JP2020107389A - Method for manufacturing all-solid battery - Google Patents

Method for manufacturing all-solid battery Download PDF

Info

Publication number
JP2020107389A
JP2020107389A JP2018241875A JP2018241875A JP2020107389A JP 2020107389 A JP2020107389 A JP 2020107389A JP 2018241875 A JP2018241875 A JP 2018241875A JP 2018241875 A JP2018241875 A JP 2018241875A JP 2020107389 A JP2020107389 A JP 2020107389A
Authority
JP
Japan
Prior art keywords
battery
solid
active material
negative electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018241875A
Other languages
Japanese (ja)
Other versions
JP2020107389A5 (en
JP7272788B2 (en
Inventor
典利 古田
Noritoshi Furuta
典利 古田
吉田 淳
Atsushi Yoshida
淳 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2018241875A priority Critical patent/JP7272788B2/en
Publication of JP2020107389A publication Critical patent/JP2020107389A/en
Publication of JP2020107389A5 publication Critical patent/JP2020107389A5/ja
Application granted granted Critical
Publication of JP7272788B2 publication Critical patent/JP7272788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide a method for manufacturing an all-solid battery, which can achieve both of the suppression of degradation of the all-solid battery and the increase in the energy density of the all-solid battery.SOLUTION: A method for manufacturing an all-solid battery comprises the following steps (a) to (c): (a) providing a battery laminate having at least one unit battery arranged by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer and a negative electrode current collector layer in this order; (b) charging the resultant battery stack with an initial charge voltage while constraining in a lamination direction of unit battery constituent layers; and (c) constraining the battery stack with fixed dimensions in the lamination direction of the unit battery constituent layers.SELECTED DRAWING: Figure 1

Description

本開示は、全固体電池の製造方法に関する。 The present disclosure relates to a method for manufacturing an all-solid-state battery.

近年、携帯機器や自動車等の電源として全固体電池が提案されている。 In recent years, an all-solid-state battery has been proposed as a power source for portable devices, automobiles and the like.

電解質として固体電解質を用いる全固体電池では一般に、活物質と固体電解質との接触等を維持するために、全固体電池を構成する各層の積層方向に拘束力を付与することが行われている。 In an all-solid-state battery using a solid electrolyte as an electrolyte, generally, in order to maintain contact between the active material and the solid electrolyte, a binding force is applied in the stacking direction of each layer constituting the all-solid battery.

また、全固体電池の耐久性等を改良するために、全固体電池を製造した直後であって実際の使用の前に、実際の使用の際の充放電電圧より高い初期充電電圧まで全固体電池を充電する初期充電工程を行うことが提案されている。 In addition, in order to improve the durability of the all-solid-state battery, immediately after manufacturing the all-solid-state battery and before the actual use, the all-solid-state battery has an initial charging voltage higher than the charge/discharge voltage during actual use. It has been proposed to perform an initial charging step to charge the.

このような全固体電池の拘束及び初期充電を含めて、全固体電池に関して様々な開発がなされている。 Various developments have been made on all-solid-state batteries, including such restraint and initial charging of all-solid-state batteries.

例えば、特許文献1では、被拘束体は積層方向長さL1のばらつきを収束するための長さ調整手段を備えており、長さL1に応じて長さ調整手段をセットすることにより、組電池の積層方向の長さが規定長さLTであってかつ被拘束体の拘束圧が規定圧力Pとなるように行われる拘束工程が開示されている。 For example, in Patent Document 1, the restrained body is provided with length adjusting means for converging variations in the length L1 in the stacking direction, and the assembled battery is set by setting the length adjusting means according to the length L1. There is disclosed a restraint step performed such that the length in the stacking direction is the prescribed length LT and the restraining pressure of the restrained body becomes the prescribed pressure P.

特許文献2では、面方向に積層された複数の平形二次電池を拘束する平形二次電池用拘束装置が開示されている。より具体的には、積層された複数の平形二次電池を載置するためのフレーム、隣接する平形二次電池の間を仕切る板状スペーサー、積層された複数の平形二次電池を積層方向に押圧する押圧プレート、及び押圧プレートに押圧を提供する押圧部材、を具備し、板状スペーサーが板状シリコーンゴム製緩衝部材を有し、かつ押圧が定圧プレスである、平形二次電池の拘束装置が開示されている。 Patent Document 2 discloses a restraint device for a flat secondary battery that restrains a plurality of flat secondary batteries stacked in a plane direction. More specifically, a frame for mounting a plurality of stacked flat secondary batteries, a plate-like spacer for partitioning between the adjacent flat secondary batteries, and a plurality of stacked flat secondary batteries in the stacking direction. A flat rechargeable battery restraint device comprising: a pressing plate that presses; and a pressing member that provides pressing to the pressing plate, the plate-shaped spacer has a plate-shaped silicone rubber cushioning member, and the pressing is a constant-pressure press. Is disclosed.

特許文献3では、充放電電圧より高い初期充電電圧まで全固体電池を充電する初期充電工程を有する、全固体電池システムの製造方法が開示されている。また、特許文献3では、製造した全固体電池に対して拘束治具を用いて2N・mの拘束圧にて拘束しながら性能評価を行うことが開示されている。 Patent Document 3 discloses a method for manufacturing an all-solid-state battery system having an initial charging step of charging an all-solid-state battery to an initial charging voltage higher than a charge/discharge voltage. Further, Patent Document 3 discloses that performance evaluation is performed while restraining the manufactured all-solid-state battery with a restraining jig of 2 N·m using a restraining jig.

特許文献4では、正極とSi負極と固体電解質層との積層体、及び積層体に拘束圧力を付与する拘束部材を備える全固体リチウムイオン電池が開示されており、拘束部材による前記積層体への拘束圧力が0.1MPa以上45MPa以下である、全固体リチウムイオン電池が開示されている。 Patent Document 4 discloses an all-solid-state lithium-ion battery including a laminate of a positive electrode, a Si negative electrode, and a solid electrolyte layer, and a restraint member that applies a restraining pressure to the laminate. An all-solid-state lithium ion battery having a binding pressure of 0.1 MPa or more and 45 MPa or less is disclosed.

特許文献5では、蓄電モジュールを積層方向に定圧又は定寸で拘束する拘束工程を含む蓄電モジュールへの電解液の注液方法が開示されている。 Patent Document 5 discloses a method of injecting an electrolytic solution into an electricity storage module, which includes a restraining step of restraining the electricity storage module in the stacking direction with a constant pressure or a fixed size.

特開2009−200051号公報JP, 2009-200051, A 特開2015−022817号公報JP, 2005-022817, A 特開2017−059534号公報JP, 2017-059534, A 特開2018−106984号公報JP, 2008-106984, A 特開2018−106850号公報JP, 2018-106850, A

全固体電池を充放電させると、活物質層(特に負極活物質層)が膨張及び収縮する。これに対して、全固体電池の拘束方法としては、活物質層が膨張及び収縮したときにも全固体電池が略一定の寸法になるように拘束する定寸拘束、及び活物質層が膨張及び収縮したときに全固体電池を拘束する圧力が略一定になるように拘束する定圧拘束が知られている。 When the all-solid-state battery is charged and discharged, the active material layer (particularly the negative electrode active material layer) expands and contracts. On the other hand, as a method of restraining the all-solid-state battery, there is a sizing constraint that restrains the all-solid-state battery to have a substantially constant size even when the active material layer expands and contracts, and the active-material layer expands and shrinks. There is known a constant pressure restraint for restraining the pressure for restraining the all-solid-state battery to be substantially constant when contracted.

このうちの定寸拘束では、拘束のための器具を単純な構成にできるという利点を有するものの、充填された際に全固体電池にかかる拘束圧力が過剰に大きくなり、それによって膨張した活物質層自体、他の活物質層、及び/又は固体電解質層が破損する可能性がある。 Although the fixed-size restraint among them has the advantage that the restraining device can have a simple structure, the restraining pressure applied to the all-solid-state battery when it is filled becomes excessively high, which causes the active material layer to expand. As a result, other active material layers and/or solid electrolyte layers may be damaged.

他方で、定圧拘束では、充填された際に全固体電池にかかる拘束圧力が過剰に大きくなるのを防げるという利点を有するものの、拘束のための器具が比較的複雑で大きくなってしまい、結果として拘束器具を含めた全固体電池のエネルギー密度等が小さくなってしまうという問題がある。 On the other hand, the constant pressure restraint has an advantage of preventing the restraining pressure applied to the all-solid-state battery from being excessively increased when it is filled, but the restraining device becomes relatively complicated and large, and as a result, There is a problem that the energy density of the all-solid-state battery including the restraint device becomes small.

したがって、本開示は、上記事情を鑑みてなされたものであり、全固体電池を構成する活物質層等の破損の抑制及び全固体電池のエネルギー密度等の向上を両立できる全固体電池の製造方法を提供することを目的とする。 Therefore, the present disclosure has been made in view of the above circumstances, and is a method for manufacturing an all-solid-state battery that can both suppress damage to an active material layer or the like that constitutes the all-solid-state battery and improve the energy density of the all-solid-state battery. The purpose is to provide.

本開示の本発明者らは、下記工程(a)〜(c)を含む全固体電池の製造方法により、上記課題を解決できることを見出した:
(a)正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で積層して構成された単位電池を1以上有する電池積層体を提供すること、
(b)前記電池積層体を、前記単位電池を構成する層の積層方向において、定圧拘束しながら、初期充電電圧で充電すること、及び
(c)前記電池積層体を、前記単位電池を構成する層の積層方向において、定寸拘束すること。
The inventors of the present disclosure have found that the above problems can be solved by a method for manufacturing an all-solid-state battery including the following steps (a) to (c):
(A) A battery stack having at least one unit battery configured by stacking a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. What to do
(B) charging the battery stack with an initial charging voltage while constraining the battery stack at a constant pressure in the stacking direction of the layers forming the unit battery; and (c) forming the unit battery with the battery stack. Dimensionally constrained in the layer stacking direction.

本開示の全固体電池の製造方法によれば、全固体電池の劣化の抑制及び全固体電池のエネルギー密度の向上を両立することができる。 According to the manufacturing method of the all-solid-state battery of the present disclosure, it is possible to simultaneously suppress the deterioration of the all-solid-state battery and improve the energy density of the all-solid-state battery.

図1は、本開示の方法に用いられる定圧・定寸拘束機構の一態様を示す概念図である。FIG. 1 is a conceptual diagram showing an aspect of a constant pressure/constant dimension restraint mechanism used in the method of the present disclosure. 図2は、本開示にかかる単位電池の一態様を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing one aspect of the unit battery according to the present disclosure. 図3は、定圧拘束機構から定寸拘束機構を取り外したときの一態様を示す概念図である。FIG. 3 is a conceptual diagram showing one aspect when the sizing restraint mechanism is removed from the constant pressure restraint mechanism.

以下、図面を参照しながら、本開示を実施するための形態について、詳細に説明する。なお、説明の便宜上、各図において、同一又は相当する部分には同一の参照符号を付し、重複説明は省略する。実施の形態の各構成要素は、全てが必須のものであるとは限らず、一部の構成要素を省略可能な場合もある。ただし、以下の図に示される形態は本開示の例示であり、本開示を限定するものではない。 Hereinafter, modes for carrying out the present disclosure will be described in detail with reference to the drawings. Note that, for convenience of description, in each drawing, the same or corresponding parts will be denoted by the same reference symbols, and redundant description will be omitted. Not all of the constituent elements of the embodiment are indispensable, and some constituent elements may be omitted in some cases. However, the forms shown in the following drawings are examples of the present disclosure and do not limit the present disclosure.

《全固体電池の製造方法》
本開示の全固体電池の製造方法は、下記工程(a)〜(c)を含む:
(a)正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で積層して構成された単位電池を1以上有する電池積層体を提供すること、
(b)電池積層体を、単位電池を構成する層の積層方向において、定圧拘束しながら、初期充電電圧で充電すること、及び
(c)電池積層体を、単位電池を構成する層の積層方向において、定寸拘束すること。
<<Method of manufacturing all-solid-state battery>>
The manufacturing method of the all-solid-state battery of the present disclosure includes the following steps (a) to (c):
(A) A battery stack having at least one unit battery configured by stacking a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. What to do
(B) charging the battery stack at the initial charging voltage while constraining the battery stack at a constant pressure in the stacking direction of the layers forming the unit battery; and (c) stacking the battery stack in the stacking direction of the layers forming the unit battery. In stipulate, constrain to a certain size.

本開示において、「単位電池を構成する層の積層方向」とは、その単位電池を構成する各層が積層されている方向、すなわち単位電池又はその単位電池を構成する各層の面方向に垂直な方向を指す。 In the present disclosure, “the stacking direction of the layers forming the unit battery” means the direction in which the layers forming the unit battery are stacked, that is, the direction perpendicular to the plane direction of the unit battery or each layer forming the unit battery. Refers to.

全固体電池を製造する本開示の方法によれば、全固体電池を構成する活物質層等の破損の抑制及び全固体電池のエネルギー密度等の向上を両立できる。理論に限定されるものではないが、これは、初期充電の際の活物質層の膨張及び収縮が、実際の電池の使用の際の活物質層の膨張及び収縮よりも大きく、したがって初期充電の際に全固体電池を定圧拘束して、初期充電の際に全固体電池にかかる拘束圧力が過剰に大きくなるのを防げば、その後の実際の使用の際に全固体電池を定寸拘束していても、過剰な拘束圧力による活物質層等の破損が抑制できることによると考えられる。 According to the method of the present disclosure for manufacturing an all-solid-state battery, it is possible to both suppress damage to the active material layer and the like that form the all-solid-state battery and improve the energy density of the all-solid-state battery. Without being limited to theory, this is because the expansion and contraction of the active material layer during initial charging is larger than the expansion and contraction of the active material layer during actual use of the battery, and therefore the initial charging At this time, the all-solid-state battery is constrained to a constant pressure to prevent the constraint pressure applied to the all-solid-state battery from becoming excessively large during initial charging. However, it is considered that damage to the active material layer and the like due to excessive restraining pressure can be suppressed.

本開示の方法は、例えば図1に示されている定圧・定寸拘束機構の一態様を用いて、全固体電池を製造することができる。 The method of the present disclosure can manufacture an all-solid-state battery using, for example, one aspect of the constant pressure/constant dimension restraint mechanism shown in FIG. 1.

図1(a)は、定圧・定寸拘束機構の側面の概略図である。この定圧・定寸拘束機構は、定圧押圧器10、拘束プレート11、並びに拘束治具12及び13を含む定圧拘束機構と、定寸バー20及び21、拘束プレート22及び23、並びにネジ24〜31を含む定寸拘束機構を有し、これらの機構をそれぞれ分離させることができる。また、図1(a−1)は、定圧拘束機構の横からみる正面の概念図であり、図1(a−2)は、定寸拘束機構の横から正面の概念図である。 FIG. 1A is a schematic side view of a constant pressure/size constraining mechanism. This constant pressure/constant size restraint mechanism is a constant pressure restraint mechanism including a constant pressure pusher 10, a restraint plate 11, and restraint jigs 12 and 13, constant size bars 20 and 21, restraint plates 22 and 23, and screws 24 to 31. It has a sizing restraint mechanism including, and these mechanisms can be separated from each other. Further, FIG. 1A-1 is a conceptual view of the constant pressure restraining mechanism viewed from the side, and FIG. 1A-2 is a conceptual view of the constant dimension restraining mechanism viewed from the side from the front.

このため、本開示にかかる工程(b)を行う際に、定圧拘束機構だけが働き、活物質層の膨張に合わせて、単位電池1〜4を有する電池積層体5を定圧拘束することで、活物質層の膨張に由来する亀裂や変形を抑制することができ、その結果、全固体電池の劣化を抑制することができる。 Therefore, when the step (b) according to the present disclosure is performed, only the constant pressure restraint mechanism works, and according to the expansion of the active material layer, the battery laminate 5 including the unit batteries 1 to 4 is restrained under constant pressure. It is possible to suppress cracks and deformation due to expansion of the active material layer, and as a result, it is possible to suppress deterioration of the all-solid-state battery.

また、本開示にかかる工程(c)を行う際に、定圧拘束機構と定寸拘束機構とをそれぞれ分離させて定寸拘束機構だけが働き、電池積層体5を定寸拘束することで、電池抵抗を低減することができる。そして、定圧拘束機構を分離させることによって、全固体電池のエネルギー密度を向上することができる。 Further, when the step (c) according to the present disclosure is performed, the constant pressure restraining mechanism and the constant dimension restraining mechanism are separated from each other so that only the constant dimension restraining mechanism works and the battery stack 5 is restrained by the constant dimension. The resistance can be reduced. The energy density of the all-solid-state battery can be improved by separating the constant pressure restraint mechanism.

以下では、各工程の詳細について、説明する。 Below, the detail of each process is demonstrated.

〈工程(a)〉
工程(a)では、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で積層して構成された単位電池を1以上有する電池積層体を提供する。
<Process (a)>
In the step (a), a battery stack having at least one unit battery configured by stacking a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. Provide the body.

本開示の全固体電池を構成する電池積層体は、単位電池を1以上有する。 The battery stack constituting the all-solid-state battery of the present disclosure has one or more unit batteries.

例えば、図1(a)に示されている電池積層体5は、単位電池1〜4を4つ有している。 For example, the battery stack 5 shown in FIG. 1A has four unit batteries 1 to 4.

ここで、単位電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で積層して構成されている。 Here, the unit battery is configured by stacking a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order.

図2は、本開示にかかる単位電池の一態様を示す概略断面図である。図2に示されているように、単位電池1は、正極集電体層1a、正極活物質層1b、固体電解質層1c、負極活物質層1d、及び負極集電体層1eをこの順で積層して構成されている。 FIG. 2 is a schematic cross-sectional view showing one aspect of the unit battery according to the present disclosure. As shown in FIG. 2, the unit battery 1 includes a positive electrode current collector layer 1a, a positive electrode active material layer 1b, a solid electrolyte layer 1c, a negative electrode active material layer 1d, and a negative electrode current collector layer 1e in this order. It is configured by stacking.

また、単位電池において、正極集電体層は、面方向に突出する正極集電体突出部を有していてよく、この正極集電体突出部には、正極集電タブが電気的に接続されていてよい。同様に、負極集電体層は、負極集電体突出部を有していてよく、この負極集電体突出部には、負極集電タブが電気的に接続されていてよい。このようなそれぞれの極の集電体突出部及び集電タブを介して、全固体電池積層体で発生した電力を外部に取り出すことができる。なお、電池積層体が複数の正極又は負極集電体層を有する場合には、それぞれの極の複数の集電体突出部を、互いに電気的に接続したうえで、それぞれの極の集電タブに電気的に接続することができる。 In the unit battery, the positive electrode current collector layer may have a positive electrode current collector protrusion protruding in the surface direction, and the positive electrode current collector tab is electrically connected to the positive electrode current collector protrusion. It may have been done. Similarly, the negative electrode current collector layer may have a negative electrode current collector protrusion, and a negative electrode current collector tab may be electrically connected to the negative electrode current collector protrusion. Electric power generated in the all-solid-state battery stack can be extracted to the outside through the current collector protrusions and the current collecting tabs of the respective poles. When the battery stack has a plurality of positive electrode or negative electrode current collector layers, the plurality of current collector protrusions of the respective electrodes are electrically connected to each other and then the current collecting tabs of the respective electrodes are formed. Can be electrically connected to.

例えば、図1(a−2)では、単位電池4には、正極及び負極集電体層に電気的に接続されている集電タブ4f及び4gを確認することができる。なお、図1(a)では、単位電池1〜4のそれぞれの片方の集電タブ1f〜4fを確認することができる。 For example, in FIG. 1(a-2), it is possible to confirm the current collecting tabs 4f and 4g electrically connected to the positive electrode and negative electrode current collector layers in the unit battery 4. In addition, in FIG. 1A, one of the current collecting tabs 1f to 4f of each of the unit batteries 1 to 4 can be confirmed.

電池積層体は、単位電池を2以上有する場合、バイポーラ型の電池積層体であってもよく、モノポーラ型の積層体であってもよい。また、積層方向に隣接する2つの単位電池は、正極及び負極集電体層の両方として用いられる正極/負極集電体層を共有してもよい。更に、バイポーラ型及びモノポーラ型の電池積層体のいずれにおいても、積層方向の最外層に位置する集電体層は、同じ電極であってもよく、異なる電極であってもよい。 When the battery stack has two or more unit batteries, it may be a bipolar battery stack or a monopolar battery stack. Further, two unit batteries adjacent to each other in the stacking direction may share the positive electrode/negative electrode current collector layer used as both the positive electrode and the negative electrode current collector layer. Further, in both the bipolar type and monopolar type battery stacks, the outermost collector layer in the stacking direction may be the same electrode or different electrodes.

単位電池を1以上有する電池積層体を提供する方法は、特に限定されず、例えば、単位電池を構成する各層を、所望の順番及び数で一層ずつ積層して、電池積層体を形成していてもよく、又は負極活物質層、固体電解質層及び正極活物質層を積層して3層の積層体を形成して、そしてこの3層の積層体と集電体層とをさらに積層して、電池積層体を形成していてもよく、又は単位電池を構成する各層を積層して単位電池を形成して、そして各単位電池を積層して電池積層体を形成していてもよい。 A method for providing a battery stack having one or more unit batteries is not particularly limited, and for example, each layer forming the unit battery is stacked one by one in a desired order and number to form a battery stack. Or a negative electrode active material layer, a solid electrolyte layer and a positive electrode active material layer are laminated to form a three-layer laminate, and the three-layer laminate and a current collector layer are further laminated, A battery stack may be formed, or layers forming the unit battery may be stacked to form a unit battery, and the unit batteries may be stacked to form a battery stack.

また、単位電池を構成する活物質層及び固体電解質層は、それぞれの構成材料を圧粉成形(プレス成形)することによって、形成することができる。 In addition, the active material layer and the solid electrolyte layer that form the unit battery can be formed by compacting (press molding) the respective constituent materials.

例えば、正極活物質、並びに必要に応じて用いる固体電解質、導電助剤、及びバインダー等の全固体電池の正極活物質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、正極活物質層を形成することができる。また、負極活物質、並びに必要に応じて用いる固体電解質、導電助剤、及びバインダー等の全固体電池の負極活物質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、負極活物質層を形成することができる。また、固体電解質、並びに必要に応じて用いる導電助剤及びバインダー等の全固体電池の固体電解質層に用いられる添加剤を含む構成材料を、圧粉成形することによって、固体電解質層を形成することができる。 For example, a positive electrode active material, and if necessary, a solid electrolyte, a conductive auxiliary agent, and a constituent material containing an additive such as a binder used in the positive electrode active material layer of an all-solid-state battery such as a binder are pressed to form a positive electrode. An active material layer can be formed. In addition, a negative electrode active material, and a solid electrolyte used as necessary, a conductive auxiliary agent, and a constituent material including an additive such as a binder used in the negative electrode active material layer of an all-solid-state battery are pressed to form a negative electrode. An active material layer can be formed. In addition, a solid electrolyte layer and a conductive electrolyte to be used as necessary, and a constituent material including an additive such as a binder used in the solid electrolyte layer of an all-solid-state battery are formed into a solid electrolyte layer by compaction molding. You can

電池積層体の形状は、特に限定されず、例えば、コイン型、ラミネート型、円柱型及び角型等であってもよい。 The shape of the battery stack is not particularly limited, and may be, for example, a coin type, a laminate type, a column type, a square type, or the like.

〈工程(b)〉
工程(b)では、電池積層体を、単位電池を構成する層の積層方向において、定圧拘束しながら、初期充電電圧で充電する。
<Process (b)>
In the step (b), the battery stack is charged at the initial charging voltage while constraining the pressure in the stacking direction of the layers forming the unit battery.

例えば、図1(a)に示されている定圧・定寸拘束機構を用いて、工程(b)及び後述する工程(c)を継続で行うことができる。すなわち、単位電池1〜4を有する電池積層体5を定寸拘束機構にセットしたものを、定圧拘束機構にセットして、定寸拘束機構が機能しない状態で先に工程(b)を行い、そして定圧拘束機構から定寸拘束機構を取り外した状態で工程(c)を行うことができる。 For example, the step (b) and the step (c) described later can be continuously performed by using the constant pressure/constant dimension restraint mechanism shown in FIG. 1(a). That is, the battery stack 5 having the unit batteries 1 to 4 set in the sizing restraint mechanism is set in the constant pressure restraining mechanism, and the step (b) is performed in the state where the sizing restraint mechanism does not function, Then, the step (c) can be performed in a state where the sizing restraint mechanism is removed from the constant pressure restraining mechanism.

より具体的には、工程(b)では、電池積層体5を、単位電池1〜4を構成する層の積層方向において、定圧拘束しながら、初期充電電圧で充電してよい。 More specifically, in the step (b), the battery stack 5 may be charged at the initial charging voltage while being constrained to a constant pressure in the stacking direction of the layers forming the unit batteries 1 to 4.

ここで、定圧拘束は、定圧押圧器10、拘束プレート11、並びに拘束治具12及び13を含む定圧拘束機構の働きによって達成できる。なお、この場合、定圧拘束機構は、定寸拘束機構に備えられている拘束プレート23を介して、電池積層体5を定圧拘束することができる。 Here, the constant pressure constraint can be achieved by the action of the constant pressure constraint mechanism including the constant pressure pressing device 10, the constraint plate 11, and the constraint jigs 12 and 13. In this case, the constant pressure restraint mechanism can restrain the battery stack 5 at a constant pressure via the restraint plate 23 provided in the constant size restraint mechanism.

定圧押圧器は、単位電池を構成する層が膨張しても、電池積層体に印加される圧力を略一定に保つことができる任意の構成であってよい。例えば、定圧押圧器は、バネ及び/又はピエゾ素子から構成されているものであってもよく、液体を用いる液圧(油圧)式のものであってもよい。いずれの場合においても、必要に応じて、例えばアクチュエータ及びコントローラー等を介して圧力を検出しながら、電池積層体を定圧拘束してよい。 The constant-pressure pressing device may have any structure capable of keeping the pressure applied to the battery stack substantially constant even when the layers forming the unit battery expand. For example, the constant pressure pressing device may be composed of a spring and/or a piezo element, or may be of a hydraulic (hydraulic) type using a liquid. In any case, the battery stack may be constrained to a constant pressure while detecting the pressure via, for example, an actuator and a controller, if necessary.

また、定圧押圧器の数は、特に限定されず、用いる定圧押圧器の大きさと、電池積層体の面方向の大きさとのバランスを考慮して、適宜設定することができる。 Further, the number of constant pressure pressers is not particularly limited, and can be appropriately set in consideration of the balance between the size of the constant pressure presser used and the size in the plane direction of the battery stack.

例えば、図1(a)に示されている定圧拘束機構では、定圧押圧器10を9個(図1(a−1)に示されている)用いて、電池積層体5との接触面である拘束プレート23に面圧にムラを生じないように、均等に、電池積層体5に対して定圧拘束を行うことができる。 For example, in the constant pressure restraining mechanism shown in FIG. 1(a), nine constant pressure pressers 10 (shown in FIG. 1(a-1)) are used to make contact with the battery stack 5. It is possible to uniformly constrain the battery stack 5 at a constant pressure so that the surface pressure of a certain constraining plate 23 does not become uneven.

また、定圧押圧器のバネ定数は、特に限定されず、電池積層体の構成及び大きさ等を考慮して、適宜設定することができる。例えば、電池積層体の面方向の断面積1mm当たりで、0.5N/mm以上、1.0N/mm以上、1.5N/mm以上、又は2.0N/mm以上であってよく、また5.0N/mm以下、又は3.0N/mm以下であってよい。 Further, the spring constant of the constant pressure pressing device is not particularly limited, and can be appropriately set in consideration of the configuration and size of the battery stack. For example, it may be 0.5 N/mm or more, 1.0 N/mm or more, 1.5 N/mm or more, or 2.0 N/mm or more per 1 mm 2 of the cross-sectional area of the surface direction of the battery stack. It may be 5.0 N/mm or less, or 3.0 N/mm or less.

定圧拘束する際の電池積層体へ印加する圧力は、特に限定されず、電池積層体の構成に合わせて、活物質層の膨張に由来する亀裂や変形が生じない程度で、適宜に設定することができる。例えば、電池積層体へ印加する圧力は、2.0MPa以上、3.0MPa以上、4.0MPa以上、5.0MPa以上、又は7.0MPa以上であってよく、また30.0MPa以下、20.0MPa以下、10.0MPa以下、8.0MPa以下、又は6.0MPa以下であってよい。 The pressure applied to the battery stack when constraining the constant pressure is not particularly limited, and should be appropriately set according to the structure of the battery stack so that cracks and deformation due to expansion of the active material layer do not occur. You can For example, the pressure applied to the battery stack may be 2.0 MPa or more, 3.0 MPa or more, 4.0 MPa or more, 5.0 MPa or more, or 7.0 MPa or more, and 30.0 MPa or less, 20.0 MPa. Hereinafter, it may be 10.0 MPa or less, 8.0 MPa or less, or 6.0 MPa or less.

拘束治具及び拘束プレートは、定圧拘束機構と定寸拘束機構に設置された電池積層体を固定する役割を有する。すなわち、工程(b)において、電池積層体を、初期充電電圧で充電する際に、電池積層体の単位電池を構成する活物質層等が膨張していても、この拘束治具の固定によって、定圧押圧器が電池積層体を定圧拘束することができる。 The restraint jig and the restraint plate have a role of fixing the battery stacks installed in the constant pressure restraint mechanism and the constant size restraint mechanism. That is, in the step (b), when the battery laminate is charged at the initial charging voltage, even if the active material layer or the like constituting the unit battery of the battery laminate is expanded, by fixing the restraint jig, The constant pressure press can constrain the battery stack at a constant pressure.

例えば、図1(a)では、電池積層体5を、初期充電電圧で充電する際に、電池積層体5の単位電池1〜4を構成する活物質層等が膨張していても、拘束治具12及び13、並びに拘束プレート11及び21の固定によって、定圧押圧器が電池積層体を定圧拘束することができる。 For example, in FIG. 1A, when the battery stack 5 is charged at the initial charging voltage, even if the active material layers or the like that form the unit batteries 1 to 4 of the battery stack 5 are expanded, the restraint treatment is performed. By fixing the tools 12 and 13 and the constraining plates 11 and 21, the constant pressure presser can constrain the battery stack at a constant pressure.

電池積層体を、初期充電電圧で充電することによって、電池積層体を活性化することができる。 The battery stack can be activated by charging the battery stack with an initial charging voltage.

この初期充電電圧は、製造される全固体電池システムにおいて制御される充放電電圧よりも高い電圧であってよい。例えば、充放電電圧が2.50V以上4.40V以下の範囲内で制御されることを予定する全固体電池システムを製造する場合に、初期充電電圧は4.45Vより大きく5.00V以下の値を選択することができる。 This initial charging voltage may be higher than the charging/discharging voltage controlled in the manufactured all-solid-state battery system. For example, when manufacturing an all-solid-state battery system in which the charge/discharge voltage is planned to be controlled within the range of 2.50 V or more and 4.40 V or less, the initial charge voltage is a value greater than 4.45 V and less than 5.00 V. Can be selected.

また、所定の電圧までの初期充電は、定電流充電により行ってよい。この場合の充電レートは特に限定されず、例えば0.1C〜10C程度であってよい。 The initial charge up to a predetermined voltage may be performed by constant current charge. The charging rate in this case is not particularly limited, and may be, for example, about 0.1C to 10C.

〈工程(c)〉
工程(c)では、電池積層体を、単位電池を構成する層の積層方向において、定寸拘束する。
<Process (c)>
In step (c), the battery stack is dimensionally constrained in the stacking direction of the layers forming the unit battery.

例えば、図1(a)に示されている電池積層体5に対して、工程(b)を行った後に、そのまま同じ定圧・定寸拘束機構を用いて、定圧拘束機構が機能していない状態で、工程(c)を行うことができる。 For example, after the step (b) is performed on the battery stack 5 shown in FIG. 1(a), the same constant pressure/sizing restraint mechanism is used as it is, and the constant pressure restraint mechanism is not functioning. Then, the step (c) can be performed.

ここで、定寸拘束は、定寸バー、拘束プレート、及びネジを含む定寸拘束機構によって達成できる。 Here, the sizing restraint can be achieved by a sizing restraint mechanism including a sizing bar, a restraining plate, and a screw.

例えば、図1(a)に示されている定寸バー20及び21と、拘束プレート22及び23と、をネジ24〜31で固定して、電池積層体5に対して、拘束寸法を一定にして定寸拘束することができる。 For example, the sizing bars 20 and 21 and the constraining plates 22 and 23 shown in FIG. 1A are fixed with screws 24 to 31 to make the constraining dimension constant with respect to the battery stack 5. Can be constrained to a certain size.

なお、定寸バーと拘束プレートとを、ネジ以外による固定してもよい。例えば、定寸バーと定寸プレートとを溶接等によって固定してもよい。 The sizing bar and the restraint plate may be fixed by means other than screws. For example, the sizing bar and the sizing plate may be fixed by welding or the like.

工程(c)で定寸拘束された電池積層体を全固体電池として、電池パックに組み付けて、使用に供してよい。 The battery laminate, which is dimensionally constrained in the step (c), may be assembled into a battery pack as an all-solid battery and used.

例えば、上述した図1(a)の定圧・定寸拘束機構を用いた場合、図3(a)及び図3(b)に示されているように、定寸拘束状態の電池積層体5を、定寸バー20及び21、拘束プレート22及び23、並びにネジ24〜31を共に定圧拘束機構から取り外して、全固体電池として、電池パックに組み付けてよい。 For example, when the constant pressure/sizing restraint mechanism shown in FIG. 1(a) is used, the battery stack 5 in the fixed restraint state can be obtained as shown in FIGS. 3(a) and 3(b). Alternatively, the sizing bars 20 and 21, the constraining plates 22 and 23, and the screws 24 to 31 may be removed from the constant pressure constraining mechanism and assembled into a battery pack as an all-solid-state battery.

〈他の工程〉
本開示の方法は、工程(b)と工程(c)との間に、他の工程を更に含んでよい。例えば、本開示の方法は、(b−1)初期充電された電池積層体を、単位電池を構成する層の積層方向において、定圧拘束しながら、放電させること、及び(b−2)工程(b−1)の後、電池積層体を、単位電池を構成する層の積層方向において、定圧拘束しながら、通常充電させること、を更に含んでよい。
<Other process>
The method of the present disclosure may further include another step between step (b) and step (c). For example, the method of the present disclosure includes (b-1) discharging the initially-charged battery laminate while constraining a constant pressure in the stacking direction of the layers forming the unit battery, and (b-2) step ( After b-1), the battery stack may be normally charged in the stacking direction of the layers constituting the unit battery while being constrained at a constant pressure.

〈工程(b−1)〉
工程(b−1)では、初期充電された電池積層体を、単位電池を構成する層の積層方向において、定圧拘束しながら、放電させる。
<Process (b-1)>
In the step (b-1), the initially charged battery stack is discharged while being constrained to a constant pressure in the stacking direction of the layers forming the unit battery.

放電させる際の電圧は特に限定されない。例えば、2.50V以上4.40V以下の範囲内で制御されることを予定する全固体電池システムを製造する場合に、電圧が3.0Vになるまで放電させてよい。 The voltage for discharging is not particularly limited. For example, when manufacturing an all-solid-state battery system that is planned to be controlled within the range of 2.50 V or more and 4.40 V or less, discharging may be performed until the voltage reaches 3.0 V.

また、所定の電圧までの放電は、定電流放電により行ってよい。この場合の放電レートは特に限定されず、例えば0.1C〜10C程度であってよい。 Further, the discharge to a predetermined voltage may be performed by constant current discharge. The discharge rate in this case is not particularly limited and may be, for example, about 0.1 C to 10 C.

〈工程(b−2)〉
工程(b−2)では、工程(b−1)の後、電池積層体を、単位電池を構成する層の積層方向において、定圧拘束しながら、通常充電させる。
<Process (b-2)>
In the step (b-2), after the step (b-1), the battery stack is normally charged in the stacking direction of the layers forming the unit battery while being constrained to a constant pressure.

通常充電電圧は、特に限定されず、電池積層体の構成に合わせて適宜設定してよい。例えば、電池積層体の理論SOC(State Of Charge)の55%〜90%に相当する電圧まで充電してよい。 The normal charging voltage is not particularly limited and may be appropriately set according to the configuration of the battery stack. For example, the battery may be charged to a voltage corresponding to 55% to 90% of the theoretical SOC (State Of Charge) of the battery stack.

所定の電圧までの充電は、定電流充電により行ってよい。この場合の充電レートは特に限定されず、例えば0.1C〜10C程度であってよい。 Charging to a predetermined voltage may be performed by constant current charging. The charging rate in this case is not particularly limited, and may be, for example, about 0.1C to 10C.

通常充電された電池積層体は、定圧拘束状態で1時間から数時間で保持してから、その後の工程(c)を行うことが好ましい。 It is preferable that the normally charged battery stack is held in a constant pressure restrained state for 1 to several hours and then the subsequent step (c) is performed.

《全固体電池》
上述した方法によって製造される本開示の全固体電池は、単位電池を1以上電池積層体、及び定寸拘束機構を有する。
《All-solid-state battery》
The all-solid-state battery of the present disclosure manufactured by the method described above has one or more unit batteries, a battery stack, and a sizing restraint mechanism.

以下では、単位電池を構成する各層の構成材料の具体例を説明する。なお、本開示を容易に理解するために、全固体リチウムイオン二次電池に用いられる単位電池を例として説明するが、本開示の全固体電池は、リチウムイオン二次電池に限定されず、幅広く適用できる。 In the following, specific examples of constituent materials of each layer constituting the unit battery will be described. It should be noted that, in order to easily understand the present disclosure, a unit battery used in an all-solid-state lithium-ion secondary battery will be described as an example, but the all-solid-state battery of the present disclosure is not limited to the lithium-ion secondary battery and is widely used. Applicable.

(正極集電体層)
正極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できるものを適宜採用されうる。例えば、正極集電体層に用いられる導電性材料は、SUS、アルミニウム、銅、ニッケル、鉄、チタン、又はカーボン等であってよいが、これらに限定されない。
(Positive electrode current collector layer)
The conductive material used for the positive electrode current collector layer is not particularly limited, and a material that can be used for an all-solid battery can be appropriately adopted. For example, the conductive material used for the positive electrode current collector layer may be, but is not limited to, SUS, aluminum, copper, nickel, iron, titanium, carbon, or the like.

正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状等を挙げることができる。これらの中で、箔状が好ましい。 The shape of the positive electrode current collector layer is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Of these, foil is preferred.

(正極活物質層)
正極活物質層は、少なくとも正極活物質を含み、好ましくは後述する固体電解質をさらに含む。そのほか、使用用途や使用目的等に合わせて、例えば、導電助剤又はバインダー等の全固体電池の正極活物質層に用いられる添加剤を含むことができる。
(Cathode active material layer)
The positive electrode active material layer contains at least a positive electrode active material, and preferably further contains a solid electrolyte described later. In addition, an additive such as a conductive additive or a binder used in the positive electrode active material layer of the all-solid-state battery may be included depending on the intended use and intended purpose.

正極活物質の材料として、特に限定されない。例えば、正極活物質は、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、LiCo1/3Ni1/3Mn1/3、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネル等であってよいが、これらに限定されない。 The material for the positive electrode active material is not particularly limited. For example, the positive electrode active material includes lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1+x. Mn 2-x-y M y O 4 (M is, Al, Mg, Co, Fe , Ni, and selected one or more metal elements from Zn) different element substituted Li-Mn spinel composition represented by like May be, but is not limited to.

導電助剤としては、特に限定されない。例えば、導電助剤は、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維等の炭素材並びに金属材等であってよいが、これらに限定されない。 The conductive aid is not particularly limited. For example, the conductive additive may be, but is not limited to, a carbon material such as VGCF (vapor grown carbon fiber, Vapor Grown Carbon Fiber) and carbon nanofiber, and a metal material.

バインダーとしては、特に限定されない。例えば、バインダーは、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム(BR)若しくはスチレンブタジエンゴム(SBR)等の材料、又はこれらの組合せであってよいが、これらに限定されない。 The binder is not particularly limited. For example, the binder may be a material such as, but not limited to, polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), butadiene rubber (BR) or styrene butadiene rubber (SBR), or a combination thereof.

(固体電解質層)
固体電解質層は、少なくとも固体電解質を含む。固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、固体電解質は、硫化物固体電解質、酸化物固体電解質、又はポリマー電解質等であってよいが、これらに限定されない。
(Solid electrolyte layer)
The solid electrolyte layer contains at least a solid electrolyte. The solid electrolyte is not particularly limited, and a material that can be used as a solid electrolyte of an all-solid battery can be used. For example, the solid electrolyte may be, but is not limited to, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer electrolyte, or the like.

硫化物固体電解質の例として、硫化物系非晶質固体電解質、硫化物系結晶質固体電解質、又はアルジロダイト型固体電解質等が挙げられるが、これらに限定されない。具体的な硫化物固体電解質の例として、LiS−P系(Li11、LiPS、Li等)、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiBr−LiS−P、LiS−P−GeS(Li13GeP16、Li10GeP12等)、LiI−LiS−P、LiI−LiPO−P、Li7−xPS6−xCl等;又はこれらの組み合わせを挙げることができるが、これらに限定されない。 Examples of the sulfide solid electrolyte include, but are not limited to, a sulfide-based amorphous solid electrolyte, a sulfide-based crystalline solid electrolyte, an aldilodite-type solid electrolyte, and the like. Examples of specific sulfide solid electrolyte, Li 2 S-P 2 S 5 based (Li 7 P 3 S 11, Li 3 PS 4, Li 8 P 2 S 9 , etc.), Li 2 S-SiS 2 , LiI -Li 2 S-SiS 2, LiI -Li 2 S-P 2 S 5, LiI-LiBr-Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -GeS 2 (Li 13 GeP 3 S 16 , Li 10 GeP 2 S 12, etc.), LiI-Li 2 S- P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 7-x PS 6-x Cl x , and the like; or combinations thereof Examples include, but are not limited to:

酸化物固体電解質の例として、LiLaZr12、Li7−xLaZr1−xNb12、Li7−3xLaZrAl12、Li3xLa2/3−xTiO、Li1+xAlTi2−x(PO、Li1+xAlGe2−x(PO、LiPO、又はLi3+xPO4−x(LiPON)等が挙げられるが、これらに限定されない。 Examples of the oxide solid electrolyte, Li 7 La 3 Zr 2 O 12, Li 7-x La 3 Zr 1-x Nb x O 12, Li 7-3x La 3 Zr 2 Al x O 12, Li 3x La 2 / 3-x TiO 3, Li 1 + x Al x Ti 2-x (PO 4) 3, Li 1 + x Al x Ge 2-x (PO 4) 3, Li 3 PO 4, or Li 3 + x PO 4-x N x (LiPON ) And the like, but are not limited thereto.

(ポリマー電解質)
ポリマー電解質としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体等が挙げられるが、これらに限定されない。
(Polymer electrolyte)
Polymer electrolytes include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), copolymers thereof, and the like.

固体電解質は、ガラスであっても、結晶化ガラス(ガラスセラミック)であってもよい。また、固体電解質層は、上述した固体電解質以外に、必要に応じてバインダー等を含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。 The solid electrolyte may be glass or crystallized glass (glass ceramic). Further, the solid electrolyte layer may contain a binder and the like, if necessary, in addition to the above-mentioned solid electrolyte. As a specific example, it is the same as the "binder" listed in the above "positive electrode active material layer", and thus the description thereof is omitted here.

(負極活物質層)
負極活物質層は、少なくとも負極活物質を含み、好ましくは上述した固体電解質をさらに含む。そのほか、使用用途や使用目的等に合わせて、例えば、導電助剤又はバインダー等の全固体電池の負極活物質層に用いられる添加剤を含むことができる。
(Negative electrode active material layer)
The negative electrode active material layer contains at least a negative electrode active material, and preferably further contains the above-mentioned solid electrolyte. In addition, an additive such as a conductive additive or a binder used in the negative electrode active material layer of the all-solid-state battery can be included depending on the intended use and intended purpose.

負極活物質の材料として、特に限定されず、リチウムイオン等の金属イオンを吸蔵及び放出可能であることが好ましい。例えば、負極活物質は、合金系負極活物質又は炭素材料等であってよいが、これらに限定されない。 The material of the negative electrode active material is not particularly limited, and it is preferable that the negative electrode active material can absorb and release metal ions such as lithium ions. For example, the negative electrode active material may be an alloy-based negative electrode active material, a carbon material, or the like, but is not limited thereto.

合金系負極活物質として、特に限定されず、例えば、Si合金系負極活物質、又はSn合金系負極活物質等が挙げられる。Si合金系負極活物質には、ケイ素、ケイ素酸化物、ケイ素炭化物、ケイ素窒化物、又はこれらの固溶体等がある。また、Si合金系負極活物質には、ケイ素以外の元素、例えば、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Sn、Ti等を含むことができる。Sn合金系負極活物質には、スズ、スズ酸化物、スズ窒化物、又はこれらの固溶体等がある。また、Sn合金系負極活物質には、スズ以外の元素、例えば、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Ti、Si等を含むことができる。 The alloy-based negative electrode active material is not particularly limited, and examples thereof include Si alloy-based negative electrode active material and Sn alloy-based negative electrode active material. Examples of the Si alloy-based negative electrode active material include silicon, silicon oxide, silicon carbide, silicon nitride, and solid solutions thereof. Further, the Si alloy-based negative electrode active material can contain elements other than silicon, such as Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti. Examples of the Sn alloy-based negative electrode active material include tin, tin oxide, tin nitride, and solid solutions thereof. Further, the Sn alloy-based negative electrode active material can contain elements other than tin, such as Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Ti, and Si.

これらの中で、Si合金系負極活物質は、より好ましいが、電池の充放電に伴い膨張・収縮しやすいことが知られている。この観点からは、Si合金系負極活物質を用いる場合、本開示の効果をより顕著に表現できる。 Of these, the Si alloy-based negative electrode active material is more preferable, but it is known that the negative electrode active material easily expands and contracts as the battery is charged and discharged. From this point of view, when the Si alloy-based negative electrode active material is used, the effect of the present disclosure can be more significantly expressed.

炭素材料として、特に限定されず、例えば、ハードカーボン、ソフトカーボン、又はグラファイト等が挙げられる。 The carbon material is not particularly limited, and examples thereof include hard carbon, soft carbon, and graphite.

負極活物質層に用いられる固体電解質、導電助剤、バインダー等その他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。 As the solid electrolyte used for the negative electrode active material layer, the conductive additive, the binder and other additives, those described in the above-mentioned "positive electrode active material layer" and "solid electrolyte layer" can be appropriately adopted. ..

(負極集電体層)
負極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できるものを適宜採用されうる。例えば、負極集電体層に用いられる導電性材料は、SUS、アルミニウム、銅、ニッケル、鉄、チタン、又はカーボン等であってよいが、これらに限定されない。
(Negative electrode current collector layer)
The conductive material used for the negative electrode current collector layer is not particularly limited, and any material that can be used for an all-solid-state battery can be appropriately adopted. For example, the conductive material used for the negative electrode current collector layer may be, but is not limited to, SUS, aluminum, copper, nickel, iron, titanium, carbon, or the like.

負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状等を挙げることができる。これらの中で、箔状が好ましい。 The shape of the negative electrode current collector layer is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Of these, foil is preferred.

以下、本開示について実施例の形式で詳細に説明する。以下の実施例は、本開示の用途を何ら限定するものではない。 Hereinafter, the present disclosure will be described in detail in the form of embodiments. The following examples do not limit the application of the present disclosure in any way.

《実施例1》
単位電池1〜4を有する電池積層体を準備した。
<<Example 1>>
A battery stack having unit batteries 1 to 4 was prepared.

この電池積層体を図1(a)に示されている定圧・定寸拘束機構にセットした。そして、電池積層体を、単位電池を構成する層の積層方向において、定圧拘束しながら、初期充電電圧で充電した。 This battery stack was set in the constant pressure/sizing restraint mechanism shown in FIG. Then, the battery stack was charged at the initial charging voltage while constraining the pressure in the stacking direction of the layers forming the unit battery.

より具体的には、電池積層体の面方向の断面積3mm当たり2N/mmのバネ定数の定圧押圧器9個を用いて、電池積層体への印加圧力を5MPaとして定圧拘束した。 More specifically, using 9 constant pressure presses having a spring constant of 2 N/mm per 3 mm 2 of the cross-sectional area of the surface of the battery stack, the pressure applied to the battery stack was set to 5 MPa and constrained to a constant pressure.

そして、初期充電は、電圧0から4.55Vまで0.1CAで行った。この初期充電電圧で充電したときの電池積層体に印加される電圧が5MPaで一定であった。 Then, the initial charge was performed at a voltage of 0 to 4.55 V and 0.1 CA. The voltage applied to the battery stack when charged at this initial charging voltage was constant at 5 MPa.

次に、電池積層体の電圧が4.55Vに到達したら、3.0Vまで0.1CAで放電させた。 Next, when the voltage of the battery stack reached 4.55V, it was discharged to 3.0V at 0.1 CA.

その後、SOC60%相当の電圧3.8Vまで、0.3CAで定電流充電して、3.8Vを1時間保持させた。 After that, constant current charging was performed at 0.3 CA up to a voltage of 3.8 V corresponding to SOC 60%, and 3.8 V was maintained for 1 hour.

その後、定圧拘束機構が機能していない状態で、単位電池を構成する層の積層方向において、電池積層体の両端にある拘束プレートと定寸バーとをネジで固定して、この電池積層体を、定寸拘束した。 After that, in a state where the constant pressure restraint mechanism is not functioning, the restraint plates and the sizing bars at both ends of the battery stack are fixed with screws in the stacking direction of the layers constituting the unit battery, and the battery stack is fixed. , Restrained to a certain size.

最後に、定寸拘束状態の電池積層体を拘束プレート、定寸バー、及びネジと共に定圧拘束機構から取り外して、定寸拘束状態の実施例1の全固体電池を製造した。 Finally, the battery stack in the sizing restraint state was removed from the constant pressure restraining mechanism together with the restraining plate, the sizing bar, and the screw to manufacture the all-solid-state battery of Example 1 in the sizing restraint state.

《比較例1》
上述した実施例1における電池積層体を製造した後、電池積層体を定寸拘束して、比較例1の全固体電池を製造した。
<<Comparative Example 1>>
After manufacturing the battery stack in Example 1 described above, the battery stack was constrained to a certain size to manufacture the all-solid-state battery of Comparative Example 1.

《評価》
〈初期充電後の電池積層体の状態〉
実施例1及び比較例1の電池積層体に対して、初期充電前後のそれぞれの電池積層体の端部をX線で撮影した。
<<Evaluation>>
<State of battery stack after initial charging>
With respect to the battery laminates of Example 1 and Comparative Example 1, the ends of the battery laminates before and after the initial charging were photographed by X-ray.

その結果、比較例1の電池積層体は、初期充電後に、初期充電前に比べて、正極活物質層、負極活物質層及び固体電解質層の端部が飛び出ており、滑落してしまった部分があった。 As a result, in the battery laminate of Comparative Example 1, after the initial charge, the ends of the positive electrode active material layer, the negative electrode active material layer and the solid electrolyte layer were popped out and slipped off as compared with before the initial charge. was there.

これに対して、実施例1の電池積層体は、初期充電後に、初期充電前と比べて、変化がほとんどなかった。すなわち、実施例1の電池積層体は、初期充電による電池の劣化が見られなかった。 On the other hand, the battery laminate of Example 1 showed almost no change after the initial charge as compared with before the initial charge. That is, in the battery stack of Example 1, no deterioration of the battery due to initial charging was observed.

〈電池性能〉
実施例1及び比較例1の全固体電池に対して、インピーダンス評価を行った。
<Battery performance>
Impedance evaluation was performed on the all-solid-state batteries of Example 1 and Comparative Example 1.

その結果、比較例1の全固体電池に比べて、実施例1の全固体電池は、インピーダンスがより小さくなっていることが分かった。すなわち、実施例1の全固体電池の電池性能は、比較例1の全固体電池の電池性能よりも良好であった。 As a result, it was found that the all-solid-state battery of Example 1 had a smaller impedance than the all-solid-state battery of Comparative Example 1. That is, the battery performance of the all-solid-state battery of Example 1 was better than the battery performance of the all-solid-state battery of Comparative Example 1.

1、2、3、4 単位電池
5 電池積層体
1a 正極集電体層
1b 正極活物質層
1c 固体電解質層
1d 負極活物質層
1e 負極集電体層
1f、2f、3f、4f、4g 集電タブ
10 定圧押圧器
11 拘束プレート
12、13 拘束治具
20、21 定寸バー
22、23 拘束プレート
24、25、26、27、28、29、30、31 ネジ
1, 2, 3, 4 Unit battery 5 Battery stack 1a Positive electrode current collector layer 1b Positive electrode active material layer 1c Solid electrolyte layer 1d Negative electrode active material layer 1e Negative electrode current collector layer 1f, 2f, 3f, 4f, 4g Current collector Tab 10 Constant pressure presser 11 Restraint plate 12, 13 Restraint jig 20, 21 Sizing bar 22, 23 Restraint plate 24, 25, 26, 27, 28, 29, 30, 31 Screw

Claims (1)

下記工程(a)〜(c)を含む、全固体電池の製造方法:
(a)正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で積層して構成された単位電池を1以上有する電池積層体を提供すること、
(b)前記電池積層体を、前記単位電池を構成する層の積層方向において、定圧拘束しながら、初期充電電圧で充電すること、及び
(c)前記電池積層体を、前記単位電池を構成する層の積層方向において、定寸拘束すること。
A method for manufacturing an all-solid-state battery including the following steps (a) to (c):
(A) A battery stack having at least one unit battery configured by stacking a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order. What to do
(B) charging the battery stack with an initial charging voltage while constraining the battery stack at a constant pressure in the stacking direction of the layers forming the unit battery; and (c) forming the unit battery with the battery stack. Dimensionally constrained in the layer stacking direction.
JP2018241875A 2018-12-25 2018-12-25 Method for manufacturing all-solid-state battery Active JP7272788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018241875A JP7272788B2 (en) 2018-12-25 2018-12-25 Method for manufacturing all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018241875A JP7272788B2 (en) 2018-12-25 2018-12-25 Method for manufacturing all-solid-state battery

Publications (3)

Publication Number Publication Date
JP2020107389A true JP2020107389A (en) 2020-07-09
JP2020107389A5 JP2020107389A5 (en) 2021-12-09
JP7272788B2 JP7272788B2 (en) 2023-05-12

Family

ID=71449329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018241875A Active JP7272788B2 (en) 2018-12-25 2018-12-25 Method for manufacturing all-solid-state battery

Country Status (1)

Country Link
JP (1) JP7272788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131301A1 (en) 2020-12-15 2022-06-23 トヨタ自動車株式会社 Solid battery and manufacturing method for solid battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056070A (en) * 2008-07-30 2010-03-11 Idemitsu Kosan Co Ltd All-solid secondary battery and device provided with same
JP2016085895A (en) * 2014-10-28 2016-05-19 株式会社日立製作所 Lithium ion secondary cell module
JP2017059534A (en) * 2015-09-14 2017-03-23 トヨタ自動車株式会社 All-solid battery system and method for manufacturing the same
JP2018073629A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Method for manufacturing all-solid lithium battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056070A (en) * 2008-07-30 2010-03-11 Idemitsu Kosan Co Ltd All-solid secondary battery and device provided with same
JP2016085895A (en) * 2014-10-28 2016-05-19 株式会社日立製作所 Lithium ion secondary cell module
JP2017059534A (en) * 2015-09-14 2017-03-23 トヨタ自動車株式会社 All-solid battery system and method for manufacturing the same
JP2018073629A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Method for manufacturing all-solid lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131301A1 (en) 2020-12-15 2022-06-23 トヨタ自動車株式会社 Solid battery and manufacturing method for solid battery

Also Published As

Publication number Publication date
JP7272788B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
CN110233281B (en) All-solid-state battery
CN111684638A (en) Electrode assembly and secondary battery
JP6885309B2 (en) Series stacked all-solid-state battery
JP5697276B2 (en) Electrode assembly having novel structure and method of manufacturing the same
JP7007297B2 (en) Pressurized Lithium Metal Polymer Battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
CN110021783B (en) All-solid-state battery
CN111554863A (en) All-solid-state battery laminate
EP2565972B1 (en) Electrode assembly and lithium secondary battery comprising same
JP2020013729A (en) Manufacturing method of series-stacked all-solid-state battery
JP2018116914A (en) Battery module
KR102270120B1 (en) Electrode and electrode-assembly
US20230223588A1 (en) All-solid-state battery including two kinds of solid electrolyte layers
CN113785427A (en) All-solid-state battery including composite electrode
JP6977599B2 (en) All-solid-state battery system
JP2019145285A (en) All-solid battery
JP7272788B2 (en) Method for manufacturing all-solid-state battery
US11322799B2 (en) Electrode including single-sided electrode with inorganic coating layer attached to slurry on collector and electrode assembly including the same
JP7010102B2 (en) All solid state battery
JP7087436B2 (en) All solid state battery
CN110858666B (en) Method for manufacturing laminated battery
JP7040331B2 (en) Manufacturing method of series-stacked all-solid-state battery
KR102217444B1 (en) Electrode assembly and manufactureing method for the same
KR102197360B1 (en) Electrode Assembly Comprising One-sided Coating Electrode of Improved Mechanical Strength
JP6702137B2 (en) Method for manufacturing all-solid-state lithium battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230427

R150 Certificate of patent or registration of utility model

Ref document number: 7272788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150