JP2020013711A - Manufacturing method of series-stacked all-solid-state battery - Google Patents

Manufacturing method of series-stacked all-solid-state battery Download PDF

Info

Publication number
JP2020013711A
JP2020013711A JP2018135606A JP2018135606A JP2020013711A JP 2020013711 A JP2020013711 A JP 2020013711A JP 2018135606 A JP2018135606 A JP 2018135606A JP 2018135606 A JP2018135606 A JP 2018135606A JP 2020013711 A JP2020013711 A JP 2020013711A
Authority
JP
Japan
Prior art keywords
battery
exterior body
layer
battery stack
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018135606A
Other languages
Japanese (ja)
Other versions
JP7040331B2 (en
Inventor
寛子 大畠
Hiroko Ohata
寛子 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018135606A priority Critical patent/JP7040331B2/en
Publication of JP2020013711A publication Critical patent/JP2020013711A/en
Application granted granted Critical
Publication of JP7040331B2 publication Critical patent/JP7040331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a manufacturing method of a series-stacked all-solid-state battery that can suppress a material from falling off from the end of a battery stack during manufacturing.SOLUTION: A manufacturing method of a series-stacked all-solid-state battery includes (a) preparing an exterior body having an accommodation portion for accommodating a battery stack, (b) inserting a unit battery or one or more layers constituting the unit battery into a housing portion of one partial exterior body in order within a direction ±60° perpendicular to the stacking direction, (c) combining all the partial exterior bodies to form an exterior body, thereby accommodating the battery stack in the exterior body, and (d) connecting electrode terminals to both end surfaces in the stacking direction of the battery stack via through holes at both ends of the battery stack.SELECTED DRAWING: Figure 1

Description

本開示は、直列積層型全固体電池の製造方法に関する。   The present disclosure relates to a method for manufacturing a series-stacked all-solid-state battery.

近年、パソコン、ビデオカメラ、携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される積層型電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の積層型全固体電池の開発が進められている。   2. Description of the Related Art In recent years, with the rapid spread of information-related devices such as personal computers, video cameras, and mobile phones, communication devices, and the like, development of a stacked battery used as a power source thereof has been regarded as important. In addition, the automobile industry and the like have been developing high-output and high-capacity stacked all-solid-state batteries for electric vehicles or hybrid vehicles.

例えば、特許文献1では、充放電部を収容する筐体に位置決め凸部を有し、充放電部の構成要素に位置決め凸部を挿入可能な孔を有し、位置決め凸部に沿って充放電部の構成要素を積層する積層工程を含む全固体電池の製造方法が開示されている。   For example, in Patent Literature 1, a housing for housing a charging / discharging unit has a positioning protrusion, a component of the charging / discharging unit has a hole into which the positioning protrusion can be inserted, and charging / discharging is performed along the positioning protrusion. A method for manufacturing an all-solid-state battery including a laminating step of laminating the components of a part is disclosed.

また、特許文献2では、クリップ機構を有する支持構造体で保持された電極体を受け台に乗せ、双極型電極の面方向に対して垂直な方向から各電極を積層して、そしてクリップ機構を解消する工程を含む双極型電池の製造方法が開示されている。   Further, in Patent Document 2, an electrode body held by a support structure having a clip mechanism is placed on a pedestal, and the electrodes are stacked in a direction perpendicular to the plane direction of the bipolar electrode. Disclosed is a method for manufacturing a bipolar battery including a step of eliminating.

なお、特許文献3では、位置決め用ガイドを利用して、単位電池を積層してなる燃料電池スタックが開示されている。   Patent Literature 3 discloses a fuel cell stack in which unit cells are stacked using a positioning guide.

特開2011−103279号公報JP 2011-103279 A 特開2012−190809号公報JP 2012-190809 A 特開2003−086232号公報JP 2003-086232 A

電解液を固体電解質層に替えて、電池を全固体化した積層型全固体電池は、電池内に可燃性の有機溶媒を使用しておらず、よって安全装置の簡素化が図れ、製造コストや生産性に優れるため、注目されている。   The stacked all-solid-state battery, in which the electrolyte is replaced with a solid electrolyte layer and the battery is solidified, does not use a flammable organic solvent in the battery, thereby simplifying the safety device, reducing manufacturing costs and Because of its excellent productivity, it is attracting attention.

このような積層型全固体電池を製造する際には、通常、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を積層して、単位電池を形成する。そして、単位電池を直列に又は並列に積層して、電池積層体を形成する。その後、電池積層体を電極端子に接続させ、外装体等に収容させることによって全固体電池を製造する。   When manufacturing such a stacked all-solid-state battery, usually, a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated, and a unit battery To form Then, the unit batteries are stacked in series or in parallel to form a battery stack. Thereafter, the battery stack is connected to the electrode terminals and housed in an exterior body or the like to manufacture an all-solid-state battery.

しかしながら、電池積層体を外装体の開口部から収容させる際に、電池積層体に含まれる正極集電体層、正極活物質層、固体電解質層、負極活物質層、又は負極集電体層の端部からの材料が脱落してしまう可能性がある。特に、外装体内において、電池積層体を、その面方向に対して垂直な方向に移動させる距離が長くなればなるほど、外装体の内壁と電池積層体の端部との接触によって、電池積層体の端部からの材料が脱落しやすくなる。このように材料が脱落すると、この脱落した材料が他の層の端部に付着することによって、短絡が生じる恐れがある。   However, when the battery stack is accommodated from the opening of the outer package, the positive electrode current collector layer, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, or the negative electrode current collector layer included in the battery stack Material from the edges may fall off. In particular, the longer the distance in which the battery stack is moved in the direction perpendicular to the surface direction in the outer package, the longer the distance between the inner wall of the outer package and the end of the battery stack. Material from the end portion is likely to fall off. If the material falls off in this manner, the dropped material may adhere to the edge of another layer, thereby causing a short circuit.

そこで、本開示は、上記事情を鑑みてなされたものであり、電池積層体を外装体内に収容する際に、電池積層体の端部からの材料の脱落を抑制できる直列積層型全固体電池の製造方法を提供することを目的とする。   Accordingly, the present disclosure has been made in view of the above circumstances, and when a battery stack is accommodated in an exterior body, a series stack type all-solid battery that can prevent the material from falling off from the end of the battery stack. It is intended to provide a manufacturing method.

本開示の本発明者は、下記の工程を含む直列積層型全固体電池の製造方法により、上記課題を解決できることを見出した:
(a)電池積層体を収容するための収容部を有する外装体を準備すること、ここで、前記電池積層体の積層方向において、前記外装体が、両端に貫孔部を有し、かつ分割された形状を有する少なくとも2つの部分外装体からなり、かつ、前記電池積層体は、単位電池を2以上直列に積層してなり、かつ前記単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されており;
(b)前記単位電池又は前記単位電池を構成する1又は複数の層を順に、1つの前記部分外装体の収容部に対して、前記積層方向と垂直な方向±60°の方向以内から挿入すること;
(c)全ての前記部分外装体を結合させて、前記外装体を形成し、それによって前記外装体内に前記電池積層体を収容すること;
(d)前記外装体の両端の前記貫孔部を通して、前記電池積層体の積層方向の両端面に電極端子を接続すること。
The present inventor of the present disclosure has found that the above-mentioned problems can be solved by a method for manufacturing a series-stacked all-solid-state battery including the following steps:
(A) Preparing an exterior body having an accommodation portion for accommodating a battery stack, wherein the exterior body has through holes at both ends in a stacking direction of the battery stack, and is divided. The battery stack comprises at least two unit batteries stacked in series, and the unit battery comprises a positive electrode current collector layer and a positive electrode active material layer. , A solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order;
(B) The unit battery or one or a plurality of layers constituting the unit battery are sequentially inserted into the accommodating portion of the one partial exterior body within a direction ± 60 ° perpendicular to the stacking direction. thing;
(C) combining all of the partial exterior bodies to form the exterior body, thereby accommodating the battery stack in the exterior body;
(D) connecting electrode terminals to both end faces in the stacking direction of the battery stack through the through holes at both ends of the package;

本開示の直列積層型全固体電池の製造方法によれば、電池積層体を外装体内に収容する際に、電池積層体の端部からの材料の脱落を抑制することができる。   According to the manufacturing method of the series-stacked all-solid-state battery of the present disclosure, when the battery stack is housed in the exterior body, it is possible to prevent the material from falling off from the end of the battery stack.

図1は、本開示の直列積層型全固体電池の製造方法に含まれる各工程の一形態を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating one embodiment of each step included in the method of manufacturing a series-stacked all-solid-state battery of the present disclosure. 図2は、プレス工程が工程(d)の途中に含まれる一形態を示す概略図である。FIG. 2 is a schematic view showing one mode in which the pressing step is included in the middle of the step (d).

以下、図面を参照しながら、本開示を実施するための形態について、詳細に説明する。なお、説明の便宜上、各図において、同一又は相当する部分には同一の参照符号を付し、重複説明は省略する。実施の形態の各構成要素は、全てが必須のものであるとは限らず、一部の構成要素を省略可能な場合もある。ただし、以下の図に示される形態は本開示の例示であり、本開示を限定するものではない。   Hereinafter, embodiments for carrying out the present disclosure will be described in detail with reference to the drawings. Note that, for convenience of description, the same or corresponding portions are denoted by the same reference numerals in each drawing, and redundant description will be omitted. All of the components of the embodiment are not necessarily essential, and some components may be omitted in some cases. However, the embodiments shown in the following drawings are examples of the present disclosure, and do not limit the present disclosure.

《直列積層型全固体電池の製造方法》
本開示の直列積層型全固体電池の製造方法は、下記工程を含む:
(a)電池積層体を収容するための収容部を有する外装体を準備すること、ここで、電池積層体の積層方向において、外装体が、両端に貫孔部を有し、かつ分割された形状を有する少なくとも2つの部分外装体からなり、かつ、電池積層体は、単位電池を2以上直列に積層してなり、かつ単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されており;
(b)単位電池又は単位電池を構成する1又は複数の層を順に、1つの部分外装体の収容部に対して、積層方向と垂直な方向±60°の方向以内から挿入すること;
(c)全ての部分外装体を結合させて、外装体を形成し、それによって外装体内に電池積層体を収容すること;
(d)外装体の両端の貫孔部を通して、電池積層体の積層方向の両端面に電極端子を接続すること。
<< Manufacturing method of series stacked type all solid state battery >>
The method for manufacturing the series-stacked all-solid-state battery of the present disclosure includes the following steps:
(A) Preparing an exterior body having an accommodation portion for accommodating the battery stack, wherein the exterior body has through holes at both ends and is divided in the stacking direction of the battery stack. The battery stack comprises at least two unit batteries stacked in series, and the unit battery includes a positive electrode current collector layer, a positive electrode active material layer, and a solid electrolyte layer. , A negative electrode active material layer, and a negative electrode current collector layer in this order;
(B) Inserting the unit battery or one or more layers constituting the unit battery into the accommodation portion of one partial exterior body in order within a direction ± 60 ° perpendicular to the stacking direction;
(C) combining all of the partial exterior bodies to form an exterior body, thereby accommodating the battery stack within the exterior body;
(D) connecting electrode terminals to both end surfaces in the stacking direction of the battery stack through the through holes at both ends of the outer package;

本開示において、「直列積層型全固体電池」とは、2以上の単位電池が直列に積層されている電池積層体を有する全固体電池であり、電池積層体の積層方向の両側の端面に位置する集電体層から充放電することができる全固体電池である。直列積層型全固体電池の例として、バイポーラ型の全固体電池が挙げられるが、これだけには限定されない。   In the present disclosure, the “series-stacked all-solid-state battery” is an all-solid-state battery having a battery stack in which two or more unit cells are stacked in series, and is located at both end faces in the stacking direction of the battery stack. This is an all-solid-state battery that can be charged and discharged from a current collector layer. An example of a series-stacked all-solid-state battery includes, but is not limited to, a bipolar-type all-solid-state battery.

また、「電池積層体の積層方向」とは、電池積層体を構成する単位電池又はその単位電池を構成する各層が積層されている方向、すなわち単位電池又はその単位電池を構成する各層の面方向に垂直な軸方向を指す。なお、外装体が電池積層体を収容する前の場合では、外装体が収容しようとする電池積層体の積層方向を指す。   The “stacking direction of the battery stack” refers to the direction in which the unit cells constituting the battery stack or the respective layers constituting the unit battery are stacked, that is, the surface direction of the unit battery or the respective layers constituting the unit battery. Refers to the direction of the axis perpendicular to. In addition, in the case where the exterior body does not accommodate the battery stack, it indicates the stacking direction of the battery stack to be accommodated by the exterior body.

〈工程(a)〉
工程(a)では、電池積層体を収容するための収容部を有する外装体を準備する。
<Step (a)>
In the step (a), an exterior body having an accommodation portion for accommodating the battery stack is prepared.

ここで、電池積層体の積層方向において、外装体が、両端に貫孔部を有し、かつ分割された形状を有する少なくとも2つの部分外装体からなり、かつ、電池積層体は、単位電池を2以上直列に積層してなり、かつ単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されている。   Here, in the stacking direction of the battery stack, the outer package has at least two partial outer packages having through holes at both ends and having a divided shape, and the battery stack includes a unit battery. Two or more are stacked in series, and the unit battery is formed by stacking a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. I have.

例えば、図1(a)は、電池積層体10を収容するための収容部11aを有する外装体11が準備されている態様を示す概略断面図である。ここで、電池積層体10の積層方向において、外装体11は、両端に貫孔部11b及び11cを有する。また、外装体11は、分割された形状を有する2つの部分外装体11x及び11yからなる。なお、電池積層体10の詳細は、図1(b)の右図に示されているため、ここでは、説明を省略する。   For example, FIG. 1A is a schematic cross-sectional view illustrating an aspect in which an exterior body 11 having an accommodation portion 11a for accommodating the battery stack 10 is prepared. Here, in the stacking direction of the battery stack 10, the exterior body 11 has through holes 11b and 11c at both ends. The exterior body 11 is composed of two partial exterior bodies 11x and 11y having divided shapes. Since the details of the battery stack 10 are shown in the right diagram of FIG. 1B, the description is omitted here.

外装体の形状は、特に限定されず、収容する電池積層体の形状に合わせて適宜設定することができる。例えば、電池積層体が円柱型である場合では、外装体はその電池積層体を収容できる大きさの円柱型であってもよい。   The shape of the exterior body is not particularly limited, and can be appropriately set according to the shape of the battery stack to be housed. For example, when the battery stack is a columnar type, the exterior body may be a columnar type having a size that can accommodate the battery stack.

外装体における収容部とは、電池積層体を収容するための空間である。このため、分割された形状を有する全ての部分外装体を結合させてから電池積層体を収容できれば、分割された形状を有する任意の1つの部分外装体には、収容部を有していてもよく、有さなくてもよい。   The accommodation part in the exterior body is a space for accommodating the battery stack. For this reason, as long as the battery stack can be housed after all the partial exterior bodies having the divided shape are combined, any one of the partial exterior bodies having the divided shape may have an accommodation portion. Well, you don't have to.

外装体を構成する部分外装体の数は、2つ以上であれば特に限定されず、すなわち、外装体は、電池積層体の積層方向において、2つ、3つ、又は4つ等に分割された形状を有する部分外装体からなってもよいが、操作性の観点から、2つに分割された形状を有する部分外装体からなることが好ましい。また、それぞれの部分外装体の形状(又は大きさ)は特に限定されず、同じであってもよく、異なっていてもよい。   The number of partial exterior bodies constituting the exterior body is not particularly limited as long as it is two or more. That is, the exterior body is divided into two, three, four, or the like in the stacking direction of the battery stack. Although it may be composed of a partial exterior body having a bent shape, it is preferable that the partial exterior body has a shape divided into two from the viewpoint of operability. Further, the shape (or size) of each partial exterior body is not particularly limited, and may be the same or different.

また、電池積層体の積層方向において、外装体は、両端に貫孔部を有している。貫孔部は、後述する電池積層体の積層方向の両端面に電極端子を接続するための開口部である。例えば、図1(a)に示されているように、電池積層体の積層方向において、外装体11は、両端に貫孔部11b及び11cを有している。後述する工程(d)では、この貫孔部11b及びを通して、電池積層体10の積層方向の両端面に電極端子31及び30を接続することができる。   Further, in the stacking direction of the battery stack, the exterior body has through holes at both ends. The through-holes are openings for connecting electrode terminals to both end faces in the stacking direction of a battery stack described later. For example, as shown in FIG. 1A, in the stacking direction of the battery stack, the outer package 11 has through holes 11b and 11c at both ends. In a step (d) described later, the electrode terminals 31 and 30 can be connected to both end faces in the stacking direction of the battery stack 10 through the through-holes 11b.

外装体の両端における貫孔部の大きさは、互いに同じであってもよく、異なっていてもよい。それぞれの大きさの上限として外装体の内面の面方向面積と同じであってもよく、またそれぞれの大きさの下限として電極端子を接続できる程度であってもよい。   The sizes of the through-holes at both ends of the exterior body may be the same or different. The upper limit of each size may be the same as the surface area of the inner surface of the exterior body, and the lower limit of each size may be such that an electrode terminal can be connected.

外装体の貫孔部の大きさは、例えば、その電池積層体の端面の面積の100%以下、95%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、50%以下、40%以下、又は30%以下であってもよい。   The size of the through-hole portion of the outer package is, for example, 100% or less, 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, of the area of the end face of the battery laminate. It may be 65% or less, 60% or less, 55% or less, 50% or less, 40% or less, or 30% or less.

なお、後述する外装体内にて電池積層体をプレスする場合では、外装体の貫孔部を通して、電池積層体をプレスすることができる。また、電池積層体をプレスする工程を含む場合の操作性の観点から、電池積層体がプレス手段と接触する側の外装体の貫孔部の大きさは、その電池積層体のプレス手段と接触する側の端面の大きさと同じであることが好ましい。   In the case where the battery laminate is pressed in the package described below, the battery laminate can be pressed through the through-holes of the package. Further, from the viewpoint of operability in the case of including the step of pressing the battery laminate, the size of the through-hole portion of the exterior body on the side where the battery laminate contacts the pressing means is in contact with the pressing means of the battery laminate. It is preferable that the size is the same as the size of the end face on the side to be formed.

外装体を構成する材料は、特に限定されず、例えば金属又は繊維強化プラスチックであってもよい。金属としては、例えば、アルミニウム、アルミニウム合金、ステンレス等適当な剛性を有する材料が用いられるが、これらに限定されない。繊維強化プラスチックとしては、例えば、炭素繊維強化プラスチック、ボロン繊維強化プラスチック、アラミド繊維強化プラスチック、ポリエチレン繊維強化プラスチック、ザイロン強化プラスチック等が用いられるが、これらに限定されない。   The material constituting the exterior body is not particularly limited, and may be, for example, metal or fiber-reinforced plastic. As the metal, for example, a material having appropriate rigidity such as aluminum, an aluminum alloy, and stainless steel is used, but is not limited thereto. Examples of the fiber reinforced plastic include, but are not limited to, carbon fiber reinforced plastic, boron fiber reinforced plastic, aramid fiber reinforced plastic, polyethylene fiber reinforced plastic, and Zylon reinforced plastic.

外装体は、その内壁に、絶縁層を更に有していてもよい。絶縁層として、特に限定されず、例えば絶縁性フィルム層又は絶縁性樹脂層であってもよい。特に外装体として金属を用いる場合、外装体の内壁に絶縁層を更に有している態様は、外装体と集電体層との短絡を防止できるから好ましい。なお、絶縁層の代わりに、電池積層体の各層の端部に対して絶縁処理を行うことで、短絡を防止することも可能である。   The exterior body may further have an insulating layer on the inner wall. The insulating layer is not particularly limited, and may be, for example, an insulating film layer or an insulating resin layer. In particular, when a metal is used as the exterior body, an embodiment further including an insulating layer on the inner wall of the exterior body is preferable because a short circuit between the exterior body and the current collector layer can be prevented. In addition, it is also possible to prevent a short circuit by performing insulation treatment on the end of each layer of the battery stack instead of the insulation layer.

〈工程(b)〉
工程(b)では、単位電池又は単位電池を構成する1又は複数の層を順に、1つの部分外装体の収容部に対して、積層方向と垂直な方向±60°の方向以内から挿入する。
<Step (b)>
In the step (b), the unit battery or one or a plurality of layers constituting the unit battery are sequentially inserted into the accommodating portion of one partial exterior body from a direction ± 60 ° perpendicular to the stacking direction.

工程(b)のように、単位電池又は単位電池を構成する1又は複数の層を順に、1つの部分外装体の収容部に対して、積層方向と垂直な方向±60°の方向以内から挿入することによって、部分外装体は、直接的に単位電池又は単位電池を構成する1又は複数の層のガイドとなり、単位電池(又は電池積層体)を構成する各層の位置合わせを容易にすることができて、各層の位置ずれを防止することができる。   As in the step (b), the unit battery or one or more layers constituting the unit battery are sequentially inserted into the accommodating portion of one partial exterior body within a direction perpendicular to the stacking direction ± 60 °. By doing so, the partial exterior body directly serves as a guide for one or more layers constituting the unit battery or the unit battery, and facilitates alignment of each layer constituting the unit battery (or the battery laminate). As a result, misalignment of each layer can be prevented.

また、単位電池又は単位電池を構成する1又は複数の層を順に、1つの部分外装体の収容部に対して、積層方向と垂直な方向±45°の方向以内、±30°の方向以内、±15°の方向以内、±0°(すなわち、積層方向と垂直な方向)から挿入してもよく、好ましくは、積層方向と垂直な方向±0°(すなわち、積層方向と垂直な方向)から挿入する。   In addition, the unit battery or one or a plurality of layers constituting the unit battery are sequentially arranged with respect to the accommodating portion of one partial exterior body, within a direction of ± 45 ° perpendicular to the lamination direction, within a direction of ± 30 °, Within the direction of ± 15 °, may be inserted from ± 0 ° (ie, the direction perpendicular to the laminating direction), preferably from the direction ± 0 ° perpendicular to the laminating direction (ie, the direction perpendicular to the laminating direction). insert.

例えば、図1(b)は、工程(b)の一形態を示す概略断面図である。図1(b)の左図に示されているようには、単位電池6cを構成する層:正極/負極集電体層5c、正極活物質層4c、5c、4c、…を順に部分外装体11xの収容部に対して、電池積層体10の積層方向に対して垂直な方向から挿入している。これによって、図1(b)の右図に示されているように、単位電池6a、6b、及び6cを直列に積層してなる電池積層体10を部分外装体11xの収容部に挿入している。   For example, FIG. 1B is a schematic cross-sectional view illustrating one mode of the step (b). As shown in the left drawing of FIG. 1B, the layers constituting the unit battery 6c: the positive / negative current collector layer 5c, the positive electrode active material layers 4c, 5c, 4c,. The battery stack 10 is inserted into the 11x storage section from a direction perpendicular to the stacking direction of the battery stack 10. As a result, as shown in the right diagram of FIG. 1B, the battery stack 10 formed by stacking the unit batteries 6a, 6b, and 6c in series is inserted into the accommodating portion of the partial exterior body 11x. I have.

また、単位電池を構成する活物質層及び固体電解質層は、それぞれの構成材料を圧粉成形(プレス成形)することによって、形成することができる。   Further, the active material layer and the solid electrolyte layer constituting the unit battery can be formed by compacting (press molding) each constituent material.

例えば、正極活物質、並びに必要に応じて用いる固体電解質、導電助剤、及びバインダー等の全固体電池の正極活物質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、正極活物質層を形成することができる。また、負極活物質、並びに必要に応じて用いる固体電解質、導電助剤、及びバインダー等の全固体電池の負極活物質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、負極活物質層を形成することができる。また、固体電解質、並びに必要に応じて用いる導電助剤及びバインダー等の全固体電池の固体電解質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、固体電解質層を形成することができる。
〈工程(c)〉
工程(c)では、全ての部分外装体を結合させて、外装体を形成し、それによって外装体内に電池積層体を収容する。
For example, a positive electrode active material, and a solid electrolyte used as needed, a conductive auxiliary, and a constituent material containing an additive used for the positive electrode active material layer of an all solid state battery such as a binder, by compacting the positive electrode, An active material layer can be formed. In addition, the negative electrode active material, and a solid electrolyte used as necessary, a conductive auxiliary, and a constituent material containing an additive used in the negative electrode active material layer of the all-solid battery such as a binder, by compacting, the negative electrode An active material layer can be formed. In addition, the solid electrolyte layer and the constituent materials containing the additives used for the solid electrolyte layer of the all-solid battery such as the conductive auxiliary agent and the binder used as needed are formed by compacting the solid electrolyte layer to form the solid electrolyte layer. Can be.
<Step (c)>
In the step (c), all the partial exterior bodies are joined to form an exterior body, and thereby the battery stack is accommodated in the exterior body.

例えば、図1(c)は、工程(c)の一形態を示す概略断面図である。図1(c)に示されているように、部分外装体11xの収容部に配置された電池積層体10を収容するために、部分外装体11xと他方の部分外装体11yとを結合させて、外装体11を形成し、それによって、外装体11内に電池積層体10を収容している。   For example, FIG. 1C is a schematic cross-sectional view illustrating one mode of the step (c). As shown in FIG. 1C, in order to accommodate the battery stack 10 arranged in the accommodating portion of the partial exterior body 11x, the partial exterior body 11x and the other partial exterior body 11y are combined. The exterior body 11 is formed, and thereby, the battery stack 10 is accommodated in the exterior body 11.

〈工程(d)〉
工程(d)では、外装体の両端の貫孔部を通して、電池積層体の積層方向の両端面に電極端子を接続する。
<Step (d)>
In the step (d), electrode terminals are connected to both end surfaces in the stacking direction of the battery stack through the through holes at both ends of the package.

電極端子を接続することによって、電池積層体で発生した電力を外部に取り出すことができる。   By connecting the electrode terminals, electric power generated in the battery stack can be taken out.

例えば、図1(d)では、外装体の両端の貫孔部11c及び11bを通して、電池積層体10の積層方向の両端面に電極端子30及び31を接続している形態を示している。   For example, FIG. 1D shows a mode in which the electrode terminals 30 and 31 are connected to both end surfaces in the stacking direction of the battery stack 10 through the through holes 11c and 11b at both ends of the outer package.

また、電極端子としては、集電体層としての機能も有するものを用いることができる。この場合、電池積層体の積層方向の端面に位置するのは、集電体層ではなく、正極活物質層又は負極活物質層であり、これらの活物質層に、集電体層としての機能も有する電極端子を接続するようにしてもよい。   Further, as the electrode terminals, those having a function as a current collector layer can be used. In this case, not the current collector layer but the positive electrode active material layer or the negative electrode active material layer located at the end face in the stacking direction of the battery laminate, and these active material layers function as a current collector layer. May be connected.

また、工程(d)の前、途中、又は後に、プレス工程をさらに含むことが好ましい。プレス工程は、電池積層体の積層方向に電池積層体をプレスする工程である。   Further, it is preferable to further include a pressing step before, during, or after the step (d). The pressing step is a step of pressing the battery stack in the stacking direction of the battery stack.

例えば、図2は、このプレス工程が工程(d)の途中に含まれる一形態を示す概略図である。図2(a)に示されているように、電池積層体20の積層方向の下側の端面に電極端子32を接続している。その後、図2(b)に示されているように、電池積層体20の積層方向に沿って、かつ電極端子32が接続されている端面に向けて、電池積層体20をプレスしている。そして、図2(c)に示されているように、電池積層体20の積層方向の上側の端面に電極端子33を接続している。このように、プレス工程を工程(d)の途中で行うことによって、電池積層体20を積層方向に拘束することができる。なお、外装体21は、その内壁に絶縁層22を有している。   For example, FIG. 2 is a schematic view showing an embodiment in which this pressing step is included in the middle of the step (d). As shown in FIG. 2A, an electrode terminal 32 is connected to the lower end surface of the battery stack 20 in the stacking direction. Thereafter, as shown in FIG. 2B, the battery stack 20 is pressed along the stacking direction of the battery stack 20 and toward the end face to which the electrode terminals 32 are connected. Then, as shown in FIG. 2C, the electrode terminal 33 is connected to the upper end surface of the battery stack 20 in the stacking direction. As described above, by performing the pressing step in the middle of the step (d), the battery stack 20 can be restrained in the stacking direction. Note that the exterior body 21 has an insulating layer 22 on the inner wall thereof.

このように、本開示の方法によって、製造時における材料の脱落を抑制できる直列積層型全固体電池を製造することができる。   As described above, according to the method of the present disclosure, it is possible to manufacture a series-stacked all-solid-state battery that can prevent the material from falling off during manufacturing.

《直列積層型全固体電池》   《Series-stacked all-solid-state battery》

上述した方法によって製造される本開示の全固体電池は、単位電池を2以上直列に積層してなる電池積層体を有する。   The all solid state battery of the present disclosure manufactured by the above-described method has a battery stack in which two or more unit cells are stacked in series.

ここで、単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されている。   Here, the unit battery is configured by stacking a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order.

例えば、図1(b)の右図に示されている電池積層体10は、3つの単位電池6a、6b及び6cを直列に積層してなる。また、単位電池6aは、正極/負極集電体層1a、負極活物質層2a、固体電解質層3a、正極活物質層4a、及び正極/負極集電体層5aをこの順に積層することによって構成されている。単位電池6bは、正極/負極集電体層1b、負極活物質層2b、固体電解質層3b、正極活物質層4b、及び正極/負極集電体層5bをこの順に積層することによって構成されている。単位電池6cは、正極/負極集電体層1c、負極活物質層2c、固体電解質層3c、正極活物質層4c、及び正極/負極集電体層5cをこの順に積層することによって構成されている。   For example, the battery stack 10 shown in the right diagram of FIG. 1B is formed by stacking three unit batteries 6a, 6b, and 6c in series. Further, the unit battery 6a is configured by stacking a positive / negative electrode current collector layer 1a, a negative electrode active material layer 2a, a solid electrolyte layer 3a, a positive electrode active material layer 4a, and a positive / negative electrode current collector layer 5a in this order. Have been. The unit battery 6b is configured by stacking a positive / negative current collector layer 1b, a negative electrode active material layer 2b, a solid electrolyte layer 3b, a positive electrode active material layer 4b, and a positive / negative electrode current collector layer 5b in this order. I have. The unit battery 6c is configured by stacking a positive / negative current collector layer 1c, a negative electrode active material layer 2c, a solid electrolyte layer 3c, a positive electrode active material layer 4c, and a positive / negative electrode current collector layer 5c in this order. I have.

2以上の単位電池を直列に積層する際に、積層方向に隣接する2つの単位電池は、正極及び負極集電体層の両方として用いられる正極/負極集電体層を共有してもよい。   When two or more unit batteries are stacked in series, two unit batteries adjacent in the stacking direction may share a positive electrode / negative electrode current collector layer used as both a positive electrode and a negative electrode current collector layer.

すなわち、電池積層体は、積層方向において、負極集電体層(又は正極/負極集電体層)、負極活物質層、固体電解質層、正極活物質層、正極/負極集電体層、負極活物質層、固体電解質層、正極活物質層、正極集電体層(又は正極/負極集電体層)を、この順で積層して電池積層体を形成することができる。この場合において、「正極/負極集電体層」は、正極及び負極集電体層の両方として用いられるため、本開示でいう「正極集電体層」又は「負極集電体層」のいずれにも当てはまる。   That is, in the battery stack, in the stacking direction, a negative electrode current collector layer (or a positive electrode / negative electrode current collector layer), a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, a positive electrode / negative electrode current collector layer, and a negative electrode An active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector layer (or a positive electrode / negative electrode current collector layer) can be laminated in this order to form a battery laminate. In this case, since the “positive electrode / negative electrode current collector layer” is used as both the positive electrode and the negative electrode current collector layer, any of the “positive electrode current collector layer” or the “negative electrode current collector layer” in the present disclosure is used. This is also true.

例えば、図1(b)の右図に示されているように、単位電池6aと単位電池6bは、正極/負極集電体層5a(1b)を共有しており、単位電池6bと単位電池6cは、正極/負極集電体層5b(1c)を共有している。   For example, as shown in the right diagram of FIG. 1B, the unit battery 6a and the unit battery 6b share the positive / negative current collector layer 5a (1b), and the unit battery 6b and the unit battery 6b. 6c shares the positive electrode / negative electrode current collector layer 5b (1c).

なお、各々の単位電池の間にこのような正極/負極集電体を共有しなくてもよく、その場合、隣接する活物質層に合わせて正極集電体層及び負極集電体層を設け、これらが互いに電気的に接触するようにすることができる(図示せず)。   Note that such a positive / negative current collector may not be shared between the unit batteries, in which case a positive current collector layer and a negative current collector layer are provided in accordance with the adjacent active material layer. , May be in electrical contact with each other (not shown).

本開示において、電池積層体が、積層方向に拘束されていることができる。これによって、充放電の際に、全固体電池積層体の各層の内部及び各層の間における、イオン及び電子の伝導性を改良して、電池反応をより促進することができる。   In the present disclosure, the battery stack may be constrained in the stacking direction. Thereby, at the time of charge and discharge, the conductivity of ions and electrons between each layer and between each layer of the all-solid-state battery stack can be improved, and the battery reaction can be further promoted.

また、電池積層体の形状は、特に限定されず、例えば、コイン型、ラミネート型、円柱型及び角型等であってもよい。   The shape of the battery stack is not particularly limited, and may be, for example, a coin type, a laminate type, a columnar type, a square type, or the like.

単位電池を構成する各層の構成材料の具体例は、以下のように説明する。なお、本開示を容易に理解するために、全固体リチウムイオン二次電池に用いられる単位電池を例として説明するが、本開示の全固体電池は、リチウムイオン二次電池に限定されず、幅広く適用できる。   Specific examples of the constituent materials of each layer constituting the unit battery will be described as follows. In addition, in order to easily understand the present disclosure, a unit battery used for an all-solid lithium-ion secondary battery will be described as an example.However, the all-solid battery of the present disclosure is not limited to a lithium-ion secondary battery, and is widely used. Applicable.

(正極集電体層)
正極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できるものを適宜採用されうる。例えば、正極集電体層に用いられる導電性材料は、SUS、アルミニウム、銅、ニッケル、鉄、チタン、又はカーボン等であってよいが、これらに限定されない。
(Positive electrode current collector layer)
The conductive material used for the positive electrode current collector layer is not particularly limited, and a material that can be used for an all-solid-state battery can be appropriately used. For example, the conductive material used for the positive electrode current collector layer may be, but is not limited to, SUS, aluminum, copper, nickel, iron, titanium, carbon, or the like.

正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状等を挙げることができる。これらの中で、箔状が好ましい。   The shape of the positive electrode current collector layer is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Among these, a foil shape is preferred.

(正極活物質層)
正極活物質層は、少なくとも正極活物質を含み、好ましくは後述する固体電解質をさらに含む。そのほか、使用用途や使用目的等に合わせて、例えば、導電助剤又はバインダー等の全固体電池の正極活物質層に用いられる添加剤を含むことができる。
(Positive electrode active material layer)
The positive electrode active material layer contains at least a positive electrode active material, and preferably further contains a solid electrolyte described later. In addition, additives used in the positive electrode active material layer of the all solid state battery, such as a conductive additive or a binder, can be included in accordance with the intended use or intended purpose.

正極活物質の材料として、特に限定されない。例えば、正極活物質は、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、LiCo1/3Ni1/3Mn1/3、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネル等であってよいが、これらに限定されない。 The material of the positive electrode active material is not particularly limited. For example, the positive electrode active material is lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1 + x Li-Mn spinel or the like with a composition represented by Mn 2- xy My O 4 (M is one or more metal elements selected from Al, Mg, Co, Fe, Ni, and Zn) , But is not limited thereto.

導電助剤としては、特に限定されない。例えば、導電助剤は、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維等の炭素材並びに金属材等であってよいが、これらに限定されない。   The conductive assistant is not particularly limited. For example, the conductive assistant may be, but is not limited to, a carbon material such as VGCF (vapor grown carbon fiber, vapor grown carbon fiber) and carbon nanofiber, and a metal material.

バインダーとしては、特に限定されない。例えば、バインダーは、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム(BR)若しくはスチレンブタジエンゴム(SBR)等の材料、又はこれらの組合せであってよいが、これらに限定されない。   The binder is not particularly limited. For example, the binder may be a material such as, but not limited to, polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), butadiene rubber (BR), or styrene butadiene rubber (SBR).

(固体電解質層)
固体電解質層は、少なくとも固体電解質を含む。固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、固体電解質は、硫化物固体電解質、酸化物固体電解質、又はポリマー電解質等であってよいが、これらに限定されない。
(Solid electrolyte layer)
The solid electrolyte layer contains at least a solid electrolyte. The solid electrolyte is not particularly limited, and a material that can be used as a solid electrolyte for an all-solid battery can be used. For example, the solid electrolyte may be, but is not limited to, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer electrolyte, or the like.

硫化物固体電解質の例として、硫化物系非晶質固体電解質、硫化物系結晶質固体電解質、又はアルジロダイト型固体電解質等が挙げられるが、これらに限定されない。具体的な硫化物固体電解質の例として、LiS−P系(Li11、LiPS、Li等)、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiBr−LiS−P、LiS−P−GeS(Li13GeP16、Li10GeP12等)、LiI−LiS−P、LiI−LiPO−P、Li7−xPS6−xCl等;又はこれらの組み合わせを挙げることができるが、これらに限定されない。 Examples of the sulfide solid electrolyte include, but are not limited to, a sulfide-based amorphous solid electrolyte, a sulfide-based crystalline solid electrolyte, and an aldirodite-type solid electrolyte. Examples of specific sulfide solid electrolytes include Li 2 S—P 2 S 5 (Li 7 P 3 S 11 , Li 3 PS 4 , Li 8 P 2 S 9 and the like), Li 2 S—SiS 2 , and LiI. -Li 2 S-SiS 2, LiI -Li 2 S-P 2 S 5, LiI-LiBr-Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -GeS 2 (Li 13 GeP 3 S 16 , Li 10 GeP 2 S 12, etc.), LiI-Li 2 S- P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 7-x PS 6-x Cl x , and the like; or combinations thereof But not limited thereto.

酸化物固体電解質の例として、LiLaZr12、Li7−xLaZr1−xNb12、Li7−3xLaZrAl12、Li3xLa2/3−xTiO、Li1+xAlTi2−x(PO、Li1+xAlGe2−x(PO、LiPO、又はLi3+xPO4−x(LiPON)等が挙げられるが、これらに限定されない。 Examples of the oxide solid electrolyte, Li 7 La 3 Zr 2 O 12, Li 7-x La 3 Zr 1-x Nb x O 12, Li 7-3x La 3 Zr 2 Al x O 12, Li 3x La 2 / 3-x TiO 3, Li 1 + x Al x Ti 2-x (PO 4) 3, Li 1 + x Al x Ge 2-x (PO 4) 3, Li 3 PO 4, or Li 3 + x PO 4-x N x (LiPON ) And the like, but are not limited thereto.

(ポリマー電解質)
ポリマー電解質としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体等が挙げられるが、これらに限定されない。
(Polymer electrolyte)
Polymer electrolytes include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.

固体電解質は、ガラスであっても、結晶化ガラス(ガラスセラミック)であってもよい。また、固体電解質層は、上述した固体電解質以外に、必要に応じてバインダー等を含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。   The solid electrolyte may be glass or crystallized glass (glass ceramic). Further, the solid electrolyte layer may contain a binder or the like as necessary, in addition to the solid electrolyte described above. As a specific example, it is the same as the “binder” listed in the above “positive electrode active material layer”, and the description is omitted here.

(負極活物質層)
負極活物質層は、少なくとも負極活物質を含み、好ましくは上述した固体電解質をさらに含む。そのほか、使用用途や使用目的等に合わせて、例えば、導電助剤又はバインダー等の全固体電池の負極活物質層に用いられる添加剤を含むことができる。
(Negative electrode active material layer)
The negative electrode active material layer contains at least a negative electrode active material, and preferably further contains the solid electrolyte described above. In addition, additives used in the negative electrode active material layer of the all-solid-state battery, such as a conductive assistant or a binder, can be included in accordance with the intended use or intended purpose.

負極活物質の材料として、特に限定されず、リチウムイオン等の金属イオンを吸蔵及び放出可能であることが好ましい。例えば、負極活物質は、合金系負極活物質又は炭素材料等であってよいが、これらに限定されない。   The material of the negative electrode active material is not particularly limited, and is preferably capable of inserting and extracting metal ions such as lithium ions. For example, the negative electrode active material may be an alloy-based negative electrode active material or a carbon material, but is not limited thereto.

合金系負極活物質として、特に限定されず、例えば、Si合金系負極活物質、又はSn合金系負極活物質等が挙げられる。Si合金系負極活物質には、ケイ素、ケイ素酸化物、ケイ素炭化物、ケイ素窒化物、又はこれらの固溶体等がある。また、Si合金系負極活物質には、ケイ素以外の元素、例えば、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Sn、Ti等を含むことができる。Sn合金系負極活物質には、スズ、スズ酸化物、スズ窒化物、又はこれらの固溶体等がある。また、Sn合金系負極活物質には、スズ以外の元素、例えば、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Ti、Si等を含むことができる。これらの中で、Si合金系負極活物質が好ましい。   The alloy-based negative electrode active material is not particularly limited, and examples thereof include a Si alloy-based negative electrode active material and a Sn alloy-based negative electrode active material. Examples of the Si alloy-based negative electrode active material include silicon, silicon oxide, silicon carbide, silicon nitride, and solid solutions thereof. Further, the Si alloy-based negative electrode active material can include elements other than silicon, for example, Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, Ti, and the like. Examples of the Sn alloy-based negative electrode active material include tin, tin oxide, tin nitride, and solid solutions thereof. In addition, the Sn alloy-based negative electrode active material can include elements other than tin, for example, Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Ti, Si, and the like. Among these, a Si alloy-based negative electrode active material is preferable.

炭素材料として、特に限定されず、例えば、ハードカーボン、ソフトカーボン、又はグラファイト等が挙げられる。   The carbon material is not particularly limited, and examples thereof include hard carbon, soft carbon, and graphite.

負極活物質層に用いられる固体電解質、導電助剤、バインダー等その他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。   For the solid electrolyte, conductive auxiliary agent, binder, and other additives used in the negative electrode active material layer, those described in the above-mentioned items of the “positive electrode active material layer” and “solid electrolyte layer” can be appropriately adopted. .

(負極集電体層)
負極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できるものを適宜採用されうる。例えば、負極集電体層に用いられる導電性材料は、SUS、アルミニウム、銅、ニッケル、鉄、チタン、又はカーボン等であってよいが、これらに限定されない。
(Negative electrode current collector layer)
The conductive material used for the negative electrode current collector layer is not particularly limited, and a material that can be used for an all-solid battery can be appropriately used. For example, the conductive material used for the negative electrode current collector layer may be, but is not limited to, SUS, aluminum, copper, nickel, iron, titanium, or carbon.

負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状等を挙げることができる。これらの中で、箔状が好ましい。   The shape of the negative electrode current collector layer is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Among these, a foil shape is preferred.

なお、負極活物質層の大きさは、正極活物質層の大きさと同じであってもよく、異なっていてもよいが、充電時に正極活物質層から放出された金属イオンを負極活物質層に確実かつスムーズに移動できる観点から、負極活物質層の大きさは、正極活物質層の大きさよりも大きさく設定されることが好ましい。   Note that the size of the negative electrode active material layer may be the same as or different from the size of the positive electrode active material layer, but metal ions released from the positive electrode active material layer during charging may be added to the negative electrode active material layer. From the viewpoint of reliable and smooth movement, the size of the negative electrode active material layer is preferably set to be larger than the size of the positive electrode active material layer.

また、正極集電体層、負極集電体層又は正極/負極集電体層の大きさは、固体電解質層の大きさと同じように設定されてもよい(図示せず)。   Further, the size of the positive electrode current collector layer, the negative electrode current collector layer, or the size of the positive electrode / negative electrode current collector layer may be set to be the same as the size of the solid electrolyte layer (not shown).

1a、5a、1b、5b、1c、5c 正極/負極集電体層
2a、2b、2c、2d、2e 負極活物質層
3a、3b、3c、3d、3e 固体電解質層
4a、4b、4c、4d、4e 正極活物質層
6a、6b、6c 単位電池
10、20 電池積層体
11、21 外装体
11a 外装体の収容部
11x、11y 部分外装体
11b、11c 貫孔部
22 絶縁層
30、31、32、33 電極端子
1a, 5a, 1b, 5b, 1c, 5c Positive electrode / negative electrode current collector layer 2a, 2b, 2c, 2d, 2e Negative electrode active material layer 3a, 3b, 3c, 3d, 3e Solid electrolyte layer 4a, 4b, 4c, 4d 4e Positive electrode active material layer 6a, 6b, 6c Unit battery 10, 20 Battery stack 11, 21 Outer case 11a Outer case accommodating part 11x, 11y Partial outer case 11b, 11c Through hole 22 Insulating layer 30, 31, 32 , 33 electrode terminals

Claims (1)

下記工程を含む、直列積層型全固体電池の製造方法:
(a)電池積層体を収容するための収容部を有する外装体を準備すること、ここで、前記電池積層体の積層方向において、前記外装体が、両端において貫孔部を有し、かつ分割された形状を有する少なくとも2つの部分外装体からなり、かつ、前記電池積層体は、単位電池を2以上直列に積層してなり、かつ前記単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に積層することによって構成されており;
(b)前記単位電池又は前記単位電池を構成する1又は複数の層を順に、1つの前記部分外装体の収容部に対して、前記積層方向と垂直な方向±60°の方向以内から挿入すること;
(c)全ての前記部分外装体を結合させて、前記外装体を形成し、それによって前記外装体内に前記電池積層体を収容すること;
(d)前記外装体の両端の前記貫孔部を通して、前記電池積層体の積層方向の両端面に電極端子を接続すること。
A method for manufacturing a series-stacked all-solid-state battery including the following steps:
(A) preparing an exterior body having an accommodating portion for accommodating the battery stack, wherein the exterior body has through holes at both ends in the stacking direction of the battery stack, and is divided; The battery stack comprises at least two unit batteries stacked in series, and the unit battery comprises a positive electrode current collector layer and a positive electrode active material layer. , A solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order;
(B) The unit battery or one or a plurality of layers constituting the unit battery are sequentially inserted into the accommodating portion of the one partial exterior body within a direction ± 60 ° perpendicular to the stacking direction. thing;
(C) combining all of the partial exterior bodies to form the exterior body, thereby accommodating the battery stack in the exterior body;
(D) connecting electrode terminals to both end faces in the stacking direction of the battery stack through the through holes at both ends of the package;
JP2018135606A 2018-07-19 2018-07-19 Manufacturing method of series-stacked all-solid-state battery Active JP7040331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135606A JP7040331B2 (en) 2018-07-19 2018-07-19 Manufacturing method of series-stacked all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135606A JP7040331B2 (en) 2018-07-19 2018-07-19 Manufacturing method of series-stacked all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2020013711A true JP2020013711A (en) 2020-01-23
JP7040331B2 JP7040331B2 (en) 2022-03-23

Family

ID=69170695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135606A Active JP7040331B2 (en) 2018-07-19 2018-07-19 Manufacturing method of series-stacked all-solid-state battery

Country Status (1)

Country Link
JP (1) JP7040331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497276A (en) * 2020-03-19 2021-10-12 本田技研工业株式会社 Solid battery cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134210A (en) * 2002-10-10 2004-04-30 Nissan Motor Co Ltd Lamination type battery, battery pack, and vehicle
JP2007066806A (en) * 2005-09-01 2007-03-15 Nissan Motor Co Ltd Bipolar battery
JP2008135606A (en) * 2006-11-29 2008-06-12 Renesas Technology Corp Semiconductor device
JP2014072181A (en) * 2012-10-02 2014-04-21 Toyota Central R&D Labs Inc Stacked cell and battery pack
JP2016058142A (en) * 2014-09-05 2016-04-21 出光興産株式会社 Manufacturing method of lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134210A (en) * 2002-10-10 2004-04-30 Nissan Motor Co Ltd Lamination type battery, battery pack, and vehicle
JP2007066806A (en) * 2005-09-01 2007-03-15 Nissan Motor Co Ltd Bipolar battery
JP2008135606A (en) * 2006-11-29 2008-06-12 Renesas Technology Corp Semiconductor device
JP2014072181A (en) * 2012-10-02 2014-04-21 Toyota Central R&D Labs Inc Stacked cell and battery pack
JP2016058142A (en) * 2014-09-05 2016-04-21 出光興産株式会社 Manufacturing method of lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497276A (en) * 2020-03-19 2021-10-12 本田技研工业株式会社 Solid battery cell

Also Published As

Publication number Publication date
JP7040331B2 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
KR100624971B1 (en) Electrode Plate of Secondary Battery and Method of fabricating the same
JP2020013729A (en) Manufacturing method of series-stacked all-solid-state battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
KR20060111839A (en) Electrod assemblay with supercapacitor and li secondary battery comprising the same
WO2020256023A1 (en) Secondary battery
US20220352550A1 (en) Solid-state battery, battery module, battery pack, and apparatus associated therewith
JP2012089421A (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2014120404A (en) Secondary battery
JP2015018670A (en) Bipolar battery
KR20180005990A (en) Unit cell, and preparation method thereof
US20230378613A1 (en) Secondary battery, battery module, battery pack and power consuming device
JP7040331B2 (en) Manufacturing method of series-stacked all-solid-state battery
KR101636115B1 (en) Electrode assembly for lithium secondary battery and lithium secondary battery
US9660245B2 (en) Battery cell
JP7067455B2 (en) Manufacturing method of series-stacked all-solid-state battery
KR20150023114A (en) Battery pack having gas discharge pipe
JP2013033687A (en) Storage battery module
CN110858666B (en) Method for manufacturing laminated battery
KR100696826B1 (en) Electrode Plate and Li Secondary Battery with the same
JP2020027742A (en) Manufacturing method for all-solid-state battery
KR20190013424A (en) Lithium secondary battery
JP2015090791A (en) Bipolar battery
JP2020107389A (en) Method for manufacturing all-solid battery
KR100601559B1 (en) Jelly-roll type electrode assembly and Li Secondary battery with the same
CN109219903B (en) Rechargeable battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R151 Written notification of patent or utility model registration

Ref document number: 7040331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151