JP5539554B1 - Girder bridge connection structure and girder bridge structure - Google Patents

Girder bridge connection structure and girder bridge structure Download PDF

Info

Publication number
JP5539554B1
JP5539554B1 JP2013019279A JP2013019279A JP5539554B1 JP 5539554 B1 JP5539554 B1 JP 5539554B1 JP 2013019279 A JP2013019279 A JP 2013019279A JP 2013019279 A JP2013019279 A JP 2013019279A JP 5539554 B1 JP5539554 B1 JP 5539554B1
Authority
JP
Japan
Prior art keywords
girder
bridge
girder bridge
connection structure
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013019279A
Other languages
Japanese (ja)
Other versions
JP2014148868A (en
Inventor
亮平 黒沢
恵三 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosawa Construction Co Ltd
Original Assignee
Kurosawa Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosawa Construction Co Ltd filed Critical Kurosawa Construction Co Ltd
Priority to JP2013019279A priority Critical patent/JP5539554B1/en
Application granted granted Critical
Publication of JP5539554B1 publication Critical patent/JP5539554B1/en
Publication of JP2014148868A publication Critical patent/JP2014148868A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

【課題】巨大地震及び、巨大地震に伴って発生する巨大津波にも耐えられるようにできる桁橋間の連結構造、および、その桁橋構造を提供する。
【解決手段】多径間に設置された複数の橋脚1上に架設された桁橋4を連結する構造であって、橋脚1上に凸型柱頭3が一体的に設けられ、凸型柱頭3の両側に設置された桁橋4を、凸型柱頭3を貫通したPC鋼材8で連結し、PC鋼材8を緊張定着することによってプレストレスを付与して凸型柱頭3と桁橋4とを一体的に剛性連結する構成と、または、PC鋼材8には緊張力を付与せずまたは0.2Puまでの緊張力で凸型柱頭3と桁橋4とを弾性連結することによって2つの連結構造を得ることであり、それに伴う桁橋構造は、その2つの連結構造を組み合わせて桁橋構造を構築することにより、強度的に強い桁橋となる。
【選択図】図2
The present invention provides a connecting structure between girder bridges and a girder bridge structure capable of withstanding a huge earthquake and a huge tsunami generated by the huge earthquake.
SOLUTION: A structure in which a girder bridge 4 installed on a plurality of bridge piers 1 installed between multiple diameters is connected, and a convex stigma 3 is integrally provided on the pier 1 so that the convex stigma 3 is provided. Girder bridges 4 installed on both sides of the steel plate are connected with PC steel material 8 penetrating the convex column head 3, and the pre-stress is applied by fixing the PC steel material 8 by tension, thereby connecting the convex column head 3 and the girder bridge 4. Two connection structures by either rigidly connecting integrally or by elastically connecting the convex capital 3 and girder bridge 4 with no tension to the PC steel 8 or with a tension up to 0.2 Pu The resulting girder bridge structure becomes a strong girder bridge by constructing a girder bridge structure by combining the two connecting structures.
[Selection] Figure 2

Description

本発明は、多径間に渡ってコンクリート桁橋が配設されて橋梁を構築する桁橋間の連結構造およびその桁橋構造に関するものである。   The present invention relates to a connection structure between girder bridges in which concrete girder bridges are arranged across multiple diameters to construct a bridge, and the girder bridge structure.

この種の多径間に渡って桁橋を構築する桁橋の連結構造として、複数の発明(技術)が従来具術として公知になっている。その公知に係る第1の従来技術としては、ガラス繊維、炭素繊維、不飽和ポリエステル繊維からなる群から選ばれた1または2種以上の材料をエポキシ樹脂でバインドした細径ロッドを三次元に編製し、マトリックス材としてエポキシ樹脂を含浸させて形成した複合材を、支点上で対向する単純桁の端部相互間に、介装すると共に、対向する単純桁の端部横桁をPC鋼棒で連結し、疑似連続桁橋とする構成の桁橋の連結構造である(特許文献1参照)。   A plurality of inventions (techniques) have been known as conventional techniques as a connecting structure of girder bridges for constructing girder bridges across such multi-diameters. As the first related art known in the art, a small-diameter rod in which one or more materials selected from the group consisting of glass fiber, carbon fiber and unsaturated polyester fiber are bound with an epoxy resin is knitted in three dimensions. In addition, the composite material formed by impregnating epoxy resin as a matrix material is interposed between the ends of the simple girders facing each other on the fulcrum, and the end cross beams of the facing simple girders are made of PC steel bars. It is the connection structure of the girder bridge of the structure connected and made into a pseudo continuous girder bridge (refer patent document 1).

この桁橋の連結構造は、新設の場合はもちろん、既設単純桁橋の端部に改造を施すことによって形成することができるものである。特有な性状と耐久性を持つ複合材を利用することによって、簡便に、連続桁に近い桁橋が得られ、走行性の改善と、伸縮継手の補修が不要となり経済効果や耐震性の向上も期待できる、というものである。   This girder bridge connection structure can be formed by modifying the end of an existing simple girder bridge as well as newly constructed. By using a composite material with unique properties and durability, it is easy to obtain a girder bridge close to a continuous girder, improving running performance and eliminating the need for repair of expansion joints, improving economic effects and earthquake resistance. It can be expected.

また、公知に係る第2の従来技術としては、単純桁橋が直列に連続して配設されて成る高架橋の、隣接する前記単純桁橋を接続連続化するものであって、隣接する前記単純桁橋が、前記両単純桁橋の桁配設域内に打設されて前記両単純桁橋に亘って連続する結合コンクリート部材によって結合されて連続化されていること、および上記結合コンクリート部材は、上記桁配設域に主桁と直行して配設された端面型枠板と、前記主桁の下面と略面一に排雪された底面型枠板とによって囲まれた箱状の空間内にコンクリートが打設充填されて形成されている構成の単純桁橋の連続化構造である(特許文献2参照)。   In addition, as a second related art which is publicly known, the adjacent simple girder bridges of the viaduct, in which simple girder bridges are continuously arranged in series, are connected continuously. The girder bridge is continuous by being joined in a girder arrangement area of both simple girder bridges and joined by a joining concrete member continuous over both simple girder bridges, and In a box-shaped space surrounded by an end face mold plate arranged in the girder arrangement area in a direction perpendicular to the main girder and a bottom mold plate that is snowed substantially flush with the lower surface of the main girder It is a continuous structure of a simple girder bridge having a structure in which concrete is cast and filled on the surface (see Patent Document 2).

この単純桁橋の連続化構造によれば、単純桁橋を結合コンクリート部材によって結合することにより、良好な連続性を有して強固に連続化することができ、車両の走行性が良くなり、車両通過時の振動が軽減されると共に生じた振動は結合コンクリート部材に吸収されるため劣化が抑制されるものである。また、結合コンクリート部材による連続化部位を支承を介して橋脚に作用する負のモーメントには、強固な結合コンクリート部材が抗して目地部への亀裂の発生を防ぐことができる、というものである。   According to the continuous structure of the simple girder bridge, by connecting the simple girder bridge with the connecting concrete member, it can be firmly continuous with good continuity, and the running performance of the vehicle is improved. The vibration generated when the vehicle passes is reduced and the generated vibration is absorbed by the bonded concrete member, so that deterioration is suppressed. In addition, a strong joint concrete member can resist the negative moment that acts on the pier through the support through the continuous part by the joint concrete member, and the occurrence of cracks in the joints can be prevented. .

さらに、公知に係る第3の従来技術としては、橋梁と橋脚とを接合する支承接合部構造であって、橋梁と橋脚との間には、コンクリート部の周囲を鋼板で囲んで成るコンクリート接合部が介在させられ、前記橋脚と前記橋梁とには、前記コンクリート部を通して、鉄筋は配筋されていること、および、前記橋梁側には、前記コンクリート部が延長されて貫入されている、または、前記橋梁と前記コンクリート部とは、一体成形されている構成の橋脚支承半固定接合部構造である(特許文献3参照)。   Furthermore, as a third related art which is publicly known, there is a bearing joint structure for joining a bridge and a pier, and a concrete joint formed by surrounding the concrete part with a steel plate between the bridge and the pier. The reinforcing bar is arranged through the concrete part to the bridge pier and the bridge, and the concrete part is extended and penetrated to the bridge side, or The bridge and the concrete portion have a structure of a pier support semi-fixed joint portion that is integrally formed (see Patent Document 3).

この橋脚支承半固定接合部構造によれば、橋脚と橋梁とを一体として設計するので、ピン支承構造、ローラ支承構造とは異なり橋全体の構造安定性が確認できる、橋脚と橋梁とが一体となっているため、ピン支承構造、ローラ支承構造と比べて、橋の構造耐力と変形性能が向上する、というものである。   According to this semi-fixed joint structure of the pier support, the pier and the bridge are designed as a single unit, so unlike the pin support structure and the roller support structure, the structural stability of the entire bridge can be confirmed. Therefore, the structural strength and deformation performance of the bridge are improved compared to the pin support structure and roller support structure.

特開平09−287111号公報JP 09-287111 A 特開平10−96207号公報JP-A-10-96207 特開2000−336618号公報JP 2000-336618 A

前記第1の従来技術においては、橋脚上面に径間毎にコンクリート桁を架設し、桁間に複合材の介装とPC鋼棒とによる弾性結合体で連結し、温度変化による桁橋の伸縮、地震時及び車両の通行に伴う桁橋の変形を吸収すると説明しているが、橋脚と桁橋とを直接剛結せずに支承を介して支持させた単純桁橋としているので、構造的には施工性が良いこと及び経済的であることは認められる。
しかしながら、構造的にみて、走行性が劣ること、振動騒音が大きいこと、1径間毎に消耗性の高い複合材による弾性結合体が必要であるから維持管理費が高く付くこと、支承での単純支持構造となっているから、径間中央部における主桁断面の曲げモーメントが大きくなるので断面を大きくしなければならないこと、特に、ノージョイント化で耐震性に劣るから橋脚上において桁橋の幅員方向のずれを常に監視する必要があるという課題を有している。
In the first prior art, concrete girders are erected on the upper surface of the pier for each span, and are connected by an elastic combination of composite materials and PC steel bars between the girders. However, it is explained that it absorbs the deformation of the girder bridge due to the earthquake and the traffic of the vehicle, but it is a simple girder bridge that is supported by the support without connecting the pier and the girder directly. It is recognized that the workability is good and economical.
However, structurally, the running performance is inferior, the vibration noise is large, the elastic coupling body with a highly consumable composite material is required for each span, and the maintenance cost is high. Because it has a simple support structure, the bending moment of the main girder cross section at the center of the span increases, so the cross section must be enlarged. There is a problem that it is necessary to constantly monitor the shift in the width direction.

また、前記第2の従来技術においては、隣接する単純桁橋の端面間に、端面型枠と底面型枠とによって囲まれた箱状の空間を作り、その空間内に現場打ちでコンクリートを打設し、支承の真上にある横桁により、床版と連結された剛性連結の連続桁橋構成になっているので、優れた走行性が期待できると共に振動騒音が緩和され、伸縮継手が不要であり維持管理が容易となり、桁橋同士が一体化されて耐震性が向上し、橋脚上では剛結となることにより負曲げモーメントが生ずるから、径間中央部の主桁断面に発生する曲げモーメントの最大値が単純桁よりも小さくなることは認められる。
しかしながら、連続桁としてのコンクリートのクリープ・乾燥収縮による不静定応力が生じることと、桁橋の温度変形量が可動支承部に累積されて伸縮量が大きくなり、その対応が難しくなること、および現場において型枠の組立作業等があって施工性が悪いばかりでなく、コスト高になるという問題点を有している。
In the second prior art, a box-shaped space surrounded by an end face formwork and a bottom face formwork is formed between the end faces of adjacent simple girder bridges, and concrete is cast in the space in the field. Because it is a continuous girder bridge structure with a rigid connection connected to the floor slab with a horizontal girder just above the support, excellent running performance can be expected, vibration noise is mitigated, and expansion joints are unnecessary Maintenance is easy, the girder bridges are integrated with each other to improve earthquake resistance, and a rigid bending on the pier causes a negative bending moment, so bending occurs in the main girder section at the center of the span. It is recognized that the maximum value of the moment is smaller than a simple digit.
However, static instability due to creep and drying shrinkage of concrete as a continuous girder occurs, the amount of temperature deformation of the girder bridge accumulates in the movable bearing, and the amount of expansion and contraction increases, making it difficult to cope with it, and There is a problem that not only the workability is poor due to the assembly work of the formwork at the site, but also the cost becomes high.

さらに、前記第3の従来技術においては、前記第2の従来技術と同様に、橋脚上面において予め鉄筋を突出させており、その突出鉄筋は橋脚間に架け渡した橋梁内のリング状鋼板内に挿通し、内部にコンクリートを充填して連結部を構成するものであって、橋脚と橋梁とは剛結合であるから、同様の効果をそうするものと認められるが、その反面、前記第2の従来技術と同様の問題点を有している。   Further, in the third prior art, similarly to the second prior art, a reinforcing bar is projected in advance on the upper surface of the pier, and the protruding reinforcing bar is placed in a ring-shaped steel plate in the bridge spanned between the piers. It is inserted and filled with concrete to form a connecting portion, and since the pier and the bridge are rigidly connected, it is recognized that the same effect is obtained, but on the other hand, the second It has the same problems as the prior art.

いずれにしても従来技術においては、共通の問題点として、桁橋軸方向において、桁橋間は連結されているが、桁橋と橋脚(橋台)とを支承を介して連結しているから、上下方向および桁橋軸と直角方向(道路の幅員方向)においては、強剛に連結していないため、巨大地震により落橋被害が多く発生する。特に、3.11の東日本大震災では、巨大地震に伴って巨大津波が発生した時に、下部構造(橋脚、橋台)は無傷であったが、桁を繋ぐアンカーバーが脆弱で津波による押し上げまたは揚力に耐えられなかったため、上部構造(桁橋)は悉く津波で破壊または流されて落橋被害が多く発生したとの報告があった。   In any case, in the prior art, a common problem is that the girder bridges are connected in the direction of the girder axis, but the girder bridge and the pier (abutment) are connected via a support. In the direction and the direction perpendicular to the girder bridge axis (in the direction of the width of the road), it is not rigidly connected. In particular, in the 3.11 Great East Japan Earthquake, when a huge tsunami occurred due to a huge earthquake, the underlying structure (piers and abutments) was intact, but the anchor bars connecting the girders were fragile and could be pushed up or lifted by the tsunami. There was a report that the superstructure (girder bridge) was destroyed or swept away by the tsunami, and a lot of falling bridge damage occurred because it could not withstand.

従って、本発明は、地震・津波対策として巨大地震には勿論のこと、巨大地震に伴って発生する巨大津波にも耐えられるようにし、安心・安全に使用できる落橋しない桁橋間の連結構造および桁橋構造を提供することを目的とする。   Accordingly, the present invention is not limited to earthquakes and tsunamis, but can withstand huge tsunamis that occur in conjunction with large earthquakes, and can be used safely and safely. The purpose is to provide a bridge structure.

発明は、前述の従来例の課題を解決する具体的手段として、多径間に設置された複数の橋脚上に凸型柱頭が一体的に設けられ、該凸型柱頭の両側に設置された桁橋を、該凸型柱頭を貫通したPC鋼材で連結して設置する構造であって、前記多径間桁橋の橋脚上面で連結して設置する構造は、前記PC鋼材にプレストレスを付与する剛性連結構造とプレストレスを付与しない弾性連結構造とを1径間ずつ交互に組み合わせて構築されることを特徴とする桁橋間の連結構造を提供するものである。 As a concrete means for solving the problems of the above-described conventional example, the invention is provided with convex column heads integrally provided on a plurality of bridge piers installed between multiple diameters, and girders installed on both sides of the convex column heads. A structure in which a bridge is connected and installed by a PC steel material penetrating the convex column head, and a structure in which the bridge is connected and installed on an upper surface of a pier of the multi-span girder bridge imparts prestress to the PC steel material. The present invention provides a connection structure between girder bridges, which is constructed by alternately combining a rigid connection structure and an elastic connection structure that does not impart prestress, one by one.

本発明に係る前記桁橋間の連結構造において、前記剛性連結構造は、前記PC鋼材を緊張定着することによってプレストレスを付与すると共に、橋脚の所要深さに下部を設置したPC鋼材で桁橋端部とを緊張定着する二重の剛性連結構造にすることを提供するものである。 In the connecting structure between the girder bridges according to the present invention, the rigid connecting structure applies pre-stress by tension fixing the PC steel material, and the PC steel material in which the lower part is installed at the required depth of the bridge pier. The present invention provides a double rigid connection structure that fixes the tension between the two parts .

また、前記桁橋間の連結構造において、前記弾性連結構造は、前記凸型柱頭を貫通したPC鋼材に緊張力を付与せずまたは0.2Puまでの緊張力で凸型柱頭と桁橋とを弾性連結構造にすることを提供するものである。 Further, in the connection structure between the girder bridges, the elastic connection structure does not apply tension to the PC steel material penetrating the convex column heads or elasticizes the convex column heads and the girder bridges with a tension force of up to 0.2 Pu. It is intended to provide a connection structure .

さらに、本発明に係る桁橋間の連結構造に関し、前記凸型柱頭の両側及び/又は橋脚の上部に弾性材を挟んで桁橋を設置する構成を付加的な要件として含むものである。 Furthermore, regarding the connection structure between girder bridges according to the present invention, a configuration in which girder bridges are installed with elastic materials sandwiched between both sides of the convex capital and / or the upper part of the bridge pier is included as an additional requirement.

本発明に係る桁橋間の連結構造によれば、多径間桁橋の橋脚上面で連結して設置する構造は、PC鋼材にプレストレスを付与する剛性連結構造とプレストレスを付与しない弾性連結構造とを1径間ずつ交互に組み合わせて構築される構造になっているので、巨大地震・巨大津波によって浮き上がることがなく、落橋防止対策として優れた効果を奏するのであり、また、その桁橋連結構造を採用することで出来上がった桁橋構造においても、巨大地震・巨大津波によって桁橋が浮き上がって破壊されたり押し流されたりすることがなく、落橋防止対策として優れた効果を奏するのである。
また、従来技術のような伸縮継手や落橋防止装置は不要となり、維持管理も容易になるし、全体として振動騒音が著しく緩和されるという優れた効果も奏する。
According to the connecting structure between the girder bridges according to the present invention, the structure to be connected and installed on the pier upper surface of the multi-span girder bridge includes a rigid connecting structure that applies prestress to the PC steel material and an elastic connecting structure that does not apply prestress. Since the structure is constructed by alternately combining each of the spans, it will not be lifted by a huge earthquake or tsunami, and will have an excellent effect as a measure to prevent falling bridges. Even in the girder bridge structure created by adopting, the girder bridge will not be lifted and destroyed or swept away by a huge earthquake or tsunami, and it will have an excellent effect as a measure to prevent falling bridges.
In addition, the expansion joint and the falling bridge prevention device as in the prior art are not required, the maintenance management becomes easy, and the excellent effect that the vibration noise is remarkably reduced as a whole is exhibited.

本発明の第1の実施の形態に係る桁橋間の連結構造の要部のみ略示的に示した側面図である。It is the side view which showed schematically only the principal part of the connection structure between the girder bridges concerning the 1st Embodiment of this invention. 第2の実施の形態に係る桁橋間の連結構造の要部のみ略示的に示した側面図である。It is the side view which showed only the principal part of the connection structure between the girder bridges concerning 2nd Embodiment schematically. 図1と図2のA−A線と、図2のB−B線に沿う略示的な断面図である。FIG. 3 is a schematic cross-sectional view taken along line AA in FIGS. 1 and 2 and line BB in FIG. 2. 本発明に係る橋梁構築における両端部の橋脚(橋台)と桁橋とを連結する一例を示した側面図である。It is the side view which showed an example which connects the bridge pier (abutment) and girder bridge of the both ends in the bridge construction which concerns on this invention. 図1の連結構造の他の実施の形態に係る要部のみ略示的に示した説明図である。It is explanatory drawing which showed only the principal part which concerns on other embodiment of the connection structure of FIG. 1 schematically. 図5のC−C線とD−D線に沿う略示的な断面図である。FIG. 6 is a schematic cross-sectional view taken along lines CC and DD in FIG. 5. 図1と図2の連結構造を1径間づつ交互に使用して構築した桁橋構造を略示的に示した側面図である。FIG. 3 is a side view schematically showing a girder bridge structure constructed by alternately using the connection structure of FIG. 1 and FIG. 図2の連結構造を使用して構築した桁橋構造を略示的に示した側面図である。It is the side view which showed schematically the girder bridge structure constructed | assembled using the connection structure of FIG. 図2の連結構造と従来における連続桁橋とを交互に使用して構築した桁橋構造を略示的に示した側面図である。FIG. 3 is a side view schematically showing a girder bridge structure constructed by alternately using the connection structure of FIG. 2 and a conventional continuous girder bridge. 図2の弾性連結構造と図5に示した剛性連結構造とを交互に使用して構築した桁橋構造を略示的に示した側面図である。FIG. 6 is a side view schematically showing a girder bridge structure constructed by alternately using the elastic connection structure of FIG. 2 and the rigid connection structure shown in FIG. 5.

本発明を図示の実施の形態に基づいて詳しく説明する。まず、図1、3に示した第1の実施の形態に係る桁橋間の連結構造において、例えば、河川や港湾などの橋梁を架設しようとする領域に、複数の橋脚または橋台が構築され、該橋脚の1径間毎に架設される桁橋の橋脚上における連結構造の1つを略示的に示した側面図であって、橋脚1における頭部2の上面には道路の幅員方向に沿って中央部に所要厚みで所要高さの凸型柱頭3が一体的に突出形成されている。そして、この凸型柱頭3の両側に桁橋4が架設されるのであり、その凸型柱頭3の高さは、架設される桁橋4の桁高よりも若干高く(後述する支承の厚み分)形成してある。   The present invention will be described in detail based on the illustrated embodiment. First, in the connection structure between the girder bridges according to the first embodiment shown in FIGS. 1 and 3, for example, a plurality of piers or abutments are constructed in a region where a bridge such as a river or a harbor is to be constructed, It is the side view which showed one of the connection structure on the bridge pier of the girder bridge constructed for every span of a bridge pier, Comprising: The upper surface of the head 2 in a bridge pier 1 follows the width direction of a road In the central portion, a convex stigma 3 having a required thickness and a required height is integrally formed to project. And the girder bridge 4 is erected on both sides of the convex stigma 3, and the height of the convex stigma 3 is slightly higher than the girder height of the girder bridge 4 to be erected (the thickness of the support described later). ) Is formed.

桁橋4は、軸芯方向(長さ方向)に沿って複数本の主桁5と、該主桁5の両端部に幅員方向(幅方向)に沿って一体的に取り付けた端横桁6とから構成されており、その桁橋4の架設については、橋脚1の頭部2上で凸型柱頭3の両側に所要厚みの支承7を幅員方向に配設し、その支承7に桁橋4の端部をそれぞれ載置して配設し、該両側に配設した桁橋4の端部同士を、凸型柱頭3を貫通したPC鋼材8にて連結し、該PC鋼材8を緊張定着することによってプレストレスを付与して凸型柱頭3と一体的に接合する。この場合に、桁橋4の端部および凸型柱頭3との間には目地設け所要の目地材を充填すると共に、PC鋼材8を挿通するためのシース9が予め設けられており、PC鋼材8をシース9に挿通して定着具10を介して緊張定着し、PC鋼材とシースとの間にグラウト(図示せず)を充填して固化(固着)することになる。   The girder bridge 4 includes a plurality of main girders 5 along the axial direction (length direction), and end cross girders 6 integrally attached to both ends of the main girder 5 along the width direction (width direction). As for the construction of the girder bridge 4, supports 7 having a required thickness are arranged in the width direction on both sides of the convex capital 3 on the head 2 of the pier 1, and the girder bridge is provided on the support 7. 4 end portions are placed and arranged, and the end portions of the girder bridges 4 arranged on both sides are connected by a PC steel material 8 penetrating the convex column head 3, and the PC steel material 8 is tensioned. By fixing, prestress is applied, and the convex stigma 3 is joined integrally. In this case, between the end of the girder bridge 4 and the convex stigma 3, a joint material for filling the joint is provided, and a sheath 9 for inserting the PC steel material 8 is provided in advance. 8 is inserted into the sheath 9 and is tension-fixed through the fixing device 10, and a grout (not shown) is filled between the PC steel material and the sheath to be solidified (fixed).

使用される目地材11としては、無収縮性モルタルなどが使用され、PC鋼材8を緊張定着することによってプレストレスを付与し、凸型柱頭3と両側の桁橋4との間が目地材11によって隙間なく埋められて一体的に連結構造となるのであり、この連結構造は、要するに、剛性連結構造といえるのである。なお、目地材11で埋められる目地間隔については、1径間の桁橋4の長さによる施工誤差を考慮して決められるし、支承7については、固定支承でも良いし、地震力を低減するために減衰機能を付与した免震支承としてもよい。要するに、支承7は桁橋4とそれを支持する橋脚1との設計条件によって従来の各種支承から適宜に選択して用いることができる。   As the joint material 11 to be used, a non-shrinkable mortar or the like is used, and prestress is applied by tension fixing the PC steel material 8, and the joint material 11 is formed between the convex capital 3 and the girder bridges 4 on both sides. In other words, the connection structure is integrally formed without gaps, and this connection structure can be said to be a rigid connection structure. In addition, about the joint space | interval filled with the joint material 11, it considers the construction error by the length of the girder bridge 4 between 1 diameter, and about the bearing 7, a fixed bearing may be sufficient and a seismic force is reduced. Therefore, it may be a seismic isolation bearing with a damping function. In short, the bearing 7 can be used by appropriately selecting from various conventional bearings according to the design conditions of the girder bridge 4 and the pier 1 supporting it.

次に、図2、3に示した第2の実施の形態に係る桁橋間の連結構造について説明する。
この実施例の連結構造は、要するに、弾性連結構造であって、前記第1の実施の形態と共通する構成部分が多く、相違する部分は少ないので、共通する構成部分については、実質的に前記第1の実施の形態と略同じであるので同一符号を付してその説明は省略する。この第2の実施の形態に係る要部の構成について説明すると、凸型柱頭3と桁橋4の端部との間に目地材に代えて弾性材12を挟んでまたは介在させて、貫通するPC鋼材8を強く緊張せずに緩まない程度、または0.2Pu程度までの緊張力で、桁橋4と凸型柱頭3とを接合したものである。
Next, a connection structure between girder bridges according to the second embodiment shown in FIGS. 2 and 3 will be described.
In short, the connection structure of this example is an elastic connection structure, and there are many components common to the first embodiment, and there are few differences. Therefore, the common components are substantially the same as those described above. Since it is substantially the same as the first embodiment, the same reference numerals are given and the description thereof is omitted. The configuration of the main part according to the second embodiment will be described. The elastic material 12 is inserted or interposed between the convex capital 3 and the end of the girder bridge 4 instead of the joint material. The girder bridge 4 and the convex stigma 3 are joined together with a tension force that does not loosen the PC steel material 8 without strong tension, or up to about 0.2 Pu.

この場合に使用される弾性材12としては、緩衝ゴムが好ましいが、これに限定されることなく、例えば、防振ゴム、積層ゴムまたは弾性バネ材等であっても良い。要するに、弾性変形して、桁橋4等の温度による伸縮や変形を吸収するものであれば良いし、地震等の水平力による衝撃を緩和して地震エネルギーを吸収できるものであれば良いのである。そして、弾性材12の厚みについては、上記伸縮や変形量およびエネルギー吸収能力によって適宜決められる。また、PC鋼材8の定着緊張力については、0〜0.2Pu(Puは、PC鋼材の引張荷重)の範囲であって、要するに、弾性変形ができるように実質的に高い緊張力は与えないようにするのである。   The elastic material 12 used in this case is preferably a buffer rubber, but is not limited thereto, and may be, for example, an anti-vibration rubber, a laminated rubber or an elastic spring material. In short, any material that elastically deforms and absorbs expansion and contraction due to temperature of the girder bridge 4 or the like may be used, or any material that can absorb the earthquake energy by relaxing the impact caused by the horizontal force such as an earthquake. . And about the thickness of the elastic material 12, it determines suitably with the said expansion-contraction and deformation amount, and energy absorption capability. Further, the fixing tension of the PC steel material 8 is in the range of 0 to 0.2 Pu (Pu is the tensile load of the PC steel material). In short, a substantially high tension force is not given so as to allow elastic deformation. To do so.

いずれにしても、PC鋼材8を緊張しない(緊張力=0)というのは、意識的に緊張力を与えないでそれ自体の弾性変形が可能な状態にするということであり、換言すれば、ローラー連結構造とするのである。そして、弾性材12と桁橋4および凸型柱頭3との隙間を無くして密着させて馴染ませるために、緊張力を0.2Pu程度までとするのが望ましく、この場合は、半固定連結構造となるのである。なお、架設した桁橋4の上面には、通常行われている桁間床版13と、車道舗装14と、両側に歩道調整用コンクリート15等が敷設される。
なお、PC鋼材8を緊張しない(緊張力=0)とする場合は、PC鋼材とシースとの隙間にグラウトを充填して固化した付着接合にすることによって、凸型柱頭と橋桁とが一体化連結されるから、両端の定着具を省略することができる。また、この場合では、PC鋼材の代わりに高強度棒鋼や鉄筋としても良い。
In any case, the fact that the PC steel material 8 is not tensioned (tension force = 0) means that the elastic deformation of itself is possible without intentionally applying tension force, in other words, A roller connection structure is adopted. And, in order to eliminate the gap between the elastic member 12 and the girder bridge 4 and the convex stigma 3 so as to be intimately fitted to each other, it is desirable to set the tension force to about 0.2 Pu. In this case, the semi-fixed connection structure It becomes. In addition, on the upper surface of the erected girder bridge 4, a slab floor slab 13 that is normally performed, a roadway pavement 14, sidewalk adjusting concrete 15 and the like are laid on both sides.
When the PC steel material 8 is not tensioned (tensile force = 0), the convex stigma and the bridge girder are integrated by filling the gap between the PC steel material and the sheath with a grout and solidifying the joint. Since they are connected, the fixing devices at both ends can be omitted. In this case, high strength steel bars and reinforcing bars may be used instead of the PC steel material.

また、橋梁を架設する陸側または土手側においては、図4に示したように、両端に形成された橋脚(橋台)1に対して架設される桁橋4は、片側ではあるが前記同様の弾性連結構造が好ましい。この場合でも、橋脚(橋台)1の頭部2の上面には道路の幅員方向に沿って所要高さの凸型柱頭3が一体的に突出形成され、桁橋4と凸型柱頭3との間に弾性材12を介在させ、支承7の上に桁橋4の端部を載置し、PC鋼材8により桁橋4と凸型柱頭3とを連結し、0〜0.2Pu程度の緊張力で定着させるのである。なお、橋梁の長さや、橋脚(橋台)の数(奇数か偶数)や、環境等によって、前記した剛性連結構造を採用する場合もある。   On the land side or bank side where the bridge is constructed, as shown in FIG. 4, the girder bridge 4 constructed with respect to the piers (abutments) 1 formed at both ends is the same as that described above, although it is on one side. An elastic connection structure is preferred. Even in this case, the convex stigma 3 having a required height is integrally formed on the upper surface of the head 2 of the pier (abutment) 1 along the width direction of the road so that the girder bridge 4 and the convex stigma 3 The end of the girder bridge 4 is placed on the support 7 with the elastic material 12 interposed therebetween, and the girder bridge 4 and the convex column head 3 are connected by the PC steel material 8, and the tension is about 0 to 0.2 Pu. It is fixed by force. The rigid connection structure described above may be employed depending on the length of the bridge, the number of piers (abutments) (odd number or even number), environment, and the like.

さらに、剛性連結構造の他の実施の形態について、図5、6を参照して説明する。
この実施の形態に係る剛性連結構造においては、前記第1の実施の形態に係る剛性連結構造を利用してさらに強化したものである。即ち、橋脚1に予め設置した下部PC鋼材16に対してジョイントカプラー17を介して上部PC鋼材18を連結し、定着具19で該上部PC鋼材18を緊張定着することによって桁橋4の主桁5間において端横桁6の上部にプレストレスを付与して、橋脚1と桁橋4とを接合する。この場合に、下部PC鋼材16は、所要深さに設置されるものであるが、その深さについては、例えば、橋脚1の頭部2内に所要アンカー長にするか、または、橋脚1の内部に設置されているPC鋼材を橋脚上面まで長く伸ばして用いても良いのであり、いずれにしても下部PC鋼材16の下端部には定着具20が取り付けられている。なお、この実施の形態においては、橋脚1の頭部2と桁橋4との間に前記目地材11と同様の目地材21を充填させる。
Furthermore, another embodiment of the rigid connection structure will be described with reference to FIGS.
The rigid connection structure according to this embodiment is further strengthened by using the rigid connection structure according to the first embodiment. That is, the upper PC steel material 18 is connected to the lower PC steel material 16 preliminarily installed on the pier 1 via the joint coupler 17, and the upper PC steel material 18 is tension-fixed by the fixing tool 19 to fix the main PC girder 4. The prestress is applied to the upper part of the end cross beam 6 between 5 and the pier 1 and the girder bridge 4 are joined. In this case, the lower PC steel material 16 is installed at a required depth. For example, the depth of the lower PC steel material 16 is set to a required anchor length in the head 2 of the pier 1 or the pier 1. The PC steel material installed inside may be extended to the upper surface of the pier, and in any case, the fixing tool 20 is attached to the lower end portion of the lower PC steel material 16. In this embodiment, the joint material 21 similar to the joint material 11 is filled between the head 2 of the pier 1 and the girder bridge 4.

このように、凸型柱頭3を貫通して両側の桁橋4をPC鋼材8にて連結し、該PC鋼材8を緊張定着することによってプレストレスを付与して凸型柱頭3と桁橋4とを一体的に接合する連結構造と、両側の桁橋4の各端部(端横桁)と橋脚1との間をPC鋼材16、18とで緊張定着した連結構造の二重の剛性連結構造によって、橋脚1と桁橋4との極めて強固な連結構造が得られるのであり、例えば、巨大な地震および巨大津波を受けても桁橋4が押し上げられたり、連結部が破壊されたりすることが無く、従来技術では例を見ない程の頑丈な連結構造とすることができるのである。   In this way, the convex stigma 3 and the girder bridge 4 are provided by prestressing by connecting the girder bridges 4 on both sides with the PC steel material 8 through the convex stigma 3 and fixing the PC steel material 8 in tension. And a rigid structure having a joint structure in which the ends of the girder bridges 4 on both sides (end cross girders) and the pier 1 are tension-fixed with PC steel materials 16 and 18. Depending on the structure, a very strong connection structure between the pier 1 and the girder bridge 4 can be obtained. For example, the girder bridge 4 can be pushed up or the connection part can be destroyed even if a huge earthquake or a huge tsunami is received. Therefore, it is possible to provide a connection structure that is not so strong as in the prior art.

前記したいずれの実施の形態において使用されるPC鋼材は、ボンドタイプとアンボンドタイプのいずれかから適宜選択して使用することができる。また、PC鋼棒としても良いが、弾性連結構造には、弾性変形や伸びが大きいPC鋼より線を用いることが望ましい。特に、防錆等を考慮して耐久性向上を図るためには、素線毎にエポキシ樹脂塗膜を施した全素線塗装型のPC鋼より線を使用することが望ましい。   The PC steel material used in any of the above-described embodiments can be used by appropriately selecting from either a bond type or an unbond type. Moreover, although it is good also as a PC steel rod, it is desirable to use a wire from PC steel with a large elastic deformation and elongation for an elastic connection structure. In particular, in order to improve durability in consideration of rust prevention and the like, it is desirable to use all-wire-coated type PC steel wires in which an epoxy resin coating is applied to each strand.

次に、桁橋構造に係る実施例について、図7乃至図10を参照して説明する。これらの実施例に係る桁橋構造は、それぞれ巨大地震および巨大津波に対して有効な構造である。
まず、図7に示した第1実施例の桁橋構造は、橋脚1に対する桁橋4を剛性連結構造と弾性連結構造とを1径間づつ交互に配置することによって構築されたものであり、この場合に、剛性連結構造における支承は固定支承とし、弾性連結構造の支承としては可動支承または弾性支承(水平分散支承または免震支承)とする。このようにすることで、桁橋構造として、熱や地震等による水平変形を吸収しながら橋脚に水平力を集中させずに分散することができ、それによって耐久性が向上するのである。
Next, an embodiment relating to a girder bridge structure will be described with reference to FIGS. The girder bridge structures according to these examples are effective structures against a huge earthquake and a huge tsunami, respectively.
First, the girder bridge structure of the first embodiment shown in FIG. 7 is constructed by arranging the girder bridge 4 with respect to the pier 1 by alternately arranging the rigid connection structure and the elastic connection structure one by one, In this case, the bearing in the rigid coupling structure is a fixed bearing, and the bearing in the elastic coupling structure is a movable bearing or an elastic bearing (horizontal distributed bearing or seismic isolation bearing). By doing so, the girder bridge structure can be dispersed without concentrating horizontal force on the pier while absorbing horizontal deformation due to heat, earthquake, etc., thereby improving durability.

図8に示した第2実施例の桁橋構造は、橋脚1に対する桁橋4を全て弾性連結構造を採用して構築されたものであり、この場合には、例えば、径間長さが長くて温度変化による桁橋間の伸縮量が大きかったり、または、地震時および車両の通行に伴う桁橋の変形量が大きい場合、各径間で変形量を吸収させて橋脚および支承に水平反力と変形量とを軽減させる構造性能を有するのである。   The girder bridge structure of the second embodiment shown in FIG. 8 is constructed by adopting an elastic connection structure for all the girder bridges 4 to the pier 1. In this case, for example, the span length is long. If there is a large amount of expansion / contraction between the girder bridges due to temperature changes, or if the girder bridge deformation amount is large during an earthquake or due to traffic of the vehicle, the amount of deformation is absorbed between the diameters and the horizontal reaction force is applied to the piers and supports. It has structural performance that reduces the amount of deformation.

図9に示した第3実施例の桁橋構造は、橋脚1に対して桁間を剛結された桁橋4または連続した桁橋4と、弾性連結構造とを組み合わせて構築されたものであり、桁間を剛結する方法としては、例えば、従来の連結鉄筋によるRC連結方式または主桁連結ケーブルによるPC連結方式としても良いし、径間にわたって橋脚を跨って掛けられた長い連続橋脚とする。いずれにしても、前記剛結連続桁橋を1径間おきに設置して、弾性連結構造を連接する橋脚に設置する構成とするものである。このように構成することで、剛結された桁橋または連続桁橋を受ける橋脚の上面に凸型柱頭を設けなくても、隣接する径間の橋脚では凸型柱頭を設けた弾性連結構造としているから、落橋することがなく、施工が簡単になり経済性が良く、径間長さが比較的短くて連続桁橋とする場合において好適である。   The girder bridge structure of the third embodiment shown in FIG. 9 is constructed by combining the girder bridge 4 or the continuous girder bridge 4 rigidly connected between the girder 1 and the elastic connection structure. Yes, as a method of rigidly connecting between the girders, for example, a conventional RC connecting method using connecting bars or a PC connecting method using main girder connecting cables, or a long continuous pier that spans the pier across the span, To do. In any case, the rigid continuous girder bridge is installed every other span, and the elastic connection structure is installed on the connecting pier. By configuring in this way, even if there is no convex column head on the upper surface of the bridge pier that receives the rigidly connected girder bridge or continuous girder bridge, the bridge connection between adjacent diameters has an elastic connection structure with a convex column head Therefore, it is suitable for the case where the bridge is not dropped, the construction is simple and economical, and the span length is relatively short so that a continuous girder bridge is used.

図10に示した第4実施例の桁橋構造は、特に、勾配付き不等高橋脚を有する桁橋(斜めに配設される桁橋)を示すものであり、図5に示した他の実施の形態に係る剛性連結構造と弾性連結構造とを1径間づつ交互に設置する構成としてものである。このように構成することによって、上下方向と共に桁橋軸と直交する方向(道路の幅員方向)にさらに強固に連結され、構造的に、横ねじれや横滑りに対する耐力が大幅に増大され、地震の衝撃力や津波の押し上げ力に対する耐力が一段と向上する構成になるのである。   The girder bridge structure of the fourth embodiment shown in FIG. 10 particularly shows a girder bridge (girder bridge arranged obliquely) having an uneven pier with a slope, and the other girder bridge shown in FIG. In this configuration, the rigid connection structure and the elastic connection structure according to the embodiment are alternately installed for each diameter. By configuring in this way, it is connected more firmly in the direction perpendicular to the girder bridge axis (the width direction of the road) as well as in the vertical direction, and structurally, the resistance to side torsion and skidding is greatly increased, and the impact of the earthquake This is a structure that further improves the resistance to force and tsunami push-up force.

以上説明したように、いずれの実施の形態に係る桁橋構造における共通事項として、コンクリート桁橋は、現場打ちコンクリートとしても良いし、プレキャストコンクリート製とすることもできるのである。さらに、桁橋の断面形状については、実施の形態ではT桁橋を示したが、これに限定されることなく、例えば、床版橋、中空床版橋または箱桁橋等としても良いことはいうまでもない。
また、PC鋼材の代わりに高強度棒鋼を用いて緊張材としても良い。
As described above, as a common matter in the girder bridge structure according to any embodiment, the concrete girder bridge may be cast-in-place concrete or may be made of precast concrete. Furthermore, regarding the cross-sectional shape of the girder bridge, the T-girder bridge is shown in the embodiment. However, the present invention is not limited to this. For example, a floor slab bridge, a hollow floor slab bridge, or a box girder bridge may be used. Needless to say.
Moreover, it is good also as a tension material using a high intensity | strength steel bar instead of PC steel materials.

本発明に係る桁橋間の連結構造およびその桁橋構造は、多径間に設置された複数の橋脚上に架設された桁橋間を連結する構造であって、橋脚上に凸型柱頭が一体的に設けられ、該凸型柱頭の両側に設置された桁橋を、該凸型柱頭を貫通したPC鋼材で連結し、該PC鋼材を緊張定着することによってプレストレスを付与して凸型柱頭と桁橋とを一体的に剛性連結するか、または、該PC鋼材には緊張力を付与せずまたは0.2Puまでの緊張力で凸型柱頭と桁橋とを弾性連結することによって2つの連結構造を得て、その2つの連結構造を組み合わせて桁橋構造を構築することにより、強度的に巨大地震・巨大津波に耐えられる桁橋が得られるのであり、この種橋梁に広く利用できる。   The connection structure between girder bridges according to the present invention and the girder bridge structure is a structure for connecting girder bridges installed on a plurality of bridge piers installed between multiple spans, and a convex stigma is integrally formed on the pier. The girder bridges installed on both sides of the convex capital are connected with PC steel material penetrating the convex capital, and the PC steel is tensioned and fixed to give prestress and Two connections by rigidly connecting the girder bridge integrally or by elastically connecting the convex column head and the girder bridge without applying tension to the PC steel or with tension up to 0.2 Pu By obtaining a structure and combining the two connecting structures to construct a girder bridge structure, a girder bridge that can withstand strong earthquakes and huge tsunamis can be obtained and can be widely used for this kind of bridge.

1 橋脚(橋台)
2 頭部
3 凸型柱頭
4 桁橋
5 主桁
6 端横桁
7 支承
8、16、18 PC鋼材
9 シース
10、19、20 定着具
11、21 目地材
12 弾性材
13 桁間床版
14 車道舗装
15 歩道調整コンクリート
17 ジョイントカプラー
1 Pier (Abutment)
2 Head 3 Convex 4 Girder Bridge 5 Main Girder 6 End Cross Girder 7 Bearing 8, 16, 18 PC Steel 9 Sheath 10, 19, 20 Fixing Tool 11, 21 Joint Material 12 Elastic Material 13 Girder Floor 14 Roadway Pavement 15 Sidewalk adjustment concrete 17 Joint coupler

Claims (4)

多径間に設置された複数の橋脚上に凸型柱頭が一体的に設けられ、該凸型柱頭の両側に設置された桁橋を、該凸型柱頭を貫通したPC鋼材で連結して設置する構造であって、
前記多径間桁橋の橋脚上面で連結して設置する構造は、前記PC鋼材にプレストレスを付与する剛性連結構造とプレストレスを付与しない弾性連結構造とを1径間ずつ交互に組み合わせて構築されること
を特徴とする桁橋間の連結構造。
Convex heads are integrally provided on a plurality of bridge piers installed between multiple diameters, and girder bridges installed on both sides of the convex heads are connected by PC steel material penetrating the convex heads. A structure to
The structure to be connected and installed on the pier upper surface of the multi-span girder bridge is constructed by alternately combining a rigid connection structure that applies pre-stress to the PC steel material and an elastic connection structure that does not apply pre-stress for each span. coupling structure between girder bridge, characterized in that the.
前記剛性連結構造は、前記PC鋼材を緊張定着することによってプレストレスを付与すると共に、橋脚の所要深さに下部を設置したPC鋼材で桁橋端部とを緊張定着する二重の剛性連結構造にすること
を特徴とする請求項1に記載の桁橋間の連結構造。
The rigid connection structure is a double rigid connection structure that applies pre-stress by fixing the PC steel material in tension, and tension-fixes the girder bridge end with PC steel material having a lower portion installed at the required depth of the pier. The connecting structure between girder bridges according to claim 1, wherein:
前記弾性連結構造は、前記凸型柱頭を貫通したPC鋼材に緊張力を付与せずまたは0.2Puまでの緊張力で凸型柱頭と桁橋とを弾性連結構造にすること
を特徴とする請求項1に記載の桁橋間の連結構造。
The elastic connection structure is characterized in that the convex column head and the girder bridge are formed into an elastic connection structure without applying a tension force to the PC steel material penetrating the convex column head or with a tension force of up to 0.2 Pu. Item 1. A connecting structure between girder bridges according to item 1.
前記凸型柱頭の両側及び/又は橋脚の上部に弾性材を挟んで桁橋を設置すること
を特徴とする請求項1乃至3のいずれか一項に記載の桁橋間の連結構造。
Install girder bridges with elastic material on both sides of the convex capital and / or the upper part of the pier.
The connection structure between girder bridges according to any one of claims 1 to 3 .
JP2013019279A 2013-02-04 2013-02-04 Girder bridge connection structure and girder bridge structure Active JP5539554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019279A JP5539554B1 (en) 2013-02-04 2013-02-04 Girder bridge connection structure and girder bridge structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019279A JP5539554B1 (en) 2013-02-04 2013-02-04 Girder bridge connection structure and girder bridge structure

Publications (2)

Publication Number Publication Date
JP5539554B1 true JP5539554B1 (en) 2014-07-02
JP2014148868A JP2014148868A (en) 2014-08-21

Family

ID=51409445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019279A Active JP5539554B1 (en) 2013-02-04 2013-02-04 Girder bridge connection structure and girder bridge structure

Country Status (1)

Country Link
JP (1) JP5539554B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330837A (en) * 2018-02-05 2018-07-27 石家庄铁道大学 Set up the construction method of girder steel
CN108505406A (en) * 2018-05-18 2018-09-07 中铁二院工程集团有限责任公司 A kind of full-prefabricated assembled concrete shipping suspension type monorail structure
CN109778662A (en) * 2019-03-14 2019-05-21 中铁第四勘察设计院集团有限公司 Across the rigid flute type beam bridge of shallow tunnel
CN110306425A (en) * 2019-06-05 2019-10-08 中铁二院工程集团有限责任公司 The pier bottom construction for bearing the squat pier rigid frame bridge of moment of flexure can significantly be reduced
CN112942072A (en) * 2021-02-04 2021-06-11 四川省交通勘察设计研究院有限公司 Beam falling prevention structure of assembled bridge
CN114875780A (en) * 2022-05-31 2022-08-09 中铁二院工程集团有限责任公司 Steel cover beam door type pier structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075121A (en) * 2014-10-09 2016-05-12 公益財団法人鉄道総合技術研究所 Earthquake-resistant and tsunami-resistant reinforcement method for existing bridge pier subjected to action of earthquake and tsunami
KR101587419B1 (en) * 2015-01-26 2016-01-21 충남대학교산학협력단 Partial Integral Bridge
JP6457296B2 (en) * 2015-02-23 2019-01-23 エム・エムブリッジ株式会社 Bridge
CN110055871B (en) * 2019-05-09 2021-10-15 周劲宇 Full-assembly B-G connection steel-concrete combined beam bridge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060824A (en) * 1996-08-21 1998-03-03 Murakami Kogyo Kk Bridge-drop prevention device of concrete bridge and construction method thereof
JP2001172913A (en) * 1999-12-16 2001-06-26 Kurosawa Construction Co Ltd Elevated bridge and its construction method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232211A (en) * 1995-02-28 1996-09-10 Tokai Rubber Ind Ltd Aseismatic connector for bridge
JP2978903B1 (en) * 1998-08-13 1999-11-15 黒沢建設株式会社 Viaduct

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060824A (en) * 1996-08-21 1998-03-03 Murakami Kogyo Kk Bridge-drop prevention device of concrete bridge and construction method thereof
JP2001172913A (en) * 1999-12-16 2001-06-26 Kurosawa Construction Co Ltd Elevated bridge and its construction method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330837A (en) * 2018-02-05 2018-07-27 石家庄铁道大学 Set up the construction method of girder steel
CN108330837B (en) * 2018-02-05 2019-11-05 石家庄铁道大学 Set up the construction method of girder steel
CN108505406A (en) * 2018-05-18 2018-09-07 中铁二院工程集团有限责任公司 A kind of full-prefabricated assembled concrete shipping suspension type monorail structure
CN109778662A (en) * 2019-03-14 2019-05-21 中铁第四勘察设计院集团有限公司 Across the rigid flute type beam bridge of shallow tunnel
CN109778662B (en) * 2019-03-14 2024-04-02 中铁第四勘察设计院集团有限公司 Rigid frame groove type beam bridge crossing shallow-buried tunnel
CN110306425A (en) * 2019-06-05 2019-10-08 中铁二院工程集团有限责任公司 The pier bottom construction for bearing the squat pier rigid frame bridge of moment of flexure can significantly be reduced
CN110306425B (en) * 2019-06-05 2024-03-22 中铁二院工程集团有限责任公司 Pier bottom structure of short pier rigid frame bridge capable of greatly reducing bearing bending moment
CN112942072A (en) * 2021-02-04 2021-06-11 四川省交通勘察设计研究院有限公司 Beam falling prevention structure of assembled bridge
CN114875780A (en) * 2022-05-31 2022-08-09 中铁二院工程集团有限责任公司 Steel cover beam door type pier structure

Also Published As

Publication number Publication date
JP2014148868A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP5539554B1 (en) Girder bridge connection structure and girder bridge structure
KR100743832B1 (en) Bridge construction method using preflex girder and integral abutment
KR100894542B1 (en) Jointless bridge
JP2007077630A (en) Continuous girder using precast main-girder segment, and its erection method
JP4957295B2 (en) Seismic control pier structure
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP2014066017A (en) Structure and method for seismically strengthening concrete column
KR101601675B1 (en) The construction method of multicomposite Rahmen bridge
JP3869236B2 (en) Seismic reinforcement method for existing reinforced concrete viaduct
KR102163560B1 (en) Girdir and bridge having soundproof wall using the same
KR100492335B1 (en) Reinforcement method to resist earthquakes for lower structure of bridge and there of apparatus
JP7266808B1 (en) Main girder continuous rigid connection method
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
JP6013701B2 (en) Bridge
JP4739072B2 (en) Girder structure and construction method when multiple simple girder bridges are used as one simple girder bridge
KR102033052B1 (en) Method for constructing truss bridge support with infilled tube using src girder
KR100622008B1 (en) Composition structure of integral abutment bridge
JP4780618B2 (en) Seismic reinforcement structure for viaduct
JP6536895B2 (en) Concrete wall structure and construction method for reinforced embankment integrated bridge
JP4835948B2 (en) Interdigit connection device
JP7100006B2 (en) Bridge collapse prevention structure
KR101259140B1 (en) Bridge with concrete beams having means for dispersing horizontal force
JP5120676B2 (en) Interdigit connection device
KR100559441B1 (en) Method for raising a bridge and the raising structure
KR100554533B1 (en) Construction method for rhamen type hybrid bridge using the post rigid system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5539554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250