の詳細は後述する。   The density fluctuation n (g) is a two-dimensional array having the same size as the dot pattern d (g), and the array value changes according to the tone value g, similarly to the dot pattern d (g). In the following description, n (g) is also described as n (g, x, y). The dither matrix is assumed to be applied periodically to the input image. For this reason, the CPU generates the density fluctuation n (g) by the cyclic convolution of the dot pattern d (g) and the filter coefficient in the filter processing of S103. The cyclic convolution operation is an operation in which a normal convolution operation is performed between a dot pattern d (g) in which a periodic boundary condition is set and a filter coefficient. The details of the filter coefficients used in S103 will be described later.

S103とS203の処理は、処理内容が同じため、以下ではS103について説明する。S103にて、CPUは、階調値gに対応するドットパターンd(g)に対して、y方向の位置毎のx方向の合計ドット数マップs(g)を抽出する。合計ドット数マップs(g)は一次元配列であり、s(g)をs(g、y)とも表記する。y方向の位置毎(ノズル毎)のドット数を均一化するための配置制約に使用する。後述するS104では、s(g、y)の値が小さく、合計ドット数が少ないy位置のドットパターンd(g、x、y)に、ドットが追加される。また、S204では、s(y)の値が大きく、合計ドット数が多いy位置のドットパターンd(g、x、y)からドットが削除される。これにより、ノズル毎のドット生成頻度の差を小さくなるように調整できる。   Since the processing contents of S103 and S203 are the same, S103 will be described below. In S103, the CPU extracts a total dot number map s (g) in the x direction for each position in the y direction for the dot pattern d (g) corresponding to the gradation value g. The total dot number map s (g) is a one-dimensional array, and s (g) is also described as s (g, y). It is used for an arrangement constraint for equalizing the number of dots for each position (nozzle) in the y direction. In S104 described below, a dot is added to the dot pattern d (g, x, y) at the y position where the value of s (g, y) is small and the total number of dots is small. In S204, a dot is deleted from the dot pattern d (g, x, y) at the y position where the value of s (y) is large and the total number of dots is large. This makes it possible to adjust the difference in the dot generation frequency for each nozzle to be small.

S104とS204にて、CPUは、濃度変動n(g)と合計ドット数マップs(g、y)に基づいてドットの追加または削除を行う。S104にて、CPUは、合計ドット数マップs(g、y)が最少のy位置群の中で、濃度変動n(g、x、y)が最少である位置(xMIN、yMIN)のドットパターンd(g、xMIN、yMIN)にドットを追加する。一方、S204にて、CPUは、合計ドット数マップs(g、y)が最大のy位置の中で、濃度変動n(g、x、y)が最大である位置(xMAX、yMAX)のドットパターンd(g、xMAX、yMAX)のドットを削除する。処理の詳細については後述する。   In S104 and S204, the CPU adds or deletes dots based on the density fluctuation n (g) and the total dot number map s (g, y). In S104, the CPU determines the dot pattern at the position (xMIN, yMIN) where the density variation n (g, x, y) is the smallest in the y-position group having the smallest total dot number map s (g, y). Add a dot to d (g, xMIN, yMIN). On the other hand, in S204, the CPU determines the dot at the position (xMAX, yMAX) where the density fluctuation n (g, x, y) is the largest among the y positions where the total dot number map s (g, y) is the largest. The dots of the pattern d (g, xMAX, yMAX) are deleted. Details of the processing will be described later.

S105とS205にて、CPUは、ドットを追加または削除した位置(xMIN、yMIN、またはxMAX、yMAX)に基づき、ディザマトリクスM(x、y)の値を決定する。S105にて、CPUは、ディザマトリクスM(x、y)において、M(xMIN、yMIN)の値を階調値gにする。S205にて、CPUは、ディザマトリクスM(x、y)において、M(xMAX、yMAX)の値を階調値g−1にする。   In S105 and S205, the CPU determines the value of the dither matrix M (x, y) based on the position (xMIN, yMIN, or xMAX, yMAX) where the dot has been added or deleted. In S105, the CPU sets the value of M (xMIN, yMIN) to the gradation value g in the dither matrix M (x, y). In S205, the CPU sets the value of M (xMAX, yMAX) to the gradation value g−1 in the dither matrix M (x, y).

S106にて、CPUは、階調値gの値をインクリメントし、g+1とする。同様に、S206にて、CPUは、階調値gの値をデクリメントし、g−1とする。   In S106, the CPU increments the value of the gradation value g to g + 1. Similarly, in S206, the CPU decrements the value of the gradation value g to g-1.

上記のようにして、S101〜107のループ、S201〜S207のループを抜けると、CPUはS208にて、ディザマトリクスの値のレンジに応じて、入力画像の画素値のレンジを調整する。S208を行う前の段階において、ディザマトリクスM(x、y)には、gMINからgMAXまでの値が格納されている。本実施形態の場合、0から65535(mMINからmMAX)までの値が格納されている。ディザ処理を行う際の入力画像が8ビットの場合は、入力画像のレンジは0〜255(thMINからthMAX)である。それ故、0から65535までの値が格納されたディザマトリクスを使用しても、適切なハーフトーン処理結果を得ることができない。S208にて、CPUは、ディザマトリクスM(x、y)の値のレンジに合うように、入力画像の画素値のビット数を拡張する。例えば、ディザマトリクスの値のレンジが0から65535の16ビットで入力画像が8ビットの場合は、入力画像の下位に0詰めして16ビットにして比較する。   As described above, after exiting the loop of S101 to S107 and the loop of S201 to S207, the CPU adjusts the range of the pixel value of the input image in S208 according to the range of the value of the dither matrix. At the stage before performing S208, the values from gMIN to gMAX are stored in the dither matrix M (x, y). In the case of the present embodiment, values from 0 to 65535 (mMIN to mMAX) are stored. When the input image at the time of performing the dither processing is 8 bits, the range of the input image is 0 to 255 (thMIN to thMAX). Therefore, even if a dither matrix storing values from 0 to 65535 is used, an appropriate halftone processing result cannot be obtained. In S208, the CPU extends the number of bits of the pixel value of the input image so as to match the value range of the dither matrix M (x, y). For example, when the range of the value of the dither matrix is 16 bits from 0 to 65535 and the input image is 8 bits, the lower part of the input image is padded with 0s and compared with 16 bits.

一方、入力画像の画素値のレンジに合わせて、ディザマトリクスの値を調整してもよい。例えば、0から65535までの値が格納された16ビットのディザマトリクスの下位8ビットを切り捨て、上位8ビットをディザマトリクスの値とする。また、thMINからthMAXにしたい場合は、CPUは、調整後のディザマトリクスの値として次式の整数部を得る。
a×M(x、y)+b
ただし、
a=(thMAX−thMIN)÷(mMAX−mMIN)、
b=thMIN−a×mMIN
である。
On the other hand, the value of the dither matrix may be adjusted according to the range of the pixel value of the input image. For example, the lower 8 bits of a 16-bit dither matrix in which values from 0 to 65535 are stored are discarded, and the upper 8 bits are used as the value of the dither matrix. When the CPU wants to change from thMIN to thMAX, the CPU obtains the integer part of the following equation as the value of the adjusted dither matrix.
a × M (x, y) + b
However,
a = (thMAX−thMIN) ÷ (mMAX−mMIN),
b = thMIN-a × mMIN
It is.

以上説明した図5の処理フローによれば、低粒状性を維持しつつ、ノズル毎のインク吐出頻度を均一化することが可能なディザマトリクスを生成できる。以下、図1における各処理の詳細を説明する。   According to the processing flow of FIG. 5 described above, it is possible to generate a dither matrix capable of equalizing the frequency of ink ejection for each nozzle while maintaining low granularity. Hereinafter, details of each processing in FIG. 1 will be described.

まず、S102とS202で使用するフィルタ係数fについて説明する。このフィルタ係数は、濃度変動マップn(g)を抽出するために使用する。fは、二次元配列であり、f(x、y)とも表記する。本実施形態では、f(x、y)の配列サイズは、ドットパターンd(g)と同じとする。すなわち、x方向のフィルタサイズをSfx、y方向のフィルタサイズをSfyとしたとき、これらの値は“256”とする。f(x、y)の値としては、次式(1)の値を用いる。
r={(x−x02+(y−y021/2
f(x、y)=1/(r+1) …(1)
式(1)において、x0、y0は、フィルタ係数の中心位置であり、x0=Sfx÷2、y0=Sfy÷2である。
First, the filter coefficient f used in S102 and S202 will be described. This filter coefficient is used to extract a density variation map n (g). f is a two-dimensional array and is also described as f (x, y). In the present embodiment, the array size of f (x, y) is the same as the dot pattern d (g). That is, when the filter size in the x direction is Sfx and the filter size in the y direction is Sfy, these values are “256”. The value of the following equation (1) is used as the value of f (x, y).
r = {(x−x 0 ) 2 + (y−y 0 ) 2 } 1/2
f (x, y) = 1 / (r + 1) (1)
In equation (1), x0 and y0 are the center positions of the filter coefficients, and x0 = Sfx ÷ 2 and y0 = Sfy ÷ 2.

S104、S204にて、CPUは、濃度変動n(g)を緩和するようにドットを追加または削除することにより、ドットの粗密を低減し、これにより低粒状性を実現する。これを好適に実現するためには、ドット間の粗密を抽出する必要がある。ドット間の粗密を抽出するには、フィルタfを、式(1)に示すようにドットからの距離rの逆数の関数にすれば良い。なお、本実施形態では、距離r=0におけるゼロ割を避けるために分母に“1”を加算した。   In S104 and S204, the CPU reduces or reduces the density of the dots by adding or deleting dots so as to reduce the density fluctuation n (g), thereby realizing low granularity. In order to realize this suitably, it is necessary to extract the density between dots. To extract the density between dots, the filter f may be a function of the reciprocal of the distance r from the dot, as shown in equation (1). In the present embodiment, “1” is added to the denominator to avoid zero division at the distance r = 0.

なお、S104、S204で使用するフィルタfはこれに限らず、粒状感として知覚される周波数成分を抽出可能なローパスフィルタを用いてもよい。   Note that the filter f used in S104 and S204 is not limited to this, and a low-pass filter that can extract a frequency component perceived as a granular feeling may be used.

次にS104とS204におけるドット配置方法を説明する。CPUは、濃度変動n(g)と合計ドット数マップs(g、y)に基づいてドットの追加または削除を行う。S104はドットを追加する処理である。S104にて、CPUは、ドットが存在せず、且つ、合計ドット数マップs(g、y)が最少のy位置の中で、濃度変動n(g、x、y)の値が最小になる位置(xMIN、yMIN)にドットを追加する。具体的には、合計ドット数マップs(g、y)においてドット数が最少となっているy位置群の画素、且つ、ドットパターンd(g、x、y)において画素値が“0”になっている画素の中から、濃度変動n(g、x、y)の値が最小となる位置(xMIN、yMIN)を探索する。そして、d(g、xMIN、yMIN)の画素値を“1”にすることでドットを追加する。なお、濃度変動マップn(g、x、y)の値が最小となる位置が複数存在する場合、CPUは、その中からドットを追加する位置をランダムに選択する。   Next, the dot arrangement method in S104 and S204 will be described. The CPU adds or deletes dots based on the density fluctuation n (g) and the total dot number map s (g, y). S104 is a process for adding a dot. In S104, the CPU determines that the value of the density fluctuation n (g, x, y) is the minimum in the y position where no dot exists and the total dot number map s (g, y) is the minimum. A dot is added at the position (xMIN, yMIN). Specifically, the pixel in the y-position group having the smallest number of dots in the total dot number map s (g, y) and the pixel value in the dot pattern d (g, x, y) become “0” The position (xMIN, yMIN) where the value of the density fluctuation n (g, x, y) becomes minimum is searched for from the pixels having the above. Then, a dot is added by setting the pixel value of d (g, xMIN, yMIN) to “1”. When there are a plurality of positions where the value of the density variation map n (g, x, y) is the minimum, the CPU randomly selects a position where a dot is to be added from the positions.

一方、S204はドットを削除する処理である。S204にて、CPUは、ドットが存在し、且つ、合計ドット数マップs(g、y)が最大のy位置の中で、濃度変動マップn(g、x、y)の値が最大になる位置(xMAX、yMAX)からドットを削除する。具体的には、合計ドット数マップs(g、y)においてドット数が最大となっているy位置群の画素、且つ、ドットパターンd(g、x、y)において画素値が“1”になっている画素の中から、濃度変動マップn(g、x、y)の値が最大となる位置(xMAX、yMAX)を探索する。そして、CPUは、d(g、xMAX、yMAX)の画素値を“0”にすることでドットを削除する。なお、濃度変動マップn(g、x、y)の値が最大となる位置が複数存在する場合、CPUは、その中からドットを削除する位置をランダムに選択する。   On the other hand, S204 is a process of deleting a dot. In S204, the CPU determines that the value of the density variation map n (g, x, y) is the largest among the y positions where the dots exist and the total dot number map s (g, y) is the largest. The dot is deleted from the position (xMAX, yMAX). Specifically, the pixel in the y-position group where the number of dots is the maximum in the total dot number map s (g, y), and the pixel value is “1” in the dot pattern d (g, x, y) The position (xMAX, yMAX) at which the value of the density variation map n (g, x, y) becomes maximum is searched for from among the pixels. Then, the CPU deletes the dot by setting the pixel value of d (g, xMAX, yMAX) to “0”. If there are a plurality of positions where the value of the density variation map n (g, x, y) is maximum, the CPU randomly selects a position from which dots are to be deleted.

次に、S100における初期ドットパターンの生成方法の詳細を、図6を参照して説明する。簡単に言えば、CPUは、はじめにランダムなドットパターンを生成する。そして、CPUは、このランダムなドットパターンを起点として、CPUドットの移動を反復することにより、粒状性が低く、且つ、濃度ムラが目立たない初期ドットパターンd(g0)を生成する。   Next, details of the method of generating the initial dot pattern in S100 will be described with reference to FIG. Briefly, the CPU first generates a random dot pattern. Then, the CPU repeats the movement of the CPU dots starting from the random dot pattern, thereby generating an initial dot pattern d (g0) with low graininess and inconspicuous density unevenness.

S301にて、CPUは、階調数がg0のランダムなドットパターンd_rを生成する。d_rは二次元の配列で、d_r(x、y)とも表記する。サイズはディザマトリクスM(x、y)と同じで、x方向のサイズはSx、y方向のサイズはSyである。前述の通り、本実施形態ではSxとSyの値は“256”とする。また、前述のd(x、y)と同じく、ドットが存在するときの画素値は“1”、ドットが存在しないときの画素値は“0”とする。   In S301, the CPU generates a random dot pattern d_r having the number of gray levels g0. d_r is a two-dimensional array and is also referred to as d_r (x, y). The size is the same as the dither matrix M (x, y), the size in the x direction is Sx, and the size in the y direction is Sy. As described above, in the present embodiment, the values of Sx and Sy are “256”. As in the case of d (x, y), the pixel value when a dot exists is “1”, and the pixel value when a dot does not exist is “0”.

S301にて、CPUは、ドットが1つも存在しない画像を起点として、階調数がg0に達するまで、ドット追加を反復し、階調数がg0のランダムドットパターンを生成する。   In step S <b> 301, the CPU repeats dot addition until the number of tones reaches g <b> 0, starting from an image having no dots, and generates a random dot pattern with the number of tones g <b> 0.

CPUは、ドットを追加するy方向の位置yrを1からSyまで順番にインクリメントして決定する。そして、最端Syまで到達したら1に戻り繰り返す。一方、CPUは、ドットを追加するx方向の位置の候補を乱数を用いて決める。具体的には、CPUは、1からSxまでの乱数を発生させ、x方向の位置xrを決める。そして、CPUは(xr、yr)にドットが存在しない場合は、その位置にドットを追加する。すなわち、CPUは、d_r(xr、yr)の画素値が“0”の場合は、d_r(xr、yr)の画素値を“1”にする。ただし、すでにd_r(xr、yr)の画素値が“1”になっていた場合、CPUは、ドットを追加するx方向の位置xrの候補を、新たに乱数を発生させて変更する。これにより、S301で生成されるドットパターンは、x方向に合計した合計ドット数の偏りが、1ドット以下に抑えられたランダムドットパターンとなる。   The CPU increments and determines the position yr in the y direction at which dots are added in order from 1 to Sy. When it reaches the extreme end Sy, it returns to 1 and repeats. On the other hand, the CPU determines a candidate for the position in the x direction to add a dot using a random number. Specifically, the CPU generates a random number from 1 to Sx, and determines the position xr in the x direction. If there is no dot at (xr, yr), the CPU adds a dot at that position. That is, when the pixel value of d_r (xr, yr) is “0”, the CPU sets the pixel value of d_r (xr, yr) to “1”. However, if the pixel value of d_r (xr, yr) is already “1”, the CPU changes the candidate of the position xr in the x direction to add a dot by generating a new random number. Accordingly, the dot pattern generated in S301 is a random dot pattern in which the deviation of the total number of dots in the x direction is suppressed to 1 dot or less.

S302とS305はループ端であり、S303からS304までの処理を所定回数だけ繰り返すことを意味している。本実施形態では、繰り返し回数を10000回とするが、これに限らず、所定の収束条件を設定しても構わない。   S302 and S305 are loop ends, and mean that the processes from S303 to S304 are repeated a predetermined number of times. In the present embodiment, the number of repetitions is set to 10000, but is not limited thereto, and a predetermined convergence condition may be set.

S303にて、CPUは、S103と同じ方法により、ドットパターンd_rから濃度変動nを抽出する。濃度変動nは二次元配列であり、n(x、y)とも表記する。   In S303, the CPU extracts the density fluctuation n from the dot pattern dr by the same method as in S103. The density fluctuation n is a two-dimensional array and is also described as n (x, y).

S304にて、CPUは、濃度変動マップnに基づいてドットを移動する。まず、d_r(x、y)においてドットが存在する画素の中から、濃度変動n(x、y)の値が最大になる位置(xMAX、yMAX)を探索する。次に、CPUは、濃度変動n(x、y)の値が最大になる位置と同じy位置(yMAX)で、且つドットが存在しない画素の中から、濃度変動n(x、yMAX)の値が最小になるx位置(xMIN、yMAX)を探索する。そして、CPUは、(xMAX、yMAX)の位置のドットを、(xMIN、yMAX)に移動させる。すなわち、ドットパターンd_r(xMAX、yMAX)の画素値を“0”にして、ドットパターンd_r(xMIN、yMAX)の画素値を“1”にする。濃度変動nが大きい位置のドットを同じy位置で濃度変動nが小さい位置に移動する。これにより、S304で生成されるドットパターンは、ドットの移動前後でy方向の位置yr毎の合計ドット数が変化しない。これにより、x方向に合計した合計ドット数の偏りを、1ドット以下に抑えつつ、ドット分散性が良好なドットパターンを生成可能となる。   In S304, the CPU moves the dots based on the density change map n. First, a position (xMAX, yMAX) where the value of the density fluctuation n (x, y) is maximized is searched for from the pixels where dots exist in d_r (x, y). Next, the CPU selects the value of the density variation n (x, yMAX) from the pixels at the same y position (yMAX) as the position where the value of the density variation n (x, y) becomes maximum and no dot exists. Is searched for an x position (xMIN, yMAX) at which is minimized. Then, the CPU moves the dot at the position (xMAX, yMAX) to (xMIN, yMAX). That is, the pixel value of the dot pattern d_r (xMAX, yMAX) is set to “0”, and the pixel value of the dot pattern d_r (xMIN, yMAX) is set to “1”. A dot at a position where the density fluctuation n is large is moved to a position where the density fluctuation n is low at the same y position. Accordingly, in the dot pattern generated in S304, the total number of dots at each position yr in the y direction does not change before and after the movement of the dots. This makes it possible to generate a dot pattern with good dot dispersibility while suppressing the deviation of the total number of dots in the x direction to 1 dot or less.

以上、本実施形態に記載の方法で生成したディザマトリクスを用いてドットパターンを生成した場合、記録ヘッド203のノズル毎の吐出ドット数の差を予め設定された範囲内にすることができる(吐出ドット数を略均一化できる)。これにより、特定のノズルの寿命が短くなるのを抑制し、記録ヘッドの寿命を延ばすことが可能となる。   As described above, when the dot pattern is generated using the dither matrix generated by the method described in the present embodiment, the difference in the number of ejection dots for each nozzle of the print head 203 can be set within a preset range (ejection). The number of dots can be made substantially uniform). As a result, it is possible to prevent the life of the specific nozzle from being shortened, and to prolong the life of the recording head.

[第2実施形態]
ノズル毎の吐出ドット数の均一化は、ノズル毎のインクの吐出特性の変動による画質劣化を抑制する濃度ムラ補正においても好適に作用する。第2実施形態においては、濃度ムラ補正における効果と、その実現例を説明する。
[Second embodiment]
The equalization of the number of ejection dots for each nozzle also works favorably in density unevenness correction that suppresses image quality degradation due to fluctuations in ink ejection characteristics for each nozzle. In the second embodiment, effects in density unevenness correction and examples of realizing the effects will be described.

実際の画像形成装置においては、記録ヘッドに列設された各ノズルには、記録ヘッドの製造プロセスや構成材料等に起因した吐出特性のばらつきがある。そして、各ノズルの吐出特性のばらつきは、各ノズルから吐出されるインク滴の大きさや吐出方向の不均一となって現れ、記録画像に濃度むらを生じさせる原因となる。このような問題に対して、記録ヘッドを構成するノズル毎の吐出特性に基づき、入力画像データを補正することで濃度ムラを抑制する濃度ムラ補正の技術がある。具体的には、濃度ムラ補正用の濃度変換関数を求めるための濃度測定用テストチャートを出力し、この出力された濃度測定用テストチャートの画像を読み取って、記録濃度の測定を行い、その測定濃度データを基にノズルごとの画像データの濃度補正パラメータを生成する。そして、画像を印刷する際には、入力画像データを濃度補正パラメータに基づいて補正し、当該補正された画像データを基に画像記録の制御を行うことで濃度ムラの発生が抑制された画像を形成する。   In an actual image forming apparatus, each nozzle arranged in a print head has a variation in ejection characteristics due to a manufacturing process of the print head, constituent materials, and the like. Variations in the ejection characteristics of each nozzle appear as unevenness in the size and ejection direction of ink droplets ejected from each nozzle, which causes density unevenness in a recorded image. In order to solve such a problem, there is a density unevenness correction technique for correcting the input image data based on the ejection characteristics of each nozzle constituting the print head to suppress the density unevenness. Specifically, a density measurement test chart for obtaining a density conversion function for density unevenness correction is output, an image of the output density measurement test chart is read, and the recording density is measured, and the measurement is performed. A density correction parameter of image data for each nozzle is generated based on the density data. Then, when printing the image, the input image data is corrected based on the density correction parameter, and the image recording is controlled based on the corrected image data to thereby control the image in which the occurrence of the density unevenness is suppressed. Form.

濃度測定用テストチャートから生成されたドットパターンのドット位置が、ある特定のノズルに偏りを持つと、ノズル毎にインクの吐出数に差異が生じてしまう。その結果、吐出数が多いノズルに対応する出力濃度は濃く、吐出数が少ないノズルに対応する出力濃度は薄くなる。そのため、出力された濃度測定用テストチャートには、ノズル毎の吐出特性による濃度差とノズル毎のインクの吐出数の差異による濃度差が混在してしまう。このような、テストチャートの記録濃度から、ノズル毎の吐出特性に起因した濃度変動を分離して測定することは困難となり、濃度ムラ補正の効果が低減してしまうという問題が生じる。   If the dot position of the dot pattern generated from the test chart for density measurement is biased to a specific nozzle, the number of ejected inks differs for each nozzle. As a result, the output density corresponding to a nozzle having a large number of ejections is high, and the output density corresponding to a nozzle having a small number of ejections is low. Therefore, in the output test chart for density measurement, a density difference due to a discharge characteristic of each nozzle and a density difference due to a difference in the number of ejected inks of each nozzle are mixed. It is difficult to separate and measure the density fluctuation caused by the ejection characteristics of each nozzle from the recording density of the test chart, and the problem that the density unevenness correction effect is reduced is caused.

そこで、ノズルの吐出特性に起因した濃度変動を精度よく計測するために、濃度ムラ補正の対象とする各ノズルで形成されるドット数が均一になるように調整されたディザマトリクスを使用して濃度測定用テストチャートのドットパターンを生成することが有効となる。   Therefore, in order to accurately measure the density fluctuation due to the ejection characteristics of the nozzles, the density is adjusted using a dither matrix adjusted so that the number of dots formed by each nozzle to be subjected to density unevenness correction is uniform. It is effective to generate a dot pattern of the measurement test chart.

また、ノズル位置毎に入力階調に対する出力ドット数に差異があると、ノズル毎の吐出特性に起因した濃度変動を正しく補正できたとしても、ノズル毎に補正の効き方(補正による出力ドット数の変化の仕方)が異なり、濃度ムラ補正効果が低減する場合があった。具体的には例えば、理想的な吐出量に比べて、同程度、1ドットに対する吐出量が少なくなってしまうノズルが2つあるとする。この時、入力画像において補正対象の2つのノズルに対応する画素列に対して、同様に画素値が大きくなるように補正される。しかしながら、各ノズルにおいて階調に応じて出力ドット数が異なっている場合、補正前後の画素値が同じであっても、異なる出力ドット数が吐出されることになる。その結果、濃度ムラ補正処理をしても濃度ムラが残留してしまう。   Also, if there is a difference in the number of output dots with respect to the input tone for each nozzle position, even if the density fluctuation caused by the ejection characteristics of each nozzle can be correctly corrected, the method of correction (the number of output dots by correction) , The density unevenness correction effect may be reduced. Specifically, for example, it is assumed that there are two nozzles in which the ejection amount for one dot is smaller than the ideal ejection amount. At this time, the pixel values corresponding to the two nozzles to be corrected in the input image are similarly corrected so that the pixel values become large. However, if the number of output dots differs for each nozzle in accordance with the gradation, a different number of output dots will be ejected even if the pixel values before and after correction are the same. As a result, the density unevenness remains even after the density unevenness correction processing.

そこで、ノズル毎の濃度ムラ補正を施した入力画像に対して、記録画像の濃度ムラ補正効果を向上するために、各ノズルで形成される各階調に対応するドット数が均一になるように調整されたディザマトリクスを使用することが有効となる。   Therefore, in order to improve the density unevenness correction effect of the recorded image for the input image that has been subjected to the density unevenness correction for each nozzle, the number of dots corresponding to each gradation formed by each nozzle is adjusted to be uniform It is effective to use the obtained dither matrix.

図8は、第2実施形態に適用可能な画像処理装置10および画像形成装置20の構成を示したブロック図である。なお、以降の説明において、第1実施形態と共通の部分は説明を簡易化または省略する。   FIG. 8 is a block diagram illustrating a configuration of the image processing apparatus 10 and the image forming apparatus 20 applicable to the second embodiment. In the following description, the description of the same parts as those in the first embodiment will be simplified or omitted.

図8において、画像読取装置30、濃度ムラ補正パラメータ演算部105、濃度ムラ補正パラメータ格納部106、濃度ムラ補正処理部107、テストチャート生成部108以外は図1と同様のため、説明を省略する。   In FIG. 8, components other than the image reading device 30, the density unevenness correction parameter calculation unit 105, the density unevenness correction parameter storage unit 106, the density unevenness correction processing unit 107, and the test chart generation unit 108 are the same as those in FIG. .

画像読取装置30は、記録ヘッド203によって記録媒体上に記録された画像を読み取り、電子画像データ(読取画像データ)に変換する。画像読取装置30としては、例えば、CCDラインセンサを用いることができる。本実施形態の画像読取装置30は、媒体搬送路の途中に設置されるインラインセンサであり、記録ヘッド203によって記録された画像を排紙前の搬送中に読み取る。画像読取装置30は、後述する濃度測定用テストチャートの出力結果を読み取ることができる。   The image reading device 30 reads an image recorded on a recording medium by the recording head 203 and converts the image into electronic image data (read image data). As the image reading device 30, for example, a CCD line sensor can be used. The image reading device 30 according to the present embodiment is an in-line sensor installed in the middle of the medium transport path, and reads an image recorded by the recording head 203 during transport before paper discharge. The image reading device 30 can read an output result of a density measurement test chart described later.

濃度ムラ補正パラメータ演算部105は、画像読取装置30から取得した濃度測定用テストチャートの読取画像を基に、濃度測定を行い、ノズル毎の濃度ムラの補正値データ(濃度ムラ補正パラメータ)を生成する。濃度ムラ補正パラメータ演算部105で生成された濃度ムラ補正パラメータは、濃度ムラ補正パラメータ格納部106に格納される。   The density unevenness correction parameter calculation unit 105 performs density measurement based on the read image of the density measurement test chart acquired from the image reading device 30, and generates density unevenness correction value data (density unevenness correction parameter) for each nozzle. I do. The density unevenness correction parameter generated by the density unevenness correction parameter calculation unit 105 is stored in the density unevenness correction parameter storage unit 106.

濃度ムラ補正処理部107は、記録ヘッド203におけるノズルの吐出特性のばらつき等に起因して発生する記録媒体上の印刷画像の濃度ムラを抑制するための画像信号補正を行う。本実施形態では、記録ヘッド203のノズルごとに、入力信号値と出力信号値の変換関係を記述した濃度ムラ補正用のルックアップテーブルである濃度ムラ補正LUTが準備され、この濃度ムラ補正LUTを用いて信号値の変換がなされる。   The density unevenness correction processing unit 107 performs image signal correction for suppressing density unevenness of a print image on a print medium that occurs due to a variation in the ejection characteristics of the nozzles in the print head 203 or the like. In the present embodiment, for each nozzle of the print head 203, a density unevenness correction LUT, which is a lookup table for density unevenness correction, which describes a conversion relationship between an input signal value and an output signal value, is prepared. Is used to convert the signal value.

テストチャート生成部108は、濃度ムラ補正パラメータの計算に必要な濃度測定データを得るための濃度測定用テストチャートのデータを生成し、入力画像バッファ102に提供する。図9は、濃度測定用テストチャートの一例であり、記録ヘッド203の記録媒体幅方向の幅Ty、搬送方向に高さTxの大きさの矩形領域にそれぞれ予め決められた階調値D1〜D10となる均一濃度の階調パッチを搬送方向に帯状に有する。図9に示すように本実施形態では、全てのノイズの吐出特性を導出できるように、ノズル幅分のチャートのデータがある。また、本実施形態においては、0〜255の全ての階調を濃度ムラ補正の対象とする。そのため0〜255のうち離散的であるが、低濃度から高濃度まで等間隔の濃度に対応する階調毎のパッチを含むように、濃度測定用テストチャートが生成されている。   The test chart generation unit 108 generates density measurement test chart data for obtaining density measurement data necessary for calculating the density unevenness correction parameter, and provides the data to the input image buffer 102. FIG. 9 is an example of a test chart for density measurement, in which predetermined grayscale values D1 to D10 are set in a rectangular area having a width Ty of the print head 203 in the print medium width direction and a height Tx in the transport direction. Is provided in a band shape in the transport direction. As shown in FIG. 9, in this embodiment, there is chart data for the nozzle width so that the ejection characteristics of all noises can be derived. Further, in the present embodiment, all gradations from 0 to 255 are targets of density unevenness correction. For this reason, the density measurement test chart is generated so as to include patches for each gradation corresponding to densities that are discrete from 0 to 255 but are equally spaced from low density to high density.

吐出特性に起因した濃度変動を取得するためには、各ノズルで形成されるドット数が均一になるように調整されたディザマトリクスを使用して濃度測定用テストチャートのドットパターンを生成することが有効である。そのため、濃度測定用テストチャートにおける各階調の濃度領域のx方向サイズTxは、ディザマトリクスのx方向サイズSx画素以上(実施形態ではSxは256)である必要がある。本第2実施形態では、Tx=800画素とする。   In order to obtain the density fluctuation due to the ejection characteristics, it is necessary to generate a dot pattern of a density measurement test chart using a dither matrix adjusted so that the number of dots formed by each nozzle is uniform. It is valid. Therefore, the x-direction size Tx of the density area of each gradation in the density measurement test chart needs to be equal to or greater than the x-direction size Sx pixels of the dither matrix (Sx is 256 in the embodiment). In the second embodiment, Tx = 800 pixels.

図10は、本第2実施形態の画像処置装置10内の不図示のCPUが実行する、濃度ムラ補正パラメータの作成手順の概要を示すフローチャートである。なお、同図に係るプログラムは、所定のメモリ(RAM等)に格納されるものである。   FIG. 10 is a flowchart showing an outline of a procedure for creating density unevenness correction parameters, which is executed by a CPU (not shown) in the image processing apparatus 10 according to the second embodiment. The program according to the figure is stored in a predetermined memory (RAM or the like).

S401にて、CPUは、テストチャート生成部108によって生成された濃度測定用テストチャートの画像データを入力画像バッファ102に送ることで、記録ヘッド203による記録媒体上への濃度測定用テストチャートの画像を出力させる。このとき、CPUは、濃度ムラ補正処理部107に対して濃度ムラ補正は行わないようにし、均一濃度の階調パッチを出力させる。また、ハーフトーン処理部103に対しては、各ノズルで形成されるドット数が均一になるように調整されたディザマトリクスを使用して、濃度測定用テストチャートのドットパターンを生成させる。   In step S <b> 401, the CPU sends the image data of the density measurement test chart generated by the test chart generation unit 108 to the input image buffer 102, and thereby the image of the density measurement test chart on the recording medium by the recording head 203. Output. At this time, the CPU causes the density unevenness correction processing unit 107 not to perform the density unevenness correction, and outputs a uniform density gradation patch. Further, the halftone processing unit 103 generates a dot pattern of the test chart for density measurement by using a dither matrix adjusted so that the number of dots formed by each nozzle becomes uniform.

S402にて、CPUは、画像読取装置30を制御し、濃度測定用テストチャートの出力結果を読み取り、テストチャートの測定を行わせる。   In S402, the CPU controls the image reading device 30, reads the output result of the test chart for density measurement, and causes the test chart to be measured.

S403にて、CPUは、取り込まれた画像から、画像処理により各階調に対応する帯状の濃度パッチ毎に、搬送方向(x方向)に信号を積算し、記録媒体幅方向(y方向)の1次元の測定データを作成する。このとき、ノズル毎の吐出特性に起因した濃度変動を取得するために、ノズル毎のドット数が均一となる範囲で搬送方向(x方向)の信号を積算するのが望ましい。つまり、搬送方向(x方向)の積算範囲Mxは、ディザマトリクスのx方向サイズの印字幅(mm)の整数倍であることが望ましい。ディザマトリクスのx方向サイズSx=256(pixel)の場合、印字幅(mm)は256(pixel)/1200(pixel/inch)*25.4(mm/inch)≒5.4(mm)である。一方、濃度測定用テストチャートにおける各階調の濃度領域のx方向サイズTxの印字幅(mm)は、800(pixel)/1200(pixel/inch)*25.4(mm/inch)≒16.9(mm)である。本実施形態では搬送方向(x方向)の積算範囲Mxを、濃度領域のx方向サイズの印字幅(16.9mm)以下で、且つ、ディザマトリクスのx方向サイズSxの印字幅(5.4mm)の整数倍(3倍)となる、16.3mmとする。   In step S403, the CPU integrates a signal in the transport direction (x direction) for each band-shaped density patch corresponding to each gradation from the captured image by image processing, and obtains one signal in the recording medium width direction (y direction). Create dimensional measurement data. At this time, it is desirable to integrate signals in the transport direction (x direction) within a range in which the number of dots for each nozzle is uniform, in order to obtain the density fluctuation due to the ejection characteristics of each nozzle. That is, it is desirable that the integration range Mx in the transport direction (x direction) is an integral multiple of the print width (mm) of the dither matrix in the x direction. When the size of the dither matrix in the x direction Sx = 256 (pixel), the print width (mm) is 256 (pixel) / 1200 (pixel / inch) * 25.4 (mm / inch) ≒ 5.4 (mm). . On the other hand, the print width (mm) of the x-direction size Tx of the density area of each gradation in the density measurement test chart is 800 (pixel) / 1200 (pixel / inch) * 25.4 (mm / inch) ≒ 16.9. (Mm). In the present embodiment, the integrated range Mx in the transport direction (x direction) is set to be equal to or smaller than the print width (16.9 mm) of the density area in the x direction and the print width (5.4 mm) of the dither matrix in the x direction size Sx. 16.3 mm, which is an integral multiple (3 times) of.

CPUは、画像読取装置30の読み取り解像度(例えば、記録媒体幅方向について600dpi)の測定1次元データを基に、記録ヘッド203のノズルの解像度(記録解像度)刻みに補間を行い、ノズル位置ごとの濃度測定データを作成する。   The CPU performs interpolation at intervals of the nozzle resolution (recording resolution) of the recording head 203 based on the measured one-dimensional data of the reading resolution of the image reading device 30 (for example, 600 dpi in the recording medium width direction), and Create concentration measurement data.

次に、S404にて、CPUは、取得されたノズル位置ごとの濃度測定データと、目標とする階調特性とから、ノズルごとの濃度ムラ補正パラメータ、すなわち濃度ムラ補正LUTが算出される。なお、離散的な階調値に対する濃度測定データを補間することにより、測定点以外の階調値に対する濃度データが得られる。   Next, in S404, the CPU calculates a density unevenness correction parameter for each nozzle, that is, a density unevenness correction LUT, from the acquired density measurement data for each nozzle position and a target gradation characteristic. By interpolating the density measurement data for discrete tone values, density data for tone values other than the measurement point can be obtained.

次に、図7(A),(B)を参照して、本発明のディザマトリクスを用いたハーフトーン処理で生成されるドットパターンの階調特性を説明する。   Next, with reference to FIGS. 7A and 7B, the gradation characteristics of the dot pattern generated by the halftone processing using the dither matrix of the present invention will be described.

図7(A),(B)のグラフの水平軸は、入力階調値、垂直軸はディザマトリクスと同じサイズ(Sx,Sy)の均一階調の入力画像inとディザマトリクスMの比較処理によって生成されたドットパターンにおける、x方向の合計ドット数xSum(y)(以下、合計ドット数)である。ディザマトリクスのy方向のサイズSyが256の場合、256本のグラフを生成可能であるが、ここではグラフの見易さのために、一部のy位置における対応を表示していることに注意されたい。   In the graphs of FIGS. 7A and 7B, the horizontal axis is the input gradation value, and the vertical axis is the comparison processing between the input image in and the dither matrix M having the same size (Sx, Sy) as the dither matrix. This is the total number of dots xSum (y) (hereinafter, total number of dots) in the x direction in the generated dot pattern. If the size Sy of the dither matrix in the y direction is 256, 256 graphs can be generated. However, note that some of the correspondences at y positions are displayed here for the sake of easy viewing of the graph. I want to be.

図7(A)に、本実施形態で作成したディザマトリクスを用いてドットパターンを生成した場合の例を示す。図7(B)に、比較のためにノズル毎のドットの生成頻度が均一になることを考慮せずに作成された一般的なブルーノイズディザマトリクスを用いてドットパターンを生成した場合の例を示す。ここで一般的なブルーノイズディザマトリクスは、図5を用いたマトリクス作成方法のうち、S103、S104、S203、S204のみが異なる方法で作成される。一般的なブルーノイズディザマトリクスは、S103およびS203がなく、S104およびS204において濃度変動n(g、x、y)にも参照することで生成されたマトリクスであるとする。   FIG. 7A shows an example in which a dot pattern is generated using the dither matrix created in the present embodiment. FIG. 7B shows an example in which a dot pattern is generated using a general blue noise dither matrix created without considering that the generation frequency of dots for each nozzle becomes uniform for comparison. Show. Here, a general blue noise dither matrix is created by a method different from the matrix creation method using FIG. 5 only in S103, S104, S203, and S204. It is assumed that a general blue noise dither matrix does not have S103 and S203, and is a matrix generated by referring to the density fluctuation n (g, x, y) in S104 and S204.

図7(A)は、y方向の複数位置における入力階調値に対する合計ドット数を表示しているが、グラフが重なっているため、1つの線に見えている。つまり、均一濃度の入力階調値に対して、ディザマトリクスを用いて生成されるドットパターンの、合計ドット数が階調によらず略均一となり、階調間のドットの増加数が一定(線形)となることを示している。   FIG. 7A shows the total number of dots with respect to the input tone value at a plurality of positions in the y direction. However, since the graphs overlap each other, they appear as one line. In other words, the total number of dots of the dot pattern generated by using the dither matrix becomes substantially uniform regardless of the gradation with respect to the input gradation value of uniform density, and the number of increased dots between gradations is constant (linear). ).

一方、図7(B)に示すように、一般的なブルーノイズディザマトリクスを用いてドットパターンを生成した場合、入力階調値に対する出力ドットの合計数の対応関係が、y位置毎に異なり、階調間のドットの増加数が非線形となることを示している。   On the other hand, as shown in FIG. 7B, when a dot pattern is generated using a general blue noise dither matrix, the correspondence relationship between the input tone value and the total number of output dots differs for each y position. This indicates that the increase in the number of dots between gradations is non-linear.

図7(A)に示すノズル毎の合計ドット数は、全体のドット数がディザマトリクスのy方向のサイズSyで割り切れる場合(Syの整数倍である場合)、完全に一致させることが可能である。これは、ディザマトリクスによって疑似的に表現できる階調数(gの数)がSyであるために成立する。つまりディザマトリクスを用いて生成されるドットパターンの全体のドット数をdとすると、d % Sy=0の場合、ノズル毎の合計ドット数はそれぞれd/Sy個とすることができる。すなわち、d % Sy=0となるように、ディザマトリクスMの閾値レンジを調整することで、ノズル毎の合計ドット数を均一化することができる。本実施形態のように、ノズル毎の濃度ムラ補正が全階調を対象とする場合には、全階調でノズル毎の合計ドット数を均一化することが望ましい。   The total number of dots for each nozzle shown in FIG. 7A can be completely matched when the total number of dots is divisible by the size Sy of the dither matrix in the y direction (when it is an integral multiple of Sy). . This is true because the number of gray levels (the number of g) that can be artificially represented by the dither matrix is Sy. That is, assuming that the total number of dots of the dot pattern generated using the dither matrix is d, when d% Sy = 0, the total number of dots for each nozzle can be d / Sy. That is, by adjusting the threshold range of the dither matrix M so that d% Sy = 0, the total number of dots for each nozzle can be made uniform. When the density unevenness correction for each nozzle covers all gradations as in this embodiment, it is desirable to make the total number of dots per nozzle uniform for all gradations.

なお、ディザマトリクスのサイズに制限がある場合など、ノズル毎の合計ドット数は完全に一致できない場合もある。たとえば、階調によっては全体のドット数がディザマトリクスのy方向のサイズSyで割り切れず、y位置毎の合計ドット数を揃えることができない場合がある。このような場合は、y位置毎の合計ドット数の差は、1以下であるのが好適である。   In some cases, such as when the size of the dither matrix is limited, the total number of dots for each nozzle may not completely match. For example, depending on the gradation, the total number of dots may not be divisible by the size Sy of the dither matrix in the y direction, and the total number of dots for each y position may not be uniform. In such a case, the difference between the total number of dots for each y position is preferably 1 or less.

本実施形態で出力された濃度測定用テストチャートは、各ノズルで形成されるドット数が均一になるように調整されたディザマトリクスを使用して、濃度測定用テストチャートのドットパターンを生成する。そのため、ノズル毎のインクの吐出数に偏りがなく、テストチャートの記録濃度からノズル毎の吐出特性に起因した濃度変動を精度よく測定することが可能となる。これにより、濃度測定データに基づく濃度ムラ補正の効果を向上することができる。   The test chart for density measurement output in the present embodiment generates a dot pattern of the test chart for density measurement using a dither matrix adjusted so that the number of dots formed by each nozzle becomes uniform. Therefore, there is no deviation in the number of ink ejections for each nozzle, and it is possible to accurately measure the density fluctuation due to the ejection characteristics for each nozzle from the recording density of the test chart. Thereby, the effect of the density unevenness correction based on the density measurement data can be improved.

一方、ノズル毎の濃度ムラ補正パラメータを参照し、入力画像に対してノズル毎の濃度ムラ補正を施す場合にも各ノズルで形成されるドット数が均一になるように調整されたディザマトリクスは有効である。実際に印刷する場合には、濃度ムラ補正処理部107において、濃度ムラ補正パラメータを参照し、入力画像に対してノズル毎の濃度ムラ補正を施す。さらに、ハーフトーン処理部103では、ノズル位置毎の入力階調に対する出力ドット数が均一になるように調整されたディザマトリクスを使用して、ドットパターンを生成する。階調間のドットの増加数が一定(線形)であるため、ノズル毎の濃度ムラ補正量に対して、適切なドット数のディザパターンを生成し、記録画像の濃度ムラ補正効果を向上することができる。   On the other hand, when the density unevenness correction for each nozzle is performed on the input image by referring to the density unevenness correction parameter for each nozzle, a dither matrix adjusted so that the number of dots formed by each nozzle is uniform is effective. It is. When printing is actually performed, the density unevenness correction processing unit 107 performs density unevenness correction for each nozzle on the input image with reference to the density unevenness correction parameter. Further, the halftone processing unit 103 generates a dot pattern by using a dither matrix adjusted so that the number of output dots with respect to the input gradation for each nozzle position becomes uniform. Since the increase in the number of dots between gradations is constant (linear), a dither pattern with an appropriate number of dots is generated for the density unevenness correction amount for each nozzle, thereby improving the density unevenness correction effect of the recorded image. Can be.

そのため、ノズル毎の濃度ムラ補正パラメータの測定は、上述した濃度測定用テストチャートに限らず、その他の測定方法で作成した濃度ムラ補正パラメータを用いてノズル毎の濃度ムラ補正を施す場合であっても、記録画像の濃度ムラ補正効果を向上することができる。   Therefore, the measurement of the density unevenness correction parameter for each nozzle is not limited to the test chart for density measurement described above, but is a case where density unevenness correction for each nozzle is performed using the density unevenness correction parameter created by another measurement method. Also, the effect of correcting the density unevenness of the recorded image can be improved.

[第3実施形態]
第2実施形態では、濃度ムラ補正の対象を全階調とした。第3実施形態では、濃度ムラ補正の対象を一部の階調に対してのみ行う場合を例に説明する。例えば、図9における低濃度であるD9およびD10のパッチではほとんど濃度ムラが生じていない場合に、濃度D9より高濃度のみ濃度ムラ補正の対象としてもよい。この場合、濃度ムラ補正効果を向上するべき濃度範囲は、濃度D8〜D1(ここで濃度D1は最大濃度であるものとする)の範囲である。濃度ムラ補正処理部107は、入力画像における画素の画素値が、濃度D8以上であるか否かを判定する。画素値が濃度D8以上である場合は、濃度ムラ補正処理部107は、濃度ムラ補正パラメータを参照し、濃度ムラ補正を実行する。一方、画素値が濃度D8未満である場合は、濃度ムラ補正を実行せず、その画素値のまま出力する。
[Third embodiment]
In the second embodiment, the target of density unevenness correction is all gradations. The third embodiment will exemplify a case in which the target of density unevenness correction is performed only for some of the gradations. For example, in the case where patches with low density D9 and D10 in FIG. 9 have almost no density unevenness, only density higher than density D9 may be subjected to density unevenness correction. In this case, the density range in which the density unevenness correction effect should be improved is a range of density D8 to D1 (here, density D1 is the maximum density). The density unevenness correction processing unit 107 determines whether or not the pixel value of the pixel in the input image is equal to or higher than the density D8. If the pixel value is equal to or higher than the density D8, the density unevenness correction processing unit 107 performs density unevenness correction with reference to the density unevenness correction parameter. On the other hand, when the pixel value is less than the density D8, the density non-uniformity correction is not performed and the pixel value is output as it is.

一方、低濃度部では、濃度ムラは目立たない代わりに、ドットの分散性が重視される場合がある。記録媒体に対して吐出されるドットが少ない場合は、複数のドットが近くに吐出されることで、ドットの塊があるように視認され、粒状感が低下してしまう。そこで第3実施形態では、入力画像に対してハーフトーン処理を実行する際に、ディザマトリクスを切り替えて適用する。処理対象の画素の画素値が濃度D8〜D1である場合には、第1実施形態と同様のディザマトリクス(M1)を用いる。また、処理対象の画素の画素値が濃度D9以上の低濃度部である場合は、ノズル毎のドットの生成頻度が均一になることを考慮せずに作成されたディザマトリクス(M2)を用いる。   On the other hand, in the low-density portion, the density unevenness may not be conspicuous, but the emphasis may be placed on the dot dispersibility. When a small number of dots are ejected to the recording medium, a plurality of dots are ejected close to each other, so that a dot lump is visually recognized as having a cluster of dots, and the graininess is reduced. Therefore, in the third embodiment, when performing halftone processing on an input image, a dither matrix is switched and applied. When the pixel value of the pixel to be processed is the density D8 to D1, the same dither matrix (M1) as in the first embodiment is used. If the pixel value of the pixel to be processed is a low-density portion with a density of D9 or more, a dither matrix (M2) created without considering that the dot generation frequency for each nozzle becomes uniform.

ハーフトーン処理部103は、以下の処理を実行する。
Iin(x,y)≧D8
Iout(x,y)=BLACK if Iin(x,y) > M1(x % Sx, y % Sy)
Iout(x,y)=WHITE if Iin(x,y) ≦ M1(x % Sx, y % Sy)
Iin(x,y)<D8
Iout(x,y)=BLACK if Iin(x,y) > M2(x % Sx, y % Sy)
Iout(x,y)=WHITE if Iin(x,y) ≦ M2(x % Sx, y % Sy)
ディマトリクスM2は、ドットを追加する際、またはドットを削除する際に、濃度変動nのみを参照しているため、図5に示すドット作成方法よりも、ドットの配置を決定する際に制約が少ない。従って、ドット分散性という観点のみにおいては、ディザマトリクスM2は、ディザマトリクスM1よりも良好である
以上の通り本実施形態では、濃度ムラ補正処理部は、画素値の濃度範囲に応じて濃度ムラ範囲を実行する。画素値が濃度ムラ補正処理を実行される濃度範囲である場合は、ノズル毎のドット数が均一になるように作成されたディザマトリクスを用いることで、濃度ムラ補正の効果を向上する。一方、画素値が濃度ムラ補正処理を必要としない濃度範囲では、より分散性を高めるディザマトリクスを用いる。
The halftone processing unit 103 performs the following processing.
Iin (x, y) ≧ D8
Iout (x, y) = BLACK if Iin (x, y)> M1 (x% Sx, y% Sy)
Iout (x, y) = WHITE if Iin (x, y) ≤ M1 (x% Sx, y% Sy)
Iin (x, y) <D8
Iout (x, y) = BLACK if Iin (x, y)> M2 (x% Sx, y% Sy)
Iout (x, y) = WHITE if Iin (x, y) ≤ M2 (x% Sx, y% Sy)
Since the dematrix M2 refers only to the density variation n when adding or deleting dots, the dematrix M2 is more restricted in determining the dot arrangement than the dot creation method shown in FIG. Few. Therefore, the dither matrix M2 is better than the dither matrix M1 only from the viewpoint of dot dispersibility. As described above, in the present embodiment, the density unevenness correction processing unit performs the density unevenness range processing in accordance with the density range of the pixel value. Execute When the pixel value is within the density range in which the density unevenness correction processing is performed, the effect of the density unevenness correction is improved by using a dither matrix created so that the number of dots for each nozzle becomes uniform. On the other hand, in a density range in which the pixel value does not require the density unevenness correction processing, a dither matrix that enhances the dispersibility is used.

なお本実施形態では、ハーフトーン処理が参照するディザマトリクスを画素値に応じて切り替える構成とした。しかしながら、1つのディザマトリクスで第3実施形態と同様の効果を実現する方法もある。ディザマトリクスを作成する際に、階調値gに応じて合計ドット数マップを参照するか否かを判定する方法である。例えば、図5に示すフローチャートにおいて、S201〜S207のうち、階調gが所定値(例えば濃度D9)以下である場合には、S203を実行せず、S204において濃度変動n(g、x、y)のみを参照して、ドットを削除する位置を決定する。これにより、ディザマトリクスは、階調gが所定値以上である場合には、y方向のサイズSyの整数倍の範囲では、ノズル毎の合計ドット数が均一になる。このように作成したディザマトリクスを用いてハーフトーン処理することでも、第3実施形態と同様の効果を得ることができる。   In this embodiment, the dither matrix referred to by the halftone process is switched according to the pixel value. However, there is also a method of realizing the same effect as in the third embodiment with one dither matrix. This is a method of determining whether or not to refer to a total dot number map according to a tone value g when creating a dither matrix. For example, in the flowchart shown in FIG. 5, if the gradation g is equal to or less than a predetermined value (for example, density D9) among S201 to S207, S203 is not executed, and the density fluctuation n (g, x, y) is performed in S204. ) Alone to determine the position from which to delete the dot. Thus, in the dither matrix, when the gradation g is equal to or more than a predetermined value, the total number of dots for each nozzle becomes uniform in a range of an integer multiple of the size Sy in the y direction. The same effect as in the third embodiment can be obtained by performing a halftone process using the dither matrix created in this way.

(その他の実施例)
なお上述の実施形態では、ディザマトリクスが疑似的に再現する階調数が256である場合を例に説明した。しかしながら、ディザマトリクスが疑似的に再現する階調数は、入力画像の階調数のうち離散的な階調のみとしてもよい。例えば、0〜255のうち、0、15、30、45、60、75、90、105、120、135、150、165、180、195、210、225、240、255の階調のみを疑似的に再現する場合、図5に示すノズル毎の合計ドット数の制約も、疑似的に再現する階調値のみに設定されることになる。この場合、ディザマトリクスのy方向のサイズは、疑似的に再現する階調数18の倍数となるように、設定するとよい。
(Other Examples)
In the above-described embodiment, the case where the number of gray scales that the dither matrix reproduces in a pseudo manner is 256 has been described as an example. However, the number of tones that the dither matrix reproduces in a pseudo manner may be only discrete tones among the number of tones of the input image. For example, of 0 to 255, only the gray scales of 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255 are pseudo. In the case of reproducing in the same manner, the restriction on the total number of dots for each nozzle shown in FIG. In this case, the size of the dither matrix in the y direction may be set so as to be a multiple of the number of gradations 18 to be reproduced in a pseudo manner.

また、上述の実施形態では、ハーフトーン処理部がディザマトリクスを用いた比較処理を実行する方法を例に説明した。しかしながら、ディザマトリクスに応じてドットの配置を決定する方法に第1実施形態において作成されたディザマトリクスを適用することもできる。例えば、特開2016−021735に記載された方法に、上述で説明したディザマトリクスを用いても良い。   Further, in the above-described embodiment, the method in which the halftone processing unit executes the comparison processing using the dither matrix has been described as an example. However, the dither matrix created in the first embodiment can also be applied to a method of determining the dot arrangement according to the dither matrix. For example, the dither matrix described above may be used in the method described in JP-A-2006-021735.

本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。   The present invention supplies a program for realizing one or more functions of the above-described embodiments to a system or an apparatus via a network or a storage medium, and one or more processors in a computer of the system or the apparatus read and execute the program. This process can be realized. Further, it can also be realized by a circuit (for example, an ASIC) that realizes one or more functions.

10…画像処理装置、20…画像形成装置、102…入力画像バッファ、103…ハーフトーン処理部、104…ハーフトーン画像バッファ、202…ヘッド駆動部、203…記録ヘッド Reference Signs List 10: image processing device, 20: image forming device, 102: input image buffer, 103: halftone processing unit, 104: halftone image buffer, 202: head driving unit, 203: recording head

Claims (20)

複数の記録素子が第1の方向に配列された記録ヘッドを有し、前記第1の方向に対して垂直な第2の方向に沿って相対的に搬送される記録媒体に向けて前記記録ヘッドが有する記録素子からインクを吐出させるにより前記記録媒体上に画像を形成する画像形成装置のための画像データを生成する画像処理装置であって、
多値の入力画像データを取得する取得手段と、
前記入力画像データに対して、前記記録素子毎の特性に応じた濃度ムラ補正処理を実行する補正処理手段と、
ディザマトリクスを用いて、前記補正処理手段により濃度ムラ補正処理を実行された前記入力画像データを、ドットの有無を示すハーフトーン画像データに変換する変換手段を有し、
前記ディザマトリクスは、
分散型ディザマトリクスであって、
前記入力画像データがとり得る階調のうち前記濃度ムラ補正処理の対象となる階調について、均一階調の入力画像データから2値のハーフトーン画像データに変換した際の、前記第1の方向の各位置における前記第2の方向の所定の範囲に含まれるドット数が同じになる特性を有する
ことを特徴とする画像処理装置。
A recording head having a plurality of recording elements arranged in a first direction, wherein the recording head is directed toward a recording medium conveyed relatively along a second direction perpendicular to the first direction; An image processing apparatus that generates image data for an image forming apparatus that forms an image on the recording medium by discharging ink from a recording element that has
Acquiring means for acquiring multi-valued input image data;
Correction processing means for performing, on the input image data, density unevenness correction processing according to the characteristics of each of the recording elements;
Using a dither matrix, the input image data that has been subjected to density unevenness correction processing by the correction processing means, the conversion means for converting to halftone image data indicating the presence or absence of dots,
The dither matrix is
A distributed dither matrix,
The first direction when converting the uniform gradation input image data into binary halftone image data for the gradation to be subjected to the density unevenness correction processing among the gradations that can be obtained by the input image data. Wherein the number of dots included in the predetermined range in the second direction at each position is the same.
前記所定の範囲は、前記ハーフトーン画像データにおいて疑似的に再現可能な階調数の整数倍であることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein the predetermined range is an integral multiple of the number of gradations that can be pseudo-reproduced in the halftone image data. 前記所定の範囲は、前記ディザマトリクスに存在する閾値として用いられる値の数の整数倍である請求項1に記載の画像処理装置。   The image processing device according to claim 1, wherein the predetermined range is an integer multiple of the number of values used as thresholds in the dither matrix. 前記濃度ムラ補正処理の対象は、全階調であることを特徴とする請求項1に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein an object of the density unevenness correction processing is all gradations. 前記ディザマトリクスは、前記第2の方向に対応するSx行、前記第1の方向に対応するSy列(Sx,Syは自然数)のサイズであることを特徴とする請求項4に記載の画像処理装置。   The image processing according to claim 4, wherein the dither matrix has a size of Sx rows corresponding to the second direction and Sy columns (Sx, Sy are natural numbers) corresponding to the first direction. apparatus. 前記所定の範囲は、前記第2の方向の前記Sxの整数倍のであることを特徴とする請求項5に記載の画像処理装置。   The image processing apparatus according to claim 5, wherein the predetermined range is an integral multiple of Sx in the second direction. 前記ディザマトリクスは、
均一階調の入力画像データから2値のドットパターンに変換した際の、前記第1の方向の各位置の、前記第2の方向の前記Sxの整数倍の範囲に含まれるドット数の差が、全ての階調において1以下とする特性を有する
ことを特徴とする請求項1に記載の画像処理装置。
The dither matrix is
When the input image data of uniform gradation is converted into a binary dot pattern, the difference in the number of dots included in a range of an integer multiple of Sx in the second direction at each position in the first direction is calculated. The image processing apparatus according to claim 1, wherein the image processing apparatus has a characteristic that is equal to or less than 1 in all gradations.
記録素子毎の濃度補正パラメータを保持する保持手段をさらに有し、
前記補正処理手段は、前記保持した濃度補正パラメータに基づいて、入力画像データの補正を行うことを特徴とする請求項1に記載の画像処理装置。
A storage unit for storing a density correction parameter for each recording element;
2. The image processing apparatus according to claim 1, wherein the correction processing unit corrects the input image data based on the stored density correction parameter.
前記第2方向にSx画素以上の幅を持つ均一階調のチャート画像に基づいてハーフトーン画像を生成し、記録媒体上に画像を記録する記録手段と、
前記記録媒体上に形成した画像の濃度測定データを取得する取得手段と、
を備えることを特徴とする請求項1に記載の画像処理装置。
Recording means for generating a halftone image based on a chart image of uniform gradation having a width of Sx pixels or more in the second direction, and recording the image on a recording medium;
Acquisition means for acquiring density measurement data of an image formed on the recording medium,
The image processing apparatus according to claim 1, further comprising:
前記Sx、前記Syは、共に256以上であることを特徴とする請求項1乃至4のいずれか1項に記載の画像処理装置。   The image processing apparatus according to claim 1, wherein both Sx and Sy are 256 or more. 複数の記録素子が第1の方向に配列された記録ヘッドを有し、前記第1の方向に対して垂直な第2の方向に沿って相対的に搬送される記録媒体に向けて前記記録ヘッドが有する記録素子からインクを吐出させるにより前記記録媒体上に画像を形成する画像形成装置のための画像データを生成する画像処理装置の制御方法であって、
取得手段が、多値の入力画像データを取得する取得工程と、
補正処理手段が、前記入力画像データに対して、前記記録素子毎の特性に応じた濃度ムラ補正処理を実行する補正処理工程と、
変換手段が、ディザマトリクスを用いて、前記補正処理工程により濃度ムラ補正処理を実行された前記入力画像データを、ドットの有無を示すハーフトーン画像データに変換する変換工程を有し、
前記ディザマトリクスは、
分散型ディザマトリクスであって、
前記入力画像データがとり得る階調のうち前記濃度ムラ補正処理の対象となる階調について、均一階調の入力画像データから2値のハーフトーン画像データに変換した際の、前記第1の方向の各位置における前記第2の方向の所定の範囲に含まれるドット数が同じになる特性を有する
ことを特徴とする画像処理装置の制御方法。
A recording head having a plurality of recording elements arranged in a first direction, wherein the recording head is directed toward a recording medium conveyed relatively along a second direction perpendicular to the first direction; A method of controlling an image processing apparatus that generates image data for an image forming apparatus that forms an image on the recording medium by ejecting ink from a recording element of the image processing apparatus,
Acquiring means for acquiring multi-valued input image data,
Correction processing means for performing, on the input image data, density unevenness correction processing according to the characteristics of each of the recording elements;
Conversion means, using a dither matrix, has a conversion step of converting the input image data subjected to density unevenness correction processing in the correction processing step to halftone image data indicating the presence or absence of dots,
The dither matrix is
A distributed dither matrix,
The first direction when converting uniform input image data into binary halftone image data from grayscale to be subjected to the density unevenness correction processing among grayscales that can be obtained by the input image data. Wherein the number of dots included in the predetermined range in the second direction at each position is the same.
多値の画像データを、画像形成装置が有する記録ヘッドの複数の記録素子からインクの吐出する/しないを決定するための2値のドットパターンに変換する際に利用するディザマトリクスを生成する画像処理装置であって、
ここで、前記画像形成装置の前記記録ヘッドが有する前記複数の記録素子の並び方向を第1の方向、当該第1の方向に対して垂直な方向であって、前記記録ヘッドに対して相対的に記録媒体の搬送する方向を第2の方向と定義したとき、前記ディザマトリクスは、前記第2の方向に対応するSx行、前記第1の方向に対応するSy列(Sx,Syは自然数)のサイズを有する、
前記画像処理装置は、
所定階調gのドットパターンd(g)における局所的な濃度変動を評価するためのフィルタと、
前記フィルタを適用して濃度変動マップn(g)を算出する第1の算出手段と、
前記階調gのドットパターンd(g)に対し、前記第2の方向の合計ドット数マップs(g)を算出する第2の算出手段と、
前記濃度変動マップと前記合計ドット数マップに基づいて、前記ドットパターンに対してドットの追加または削除を行うことにより、前記階調gと連続する階調のドットパターンを生成する生成手段と、
前記第1の算出手段と、前記第2の算出手段と、前記生成手段を、所定階調の初期ドットパターンを起点として繰り返し適用することにより、全階調のドットパターンを生成し、前記全階調のドットパターンに基づいて前記ディザマトリクスの値を決定する決定手段を有することを特徴とする画像処理装置。
Image processing for generating a dither matrix used when converting multi-valued image data into a binary dot pattern for determining whether or not to eject ink from a plurality of recording elements of a recording head of the image forming apparatus A device,
Here, the arrangement direction of the plurality of recording elements included in the recording head of the image forming apparatus is a first direction, a direction perpendicular to the first direction, and relative to the recording head. When the direction in which the recording medium is conveyed is defined as a second direction, the dither matrix includes Sx rows corresponding to the second direction and Sy columns corresponding to the first direction (Sx and Sy are natural numbers). Having the size of
The image processing device,
A filter for evaluating local density fluctuations in the dot pattern d (g) of the predetermined gradation g,
First calculating means for calculating a density variation map n (g) by applying the filter;
Second calculating means for calculating a total dot number map s (g) in the second direction for the dot pattern d (g) of the gradation g;
Generating means for generating a dot pattern of a tone that is continuous with the tone g by adding or deleting dots to the dot pattern based on the density variation map and the total dot number map;
By repeatedly applying the first calculating means, the second calculating means, and the generating means starting from an initial dot pattern of a predetermined gradation, a dot pattern of all gradations is generated. An image processing apparatus comprising: a determination unit that determines a value of the dither matrix based on a tone dot pattern.
前記生成手段は、
前記ディザマトリクスにおける前記第1の方向の位置をx、前記第2の方向の位置をyと定義したとき、
前記合計ドット数マップs(g、y)が最少のy位置の中で、濃度変動マップn(g、x、y)が最少である位置(x、y)にドットパターンd(g、x、y)にドットを追加し、
前記合計ドット数マップs(g、y)が最大のy位置の中で、濃度変動マップn(g、x、y)が最大である座標(x、y)からドットパターンd(g、x、y)のドットを削除する
ことを特徴とする請求項12に記載の画像処理装置。
The generation means,
When the position in the first direction in the dither matrix is defined as x and the position in the second direction is defined as y,
Among the y positions where the total dot number map s (g, y) is the minimum, the dot pattern d (g, x, y) is located at the position (x, y) where the density variation map n (g, x, y) is the minimum. Add a dot to y)
Among the y positions where the total dot number map s (g, y) is the maximum, the dot pattern d (g, x, y) starts from the coordinates (x, y) where the density variation map n (g, x, y) is the maximum. The image processing apparatus according to claim 12, wherein the dots of y) are deleted.
前記ディザマトリクスは、ブルーノイズ特性を有することを特徴とする請求項12に記載の画像処理装置。   The image processing apparatus according to claim 12, wherein the dither matrix has a blue noise characteristic. 前記所定階調gは、前記ディザマトリクスを利用する画像処理装置において実行される処理に応じて設定されていることを特徴とする請求項12に記載の画像処理装置。   13. The image processing apparatus according to claim 12, wherein the predetermined tone g is set according to a process executed in the image processing apparatus using the dither matrix. 前記第1の方向に対応するSyは、前記所定階調gに対応するドット数に応じて設定されることを特徴とする請求項12に記載の画像処理装置。   13. The image processing apparatus according to claim 12, wherein Sy corresponding to the first direction is set according to the number of dots corresponding to the predetermined gradation g. 前記生成手段は、前記所定階調gとして設定される全ての階調において、前記第1の方向毎のドットの合計数が同じになるように、ドットパターンを生成することを特徴とする請求項12に記載の画像処理装置。   2. The method according to claim 1, wherein the generation unit generates a dot pattern such that the total number of dots in each of the first directions is the same in all the gradations set as the predetermined gradation g. 13. The image processing apparatus according to claim 12. 多値の画像データを、画像形成装置が有する記録ヘッドの複数の記録素子からインクの吐出する/しないを決定するための2値のドットパターンに変換する際に利用するディザマトリクスを生成する画像処理装置の制御方法であって、
ここで、前記画像形成装置の前記記録ヘッドが有する前記複数の記録素子の並び方向を第1の方向、当該第1の方向に対して垂直な方向であって、前記記録ヘッドに対して相対的に記録媒体の搬送する方向を第2の方向と定義したとき、前記ディザマトリクスは、前記第2の方向に対応するSx行、前記第1の方向に対応するSy列(Sx,Syは自然数)のサイズを有する、
前記画像処理装置の制御方法は、
第1の算出手段が、所定階調gのドットパターンd(g)における局所的な濃度変動を評価するためのフィルタを適用して濃度変動マップn(g)を算出する第1の算出工程と、
第2の算出手段が、前記階調gのドットパターンd(g)に対し、前記第2の方向の合計ドット数マップs(g)を算出する第2の算出工程と、
生成手段が、前記濃度変動マップと前記合計ドット数マップに基づいて、前記ドットパターンに対してドットの追加または削除を行うことにより、前記階調gと連続する階調のドットパターンを生成する生成工程と、
決定手段が、前記第1の算出工程と、前記第2の算出工程と、前記生成工程を、所定階調の初期ドットパターンを起点として繰り返し適用することにより、全階調のドットパターンを生成し、前記全階調のドットパターンに基づいて前記ディザマトリクスの値を決定する決定工程を有することを特徴とする画像処理装置の制御方法。
Image processing for generating a dither matrix used when converting multi-valued image data into a binary dot pattern for determining whether or not to eject ink from a plurality of recording elements of a recording head of the image forming apparatus A method for controlling an apparatus, comprising:
Here, the arrangement direction of the plurality of recording elements included in the recording head of the image forming apparatus is a first direction, a direction perpendicular to the first direction, and relative to the recording head. When the direction in which the recording medium is conveyed is defined as a second direction, the dither matrix includes Sx rows corresponding to the second direction and Sy columns corresponding to the first direction (Sx and Sy are natural numbers). Having the size of
The control method of the image processing apparatus includes:
A first calculation step of applying a filter for evaluating local density fluctuation in the dot pattern d (g) of the predetermined gradation g to calculate a density fluctuation map n (g); ,
A second calculating step of calculating a total dot number map s (g) in the second direction for the dot pattern d (g) of the gradation g,
Generating means for adding or deleting dots to the dot pattern based on the density variation map and the total dot number map, thereby generating a dot pattern having a tone continuous with the tone g. Process and
The determining means repeatedly generates the dot pattern of all gradations by repeatedly applying the first calculation step, the second calculation step, and the generation step with an initial dot pattern of a predetermined gradation as a starting point. And a determining step of determining the value of the dither matrix based on the dot pattern of all gradations.
コンピュータが読み込み実行することで、前記コンピュータに、請求項11に記載の方法の各工程を実行させるためのプログラム。   A program for causing a computer to execute each step of the method according to claim 11 when read and executed by the computer. コンピュータが読み込み実行することで、前記コンピュータに、請求項18に記載の方法の各工程を実行させるためのプログラム。   A program for causing a computer to execute each step of the method according to claim 18 when read and executed by the computer.
JP2019087725A 2018-07-17 2019-05-07 Image processing device and its control method and program Active JP7336255B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/507,766 US10965836B2 (en) 2018-07-17 2019-07-10 Image processing apparatus, control method thereof, and non-transitory computer-readable storage medium that execute a density unevenness correction process in accordance with properties of recording elements
EP22171995.8A EP4084457A1 (en) 2018-07-17 2019-07-11 Image processing apparatus, control method thereof, and computer program
EP19185674.9A EP3598729B1 (en) 2018-07-17 2019-07-11 Image processing apparatus, control method thereof, and computer program
US17/197,407 US11503184B2 (en) 2018-07-17 2021-03-10 Image processing apparatus, control method thereof, and non-transitory computer-readable storage medium that execute a density unevenness correction process in accordance with properties of recoding elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018134478 2018-07-17
JP2018134478 2018-07-17

Publications (3)

Publication Number Publication Date
JP2020015303A true JP2020015303A (en) 2020-01-30
JP2020015303A5 JP2020015303A5 (en) 2022-05-09
JP7336255B2 JP7336255B2 (en) 2023-08-31

Family

ID=69580916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019087725A Active JP7336255B2 (en) 2018-07-17 2019-05-07 Image processing device and its control method and program

Country Status (1)

Country Link
JP (1) JP7336255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459533B2 (en) 2020-02-03 2024-04-02 コニカミノルタ株式会社 Image forming apparatus, image forming method and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232434A (en) * 1993-12-28 1995-09-05 Canon Inc Method and device for recording
JP2013163307A (en) * 2012-02-10 2013-08-22 Seiko Epson Corp Printing apparatus, method for producing printed matter, and device and method for generating dot data
JP2014100796A (en) * 2012-11-16 2014-06-05 Canon Inc Image processing apparatus, recording device, and image processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207462B2 (en) 2002-05-31 2009-01-14 Dic株式会社 Pigment dispersion and radically polymerizable printing ink composition containing the same
JP7232434B2 (en) 2018-08-17 2023-03-03 エフ. ホフマン-ラ ロシュ アーゲー Circulating BMP10 (bone morphogenetic protein 10) in the assessment of atrial fibrillation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232434A (en) * 1993-12-28 1995-09-05 Canon Inc Method and device for recording
JP2013163307A (en) * 2012-02-10 2013-08-22 Seiko Epson Corp Printing apparatus, method for producing printed matter, and device and method for generating dot data
JP2014100796A (en) * 2012-11-16 2014-06-05 Canon Inc Image processing apparatus, recording device, and image processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459533B2 (en) 2020-02-03 2024-04-02 コニカミノルタ株式会社 Image forming apparatus, image forming method and program

Also Published As

Publication number Publication date
JP7336255B2 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP6016588B2 (en) Image processing apparatus, recording apparatus, and image processing method
US20080259361A1 (en) High quality halftone process
JP4462347B2 (en) Image processing apparatus, image processing method, and program
US8363251B2 (en) Image forming apparatus, print data generation method and computer program for forming an image with halftone processing that uses constraint data
US8253974B2 (en) Image forming apparatus, image processing apparatus, and control method therefor
JP5921110B2 (en) Image processing apparatus and control method thereof
US20120274951A1 (en) Inkjet printing apparatus and inkjet printing method
US9030712B2 (en) Image processing apparatus, printing apparatus, and image processing method
US8482792B2 (en) Image forming apparatus and control method thereof
JP2021024275A (en) Image processing device, recording device, image processing method and program
JP2015167306A (en) Printer, printing data generation device and method therefor, and printing data generation program
US8896884B2 (en) Image processing apparatus, printing apparatus, and image processing method
JP2015156635A (en) Image processing apparatus and image processing method
JP7336255B2 (en) Image processing device and its control method and program
JPWO2018181166A1 (en) Image processing method, apparatus and image recording apparatus
US11503184B2 (en) Image processing apparatus, control method thereof, and non-transitory computer-readable storage medium that execute a density unevenness correction process in accordance with properties of recoding elements
US9894245B2 (en) Image processing device including image size adjustment unit
JP7242272B2 (en) Dither matrix generation device, generation method, image processing device using dither matrix, image processing method, and program
JP2010155390A (en) Image forming apparatus and method for controlling the same
JP2006212907A (en) Printing apparatus, printing program, printing method and image processing apparatus, image processing program, image processing method, and recording medium recorded with the same
JP2007129559A (en) Image processor and image processing system
JP2016088043A (en) Image processing device, image formation device, and image processing method and program
JP2019072890A (en) Control unit, control method and program
JP2018192638A (en) Image processing system, image processing method, and program
JP2016088044A (en) Image processing device, image formation device, and image processing method and program

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7336255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151