JP2020012280A - Vibration isolation structure for rigid-frame viaduct - Google Patents

Vibration isolation structure for rigid-frame viaduct Download PDF

Info

Publication number
JP2020012280A
JP2020012280A JP2018134382A JP2018134382A JP2020012280A JP 2020012280 A JP2020012280 A JP 2020012280A JP 2018134382 A JP2018134382 A JP 2018134382A JP 2018134382 A JP2018134382 A JP 2018134382A JP 2020012280 A JP2020012280 A JP 2020012280A
Authority
JP
Japan
Prior art keywords
slab
bridge axis
vibration
jig
receiving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018134382A
Other languages
Japanese (ja)
Inventor
渡辺 勉
Tsutomu Watanabe
勉 渡辺
正道 曽我部
Masamichi Sogabe
正道 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2018134382A priority Critical patent/JP2020012280A/en
Publication of JP2020012280A publication Critical patent/JP2020012280A/en
Pending legal-status Critical Current

Links

Abstract

To provide a vibration isolation structure for rigid-frame viaduct that can reduce ground vibration without lowering the seismic performance of the original rigid-frame viaduct.SOLUTION: In the vibration isolation structure for rigid-frame viaduct, upper ends of columns arranged at intervals in a bridge axis direction are connected by vertical beams and slabs extend from the vertical beams in the bridge axis orthogonal direction. Included are a beam supporting diagonal member 2 connected in a state in which a lower end 21 is fixed to a side surface 112 of a column 11 and an upper end 22 allows displacement at least in a bridge axis direction Y with respect to a lower surface 121 of a vertical beam 12, and a slab supporting diagonal member 4 connected in a state in which a lower end 41 is fixed to a side surface 122 of the vertical beam and an upper end 42 allows displacement at least in a bridge axis orthogonal direction X with respect to a lower surface 14a of a slab 14.SELECTED DRAWING: Figure 1

Description

本発明は、ラーメン高架橋の防振構造に関するものである。   The present invention relates to a vibration damping structure of a rigid-frame viaduct.

特許文献1,2に開示されているように、ラーメン構造の高架橋(以下、「ラーメン高架橋」という。)が知られている。ラーメン高架橋は、橋軸方向に間隔を置いて配置された柱の上端間が縦梁で接続されたラーメン架構の構面を備えた構造となっている。   As disclosed in Patent Literatures 1 and 2, highly crosslinked ramen structures (hereinafter, referred to as “ramen highly crosslinked”) are known. The ramen viaduct has a structure of a ramen frame in which the upper ends of pillars arranged at intervals in the bridge axis direction are connected by vertical beams.

そして、特許文献1には、通過する列車等の車両荷重の急激な乗り移りによって発生する衝撃力や隣接する高架橋間の片持梁の固有振動数により励起される共振によって発生する振動を、低減させる対策が開示されている。例えば、高架橋の片持梁における振動対策として、X型や門型の補強工を配置して、片持梁を下方から支持させる防振構造が記載されている。   Patent Literature 1 discloses reducing an impact force generated by a sudden transfer of a vehicle load of a passing train or the like and a vibration generated by resonance excited by a natural frequency of a cantilever between adjacent viaducts. Measures are disclosed. For example, as a countermeasure against vibration in a cantilever of a viaduct, an anti-vibration structure in which an X-type or portal-type reinforcement is arranged to support the cantilever from below is described.

一方、特許文献2には、ラーメン架構の構面にブレースを配置することで、地震時における耐震性を高めた耐震補強構造が開示されている。ここで、ブレースには、梁とブレース本体との間に履歴減衰ダンパーが介在されるダンパーブレースが使用される。   On the other hand, Patent Literature 2 discloses a seismic retrofit structure in which a brace is arranged on the surface of a ramen frame to improve seismic resistance during an earthquake. Here, a damper brace in which a hysteresis damper is interposed between the beam and the brace body is used for the brace.

特開2005−282079号公報JP 2005-282079 A 特開2008−223325号公報JP 2008-223325 A

しかしながら耐震性を高めるためでなく、既設のラーメン高架橋に対して列車等が高速走行することに伴って増加する地盤振動のみを抑えたい場合がある。地盤振動は、3Hz−10Hz程度の振動が支配的になるため、効率的に10Hz以下の周波数帯を低減できる構造が求められる。   However, there is a case where it is desired to suppress only the ground vibration which increases as a train or the like runs at a high speed with respect to the existing ramen viaduct, not to enhance the earthquake resistance. Ground vibration is dominated by vibration of about 3 Hz to 10 Hz, so a structure that can efficiently reduce the frequency band of 10 Hz or less is required.

ところが、ラーメン高架橋の柱間にさらに柱を追加するなどして剛性を増加させる改修を行うと、縦梁や柱のせん断スパン比が短くなり、設計で見込んでいる部材の損傷位置や破壊形態が曲げ破壊からせん断破壊に変わる可能性がある。このため、地盤振動対策で部材の振動を低減させるための方法としては、単純な部材追加の方法は耐震性能に与える影響を考慮すると好ましくない。   However, if renovation is performed to increase rigidity by adding more columns between the columns of the ramen viaduct, the shear span ratio of the longitudinal beams and columns will be shortened, and the damage position and fracture mode of the members expected in the design will be reduced. It can change from bending failure to shear failure. For this reason, as a method for reducing the vibration of the member by taking measures against the ground vibration, a simple method of adding the member is not preferable in consideration of the influence on the seismic performance.

そこで、本発明は、本来のラーメン高架橋の耐震性能を低下させることなく、地盤振動を低減できるラーメン高架橋の防振構造を提供することを目的としている。   Therefore, an object of the present invention is to provide a vibration isolation structure of a rigid-frame viaduct that can reduce ground vibration without lowering the seismic performance of the original rigid-frame viaduct.

前記目的を達成するために、本発明のラーメン高架橋の防振構造は、橋軸方向に間隔を置いて配置された柱の上端間が縦梁で接続されるとともに、前記縦梁から橋軸直交方向に張り出されるスラブを備えたラーメン高架橋の防振構造であって、下端が前記柱の側面に固定されるとともに、上端が前記縦梁の下面に対して少なくとも前記橋軸方向への変位を許容した状態で連結される梁受斜材と、下端が前記縦梁の側面に固定されるとともに、上端が前記スラブの下面に対して少なくとも前記橋軸直交方向への変位を許容した状態で連結されるスラブ受斜材とを備えたことを特徴とする。   In order to achieve the above object, the vibration damping structure for a rigid-frame viaduct of the present invention has a structure in which the upper ends of columns arranged at intervals in the bridge axis direction are connected by vertical beams, and the vertical beams are orthogonal to the bridge axis. A vibration damping structure of a rigid-frame viaduct having a slab extending in a direction, wherein a lower end is fixed to a side surface of the column, and an upper end is displaced at least in the bridge axis direction with respect to a lower surface of the vertical beam. A beam receiving member connected in an allowed state, and a lower end fixed to a side surface of the longitudinal beam, and an upper end connected to a lower surface of the slab at least in a direction perpendicular to the bridge axis; And a slab receiving material to be used.

ここで、橋軸方向で対向する対となる前記柱と前記縦梁とによって形成された門形空間には、それぞれの前記柱の側面に対して下端が固定される前記梁受斜材が対となって配置されており、対となる前記梁受斜材の上端は、前記縦梁の下面に対して少なくとも前記橋軸方向への変位を許容した状態で連結された頂部治具に接合されている構成とすることができる。また、前記スラブ受斜材の上端は、前記スラブの下面に対して少なくとも前記橋軸直交方向への変位を許容した状態で連結された長片治具に接合されている構成とすることができる。   Here, in the portal space formed by the pair of columns and the vertical beams facing each other in the bridge axis direction, the beam receiving members whose lower ends are fixed to the side surfaces of the respective columns are paired. The upper end of the pair of beam oblique members is joined to a top jig connected to the lower surface of the longitudinal beam at least in a state of allowing displacement in the bridge axis direction. Configuration. Further, the upper end of the slab receiving member may be configured to be joined to a long piece jig connected to the lower surface of the slab at least in a state of allowing displacement in a direction orthogonal to the bridge axis. .

このように構成された本発明のラーメン高架橋の防振構造は、縦梁を支える梁受斜材が橋軸方向への変位を許容した状態で設置され、縦梁から橋軸直交方向に張り出されるスラブを支えるスラブ受斜材は、橋軸直交方向への変位を許容した状態で設置される。
このため、ラーメン高架橋の本来の耐震性能を低下させることなく、地盤振動の発生を低減させることができる。
The anti-vibration structure of the ramen viaduct of the present invention configured as described above has a structure in which the beam receiving members supporting the vertical beams are installed in a state where displacement in the bridge axis direction is allowed, and the beams are projected from the vertical beams in the direction orthogonal to the bridge axis. The slab support members that support the slab to be installed are installed in a state that allows displacement in the direction orthogonal to the bridge axis.
Therefore, the occurrence of ground vibration can be reduced without lowering the original seismic performance of the ramen viaduct.

このような梁受斜材やスラブ受斜材の設置は、橋軸方向や橋軸直交方向への変位を許容した状態で連結される頂部治具又は長片治具を介在させることによって、簡単に実施することができる。   Installation of such beam and slab support members can be easily performed by interposing a top jig or a long piece jig that is connected while allowing displacement in the bridge axis direction or in the direction orthogonal to the bridge axis. Can be implemented.

本実施の形態のラーメン高架橋の防振構造の構成を説明するための斜視図である。It is a perspective view for explaining the composition of the vibration isolation structure of the ramen viaduct of this embodiment. 既設のラーメン高架橋の構成を説明するための斜視図である。It is a perspective view for demonstrating the structure of the existing ramen viaduct. ラーメン高架橋の解析モデルを示した斜視図である。It is the perspective view which showed the analysis model of ramen viaduct. ラーメン高架橋の解析モデルによる解析結果をスラブの中間部において示した図で、(a)は振動モードが1次の結果を示した図、(b)は振動モードが2次の結果を示した図である。The figure which showed the analysis result by the analysis model of the ramen viaduct in the middle part of the slab, (a) is the figure which showed the primary result of the vibration mode, (b) is the figure which showed the secondary result of the vibration mode It is. ラーメン高架橋の解析モデルによる解析結果をスラブの張出部において示した図で、(a)は振動モードが1次の結果を示した図、(b)は振動モードが2次の結果を示した図、(c)は振動モードが4次の結果を示した図である。FIGS. 7A and 7B are diagrams showing an analysis result by an analysis model of a ramen viaduct in an overhang portion of a slab, in which FIG. 7A shows a first order vibration mode result, and FIG. 7B shows a second order vibration mode result. FIG. 3C is a diagram showing the result of the fourth order vibration mode. 各部材の剛性を高めたときの地盤振動の低減効果を数値解析により確認した結果を示した図で、(a)はスラブの中間部の結果を示した図、(b)はスラブの張出部の結果を示した図、(c)は縦梁の結果を示した図である。FIGS. 6A and 6B are diagrams showing the results of confirming, by numerical analysis, the effect of reducing the ground vibration when the rigidity of each member is increased. FIG. 6A is a diagram showing the results of an intermediate portion of the slab, and FIG. FIG. 7C is a diagram showing a result of a vertical beam, and FIG. 7C is a diagram showing a result of a vertical beam. ラーメン高架橋に各種治具を取り付けた状態を説明するための斜視図である。It is a perspective view for explaining the state where various jigs were attached to the ramen viaduct. 柱の側面に取り付けられる柱側治具の構成を説明するための斜視図である。It is a perspective view for explaining the composition of the pillar side jig attached to the side of a pillar. 縦梁の下面に取り付けられる頂部治具の構成を説明するための側面図である。It is a side view for demonstrating the structure of the top part jig attached to the lower surface of a vertical beam. 縦梁の側面に取り付けられる下端治具の構成を説明するための斜視図である。It is a perspective view for explaining the composition of the lower end jig attached to the side of a longitudinal beam. スラブの下面に取り付けられる長片治具の構成を説明するための図であって、(a)は側面図、(b)は見上図である。It is a figure for demonstrating the structure of the long piece jig attached to the lower surface of a slab, (a) is a side view, (b) is a top view. ラーメン高架橋に梁受斜材と頂部治具を取り付けた状態を説明するための斜視図である。It is a perspective view for explaining the state where the beam receiving member and the top jig were attached to the ramen viaduct. ラーメン高架橋に梁受斜材とスラブ受斜材を取り付けた状態を説明するための斜視図である。It is a perspective view for demonstrating the state which attached the beam receiving member and the slab receiving member to the ramen viaduct.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態のラーメン高架橋1の防振構造の構成を説明するための図で、図2は、既設のラーメン高架橋1の構成を説明するための斜視図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining the configuration of the vibration isolating structure of the ramen viaduct 1 of the present embodiment, and FIG. 2 is a perspective view for explaining the configuration of the existing ramen viaduct 1.

まず、図2を参照しながら、ラーメン高架橋1について説明する。このラーメン高架橋1は、鉄筋コンクリートやプレストレストコンクリートなどによって、ラーメン架構の構面を備えた構造に構築される。   First, the ramen viaduct 1 will be described with reference to FIG. This ramen viaduct 1 is constructed of a reinforced concrete or a prestressed concrete into a structure having a structure of a ramen frame.

具体的には、橋軸方向Yに間隔を置いて配置される柱11,・・・と、その柱11,11の上端111,111間を橋軸方向Yに接続する縦梁12と、柱11,11の上端111,111間を橋軸直交方向Xに接続する横梁13と、縦梁12及び横梁13の上方に設けられるスラブ14とによって、主に構成される。   Specifically, columns 11, ... arranged at intervals in the bridge axis direction Y, vertical beams 12 connecting the upper ends 111, 111 of the columns 11, 11 in the bridge axis direction Y, and columns It mainly comprises a cross beam 13 connecting the upper ends 111 of the 11, 11 in the direction X orthogonal to the bridge axis, and a slab 14 provided above the vertical beam 12 and the cross beam 13.

柱11は、例えば直方体状に形成され、直方体状の縦梁12と剛接合された隅角部が構築される。すなわち、橋軸方向Yに間隔を置いて配置される柱11,11と縦梁12とによって、門形のラーメン架構が形成される。   The column 11 is formed in, for example, a rectangular parallelepiped shape, and a corner portion rigidly connected to the rectangular parallelepiped vertical beam 12 is constructed. In other words, the pillar-shaped rigid frame is formed by the columns 11, 11 and the vertical beams 12 arranged at intervals in the bridge axis direction Y.

また、柱11は、橋軸直交方向Xに延びる直方体状の横梁13とも剛接合される。すなわち、橋軸直交方向Xに間隔を置いて配置される柱11,11と横梁13とによっても、門形のラーメン架構が形成される。   In addition, the column 11 is also rigidly connected to a rectangular cross beam 13 extending in the direction X orthogonal to the bridge axis. That is, the portal-shaped rigid frame is also formed by the columns 11, 11 and the cross beams 13 arranged at intervals in the direction X orthogonal to the bridge axis.

さらに、スラブ14は、縦梁12,12と横梁13,13とに囲まれる上面を塞ぐとともに、縦梁12よりも外側に片持ち状態で張り出される。ここで、縦梁12,12間に橋軸直交方向Xに張り出されるスラブ14の部分を中間部142とし、縦梁12の外側に橋軸直交方向Xに張り出されるスラブ14の部分を張出部141とする。この張出部141の側縁には、側壁部143が設けられる。   Further, the slab 14 covers the upper surface surrounded by the vertical beams 12, 12 and the horizontal beams 13, 13 and protrudes outside the vertical beam 12 in a cantilever state. Here, a portion of the slab 14 extending in the bridge axis orthogonal direction X between the vertical beams 12, 12 is defined as an intermediate portion 142, and a portion of the slab 14 extending in the bridge axis orthogonal direction X outside the vertical beam 12 is extended. Let it be the outgoing part 141. A side wall 143 is provided on a side edge of the overhang 141.

続いて、このようなラーメン高架橋1の振動モードについて、図3−図5に示した数値解析結果を使って説明する。図3は、3径間の調整桁式ラーメン高架橋の解析モデル(M1)を示している。解析モデルについては、符号を付した部材の前に「M」を付けた符号を使用する。   Subsequently, the vibration mode of such a rigid-frame viaduct 1 will be described with reference to numerical analysis results shown in FIGS. FIG. 3 shows an analytical model (M1) of the adjustable girder-type viaduct of three spans. As for the analysis model, a symbol with “M” added before a member with a symbol is used.

図4は、スラブM14の中間部M142のみを抜き出して、解析結果を示している。図4(a)は振動モードが1次の結果を示しており、図4(b)は振動モードが2次の結果を示している。これらの結果を見ると分かるように、既設のラーメン高架橋M1のままでは、スラブM14の中間部M142に明らかな振幅(振動モード)が現れる。   FIG. 4 shows an analysis result by extracting only the middle portion M142 of the slab M14. FIG. 4A shows a first-order result in the vibration mode, and FIG. 4B shows a second-order result in the vibration mode. As can be seen from these results, a clear amplitude (vibration mode) appears in the middle part M142 of the slab M14 with the existing ramen viaduct M1 as it is.

一方、図5は、スラブM14の張出部M141,M141のみを抜き出して、解析結果を示している。図5(a)は振動モードが1次の結果を示しており、図5(b)は振動モードが2次の結果を示していて、図5(c)は振動モードが4次の結果を示している。これらの結果を見ると分かるように、既設のラーメン高架橋M1のままでは、スラブM14の張出部M141,M141に明らかな振幅(振動モード)が現れる。ここで、張出部M141及び側壁部M143の破線は振動前の状態を示し、実線は振動中の状態を示している。   On the other hand, FIG. 5 shows an analysis result by extracting only the overhang portions M141 and M141 of the slab M14. FIG. 5A shows a first-order result in the vibration mode, FIG. 5B shows a second-order result in the vibration mode, and FIG. 5C shows a fourth-order result in the vibration mode. Is shown. As can be seen from these results, a clear amplitude (vibration mode) appears in the overhangs M141 and M141 of the slab M14 with the existing ramen viaduct M1 as it is. Here, the broken lines of the overhang portion M141 and the side wall portion M143 indicate the state before the vibration, and the solid lines indicate the state during the vibration.

続いて、上述したような振動モードが生じるラーメン高架橋1の振動を低減するのに効果的な対策について説明する。図6は、通常の構成のラーメン高架橋1を「基本」とし、各部材の剛性を上げて揺れ難くした構成との比較を、数値解析によって行った結果を示している。数値解析の結果は、横軸を周波数(Hz)とし、縦軸を振動加速度レベル(dB)として整理した。   Next, a description will be given of effective measures for reducing the vibration of the rigid-frame viaduct 1 in which the above-described vibration mode occurs. FIG. 6 shows the results of a numerical analysis comparing with a configuration in which the rigid-frame viaduct 1 having a normal configuration is used as the “basic” and the rigidity of each member is increased to make it less likely to shake. The results of the numerical analysis are arranged with the horizontal axis representing frequency (Hz) and the vertical axis representing vibration acceleration level (dB).

図6(a)は、スラブ14の中間部142の剛性を100倍に上げた「中間スラブ剛性100倍」と「基本」との比較を示している。また、図6(b)は、スラブ14の張出部141の剛性を100倍に上げた「張出スラブ剛性100倍」と「基本」との比較を示している。さらに、図6(c)は、縦梁12の剛性を100倍に上げた「縦梁剛性100倍」と「基本」との比較を示している。   FIG. 6A shows a comparison between “basic” and “intermediate slab rigidity 100 times” in which the rigidity of the intermediate portion 142 of the slab 14 is increased by 100 times. FIG. 6B shows a comparison between “extension slab rigidity 100 times” in which the rigidity of the overhang portion 141 of the slab 14 is increased 100 times and “basic”. Further, FIG. 6C shows a comparison between “basic beam” and “longitudinal beam rigidity 100 times” in which the rigidity of the longitudinal beam 12 is increased by 100 times.

これらの解析結果を見ると、いずれも4Hz−20Hzの範囲で、剛性を上げて揺れ難くした方が振動加速度レベルを低減できることが分かる。すなわち、地盤振動は、3Hz−10Hz程度の振動が支配的になるため、各部材を揺れ難くすることによって地盤振動の低減効果が得られることが分かる。   From these analysis results, it can be seen that increasing the rigidity and making it harder to shake can reduce the vibration acceleration level in the range of 4 Hz to 20 Hz. In other words, it can be seen that the ground vibration is dominated by the vibration of about 3 Hz to 10 Hz, and the effect of reducing the ground vibration can be obtained by making each member hard to shake.

そこで、本実施の形態のラーメン高架橋1の防振構造では、縦梁12を下から支持する梁受斜材2と、スラブ14を下から支持するスラブ受斜材4とを配置する。要するに、振動モードが生じやすい部材を下から支えることによって、揺れ難い構造に改修する。   Therefore, in the vibration isolation structure of the rigid-frame viaduct 1 of the present embodiment, the beam receiving members 2 that support the vertical beams 12 from below and the slab receiving members 4 that support the slab 14 from below are arranged. In short, a member that is likely to generate a vibration mode is supported from below, so that the structure is modified to be less likely to shake.

しかしながら梁受斜材2及びスラブ受斜材4の両端を、ラーメン高架橋1の各面に剛接合してしまうと、ラーメン高架橋1の剛性が部分的に増加して、破壊形態が設計時に想定したものと変わってしまう可能性がある。   However, if both ends of the beam receiving member 2 and the slab receiving member 4 are rigidly joined to the respective surfaces of the rigid frame viaduct 1, the rigidity of the rigid frame viaduct 1 is partially increased, and the failure mode was assumed at the time of design. It may be different from something.

詳細に説明すると、柱11と縦梁12間又は縦梁12とスラブ14の下面14aとの間を斜材によって剛結してしまうと、ラーメン高架橋1の柱11や縦梁12のせん断スパン比が短くなってしまい、設計で想定した損傷位置や破壊形態が曲げ破壊からせん断破壊に変わる可能性がある。破壊形態が変更されると、耐震性に影響を及ぼすことが懸念されるため、設計のやり直しや他の部分の補強が必要になることがある。また、コンクリートの乾燥収縮や温度伸縮による部材の変形を拘束することになって、ひび割れの原因にもなり得る。   More specifically, if the column 11 and the vertical beam 12 or the vertical beam 12 and the lower surface 14a of the slab 14 are rigidly connected by a diagonal member, the shear span ratio of the column 11 and the vertical beam 12 of the rigid frame viaduct 1 will be described. May be shortened, and the damage position and fracture mode assumed in the design may change from bending fracture to shear fracture. Changes in the form of failure may affect seismic resistance, requiring redesign and reinforcement of other parts. Further, the deformation of the member due to the drying shrinkage or the temperature expansion and contraction of the concrete is restrained, which may cause cracking.

そこで、本実施の形態のラーメン高架橋1の防振構造では、梁受斜材2及びスラブ受斜材4は地盤振動の低減を主目的に配置されるものとし、スラブ14の中間部142、張出部141及び縦梁12の水平方向の挙動は拘束せず、鉛直方向の荷重のみに抵抗させるものとする。   Therefore, in the vibration isolation structure of the rigid-frame viaduct 1 of the present embodiment, the beam receiving member 2 and the slab receiving member 4 are arranged mainly for the purpose of reducing ground vibration, and the intermediate portion 142 of the slab 14 The horizontal behavior of the protrusion 141 and the vertical beam 12 is not restricted, and only the vertical load is resisted.

具体的には、梁受斜材2は、下端21は柱11の側面112に固定させるが、上端22は縦梁12の下面121に対して少なくとも橋軸方向Yへの変位を許容した状態で連結させる。すなわち、軸力部材である梁受斜材2の軸線に連続して延びる方向の変位を少なくとも拘束しない。加えて、橋軸直交方向Xへの変位も許容した状態で連結させることもできる。   More specifically, the lower beam 21 is fixed to the side surface 112 of the column 11, but the upper end 22 is at least allowed to displace in the bridge axis direction Y with respect to the lower surface 121 of the vertical beam 12. Connect. That is, at least the displacement in the direction extending continuously with the axis of the beam receiving member 2 as the axial force member is not restricted. In addition, they can be connected in a state where displacement in the bridge axis orthogonal direction X is also allowed.

一方、スラブ受斜材4は、下端41は縦梁12の側面122に固定させるが、上端42はスラブ14の下面14aに対して少なくとも橋軸直交方向Xへの変位を許容した状態で連結させる。すなわち、軸力部材であるスラブ受斜材4の軸線に連続して延びる方向の変位を少なくとも拘束しない。加えて、橋軸方向Yへの変位も許容した状態で連結させることもできる。   On the other hand, the lower end 41 of the slab receiving member 4 is fixed to the side surface 122 of the vertical beam 12, but the upper end 42 is connected to the lower surface 14 a of the slab 14 at least in a state where displacement in the bridge axis orthogonal direction X is allowed. . That is, at least the displacement in the direction extending continuously with the axis of the slab receiving member 4 as the axial force member is not restricted. In addition, they can be connected in a state where displacement in the bridge axis direction Y is allowed.

そこで、図1を参照しながら、本実施の形態のラーメン高架橋1の防振構造の一例となる構成について説明する。梁受斜材2は、橋軸方向Yで対向する対となる柱11,11と縦梁12とによって形成された門形空間に、一対が左右対称となるように架け渡される。   Therefore, a configuration that is an example of the vibration isolation structure of the rigid-frame viaduct 1 of the present embodiment will be described with reference to FIG. The beam receiving member 2 is bridged so as to be bilaterally symmetrical in a portal space formed by a pair of columns 11, 11 and a vertical beam 12 facing each other in the bridge axis direction Y.

対となる梁受斜材2,2の上端22,22は、縦梁12の下面121に対して橋軸方向Yへの変位を許容した状態で連結された頂部治具3に接合される。また、梁受斜材2の下端21は、柱11の側面112に端部治具としての柱側治具6を介して固定される。すなわち、門形空間に、頂部治具3と左右の梁受斜材2,2とによって形成される山形の補強装置を配置することで、縦梁12の振動(揺れ)を抑える。   The upper ends 22, 22 of the pair of beam receiving members 2, 2 are joined to the top jig 3 connected to the lower surface 121 of the longitudinal beam 12 while allowing displacement in the bridge axis direction Y. Further, the lower end 21 of the beam receiving member 2 is fixed to the side surface 112 of the column 11 via the column side jig 6 as an end jig. That is, by arranging a mountain-shaped reinforcing device formed by the top jig 3 and the left and right beam receiving members 2 in the portal space, the vibration (sway) of the vertical beam 12 is suppressed.

一方、スラブ受斜材4は、平面視で橋軸直交方向Xに延伸される。スラブ受斜材4の上端42は、スラブ14の下面14aに対して橋軸直交方向Xへの変位を許容した状態で連結された長片治具5に接合される。また、スラブ受斜材4の下端41は、縦梁12の側面122に端部治具としての下端治具7を介して固定される。   On the other hand, the slab receiving material 4 is stretched in the bridge axis orthogonal direction X in plan view. The upper end 42 of the slab receiving member 4 is joined to the long piece jig 5 which is connected to the lower surface 14a of the slab 14 while allowing displacement in the direction X orthogonal to the bridge axis. The lower end 41 of the slab receiving member 4 is fixed to the side surface 122 of the vertical beam 12 via the lower end jig 7 as an end jig.

図7は、ラーメン高架橋1に、スラブ受斜材4用の長片治具5及び下端治具7と、梁受斜材2用の柱側治具6を取り付けた状態を示している。また、図8には、柱11の橋軸方向Y側の側面112に取り付けられる柱側治具6の構成を説明するための斜視図を示した。   FIG. 7 shows a state in which the long piece jig 5 and the lower end jig 7 for the slab oblique material 4 and the column-side jig 6 for the beam oblique material 2 are attached to the rigid frame viaduct 1. FIG. 8 is a perspective view for explaining a configuration of the column-side jig 6 attached to the side surface 112 of the column 11 on the bridge axis direction Y side.

柱側治具6は、側面112に接触させる長方形板状のベース部61と、ベース部61の各辺に沿って設けられる周壁部62と、柱11に固定するためのボルト材63及びナット64とによって主に構成される。   The column-side jig 6 includes a rectangular plate-shaped base portion 61 to be brought into contact with the side surface 112, a peripheral wall portion 62 provided along each side of the base portion 61, a bolt member 63 and a nut 64 for fixing to the column 11. It is mainly composed of

周壁部62は、梁受斜材2の傾斜角度に合わせて設けられ、梁受斜材2の下端21が収容されるとともに、溶接などによって接合される。柱側治具6は、柱11を挟んだ両側の側面112,112に配置され、対向するベース部61,61同士を連結するように複数のボルト材63,・・・が柱11を貫通して取り付けられる。このようにして柱側治具6は、柱11に対して位置が変動しない固定点となる。   The peripheral wall portion 62 is provided in accordance with the inclination angle of the beam receiving member 2, and accommodates the lower end 21 of the beam receiving member 2 and is joined by welding or the like. The column-side jigs 6 are arranged on both side surfaces 112, 112 on both sides of the column 11, and a plurality of bolt members 63,... Penetrate the column 11 so as to connect the opposing base portions 61. Attached. In this way, the column-side jig 6 is a fixed point whose position does not change with respect to the column 11.

一方、図9には、頂部治具3と梁受斜材2との接合部の周辺を拡大して示した。頂部治具3は、本体部31と、上面を形成する上フランジ311と、下面を形成する下フランジ312とによって主に構成される。例えば頂部治具3は、H形鋼などによって製作することができる。   On the other hand, FIG. 9 shows an enlarged view of the periphery of the joint between the top jig 3 and the beam receiving material 2. The top jig 3 mainly includes the main body 31, an upper flange 311 forming an upper surface, and a lower flange 312 forming a lower surface. For example, the top jig 3 can be made of H-section steel or the like.

そして、梁受斜材2の上端22を塞ぐ端板221を頂部治具3の下フランジ312に接触させ、ボルト23とナット231によって両者を接合させる。一方、頂部治具3の上フランジ311側は、縦梁12の下面121に対して少なくとも橋軸方向Yへの変位を許容した状態の連結構造となる。   Then, the end plate 221 for closing the upper end 22 of the beam receiving member 2 is brought into contact with the lower flange 312 of the top jig 3, and the two are joined by the bolt 23 and the nut 231. On the other hand, the upper flange 311 side of the top jig 3 has a connection structure in which at least displacement in the bridge axis direction Y is allowed with respect to the lower surface 121 of the vertical beam 12.

具体的には、四フッ化エチレン樹脂板などによって形成される滑面板34A,34Bの間に、潤滑油などの滑面板34A,34B間の摩擦抵抗をさらに小さくする潤滑材35を介在させた滑り構造を、縦梁12の下面121と上フランジ311との間に介在させる。   More specifically, a sliding member having a lubricating material 35 such as lubricating oil for further reducing the frictional resistance between the smooth surface plates 34A, 34B is interposed between the smooth surface plates 34A, 34B formed of a tetrafluoroethylene resin plate or the like. The structure is interposed between the lower surface 121 of the vertical beam 12 and the upper flange 311.

この滑り構造の上側の滑面板34Aは、縦梁12の下面121に貼り付けられ、下側の滑面板34Bは、上フランジ311の上面に貼り付けられる。すなわち滑面板34Bと上フランジ311とが一体になって変動板を構成する。   The upper sliding plate 34A of this sliding structure is attached to the lower surface 121 of the longitudinal beam 12, and the lower sliding plate 34B is attached to the upper surface of the upper flange 311. That is, the smooth plate 34B and the upper flange 311 are integrated to form a variable plate.

頂部治具3は、複数のアンカー材33,・・・によって縦梁12に接合される。すなわち、アンカー材33の先端は縦梁12の内部に埋設され、アンカー材33の頭部は上フランジ311に穿孔された長穴32に通される。   The top jig 3 is joined to the longitudinal beam 12 by a plurality of anchor members 33,. That is, the tip of the anchor 33 is embedded in the longitudinal beam 12, and the head of the anchor 33 is passed through the elongated hole 32 formed in the upper flange 311.

この長穴32は、橋軸方向Yに延伸された長円形又は楕円形で、長穴32に架け渡された支圧板332とナット331によって、アンカー材33の頭部が上フランジ311に定着される(図11(b)参考)。ここで、上フランジ311の上面に貼り付けられる滑面板34Bにも、長穴32に投影して重なる同じ大きさの穴が穿孔されている。   The elongated hole 32 has an oval or elliptical shape extending in the bridge axis direction Y, and the head of the anchor member 33 is fixed to the upper flange 311 by the supporting plate 332 and the nut 331 spanned over the elongated hole 32. (See FIG. 11B). Here, a hole of the same size that is projected and overlapped with the elongated hole 32 is also drilled in the smooth surface plate 34B attached to the upper surface of the upper flange 311.

このようにして縦梁12に接合された頂部治具3が、橋軸方向Yに移動しようとすると、滑面板34A,34B間で滑りが生じて、長穴32の範囲内では拘束を受けることなく頂部治具3を移動させることができる。要するに、梁受斜材2は、柱11と縦梁12とによって形成される隅角部を補強するものではなく、縦梁12を単に下から支えるだけの部材である。   When the top jig 3 thus joined to the longitudinal beam 12 tries to move in the bridge axis direction Y, a slip occurs between the smooth surface plates 34A and 34B, and the top jig 3 is restrained within the range of the elongated hole 32. The top jig 3 can be moved without the need. In short, the beam receiving member 2 does not reinforce the corner formed by the column 11 and the vertical beam 12, but is a member that simply supports the vertical beam 12 from below.

図10には、縦梁12の側面122に取り付けられる下端治具7の構成を説明するための斜視図を示した。下端治具7は、側面122に接触させる長方形板状のベース部71と、ベース部71の各辺に沿って設けられる周壁部72と、縦梁12に固定するためのボルト材73及びナット74とによって主に構成される。   FIG. 10 is a perspective view for explaining the configuration of the lower end jig 7 attached to the side surface 122 of the vertical beam 12. The lower end jig 7 includes a rectangular plate-shaped base portion 71 to be brought into contact with the side surface 122, a peripheral wall portion 72 provided along each side of the base portion 71, a bolt member 73 and a nut 74 for fixing to the vertical beam 12. It is mainly composed of

周壁部72は、スラブ受斜材4の傾斜角度に合わせて設けられ、スラブ受斜材4の下端41が収容されるとともに、溶接などによって接合される。下端治具7は、縦梁12を挟んだ両側の側面122,122に配置され、対向するベース部71,71同士を連結するように複数のボルト材73,・・・が縦梁12を貫通して取り付けられる。このようにして下端治具7は、縦梁12に対して位置が変動しない固定点となる。   The peripheral wall portion 72 is provided in accordance with the inclination angle of the slab oblique member 4, and accommodates the lower end 41 of the slab oblique member 4 and is joined by welding or the like. The lower end jig 7 is disposed on both side surfaces 122, 122 sandwiching the vertical beam 12, and a plurality of bolt members 73,... Penetrate the vertical beam 12 so as to connect the opposing base portions 71, 71. Attach it. In this way, the lower end jig 7 is a fixed point whose position does not change with respect to the vertical beam 12.

一方、図11には、スラブ14の張出部141の下面14aに取り付けられる長片治具5の周辺を拡大して示した。この長片治具5は、スラブ14の中間部142の下面14aにも同じものが取り付けられる。ここで、図11(a)は長片治具5の側面図、図11(b)は長片治具5の見上図となる。   On the other hand, FIG. 11 shows an enlarged view of the periphery of the long piece jig 5 attached to the lower surface 14a of the overhang portion 141 of the slab 14. The same long jig 5 is attached to the lower surface 14 a of the intermediate portion 142 of the slab 14. Here, FIG. 11A is a side view of the long piece jig 5, and FIG. 11B is a top view of the long piece jig 5.

長片治具5は、下面14aに接触させる長方形板状のベース部51と、ベース部51の各辺に沿って設けられる周壁部54とによって主に構成される。長片治具5は、スラブ14の下面14aに対して少なくとも橋軸直交方向Xへの変位を許容した状態の連結構造となる。   The long piece jig 5 is mainly configured by a rectangular plate-shaped base portion 51 to be brought into contact with the lower surface 14a, and a peripheral wall portion 54 provided along each side of the base portion 51. The long piece jig 5 has a connection structure that allows at least displacement in the bridge axis orthogonal direction X with respect to the lower surface 14 a of the slab 14.

具体的には、四フッ化エチレン樹脂板などによって形成される滑面板55A,55Bの間に、潤滑油などの滑面板34A,34B間の摩擦抵抗をさらに小さくする潤滑材56を介在させた滑り構造を、スラブ14の下面14aとベース部51との間に介在させる。   Specifically, a sliding member having a lubricating material 56 for further reducing the frictional resistance between the smooth surface plates 34A and 34B such as lubricating oil is interposed between the smooth surface plates 55A and 55B formed of a tetrafluoroethylene resin plate or the like. The structure is interposed between the lower surface 14a of the slab 14 and the base 51.

この滑り構造の上側の滑面板55Aは、スラブ14の下面14aに貼り付けられ、下側の滑面板55Bは、ベース部51の上面に貼り付けられる。すなわち滑面板55Bとベース部51とが一体になって変動板を構成する。   The upper sliding plate 55A of this sliding structure is attached to the lower surface 14a of the slab 14, and the lower sliding plate 55B is attached to the upper surface of the base 51. That is, the smooth plate 55B and the base portion 51 are integrated to form a variable plate.

長片治具5は、複数のアンカー材53,・・・によってスラブ14に接合される。すなわち、アンカー材53の先端はスラブ14の内部に埋設され、アンカー材53の頭部はベース部51に穿孔された長穴52に通される。   The long piece jig 5 is joined to the slab 14 by a plurality of anchor members 53,. That is, the tip of the anchor member 53 is embedded in the slab 14, and the head of the anchor member 53 is passed through the elongated hole 52 formed in the base portion 51.

この長穴52は、橋軸直交方向Xに延伸された長円形又は楕円形で、長穴52に架け渡された支圧板532とナット531によって、アンカー材53の頭部がベース部51に定着される。ここで、ベース部51の上面に貼り付けられる滑面板55Bにも、長穴52に投影して重なる同じ大きさの穴が穿孔されている。   The elongated hole 52 has an oval or elliptical shape extending in the direction X orthogonal to the bridge axis, and the head of the anchor member 53 is fixed to the base portion 51 by the supporting plate 532 and the nut 531 spanned over the elongated hole 52. Is done. Here, holes of the same size that are projected and overlapped with the elongated holes 52 are also drilled in the smooth surface plate 55 </ b> B attached to the upper surface of the base portion 51.

このようにしてスラブ14に接合された長片治具5が、橋軸直交方向Xに移動しようとすると、滑面板55A,55B間で滑りが生じて、長穴52の範囲内では拘束を受けることなく長片治具5を移動させることができる。要するに、スラブ受斜材4は、縦梁12と張出部141(又は中間部142)とによって形成される隅角部を補強するものではなく、張出部141や中間部142を単に下から支えるだけの部材である。   When the long piece jig 5 thus joined to the slab 14 tries to move in the direction X orthogonal to the bridge axis, slippage occurs between the smooth surface plates 55A and 55B, and is constrained within the range of the long hole 52. The long piece jig 5 can be moved without the need. In short, the slab oblique material 4 does not reinforce the corner formed by the longitudinal beam 12 and the overhang 141 (or the intermediate part 142), but simply places the overhang 141 or the intermediate part 142 from below. It is a member that only supports.

次に、本実施の形態のラーメン高架橋1の防振構造の構築方法について説明する。
この防振構造は、新設のラーメン高架橋1にも既設のラーメン高架橋1にも設けることができる。本実施の形態では、既設のラーメン高架橋1に対して、地盤振動を低減するために防振構造を設ける場合について説明する。
Next, a method of constructing the vibration-proof structure of the rigid-frame viaduct 1 of the present embodiment will be described.
This vibration-proof structure can be provided in both the new ramen viaduct 1 and the existing ramen viaduct 1. In the present embodiment, a case will be described in which an anti-vibration structure is provided for an existing ramen viaduct 1 in order to reduce ground vibration.

図2に示すような既設のラーメン高架橋1に対して、図7に示すように、橋軸方向Yに向いた柱11の側面112に柱側治具6を取り付ける。柱側治具6は、柱11を挟んだ両側の側面112,112に配置し、両側の柱側治具6,6をボルト材63,・・・で連結することで柱11に対して固定する。   As shown in FIG. 7, the column-side jig 6 is attached to the side surface 112 of the column 11 facing the bridge axis direction Y with respect to the existing ramen viaduct 1 as shown in FIG. 2. The column-side jigs 6 are arranged on the side surfaces 112, 112 on both sides of the column 11, and are fixed to the columns 11 by connecting the column-side jigs 6, 6 on both sides with bolts 63,. I do.

一方、縦梁12の側面122に対しては、下端治具7を取り付ける。下端治具7は、スラブ受斜材4を配置する位置に合わせて、橋軸方向Yに対向する柱11,11間に架け渡される縦梁12のスパン中央位置及びスパン1/4位置に配置する。   On the other hand, the lower end jig 7 is attached to the side surface 122 of the vertical beam 12. The lower end jig 7 is arranged at the span center position and the span 1/4 position of the vertical beam 12 bridged between the columns 11, 11 facing in the bridge axis direction Y in accordance with the position where the slab oblique material 4 is arranged. I do.

下端治具7は、縦梁12を挟んだ両側の側面122,122に配置し、両側の下端治具7,7同士をボルト材73,・・・で連結することで縦梁12に対して固定する。また、下端治具7と対となる長片治具5を、張出部141及び中間部142の下面14aに取り付ける。   The lower end jigs 7 are arranged on the side surfaces 122, 122 on both sides of the vertical beam 12, and the lower end jigs 7, 7 on both sides are connected to each other by bolts 73,. Fix it. In addition, the long piece jig 5 that is paired with the lower end jig 7 is attached to the lower surface 14 a of the overhang portion 141 and the intermediate portion 142.

続いて、図12に示すように、頂部治具3及び梁受斜材2,2を、橋軸方向Yに対向する柱11,11と縦梁12とによって形成される門形空間に配置する。この頂部治具3が配置される位置は、縦梁12の橋軸方向Yの中央、すなわち橋軸方向Yに対向する柱11,11のスパン間の中央になる。   Subsequently, as shown in FIG. 12, the top jig 3 and the beam receiving members 2, 2 are arranged in the portal space formed by the columns 11, 11 and the vertical beams 12 facing each other in the bridge axis direction Y. . The position where the top jig 3 is arranged is the center of the longitudinal beam 12 in the bridge axis direction Y, that is, the center between the spans of the columns 11 and 11 facing the bridge axis direction Y.

また、梁受斜材2の下端21は、柱側治具6に溶接によって接合される。さらに、頂部治具3は、アンカー材33によって縦梁12の下面121に接合される。このため、頂部治具3の上方には、複数の長穴32を通した複数のアンカー材33,・・・が縦梁12の内部に向けて突出されることになる。   The lower end 21 of the beam receiving member 2 is joined to the column-side jig 6 by welding. Further, the top jig 3 is joined to the lower surface 121 of the longitudinal beam 12 by the anchor member 33. Therefore, a plurality of anchor members 33,... Passing through the plurality of elongated holes 32 project toward the inside of the vertical beam 12 above the top jig 3.

さらに、図13に示すように、スラブ受斜材4を、橋軸方向Yに柱11,11間のスパン長の1/4の間隔で配置する。このような配置とすることで、振動モードの山を抑えることができる。   Further, as shown in FIG. 13, the slab oblique members 4 are arranged in the bridge axis direction Y at intervals of 1 / of the span length between the columns 11, 11. With such an arrangement, the peak of the vibration mode can be suppressed.

スラブ受斜材4の下端41は、下端治具7の周壁部72に収容されて溶接によって接合される。さらに、スラブ受斜材4の上端42は、長片治具5の周壁部54に収容されて溶接によって接合される。そして、長片治具5の上方には、複数の長穴52を通した複数のアンカー材53,・・・がスラブ14の内部に向けて突出されることになる。   The lower end 41 of the slab receiving member 4 is housed in the peripheral wall 72 of the lower end jig 7 and joined by welding. Further, the upper end 42 of the slab receiving member 4 is accommodated in the peripheral wall portion 54 of the long piece jig 5 and joined by welding. A plurality of anchor members 53,... Passing through the plurality of long holes 52 project above the long piece jig 5 toward the inside of the slab 14.

次に、本実施の形態のラーメン高架橋1の防振構造の作用について説明する。
このように構成された本実施の形態のラーメン高架橋1の防振構造は、縦梁12を支える梁受斜材2が橋軸方向Yへの変位を許容した状態で設置され、縦梁12から橋軸直交方向Xに張り出されるスラブ14の張出部141及び中間部142を支えるスラブ受斜材4は、橋軸直交方向Xへの変位を許容した状態で設置される。
Next, the operation of the vibration isolating structure of the rigid-frame viaduct 1 of the present embodiment will be described.
The anti-vibration structure of the rigid-frame viaduct 1 according to the present embodiment configured as described above is installed in a state where the beam receiving member 2 supporting the vertical beam 12 is allowed to be displaced in the bridge axis direction Y. The slab receiving member 4 supporting the projecting portion 141 and the intermediate portion 142 of the slab 14 projecting in the bridge axis orthogonal direction X is installed in a state where displacement in the bridge axis orthogonal direction X is allowed.

このため、既設のラーメン高架橋1の本来の耐震性能を低下させることなく、地盤振動の発生を低減させることができる。要するに、縦梁12やそこから張り出されたスラブ14の張出部141及び中間部142を下から支えて揺れ難くすることで、振動レベルに支配的な周波数帯である10Hz以下の振動を低減することができる。また、梁受斜材2及びスラブ受斜材4は、コンクリートの乾燥収縮や温度伸縮による部材の変形を拘束しないように設置されるため、設置による負の影響を最小限にとどめることができる。   For this reason, occurrence of ground vibration can be reduced without lowering the original seismic performance of the existing ramen viaduct 1. In other words, by supporting the vertical beam 12 and the projecting portion 141 and the intermediate portion 142 of the slab 14 projecting therefrom from below so as not to sway, the vibration of 10 Hz or less, which is a frequency band dominant in the vibration level, is reduced. can do. Further, since the beam receiving member 2 and the slab receiving member 4 are installed so as not to restrict the deformation of the member due to the drying shrinkage of the concrete and the expansion and contraction of the temperature, the negative influence of the installation can be minimized.

そして、このように簡単な補強で地盤振動を抑えることができれば、例えばラーメン高架橋1のスラブ14上に敷設された軌道を走行する新幹線などの列車の走行速度を上げる高速化に向けた検討がなされた場合でも、沿線の地盤振動の増加を抑えた計画を立案することができるようになる。   If the ground vibrations can be suppressed by such simple reinforcement, studies are being made for speeding up the running speed of a train such as a Shinkansen running on a track laid on the slab 14 of the ramen viaduct 1. Even in such a case, it is possible to make a plan that suppresses an increase in ground vibration along the railway.

すなわち、このような梁受斜材2やスラブ受斜材4の設置は、橋軸方向Yや橋軸直交方向Xへの変位を許容した状態で連結される頂部治具3又は長片治具5を介在させることによって、簡単に実施することができる。   That is, the installation of such a beam receiving member 2 or a slab receiving member 4 is performed by connecting the top jig 3 or the long piece jig which is connected while allowing displacement in the bridge axis direction Y or the bridge axis orthogonal direction X. 5 can be easily implemented.

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
例えば、前記実施の形態で説明したラーメン高架橋1の構造は例示であり、これに限定されるものではなく、調整桁式ラーメン高架橋、張出式ラーメン高架橋、ビームスラブ式ラーメン高架橋などいずれの形態のラーメン高架橋にも本発明を適用することができる。
Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes that do not depart from the gist of the present invention may be made in the present invention. Included in the invention.
For example, the structure of the rigid-frame viaduct 1 described in the above embodiment is an example, and the present invention is not limited to this. Any form such as an adjustment girder-type rigid-frame viaduct, an overhang-type rigid-frame viaduct, and a beam-slab-type rigid-frame viaduct is possible. The present invention can also be applied to ramen viaducts.

1 :ラーメン高架橋
11 :柱
111 :上端
112 :側面
12 :縦梁
121 :下面
122 :側面
14 :スラブ
14a :下面
141 :張出部
142 :中間部
2 :梁受斜材
21 :下端
22 :上端
3 :頂部治具
32 :長穴
33 :アンカー材
34A :滑面板
34B :滑面板
35 :潤滑材
4 :スラブ受斜材
41 :下端
42 :上端
5 :長片治具
52 :長穴
53 :アンカー材
54 :周壁部
55A :滑面板
55B :滑面板
56 :潤滑材
6 :柱側治具
62 :周壁部
63 :ボルト材
7 :下端治具
72 :周壁部
73 :ボルト材
X :橋軸直交方向
Y :橋軸方向
1: ramen viaduct 11: pillar 111: upper end 112: side surface 12: vertical beam 121: lower surface 122: side surface 14: slab 14a: lower surface 141: overhang portion 142: intermediate portion 2: beam receiving member 21: lower end 22: upper end 3: Top jig 32: Long hole 33: Anchor material 34A: Smooth plate 34B: Smooth plate 35: Lubricant 4: Slab oblique material 41: Lower end 42: Upper end 5: Long piece jig 52: Long hole 53: Anchor Material 54: Peripheral wall portion 55A: Smooth surface plate 55B: Smooth surface plate 56: Lubricant 6: Column side jig 62: Peripheral wall portion 63: Bolt material 7: Lower end jig 72: Peripheral wall portion 73: Bolt material X: Bridge axis orthogonal direction Y: Bridge axis direction

Claims (7)

橋軸方向に間隔を置いて配置された柱の上端間が縦梁で接続されるとともに、前記縦梁から橋軸直交方向に張り出されるスラブを備えたラーメン高架橋の防振構造であって、
下端が前記柱の側面に固定されるとともに、上端が前記縦梁の下面に対して少なくとも前記橋軸方向への変位を許容した状態で連結される梁受斜材と、
下端が前記縦梁の側面に固定されるとともに、上端が前記スラブの下面に対して少なくとも前記橋軸直交方向への変位を許容した状態で連結されるスラブ受斜材とを備えたことを特徴とするラーメン高架橋の防振構造。
A vibration isolation structure of a rigid-frame viaduct having a slab extending from the vertical beam in a direction orthogonal to the bridge axis, with the upper ends of the columns arranged at intervals in the bridge axis direction being connected by a vertical beam,
A beam receiving member whose lower end is fixed to a side surface of the column and whose upper end is connected to a lower surface of the vertical beam at least in a state of allowing displacement in the bridge axis direction,
A lower end is fixed to a side surface of the vertical beam, and an upper end is provided with a slab receiving member which is connected to a lower surface of the slab at least while allowing displacement in a direction orthogonal to the bridge axis. The anti-vibration structure of the ramen viaduct.
橋軸方向で対向する対となる前記柱と前記縦梁とによって形成された門形空間には、それぞれの前記柱の側面に対して下端が固定される前記梁受斜材が対となって配置されており、
対となる前記梁受斜材の上端は、前記縦梁の下面に対して少なくとも前記橋軸方向への変位を許容した状態で連結された頂部治具に接合されていることを特徴とする請求項1に記載のラーメン高架橋の防振構造。
In the portal space formed by the pair of pillars and the vertical beams facing each other in the bridge axis direction, the beam receiving members whose lower ends are fixed to the side surfaces of the respective columns are paired. Are located,
The upper end of the pair of beam receiving members is joined to a top jig connected to the lower surface of the longitudinal beam at least in a state of allowing displacement in the bridge axis direction. Item 4. The vibration-damping structure of the ramen viaduct according to Item 1.
前記スラブ受斜材の上端は、前記スラブの下面に対して少なくとも前記橋軸直交方向への変位を許容した状態で連結された長片治具に接合されていることを特徴とする請求項1又は2に記載のラーメン高架橋の防振構造。   The upper end of the slab receiving member is joined to a long piece jig which is connected to the lower surface of the slab at least in a state of allowing displacement in a direction orthogonal to the bridge axis. Or the vibration damping structure of the ramen viaduct according to 2. 前記頂部治具は、前記縦梁の下面に固定される滑面板と、前記梁受斜材の上端が接合される変動板と、これらを貫通するアンカー材とを備え、
前記滑面板に摩擦抵抗が小さい状態で重ねられる前記変動板には、前記橋軸方向に延びる長穴が複数設けられていて、前記アンカー材は前記長穴に通されて前記変動板に定着されていることを特徴とする請求項2に記載のラーメン高架橋の防振構造。
The top jig includes a smooth plate fixed to the lower surface of the vertical beam, a variable plate to which an upper end of the beam receiving member is joined, and an anchor material penetrating these.
A plurality of elongated holes extending in the bridge axis direction are provided on the variable plate that is superimposed on the smooth surface plate with a small frictional resistance, and the anchor material is passed through the long hole and fixed to the variable plate. The vibration damping structure for a rigid-frame viaduct according to claim 2, wherein
前記長片治具は、前記スラブの下面に固定される滑面板と、前記スラブ受斜材の上端が接合される変動板と、これらを貫通するアンカー材とを備え、
前記滑面板に摩擦抵抗が小さい状態で重ねられる前記変動板には、前記橋軸直交方向に延びる長穴が複数設けられていて、前記アンカー材は前記長穴に通されて前記変動板に定着されていることを特徴とする請求項3に記載のラーメン高架橋の防振構造。
The long piece jig includes a smooth plate fixed to the lower surface of the slab, a variable plate to which an upper end of the slab receiving member is joined, and an anchor material penetrating these.
A plurality of elongated holes extending in a direction orthogonal to the bridge axis are provided on the variable plate which is superimposed on the smooth surface plate with a small frictional resistance, and the anchor material is passed through the long hole and is fixed to the variable plate. The vibration damping structure of a rigid-frame viaduct according to claim 3, wherein
前記柱又は前記縦梁を挟んだ両側に前記梁受斜材又は前記スラブ受斜材の下端が配置されていて、前記柱又は前記縦梁を貫通するボルト材によって両側の下端が連結されていることを特徴とする請求項1乃至5のいずれか1項に記載のラーメン高架橋の防振構造。   Lower ends of the beam oblique members or the slab oblique members are arranged on both sides of the column or the vertical beam, and lower ends of both sides are connected by bolts penetrating the columns or the vertical beams. The vibration damping structure of a rigid-frame viaduct according to any one of claims 1 to 5, characterized in that: 前記梁受斜材又は前記スラブ受斜材の下端は、前記下端を囲む周壁部を備えた端部治具に接合されていることを特徴とする請求項1乃至6のいずれか1項に記載のラーメン高架橋の防振構造。   The lower end of the beam receiving member or the slab receiving member is joined to an end jig provided with a peripheral wall portion surrounding the lower end, 7. Anti-vibration structure of ramen viaduct.
JP2018134382A 2018-07-17 2018-07-17 Vibration isolation structure for rigid-frame viaduct Pending JP2020012280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134382A JP2020012280A (en) 2018-07-17 2018-07-17 Vibration isolation structure for rigid-frame viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134382A JP2020012280A (en) 2018-07-17 2018-07-17 Vibration isolation structure for rigid-frame viaduct

Publications (1)

Publication Number Publication Date
JP2020012280A true JP2020012280A (en) 2020-01-23

Family

ID=69169517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134382A Pending JP2020012280A (en) 2018-07-17 2018-07-17 Vibration isolation structure for rigid-frame viaduct

Country Status (1)

Country Link
JP (1) JP2020012280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021102108A1 (en) 2020-01-29 2021-07-29 Kabushiki Kaisha Toyota Jidoshokki CONTROL UNIT FOR CONTROLLING A SELF-IGNITING COMBUSTION ENGINE
KR102456492B1 (en) 2021-11-25 2022-10-25 단국대학교 산학협력단 Damping fixture for seismic reinforcing of building
KR20230045437A (en) * 2021-09-28 2023-04-04 주식회사 렉스코 Stress Reinforced Steel Composite Member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064624A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge
JP2005083090A (en) * 2003-09-09 2005-03-31 Tokai Univ Prop type damping device
JP2005282079A (en) * 2004-03-29 2005-10-13 Central Japan Railway Co Vibration control structure of viaduct and construction method
US9732517B1 (en) * 2016-06-06 2017-08-15 Chun-Hao Huang Earthquake resistant and reinforcing device for buildings and bridges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064624A (en) * 2001-08-24 2003-03-05 Railway Technical Res Inst Earthquake resistant reinforcing method of existing reinforced concrete elevated bridge
JP2005083090A (en) * 2003-09-09 2005-03-31 Tokai Univ Prop type damping device
JP2005282079A (en) * 2004-03-29 2005-10-13 Central Japan Railway Co Vibration control structure of viaduct and construction method
US9732517B1 (en) * 2016-06-06 2017-08-15 Chun-Hao Huang Earthquake resistant and reinforcing device for buildings and bridges

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021102108A1 (en) 2020-01-29 2021-07-29 Kabushiki Kaisha Toyota Jidoshokki CONTROL UNIT FOR CONTROLLING A SELF-IGNITING COMBUSTION ENGINE
KR20230045437A (en) * 2021-09-28 2023-04-04 주식회사 렉스코 Stress Reinforced Steel Composite Member
KR102604117B1 (en) * 2021-09-28 2023-11-20 (주)렉스코 Stress Reinforced Steel Composite Member
KR102456492B1 (en) 2021-11-25 2022-10-25 단국대학교 산학협력단 Damping fixture for seismic reinforcing of building

Similar Documents

Publication Publication Date Title
JP2020012280A (en) Vibration isolation structure for rigid-frame viaduct
JP5539554B1 (en) Girder bridge connection structure and girder bridge structure
JP2015031046A (en) Function separation type vibration control structure of bridge
JP2013040497A (en) Vibration control beam and gantry beam having vibration control beam
JP2014194116A (en) Vibration control structure of building
JP2019073885A (en) Vibration displacement suppressing structure of structure group
KR101245107B1 (en) Anti vibration device for construction
JP4970234B2 (en) Bridge vibration control device and viaduct
JP6504363B2 (en) Vibration control structure of viaduct
JP6004617B2 (en) Damping beam and portal beam having the damping beam
KR101388416B1 (en) Brace type damper
JP7239458B2 (en) Railway bridge girder end structure
JP4835948B2 (en) Interdigit connection device
JP4049120B2 (en) Building seismic control structure
JP5120676B2 (en) Interdigit connection device
JP2008286262A (en) Vibration control floor structure
JP3159643B2 (en) Seismic isolation bridge prevention device
JP6756441B2 (en) Vibration damping device and vibration damping structure of structure
JP6837865B2 (en) Vibration control building
JP5294133B2 (en) Interdigit connection device
JP4930183B2 (en) Damping floor structure
JP5028999B2 (en) Double floor structure
JP6411297B2 (en) Damping damper
JP5706952B1 (en) Bridge structure and existing bridge reinforcement method
KR101945328B1 (en) Vibration reducing apparatus and bridge with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510