JP2020013001A - Heat insulating sound absorbing material, heat insulating sound absorbing laminate, and heat insulating sound absorbing material manufacturing method - Google Patents

Heat insulating sound absorbing material, heat insulating sound absorbing laminate, and heat insulating sound absorbing material manufacturing method Download PDF

Info

Publication number
JP2020013001A
JP2020013001A JP2018135520A JP2018135520A JP2020013001A JP 2020013001 A JP2020013001 A JP 2020013001A JP 2018135520 A JP2018135520 A JP 2018135520A JP 2018135520 A JP2018135520 A JP 2018135520A JP 2020013001 A JP2020013001 A JP 2020013001A
Authority
JP
Japan
Prior art keywords
absorbing material
heat insulating
sound absorbing
insulating sound
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018135520A
Other languages
Japanese (ja)
Inventor
正行 若林
Masayuki Wakabayashi
正行 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dupont Styro Co Ltd
Original Assignee
Dupont Styro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dupont Styro Co Ltd filed Critical Dupont Styro Co Ltd
Priority to JP2018135520A priority Critical patent/JP2020013001A/en
Publication of JP2020013001A publication Critical patent/JP2020013001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide a heat insulating sound absorbing material which has excellent sound absorbing properties and excellent heat insulating performance, and can be easily applied to a building frame such as a wall surface.SOLUTION: The heat insulating sound absorbing material is formed by compressing a resin foam and has a plurality of non-through holes on at least one surface.SELECTED DRAWING: None

Description

本発明は、断熱吸音材、断熱吸音積層体及び断熱吸音材の製造方法に関する。   The present invention relates to a heat insulating sound absorbing material, a heat insulating sound absorbing laminate, and a method for manufacturing a heat insulating sound absorbing material.

建築物の吸音・遮音材料としては、安価で軽量性に優れ、断熱性能も備えたグラスウール等の繊維系集合体が汎用されている。グラスウール等の繊維系集合体は結露や雨水の侵入による吸水により吸音性能が劣化するため、特許文献1には、繊維系集合体を被覆する表皮材を施すことが開示されている。   As a sound-absorbing / sound-insulating material for buildings, fiber-based aggregates such as glass wool, which are inexpensive, have excellent lightweight properties, and also have heat insulating performance, are widely used. Since sound absorption performance of fiber-based aggregates such as glass wool deteriorates due to water absorption due to dew condensation or rainwater intrusion, Patent Literature 1 discloses applying a skin material covering the fiber-based aggregates.

特開平11−202872号JP-A-11-202872

しかし、特許文献1の吸音材は、強度が十分ではないため、コンクリート躯体等の壁面等に施工する場合には、面材で覆いパネルとするか、または桟木等を施工し、その間に充填せざるを得ない。   However, the sound-absorbing material of Patent Document 1 has insufficient strength. Therefore, when the sound-absorbing material is applied to a wall surface of a concrete body or the like, a panel is used to cover the surface material, or a pier or the like is applied and filled in the meantime. I have no choice.

そこで、本発明は、吸音性に優れ、断熱性能にも優れ、壁面等の躯体にも簡易に施工できる断熱吸音材を提供することを目的とする。   Therefore, an object of the present invention is to provide a heat insulating and sound absorbing material which is excellent in sound absorbing properties and heat insulating performance and can be easily applied to a frame such as a wall surface.

本発明者らは、上記課題を解決するため鋭意検討した結果、本発明を完成させた。   The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, completed the present invention.

すなわち、本発明の断熱吸音材は、樹脂発泡体を圧縮してなり、少なくとも一の面に複数の非貫通孔を有することを特徴とする。   That is, the heat insulating sound absorbing material of the present invention is obtained by compressing a resin foam and has a plurality of non-through holes on at least one surface.

本発明の断熱吸音材は、「圧縮歪が10%以上50%以下であること、前記非貫通孔を有する面の面積に対する前記非貫通孔の開口面積の割合が50%以下であること」、「周波数500Hz以上6400Hz以下の周波数領域における、前記非貫通孔を有する面の垂直入射吸音率の最大値が40%以上であること」、「熱伝導率が、前記非貫通孔を有さない前記圧縮された樹脂発泡体の熱伝導率と実質的に同一であること」、「前記樹脂発泡体は、スチレン系樹脂発泡体であること」、「板状の樹脂発泡体を圧縮してなり、板状であること」を好ましい態様として含むものである。   The heat-insulating sound-absorbing material of the present invention "has a compression strain of 10% or more and 50% or less, and a ratio of an opening area of the non-through hole to an area of a surface having the non-through hole of 50% or less". "The maximum value of the normal incidence sound absorption coefficient of the surface having the non-through hole in the frequency range of 500 Hz or more and 6400 Hz or less is 40% or more", and "The thermal conductivity does not have the non-through hole." That the thermal conductivity of the compressed resin foam is substantially the same, "the resin foam is a styrene-based resin foam," "compressed plate-shaped resin foam, Plate-like ”as a preferred embodiment.

また、本発明の断熱吸音積層体は、上記本発明の断熱吸音材を積層してなり、前記断熱吸音材のそれぞれは、周波数500Hz以上6400Hz以下の周波数領域における、前記非貫通孔を有する面の垂直入射吸音率の最大値を示す周波数が異なることを特徴とする。   Further, the heat-insulating sound-absorbing laminate of the present invention is obtained by laminating the heat-insulating sound-absorbing material of the present invention, and each of the heat-insulating sound-absorbing materials has a surface having the non-through hole in a frequency range of 500 Hz to 6400 Hz. It is characterized in that the frequency indicating the maximum value of the normal incidence sound absorption coefficient is different.

本発明の断熱吸音積層体は、「前記断熱吸音材は、前記非貫通孔を有する面を同じ方向に向けて積層されていること」を、好ましい態様とし含むものである。   The heat-insulating sound-absorbing laminate of the present invention includes, as a preferred embodiment, "the heat-insulating sound-absorbing material is laminated with the surface having the non-through hole facing in the same direction".

また、本発明の断熱吸音材の製造方法は、樹脂発泡体を圧縮する工程と、前記樹脂発泡体の少なくとも一の面に複数の非貫通孔を形成する工程と、をこの順で有することを特徴とする。   Further, the method for producing a heat insulating sound absorbing material of the present invention includes, in this order, a step of compressing a resin foam and a step of forming a plurality of non-through holes on at least one surface of the resin foam. Features.

本発明の断熱吸音材は、吸音性に優れ、断熱性能にも優れ、壁面等の躯体にも簡易に施工でき、例えば、建築物の断熱吸音材等として、好適に用いることができる。   INDUSTRIAL APPLICABILITY The heat insulating and sound absorbing material of the present invention has excellent sound absorbing properties and heat insulating performance, and can be easily applied to a frame such as a wall surface, and can be suitably used, for example, as a heat insulating and sound absorbing material for buildings.

≪断熱吸音材≫
本発明の断熱吸音材は、樹脂発泡体を圧縮してなり、少なくとも一の面に複数の非貫通孔を有する。
≪Insulated sound absorbing material≫
The heat insulating sound absorbing material of the present invention is obtained by compressing a resin foam and has a plurality of non-through holes on at least one surface.

<樹脂発泡体>
本発明で用いる樹脂発泡体としては特に限定されないが、スチレン系樹脂を発泡させて得られるスチレン系樹脂発泡体が好ましい。また、樹脂発泡体は板状であることが好ましい。以下、スチレン系樹脂発泡体を例にとり、詳細に説明する。
<Resin foam>
The resin foam used in the present invention is not particularly limited, but a styrene resin foam obtained by foaming a styrene resin is preferable. Further, the resin foam is preferably plate-shaped. Hereinafter, a styrene resin foam will be described in detail by way of example.

[スチレン系樹脂]
スチレン系樹脂としては、特に限定されるものではなく、スチレン単量体のみから得られるポリスチレンホモポリマー、メチルスチレン、エチルスチレン、イソプロピルスチレンン、ジメチルスチレン、クロルスチレンなどのスチレン系単量体から得られる単独重合体(ホモポリマー)、スチレン単量体とスチレンと共重合可能な単量体あるいはその誘導体から得られるランダム、ブロックあるいはグラフト共重合体、臭素化ポリスチレン、ゴム強化ポリスチレンなどの変性ポリスチレンなどが挙げられる。
[Styrene resin]
The styrene-based resin is not particularly limited, and may be obtained from a styrene-based monomer such as a polystyrene homopolymer obtained from only a styrene monomer, methylstyrene, ethylstyrene, isopropylstyrene, dimethylstyrene, and chlorostyrene. Homopolymers, random, block or graft copolymers obtained from styrene monomers and monomers copolymerizable with styrene or derivatives thereof, modified polystyrene such as brominated polystyrene, rubber-reinforced polystyrene, etc. Is mentioned.

スチレンと共重合可能な単量体としては、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレンなどのスチレン誘導体、ビニルトルエン、ビニルキシレン、ジビニルベンゼンなどのビニル化合物、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、ブタジエン、アクリロニトリルなどの不飽和化合物あるいはその誘導体、無水マレイン酸、無水イタコン酸などが挙げられる。これらは単独あるいは2種以上混合して使用することができる。本発明においては、上述するスチレン系樹脂の中では、経済性、成形加工性の点からポリスチレンホモポリマーが特に好適に使用することができる。   Examples of monomers copolymerizable with styrene include styrene derivatives such as methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, and trichlorostyrene; Vinyl compounds such as vinyltoluene, vinylxylene, divinylbenzene, etc., unsaturated compounds such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butadiene, acrylonitrile or derivatives thereof, and maleic anhydride And itaconic anhydride. These can be used alone or in combination of two or more. In the present invention, among the above-mentioned styrene-based resins, a polystyrene homopolymer can be particularly preferably used from the viewpoint of economic efficiency and moldability.

スチレン系樹脂の質量平均分子量は、10万〜35万であり、好ましくは15万〜30万、より好ましくは18万〜25万である。   The weight average molecular weight of the styrene resin is 100,000 to 350,000, preferably 150,000 to 300,000, and more preferably 180,000 to 250,000.

[発泡剤]
本発明において使用される発泡剤としては、物理発泡剤および熱分解型化学発泡剤がある。物理発泡剤としては、特に限定されないが、二酸化炭素、窒素、アルゴン、ヘリウム、空気、水などの無機ガス、メタン、エタン、プロパン、ブタン(ノルマルブタン、イソブタン)、ペンタン(ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン)、ヘキサンなどの脂肪族炭化水素、メタノール、エタノール、プロパノールなどの脂肪族アルコール、ジメチルエーテルなどのエーテル系、塩化メチル、塩化エチルなどの塩化アルキル炭化水素などが挙げられる。この他にフロン系の発泡剤も使用可能ではあるが、オゾン層を破壊し地球温暖化を招来するおそれがあるため、環境に配慮する意味ではできる限り使用を控えることが好ましい。その代替物として開発されたオゾン破壊係数が0で、地球温暖化係数が低いハイドロフルオロオレフィン及びハイドロクロロフルオロオレフィン系の発泡剤も用いることができる。
[Blowing agent]
The blowing agent used in the present invention includes a physical blowing agent and a thermal decomposition type chemical blowing agent. Examples of the physical foaming agent include, but are not particularly limited to, carbon dioxide, nitrogen, argon, helium, air, water, and other inorganic gases, methane, ethane, propane, butane (normal butane, isobutane), and pentane (normal pentane, isopentane, neopentane). , Cyclopentane) and hexane; aliphatic alcohols such as methanol, ethanol and propanol; ethers such as dimethyl ether; alkyl chloride hydrocarbons such as methyl chloride and ethyl chloride. In addition to this, a CFC-based foaming agent can be used, but since there is a possibility that the ozone layer is destroyed and global warming is caused, it is preferable to refrain from using as much as possible in consideration of the environment. As an alternative, a hydrofluoroolefin and a hydrochlorofluoroolefin-based blowing agent having an ozone depletion potential of 0 and a low global warming potential can be used.

スチレン系樹脂に添加する発泡剤の量としては、スチレン系樹脂100質量部に対して3〜30質量部、好ましくは5〜15質量部、さらに好ましくは5〜10質量部である。   The amount of the foaming agent added to the styrene-based resin is 3 to 30 parts by mass, preferably 5 to 15 parts by mass, more preferably 5 to 10 parts by mass based on 100 parts by mass of the styrene-based resin.

[その他の添加剤]
難燃性を付与するために、ハロゲン系難燃剤を添加してもよく、熱可塑性樹脂に通常使用される難燃剤を特別に限定することなく使用することができる。また、必要に応じて気泡の大きさを調整するためにタルク、ケイ酸カルシウムなどの気泡調整剤、ステアリン酸バリウム、ステアリン酸カルシウムなどの押出助剤、酸化マグネシウム、ピロリン酸テトラナトリウムなどの脱酸剤などを添加することが望ましい。更に、放射低減剤として、グラファイト、カーボンブラック、二酸化チタン等を添加しても良い。
[Other additives]
To impart flame retardancy, a halogen-based flame retardant may be added, and a flame retardant usually used for a thermoplastic resin can be used without any particular limitation. In addition, in order to adjust the size of the bubbles as needed, bubble regulators such as talc and calcium silicate, extrusion aids such as barium stearate and calcium stearate, and deoxidizing agents such as magnesium oxide and tetrasodium pyrophosphate It is desirable to add such. Further, graphite, carbon black, titanium dioxide or the like may be added as a radiation reducing agent.

[スチレン系樹脂発泡体の製造方法]
本発明で用いるスチレン系樹脂発泡体は、例えば、押出発泡法スチレン系樹脂発泡体は、スチレン系樹脂を加熱溶融し、高温高圧下で、発泡剤を該溶融樹脂に圧入して混練した後、押出発泡に適する温度にまで冷却し、ダイを通じて低圧下に押出発泡して製造する公知の方法と同様であることができる。
[Production method of styrene resin foam]
The styrene-based resin foam used in the present invention is, for example, an extrusion-foamed styrene-based resin foam, which is obtained by heating and melting a styrene-based resin, under high temperature and high pressure, and kneading the foaming agent by press-fitting the molten resin. This can be the same as a known method of manufacturing by cooling to a temperature suitable for extrusion foaming and extrusion foaming under low pressure through a die.

また、ビーズ法スチレン系樹脂発泡体は、発泡剤(ブタン、ペンタン)を含んだ直径0.3〜2mmほどの半透明の小さな原料ビーズに、蒸気をあて加熱膨張して予備発泡を行う。この発泡ビーズを金型に入れ、もう一度蒸気をかけることでさらに膨らんだビーズ同士が熱でくっつき金型どおりの形になった製品とする公知の方法と同様であることができる。   In addition, the bead method styrene-based resin foam is pre-foamed by heating and expanding a small translucent material bead having a diameter of about 0.3 to 2 mm containing a foaming agent (butane, pentane) by applying steam. This foamed bead is put into a mold, and steam is applied again. This can be performed in the same manner as a known method in which expanded beads are stuck together by heat to obtain a product in the shape of the mold.

<圧縮歪>
本発明の断熱吸音材は、樹脂発泡体を圧縮してなり、圧縮により、樹脂発泡体を構成する気泡の膜の少なくとも一部にシワが形成されていることが好ましい。
<Compression strain>
It is preferable that the heat insulating sound-absorbing material of the present invention is formed by compressing a resin foam, and by compression, wrinkles are formed on at least a part of a film of bubbles constituting the resin foam.

樹脂発泡体を圧縮する方法(押圧装置)としては、特に限定はされないが、プレス機を用いる方法、または板厚よりも狭い間隔のロール間を通過させる方法がある。ここで、硬さ、圧縮強度、要求圧縮歪によっては、プレス機で複数回圧縮、またはロール間を複数回通過させて、所定の圧縮歪を得る方法が好ましい。   The method (pressing device) for compressing the resin foam is not particularly limited, but includes a method using a press machine, and a method for passing the resin foam between rolls having an interval smaller than the plate thickness. Here, depending on hardness, compressive strength, and required compression strain, a method of compressing a plurality of times by a press machine or passing a plurality of times between rolls to obtain a predetermined compression strain is preferable.

発泡体は、気泡の集合体であり、その気泡内に気体(発泡剤、空気など)が封じ込まれているため、圧縮後に厚みが一部回復する場合には、予め回復率を想定の上、圧縮歪(プレス率、発泡体厚みに対するロール間隔)を決定する必要がある。この厚み回復率は、押出発泡成形後の養生期間によっても異なる。すなわち、ダイから押出発泡させた直後に圧縮しても、または養生した発泡体を圧縮してもよいが、厚み回復率を考慮する必要がある。ここで、ダイから発泡直後に圧縮する場合には、発泡体の温度がガラス転移点以下にならないと、気泡膜にシワが形成されにくい。   A foam is an aggregate of cells, and a gas (foaming agent, air, etc.) is enclosed in the cells. Therefore, when the thickness partially recovers after compression, a recovery rate is assumed in advance. It is necessary to determine the compression strain (press ratio, roll interval with respect to foam thickness). The thickness recovery rate also varies depending on the curing period after extrusion foaming. That is, the foam may be compressed immediately after being extruded and foamed from the die, or the cured foam may be compressed, but it is necessary to consider the thickness recovery rate. Here, when the foam is compressed immediately after foaming from the die, it is difficult to form wrinkles in the foam film unless the temperature of the foam falls below the glass transition point.

発泡体を構成する気泡の膜へのシワの形成は、発泡体の表面層(例えば板状の場合には2つの表面層とそれに挟まれる中央層に大きく区分することができる)の気泡が小さく扁平な程、表面層の気泡に多くシワが形成される。一般的に押出発泡成形後の板は、表面層は中央層と比較して速く冷却されるため、表面層の気泡は小さく扁平となり、表面層の気泡に多くシワが形成される。   The formation of wrinkles in the film of bubbles constituting the foam is due to the fact that bubbles in the surface layer of the foam (for example, in the case of a plate shape, can be largely divided into two surface layers and a central layer sandwiched therebetween) are small. The flatter the air bubbles in the surface layer, the more wrinkles are formed. Generally, in the board after extrusion foaming, the surface layer is cooled faster than the center layer, so that the bubbles in the surface layer are small and flat, and many wrinkles are formed in the bubbles in the surface layer.

発泡体の大断面を厚み方向に垂直(すなわち長さまたは幅方向に平行)に何枚かにスライスした発泡板において、厚み方向中心に近い製品(中央層辺りの製品)は、気泡が断面内にてほぼ均一であるため、圧縮した場合に中央層にシワが多く形成される。また、ダイから押出発泡後に二次発泡した発泡板を圧縮した場合には、発泡体の表面層の密度が低くなるため、表面層にシワが多く形成されやすい。圧縮前の発泡体の物性により、中央層、表面層、両表面層、片表面層など、シワが形成される位置を変更することが可能である。   In a foam board obtained by slicing a large cross section of the foam into several pieces perpendicular to the thickness direction (that is, parallel to the length or width direction), products near the center in the thickness direction (products near the center layer) have bubbles inside the cross section. , The wrinkles are formed in the central layer when compressed. In addition, when a foamed plate that has been secondarily foamed after being extruded and foamed from a die is compressed, the density of the surface layer of the foam becomes low, so that many wrinkles are likely to be formed on the surface layer. Depending on the physical properties of the foam before compression, it is possible to change the position at which wrinkles are formed, such as the central layer, the surface layer, both surface layers, and one surface layer.

ここで、中央層に多くのシワが形成された発泡板は、表面硬度は高い。逆に、表面層に多くのシワが形成された発泡板は、表面状態がソフトであり、用途によっては使い分けることができる。   Here, the foam board in which many wrinkles are formed in the central layer has a high surface hardness. Conversely, a foamed plate having many wrinkles formed on the surface layer has a soft surface condition and can be used properly depending on the application.

本発明の断熱吸音材の圧縮歪は、特に限定されないが、10%以上50%以下であることが好ましく、より好ましくは15%以上40%以下である。ここで、圧縮歪とは、下記式(1)によって求められる値である。
圧縮歪[%]=((圧縮前の厚み−圧縮後の厚み)/圧縮前の厚み)×100 ・・・(1)
The compressive strain of the heat insulating sound-absorbing material of the present invention is not particularly limited, but is preferably 10% or more and 50% or less, more preferably 15% or more and 40% or less. Here, the compression strain is a value obtained by the following equation (1).
Compressive strain [%] = ((thickness before compression−thickness after compression) / thickness before compression) × 100 (1)

圧縮歪が10%以上であれば断熱性の向上、吸音性改善が十分であり、圧縮歪が50%以下であれば断熱吸音材にそりが発生することがなく、圧縮強度の点からも好ましい。   When the compressive strain is 10% or more, the heat insulating property and the sound absorbing property are sufficiently improved, and when the compressive strain is 50% or less, warpage does not occur in the heat insulating sound absorbing material, which is preferable from the viewpoint of compressive strength. .

<非貫通孔>
本発明の断熱吸音材は、少なくとも一の面に複数の非貫通孔を有する。非貫通孔を有する面は、吸音面となるため、音の入射方向に対向する面であることが好ましい。また、断熱吸音材が板状の場合には、非貫通孔を有する面は、厚み方向に垂直な面であることが好ましい。もちろん、複数の面に非貫通孔を有しても良い。表面における非貫通孔の開口形状は、円形、楕円形、矩形等、特に限定されない。また、非貫通孔は、溝状またはスリット状でも良く、その断面形状は、略円形、略楕円形、略矩形、略台形のいずれでも良い。
<Non-through hole>
The heat-insulating sound-absorbing material of the present invention has a plurality of non-through holes on at least one surface. Since the surface having the non-through holes is a sound absorbing surface, it is preferable that the surface be opposed to the sound incident direction. When the heat-insulating sound absorbing material has a plate shape, the surface having the non-through holes is preferably a surface perpendicular to the thickness direction. Of course, non-through holes may be provided on a plurality of surfaces. The opening shape of the non-through hole on the surface is not particularly limited, such as a circle, an ellipse, and a rectangle. Further, the non-through hole may have a groove shape or a slit shape, and its cross-sectional shape may be any of a substantially circular shape, a substantially elliptical shape, a substantially rectangular shape, and a substantially trapezoidal shape.

非貫通孔の開口径、深さは特に制限されないが、非貫通孔を有する面の面積に対する非貫通孔の開口面積の割合が50%以下であることが好ましく、より好ましくは40%以下、さらに好ましくは35%以下である。この割合が50%以下であれば、非貫通孔同士が連通することがなく、また断熱吸音材が機械的に脆くなることがなく、好ましい。   The opening diameter and depth of the non-through hole are not particularly limited, but the ratio of the opening area of the non-through hole to the area of the surface having the non-through hole is preferably 50% or less, more preferably 40% or less, and furthermore Preferably it is 35% or less. When this ratio is 50% or less, non-through holes do not communicate with each other, and the heat insulating and sound absorbing material does not become mechanically brittle, which is preferable.

非貫通孔を形成する方法としては、特に限定されないが、多数の針、ピン等の尖鋭部材が一定のピッチで突設された加工装置を樹脂発泡体の表面に押圧することにより形成できる。ここで、尖鋭部材を、樹脂発泡体を構成する樹脂の軟化点以上に加温することにより、より明確な孔を形成することができる。また、尖鋭部材がロール表面に設けられた、例えば針ロールと受ロールとからなる回転ロール間に樹脂発泡体を通過させることにより非貫通孔を形成することもできる。また、溝状またはスリット状の非貫通孔を形成する方法として、丸鋸、トリマー、ルーター等による切削加工、凸型ロール等による押圧加工、熱線による溶融加工等が挙げられる。   The method of forming the non-through hole is not particularly limited, but it can be formed by pressing a processing device provided with a number of sharp members such as needles and pins at a constant pitch against the surface of the resin foam. Here, by heating the sharp member to a temperature equal to or higher than the softening point of the resin constituting the resin foam, more clear holes can be formed. In addition, a non-through hole can be formed by passing a resin foam between a rotating roll having a sharp member provided on the roll surface, for example, a needle roll and a receiving roll. Examples of the method of forming a groove-shaped or slit-shaped non-through hole include cutting with a circular saw, a trimmer, a router, and the like, pressing with a convex roll, and melting with a hot wire.

<垂直入射吸音率>
本発明の断熱吸音材は、周波数500Hz以上6400Hz以下の周波数領域における、非貫通孔を有する面の垂直入射吸音率の最大値が40%以上であることが好ましく、より好ましくは45%以上、さらに好ましくは50%以上である。周波数500Hz以上6400Hz以下の周波数領域における、非貫通孔を有する面の垂直入射吸音率の最大値が40%以上であると、特に高音域の音を効率的に吸音でき、好ましい。垂直入射吸音率は、ASTM E 1050(ISO10534−2)に基づき求めることができる。
<Normal incidence sound absorption coefficient>
In the heat-insulating sound-absorbing material of the present invention, the maximum value of the normal incidence sound absorption coefficient of the surface having the non-through hole in the frequency region of 500 Hz or more and 6400 Hz or less is preferably 40% or more, more preferably 45% or more, and furthermore Preferably it is 50% or more. When the maximum value of the normal incidence sound absorption coefficient of the surface having the non-through hole in the frequency region of 500 Hz or more and 6400 Hz or less is 40% or more, particularly high-range sound can be efficiently absorbed, which is preferable. The normal incidence sound absorption coefficient can be determined based on ASTM E 1050 (ISO10534-2).

<熱伝導率>
本発明の断熱吸音材の熱伝導率は、非貫通孔を有さない圧縮された樹脂発泡体の熱伝導率と実質的に同一、好ましくは非貫通孔を有さない圧縮された樹脂発泡体の熱伝導率の±1%以内であることが好ましく、より好ましくは±0.5%以内である。
<Thermal conductivity>
The thermal conductivity of the heat insulating sound-absorbing material of the present invention is substantially the same as the thermal conductivity of the compressed resin foam having no non-through holes, preferably the compressed resin foam having no non-through holes. Is preferably within ± 1% of the thermal conductivity, more preferably ± 0.5%.

本発明の断熱吸音材の熱伝導率は、JIS A 9521:2017に規定される押出法ポリスチレンフォーム保温板1種の場合は、JIS A 1412−2:1999に規定される測定方法において測定できる。   The thermal conductivity of the heat insulating sound-absorbing material of the present invention can be measured by a measurement method specified in JIS A 1412-2: 1999 in the case of one extruded polystyrene foam heat insulating plate specified in JIS A 9521: 2017.

<その他の特性>
本発明の断熱吸音材の圧縮強度(JIS A 9511:2006で規定)は、10N/cm2以上であることが好ましい。10N/cm2未満であると断熱用途上、使用に限界がある。圧縮強度は、15N/cm2以上であることがより好ましく、20N/cm2以上であることがさらに好ましい。
<Other characteristics>
The compressive strength (defined by JIS A 9511: 2006) of the heat insulating sound absorbing material of the present invention is preferably 10 N / cm 2 or more. When it is less than 10 N / cm 2 , there is a limit in use for heat insulation. Compressive strength is more preferably 15N / cm 2 or more, further preferably 20 N / cm 2 or more.

本発明の断熱吸音材の透湿係数(JIS A 9511:2006で規定)は、145ng/m2・s・Pa以下であることが好ましい。この値が大きいと水蒸気透過量が多くなり、壁等に断熱材として使用された場合に、壁構成によっては結露を生じる可能性がある。 The heat insulating sound absorbing material of the present invention preferably has a moisture permeability coefficient (defined by JIS A 9511: 2006) of 145 ng / m 2 · s · Pa or less. When this value is large, the amount of water vapor permeation increases, and when used as a heat insulating material for a wall or the like, there is a possibility that dew condensation may occur depending on the wall configuration.

≪断熱吸音積層体≫
本発明の断熱吸音積層体は、上記本発明の断熱吸音材を積層してなる。本発明の断熱吸音積層体を構成する断熱吸音材のそれぞれは、周波数500Hz以上6400Hz以下の周波数領域における、非貫通孔を有する面の垂直入射吸音率の最大値を示す周波数が異なる。そのため、周波数500Hz以上6400Hz以下の周波数領域において、複数の異なる周波数の音を効率的に吸音できる。
≪Insulated sound absorbing laminate 積 層
The heat insulating sound absorbing laminate of the present invention is obtained by laminating the above heat insulating sound absorbing material of the present invention. Each of the heat-insulating sound-absorbing materials constituting the heat-insulating sound-absorbing laminate of the present invention has a different frequency indicating the maximum value of the normal incidence sound absorption coefficient of the surface having the non-through hole in the frequency range of 500 Hz to 6400 Hz. Therefore, a plurality of sounds having different frequencies can be efficiently absorbed in the frequency range of 500 Hz to 6400 Hz.

断熱吸音材は、非貫通孔を有する面を同じ方向に向けて積層した片面吸音タイプでも、非貫通孔を有する面を異なる方向に向けて積層した両面吸音タイプでもよい。   The heat insulating sound absorbing material may be a single-sided sound absorbing type in which the surfaces having non-through holes are laminated in the same direction, or a double-sided sound absorbing type in which the surfaces having non-through holes are laminated in different directions.

断熱吸音材を積層する方法は特に限定されないが、例えば、断熱吸音材の周囲を固定して積層する等、非貫通孔をふさがないように積層する方法が好ましい。   The method of laminating the heat insulating sound absorbing material is not particularly limited. For example, a method of laminating the heat insulating sound absorbing material so that the non-through holes are not blocked, such as fixing the periphery of the heat insulating sound absorbing material, is preferable.

≪樹脂発泡体≫
実施例で用いた樹脂発泡体は以下の通りである。
押出法スチレン系樹脂発泡板(XPS):ダウ化工(株)製、スタイロエース(商品名)、厚み30mm、密度30Kg/m3
ビーズ法スチレン系樹脂発泡板(EPS):50mm厚み製品を厚み30mmにスライスした発泡板、密度20Kg/m3
≪Resin foam≫
The resin foam used in the examples is as follows.
Extrusion method styrene-based resin foam board (XPS): Stylo Ace (trade name), manufactured by Dow Chemical Industries, Ltd., thickness 30 mm, density 30 kg / m 3
Bead method styrene resin foam board (EPS): foam board obtained by slicing a product with a thickness of 50 mm to a thickness of 30 mm, density of 20 kg / m 3

<密度測定>
発泡体の密度は、発泡体の質量(kg)を発泡体の体積(m3)で割ることで算出した。
<Density measurement>
The density of the foam was calculated by dividing the mass (kg) of the foam by the volume (m 3 ) of the foam.

≪実施例1≫
押出法スチレン系樹脂発泡板(XPS)を、圧縮歪が10%となるように、プレス機にて厚み方向に圧縮した。次に、発泡板の厚み方向に垂直な一面に、直径0.5mmのピン(針)を用いて、孔径0.5mm、深さ1cmの非貫通孔を、5個/cm2(面積割合:1.0%)となるように形成し、断熱吸音材を得た。この断熱吸音材について、以下の方法で評価した。結果を表1に示す。
<< Example 1 >>
The extruded styrene resin foam board (XPS) was compressed in the thickness direction by a press machine so that the compression strain was 10%. Next, using a pin (needle) having a diameter of 0.5 mm, five non-through holes having a hole diameter of 0.5 mm and a depth of 1 cm were formed on one surface perpendicular to the thickness direction of the foamed board at 5 holes / cm 2 (area ratio: 1.0%) to obtain a heat insulating sound absorbing material. This thermal insulation material was evaluated by the following method. Table 1 shows the results.

<垂直入射吸音率測定>
断熱吸音材を自動熱線カット機にて、直径29〜28.5mmとなるようにカットし、測定用サンプルを作製した。ASTM E 1050(ISO10534−2)に基づき、小型管(直径29mm)を用いて、測定周波数領域500〜6400Hzにて、非貫通孔を形成した面の垂直入射吸音率を測定した。
<Measurement of sound absorption at normal incidence>
The heat insulating sound absorbing material was cut by an automatic hot wire cutting machine so as to have a diameter of 29 to 28.5 mm to prepare a measurement sample. Based on ASTM E1050 (ISO10534-2), the normal incidence sound absorption coefficient of the surface where the non-through hole was formed was measured in a measurement frequency range of 500 to 6400 Hz using a small tube (diameter of 29 mm).

<熱伝導率測定>
JIS A 1412−2:1999に準拠する方法で熱伝導率を測定した。
<Thermal conductivity measurement>
The thermal conductivity was measured by a method according to JIS A 1412-2: 1999.

≪実施例2〜13、比較例1〜9≫
表1に示す発泡板を用い、圧縮歪、非貫通孔の孔径・個数を表1に示す様に変更した以外は、実施例1と同様にして断熱吸音材を作製した。得られた断熱吸音材について、実施例1と同様に評価した。結果を表1に示す。
{Examples 2 to 13, Comparative Examples 1 to 9}
Using the foamed board shown in Table 1, a heat insulating sound absorbing material was produced in the same manner as in Example 1 except that the compression strain and the hole diameter and number of non-through holes were changed as shown in Table 1. The obtained heat insulating sound absorbing material was evaluated in the same manner as in Example 1. Table 1 shows the results.

Figure 2020013001
Figure 2020013001

表1より、非貫通孔の面積割合が同じであれば、圧縮歪率が高いほど、吸音率の最大値が大きく、熱伝導率が小さいことが分かる。また、断熱吸音材の熱伝導率と、非貫通孔を有さない圧縮歪が同じ樹脂発泡体の熱伝導率は、0.1(mW/mK)程度の差であり、0.5%以内の誤差範疇であった。   From Table 1, it can be seen that if the area ratio of the non-through holes is the same, the higher the compressive strain rate, the larger the maximum value of the sound absorption coefficient and the smaller the thermal conductivity. Further, the thermal conductivity of the heat insulating sound absorbing material and the thermal conductivity of the resin foam having the same compression strain without non-through holes are about 0.1 (mW / mK), and are within 0.5%. Error category.

Claims (10)

樹脂発泡体を圧縮してなり、少なくとも一の面に複数の非貫通孔を有することを特徴とする断熱吸音材。   A heat-insulating sound-absorbing material obtained by compressing a resin foam and having a plurality of non-through holes on at least one surface. 圧縮歪が10%以上50%以下であることを特徴とする請求項1に記載の断熱吸音材。   The heat insulating sound-absorbing material according to claim 1, wherein a compression strain is 10% or more and 50% or less. 前記非貫通孔を有する面の面積に対する前記非貫通孔の開口面積の割合が50%以下であることを特徴とする請求項1または2に記載の断熱吸音材。   The heat insulating and sound absorbing material according to claim 1 or 2, wherein a ratio of an opening area of the non-through hole to an area of a surface having the non-through hole is 50% or less. 周波数500Hz以上6400Hz以下の周波数領域における、前記非貫通孔を有する面の垂直入射吸音率の最大値が40%以上であることを特徴とする請求項1乃至3のいずれか一項に記載の断熱吸音材。   The heat insulation according to any one of claims 1 to 3, wherein a maximum value of a normal incident sound absorption coefficient of the surface having the non-through hole in a frequency range of 500 Hz or more and 6400 Hz or less is 40% or more. Sound absorbing material. 熱伝導率が、前記非貫通孔を有さない前記圧縮された樹脂発泡体の熱伝導率と実質的に同一であることを特徴とする請求項1乃至4のいずれか一項に記載の断熱吸音材。   The thermal insulation according to any one of claims 1 to 4, wherein a thermal conductivity is substantially the same as a thermal conductivity of the compressed resin foam having no non-through holes. Sound absorbing material. 前記樹脂発泡体は、スチレン系樹脂発泡体であることを特徴とする請求項1乃至5のいずれか一項に記載の断熱吸音材。   The heat insulating sound-absorbing material according to any one of claims 1 to 5, wherein the resin foam is a styrene-based resin foam. 板状の樹脂発泡体を圧縮してなり、板状であることを特徴とする請求項1乃至6のいずれか一項に記載の断熱吸音材。   The heat-insulating sound-absorbing material according to any one of claims 1 to 6, wherein the heat-absorbing sound-absorbing material is formed by compressing a plate-shaped resin foam to have a plate shape. 請求項1乃至7のいずれか一項に記載の断熱吸音材を積層してなり、前記断熱吸音材のそれぞれは、周波数500Hz以上6400Hz以下の周波数領域における、前記非貫通孔を有する面の垂直入射吸音率の最大値を示す周波数が異なることを特徴とする断熱吸音積層体。   The heat insulating sound absorbing material according to any one of claims 1 to 7 is laminated, and each of the heat insulating sound absorbing materials has a normal incidence on a surface having the non-through hole in a frequency range of 500 Hz or more and 6400 Hz or less. A heat-insulating sound-absorbing laminate characterized in that the frequency showing the maximum value of the sound absorption coefficient is different. 前記断熱吸音材は、前記非貫通孔を有する面を同じ方向に向けて積層されていることを特徴とする請求項8に記載の断熱吸音積層体。   The heat insulating sound absorbing laminate according to claim 8, wherein the heat insulating sound absorbing material is stacked with the surface having the non-through hole facing in the same direction. 樹脂発泡体を圧縮する工程と、前記樹脂発泡体の少なくとも一の面に複数の非貫通孔を形成する工程と、をこの順で有することを特徴とする請求項1乃至7のいずれか一項に記載の断熱吸音材の製造方法。   The method according to claim 1, further comprising: compressing the resin foam; and forming a plurality of non-through holes in at least one surface of the resin foam, in this order. 3. The method for producing a heat-insulating sound-absorbing material according to item 1.
JP2018135520A 2018-07-19 2018-07-19 Heat insulating sound absorbing material, heat insulating sound absorbing laminate, and heat insulating sound absorbing material manufacturing method Pending JP2020013001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135520A JP2020013001A (en) 2018-07-19 2018-07-19 Heat insulating sound absorbing material, heat insulating sound absorbing laminate, and heat insulating sound absorbing material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135520A JP2020013001A (en) 2018-07-19 2018-07-19 Heat insulating sound absorbing material, heat insulating sound absorbing laminate, and heat insulating sound absorbing material manufacturing method

Publications (1)

Publication Number Publication Date
JP2020013001A true JP2020013001A (en) 2020-01-23

Family

ID=69170536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135520A Pending JP2020013001A (en) 2018-07-19 2018-07-19 Heat insulating sound absorbing material, heat insulating sound absorbing laminate, and heat insulating sound absorbing material manufacturing method

Country Status (1)

Country Link
JP (1) JP2020013001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7523999B2 (en) 2020-09-06 2024-07-29 株式会社イノアックコーポレーション Soundproofing material and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585938U (en) * 1992-04-24 1993-11-19 鐘淵化学工業株式会社 Truss structural member
JP2007136966A (en) * 2005-11-21 2007-06-07 Asahi Fiber Glass Co Ltd Method for manufacturing polyolefin resin foamed body
JP2017025209A (en) * 2015-07-23 2017-02-02 キョーラク株式会社 Foaming material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585938U (en) * 1992-04-24 1993-11-19 鐘淵化学工業株式会社 Truss structural member
JP2007136966A (en) * 2005-11-21 2007-06-07 Asahi Fiber Glass Co Ltd Method for manufacturing polyolefin resin foamed body
JP2017025209A (en) * 2015-07-23 2017-02-02 キョーラク株式会社 Foaming material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7523999B2 (en) 2020-09-06 2024-07-29 株式会社イノアックコーポレーション Soundproofing material and its manufacturing method

Similar Documents

Publication Publication Date Title
TW460518B (en) Preparing process of cellular thermoplastic polymer foam and manufactured products thereof, and foam suitable for use therein
CN102471520B (en) Thermally insulating polymer foam/aerogel composite articles
US5770634A (en) Foam materials for insulation, derived from high internal phase emulsions
JP5563458B2 (en) Improved process for forming extruded polystyrene foam and products made therefrom
CA2312950C (en) Multilayer foams
JP2009145694A (en) Sound absorbing substrate for vehicle and method for manufacturing same
JP3916460B2 (en) Architectural insulation made of polystyrene resin extruded foam
JP2020013001A (en) Heat insulating sound absorbing material, heat insulating sound absorbing laminate, and heat insulating sound absorbing material manufacturing method
JP2018144462A (en) Fiber composite body and method for producing the same
JP2006265294A (en) Perforated thermoplastic resin foam, its manufacturing method and its use
JP2009035709A (en) Film obtained by extruding and foaming modified polyphenylene ether resin and laminated composite material using the same
JP2001353763A (en) Polyolefin resin open cell foam extrusion foamed sheet
JP5298039B2 (en) Production method of polystyrene resin foam board
KR20120019035A (en) Flame-retardant insulating board complex and manufacturing method thereof
JP3749409B2 (en) Polystyrene resin multilayer foam sheet for thermoforming
JP2007031462A (en) Foamed molded article of styrenic resin containing rubbery latex and inorganic compound
JP3194706U (en) Composite board for ceiling
JP4217229B2 (en) Polystyrene resin extruded foam
JP5436024B2 (en) Styrenic resin foam
JP3742033B2 (en) Manufacturing method of styrene resin foam board
JP4526051B2 (en) Polystyrene resin multilayer foam sheet for thermoforming
JP5703092B2 (en) Composite board
JP6310832B2 (en) Plate-like foam and method for producing the same
JP2010138244A (en) Styrene resin extrusion foam with skin and manufacturing method of the same
JP2010174489A (en) Structure having drainage slope outside building having excellent heat resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018