JP2020011207A - Flocculant injection controller - Google Patents

Flocculant injection controller Download PDF

Info

Publication number
JP2020011207A
JP2020011207A JP2018136048A JP2018136048A JP2020011207A JP 2020011207 A JP2020011207 A JP 2020011207A JP 2018136048 A JP2018136048 A JP 2018136048A JP 2018136048 A JP2018136048 A JP 2018136048A JP 2020011207 A JP2020011207 A JP 2020011207A
Authority
JP
Japan
Prior art keywords
coagulant
coagulation
injection
state monitoring
flocculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018136048A
Other languages
Japanese (ja)
Other versions
JP6699690B2 (en
Inventor
長尾 信明
Nobuaki Nagao
信明 長尾
保 牛山
Tamotsu Ushiyama
保 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018136048A priority Critical patent/JP6699690B2/en
Priority to PCT/JP2019/028113 priority patent/WO2020017560A1/en
Priority to TW108125619A priority patent/TW202007951A/en
Publication of JP2020011207A publication Critical patent/JP2020011207A/en
Application granted granted Critical
Publication of JP6699690B2 publication Critical patent/JP6699690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Abstract

To provide a flocculant injection controller capable of appropriately controlling each injection amount when injecting two or more kinds of flocculants.SOLUTION: A first flocculant is added to a first flocculation tank 3 by a first chemical injector 4. The detection signal of a first flocculation state monitoring sensor 5 is input into a controller 6 and the first chemical injector 4 is controlled. A second flocculant is added to a second flocculation tank 8 by a second chemical injector 9. The detection signal of a second flocculation state monitoring sensor 10 is input into the controller 6 and the second chemical injector 9 is controlled. Flocculation state monitoring sensors 5, 10 have light emission parts irradiating laser beams toward a flocculation treatment liquid and light receiving parts where a light receiving optical axis is in an orthogonal direction to the light emission optical axis of the light emission part and flocculation behaviors in the flocculation tanks are determined from change by time of scattered light intensity signals.SELECTED DRAWING: Figure 1

Description

本発明は、各種産業排水や工業用水等を凝集処理する際に用いられる凝集剤注入制御装置に係り、特に、原水に無機凝集剤を添加した後、有機凝結剤を添加する凝集処理に好適な凝集剤注入制御装置に関する。   The present invention relates to a coagulant injection control device used when performing coagulation treatment of various industrial wastewater or industrial water, etc., in particular, after adding an inorganic coagulant to raw water, suitable for coagulation treatment to add an organic coagulant The present invention relates to a coagulant injection control device.

各種排水・用水から、濁質および有機物等を除去するために凝集処理を行う場合、塩化鉄やポリ塩化アルミニウムなどの無機凝集剤と有機凝結剤とを併用することがある。こうした2種類の薬品を用いることで、凝集フロックの粗大化が生じ後段の固液分離操作が容易になるほか、無機凝集剤の添加量を抑えることによる汚泥発生量の削減が可能となる。   When coagulation treatment is performed to remove turbidity, organic matter, and the like from various kinds of wastewater and water, an inorganic coagulant such as iron chloride or polyaluminum chloride may be used in combination with an organic coagulant. By using these two types of chemicals, the flocculation floc is coarsened and the subsequent solid-liquid separation operation is facilitated, and the amount of sludge generated can be reduced by suppressing the addition amount of the inorganic flocculant.

凝集剤は、被処理水の水質に応じて適切な量を添加する必要がある。薬品添加量(注入量)が不足すれば、被処理水中に含まれる濁質や有機物の除去が不十分となり、処理水質が悪化する。一方、薬品添加量が過剰であると、薬品が後段へリークし、後段処理での負荷増大や汚染を引き起こす可能性がある。   It is necessary to add an appropriate amount of coagulant according to the quality of the water to be treated. If the amount of chemicals added (the amount injected) is insufficient, the removal of turbidity and organic substances contained in the water to be treated becomes insufficient, and the quality of the treated water deteriorates. On the other hand, if the added amount of the chemical is excessive, the chemical leaks to the subsequent stage, which may cause an increase in load and contamination in the subsequent processing.

最適な薬品添加量を決定するためには、ジャーテストを行うことが基本的であるが、手間を要し、被処理水の水質変動のたびにジャーテストを行うことは、実際の水処理において、変動に即時対応することができず、現実的ではない。   To determine the optimal amount of chemicals to be added, it is fundamental to perform a jar test.However, it takes time and effort to perform a jar test every time the water quality of the water to be treated fluctuates. , Cannot respond immediately to fluctuations and is not realistic.

特許文献1,2には、レーザー光を水中に向けて照射し、水中のフロック等によって散乱される散乱光を受光して凝集状態を測定する凝集状態モニタリングセンサーを用いて凝集剤添加を制御することが記載されている。   Patent Literatures 1 and 2 disclose that a laser beam is directed toward water, and the addition of a flocculant is controlled using a flocculation state monitoring sensor that measures the flocculation state by receiving scattered light scattered by flocs or the like in the water. It is described.

特開2002−195947号公報JP 2002-195947 A 特開2017−26438号公報JP-A-2017-26438

従来、無機凝集剤と有機凝結剤とによって凝集処理する場合、前段で注入する無機凝集剤(ポリ塩化アルミ等)と、その後段で注入する有機凝結剤(高分子凝集剤等)のうち、大量に注入され、ケーキ発生量に大きく影響する無機凝集剤の注入量を制御することで、最終的に得られる効果の最大化を図っている。有機凝結剤の注入量は、無機凝集剤の注入量に比べて非常に少ないこともあって、必要十分な量を定量注入し、原水の水質変動があったときに有機凝結剤の注入量を調整することが多い。   Conventionally, when coagulating with an inorganic coagulant and an organic coagulant, a large amount of the inorganic coagulant (polyaluminum chloride, etc.) injected in the first stage and the organic coagulant (polymer coagulant, etc.) injected in the subsequent stage is used. By controlling the amount of the inorganic coagulant that is injected into the container and greatly affects the amount of cake generated, the effect obtained finally is maximized. Since the injection amount of the organic coagulant is very small compared to the injection amount of the inorganic coagulant, a necessary and sufficient amount is injected in a fixed amount, and when the water quality of the raw water fluctuates, the injection amount of the organic coagulant is reduced. Often adjusted.

最近の食品製造業のように、多品種少量生産に伴って排水の成分が頻繁に変化する場合、有機凝結剤注入量の調整頻度が多くなる。   When the components of waste water frequently change with the production of various varieties and small quantities as in the recent food manufacturing industry, the frequency of adjusting the injection amount of the organic coagulant increases.

凝集状態モニタリングセンサーを用いて凝集剤注入量を制御する場合、有機凝結剤を注入した後に該モニタリングセンサーによって凝集状態をモニタリングし、その結果に基づいて無機凝集剤の注入量を制御することが行われている。   When controlling the coagulant injection amount using the coagulation state monitoring sensor, the coagulation state is monitored by the monitoring sensor after injecting the organic coagulant, and the injection amount of the inorganic coagulant is controlled based on the result. Have been done.

このような凝集状態モニタリングセンサーに基づく薬注制御においては、凝集状態モニタリングセンサーで検出される凝集状態(フロック間のSS濃度やフロックからの散乱光強度分布)変化が、無機凝集剤及び有機凝結剤のいずれの注入量の影響を大きく受けているかを判断することが重要である。この判断を行うために、無機凝集剤の薬注量を定期的に変動させ、凝集状態モニタリングセンサーによる凝集状態の検出値変化を観察する方法が考えられる。しかし、この方法では、現れた凝集状態の変化が、果たして無機凝集剤の薬注量の変化によるものか、それとも偶発的に有機凝結剤薬注量と凝集状態の関係に生じた変化の影響かを判断することが困難である。   In the drug injection control based on such an aggregation state monitoring sensor, a change in the aggregation state (SS concentration between flocs and intensity distribution of scattered light from the flocs) detected by the aggregation state monitoring sensor is caused by an inorganic flocculant and an organic flocculant. It is important to determine which injection amount is significantly affected by the injection amount. In order to make this determination, a method of periodically changing the amount of the inorganic coagulant injected and observing a change in the detected value of the coagulation state by the coagulation state monitoring sensor can be considered. However, in this method, is the change in the coagulation state that appears due to a change in the dosage of the inorganic coagulant, or is it an accidental change in the relationship between the dosage of the organic coagulant and the coagulation state? Is difficult to judge.

そこで、従来は、現場の管理者が定期的に凝集槽のフロック状態を目視観察し、有機凝結剤の薬注量は自動制御により調整したまま、無機凝集剤の薬注量を手動で調整する方法がとられている。しかし、この方法は、受け入れる排水の性状が短期間で変動する場合には、調整の頻度が多くなり、現場管理者の負担が増大する。   Therefore, conventionally, an on-site manager periodically visually observes the floc state of the coagulation tank, and manually adjusts the inorganic coagulant injection amount while automatically adjusting the organic coagulant injection amount. The method has been taken. However, in this method, when the properties of the wastewater to be received fluctuate in a short period of time, the frequency of adjustment increases, and the burden on the site manager increases.

本発明は、2種以上の凝集剤を注入する場合、各々の注入量を的確に制御することができる凝集剤注入制御装置を提供することを目的とする。   An object of the present invention is to provide a coagulant injection control device capable of accurately controlling the amount of each coagulant when two or more coagulants are injected.

本発明の凝集剤注入制御装置は、第1ないし第n(nは2以上)の凝集槽に設けられた第1ないし第nの薬注装置と、該第1ないし第nの凝集槽の処理液を測定可能に設けられた第1ないし第nの凝集状態モニタリングセンサーと、各凝集状態モニタリングセンサーの検出結果に基づいて各薬注装置の薬注量を制御する制御器とを有し、各凝集状態モニタリングセンサーは、水中にレーザ光を照射する照射部と、散乱光を受光する受光部とを有し、該制御器は、散乱光強度信号の時間的な変化から、凝集槽内のフロック形成状態を判断する。   A coagulant injection control device according to the present invention includes a first to n-th chemical injection devices provided in first to n-th (n is 2 or more) coagulation tanks, and a treatment of the first to n-th coagulation tanks. A first to an n-th aggregation state monitoring sensor provided so as to be capable of measuring a liquid, and a controller for controlling a drug injection amount of each injection device based on a detection result of each aggregation state monitoring sensor; The coagulation state monitoring sensor has an irradiation unit that irradiates laser light into water and a light receiving unit that receives scattered light, and the controller uses the time change of the scattered light intensity signal to detect a floc in the coagulation tank. Determine the state of formation.

本発明の一態様では、前記制御器は、あらかじめ設定した演算式により必要な薬注量を算出する。   In one aspect of the present invention, the controller calculates a required medicine injection amount by a preset arithmetic expression.

本発明の一態様では、前記第1の凝集剤として無機凝集剤が薬注される第1の凝集槽と、前記第2の凝集剤として高分子凝集剤が薬注される第2の凝集槽とを有する。   In one embodiment of the present invention, a first coagulation tank in which an inorganic coagulant is dispensed as the first coagulant, and a second coagulation tank in which a polymer coagulant is dispensed as the second coagulant And

本発明の凝集剤注入制御装置では、凝集剤が注入される各凝集槽の凝集状態をそれぞれモニタリングし、各凝集剤の注入量を個別に的確に制御することができる。   In the coagulant injection control device of the present invention, the coagulation state of each coagulation tank into which the coagulant is injected can be monitored, and the injection amount of each coagulant can be individually and accurately controlled.

実施の形態に係る凝集剤注入制御装置の構成図である。It is a lineblock diagram of a coagulant injection control device concerning an embodiment.

以下、図1を参照して実施の形態に係る凝集剤注入制御装置1について説明する。   Hereinafter, the coagulant injection control device 1 according to the embodiment will be described with reference to FIG.

この凝集剤注入制御装置1では、被処理水である原水は、流入管2を介して第1凝集槽3に導入され、第1薬注装置4によって第1凝集剤が添加される。第1凝集槽3には第1凝集状態モニタリングセンサー5が設置されており、その検出信号が制御器6に入力される。制御器6はこの検出信号に基づいて第1薬注装置4を制御する。   In the coagulant injection control device 1, raw water, which is water to be treated, is introduced into the first coagulation tank 3 via the inflow pipe 2, and the first coagulant 4 adds the first coagulant. A first coagulation state monitoring sensor 5 is provided in the first coagulation tank 3, and a detection signal thereof is input to the controller 6. The controller 6 controls the first chemical infusion device 4 based on the detection signal.

第1凝集槽3内で凝集処理された液(第1凝集処理液)は、移流管7を介して第2凝集槽8に導入され、第2薬注装置9によって第2凝集剤が添加される。第2凝集槽8には第2凝集状態モニタリングセンサー10が設置されており、その検出信号が制御器6に入力される。制御器6はこの検出信号に基づいて第2薬注装置9を制御する。   The liquid subjected to the coagulation treatment in the first coagulation tank 3 (first coagulation treatment liquid) is introduced into the second coagulation tank 8 via the advection pipe 7, and the second coagulant 9 adds the second coagulant. You. A second coagulation state monitoring sensor 10 is provided in the second coagulation tank 8, and a detection signal thereof is input to the controller 6. The controller 6 controls the second chemical infusion device 9 based on the detection signal.

第2凝集槽8内で凝集処理された液(第2凝集処理液)は、流出管11を介して固液分離工程に送られる。   The liquid subjected to the coagulation treatment in the second coagulation tank 8 (second coagulation treatment liquid) is sent to the solid-liquid separation step via the outflow pipe 11.

この実施の形態では、第1凝集剤としては無機凝集剤が好適であり、第2凝集剤としては有機凝結剤特に高分子凝集剤とりわけカチオン性高分子凝集剤が好適である。   In this embodiment, an inorganic coagulant is suitable as the first coagulant, and an organic coagulant, particularly a polymer coagulant, particularly a cationic polymer coagulant is preferable as the second coagulant.

無機凝集剤としては塩化第二鉄、硫酸第二鉄、ポリ塩化第二鉄、ポリ硫酸第二鉄などの鉄系無機凝集剤や塩化アルミニウム、ポリ塩化アルミニウム、硫酸バンド、水酸化アルミニウム、酸化アルミニウムなどのアルミ系無機凝集剤が挙げられる。   Examples of the inorganic coagulant include iron-based inorganic coagulants such as ferric chloride, ferric sulfate, polyferric chloride, and ferric polysulfate, aluminum chloride, polyaluminum chloride, sulfate bands, aluminum hydroxide, and aluminum oxide. And aluminum-based inorganic flocculants.

カチオン性高分子凝集剤としては、ポリ(ジアリルジメチルアンモニウムクロリド)、ポリ(メタクリル酸2−ジメチルアミノエチル)、ポリジメチルアミノエチルメタクリレート塩化ベンジル四級塩、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリ(メタクリル酸2−ジメチルアミノエチル)、ポリ(2−ビニル−1−メチルピリニジウム)、ジアルキルアミン‐エピクロルヒドリン重縮合物、ポリリジン、キトサン、ジエチルアミノエチルデキストランなどが挙げられる。   Examples of the cationic polymer coagulant include poly (diallyldimethylammonium chloride), poly (2-dimethylaminoethyl methacrylate), polydimethylaminoethyl methacrylate benzyl quaternary salt, polyethyleneimine, polyallylamine, polyvinylamine, poly ( 2-dimethylaminoethyl methacrylate), poly (2-vinyl-1-methylpyridinium), dialkylamine-epichlorohydrin polycondensate, polylysine, chitosan, diethylaminoethyldextran and the like.

凝集状態モニタリングセンサー5,10は、好ましくは、特許文献1,2と同様に、凝集処理液に向ってレーザ光を照射する発光部と、受光光軸を該発光部の発光光軸と直交方向とした受光部とを有する。また、発光部の発行作動及び受光部の受光信号の解析を行うために、発光回路、検波回路及び計測回路が設置されている。計測回路は、タイミング回路、A/D変換部、演算部等を有する。   The coagulation state monitoring sensors 5 and 10 are preferably, as in Patent Documents 1 and 2, a light emitting unit that irradiates a laser beam toward the coagulation treatment liquid, and a light receiving optical axis in a direction orthogonal to the light emitting optical axis of the light emitting unit. And a light receiving unit. In addition, a light emitting circuit, a detection circuit, and a measurement circuit are provided for performing an issuance operation of the light emitting unit and analysis of a light receiving signal of the light receiving unit. The measurement circuit includes a timing circuit, an A / D conversion unit, a calculation unit, and the like.

特許文献1,2と同様に、発光部から計測領域に照射されたレーザー光が計測領域内の粒子によって散乱され、この散乱光が受光部で受光され、この受光強度の経時変化に基づいて凝集状態が計測される。   As in Patent Documents 1 and 2, the laser light emitted from the light emitting section to the measurement area is scattered by the particles in the measurement area, the scattered light is received by the light receiving section, and the light is aggregated based on the temporal change of the received light intensity. The state is measured.

発光回路は、タイミング回路からの信号に応じて発光部に一定の変調周波数を持った電気信号を送り、レーザ発光を行わせる。発光部は、発光回路からの信号によって、レーザ光を発光する。受光部は、レーザ光が水中の懸濁物に当たって発生した散乱光を受けて、電気信号に変換する。検波回路は、受光部からの電気信号から変調成分を除去し、散乱光強度に応じた受光電圧を出力する。   The light emitting circuit sends an electric signal having a constant modulation frequency to the light emitting unit in response to a signal from the timing circuit, and causes the light emitting unit to emit laser light. The light emitting section emits a laser beam according to a signal from the light emitting circuit. The light receiving unit receives the scattered light generated when the laser light hits the suspended matter in the water, and converts the scattered light into an electric signal. The detection circuit removes a modulation component from the electric signal from the light receiving unit and outputs a light receiving voltage according to the scattered light intensity.

計測回路 は、発光回路に発光のための信号(特定の周波数変調波)を送信すると共に、検波回路からの信号をデジタル信号に変換し、論理演算して凝集に関する情報を出力する。   The measuring circuit transmits a signal for light emission (a specific frequency modulated wave) to the light emitting circuit, converts a signal from the detection circuit into a digital signal, performs a logical operation, and outputs information on aggregation.

この凝集状態モニタリングセンサーとしては、特許文献1,2のモニタリング装置、特にそれらが特許された特許第4605327号公報、及び特許第6281534号公報に記載のモニタリング装置を好適に用いることができるが、これらに限定されるものではない。   As the agglutination state monitoring sensor, monitoring devices described in Patent Documents 1 and 2, in particular, monitoring devices described in Patent Nos. 4605327 and 6281534 to which the patents are applied can be suitably used. However, the present invention is not limited to this.

なお、特許第4605327号の凝集モニタリング装置は、
「 凝集処理される被測定流体中の懸濁物の状態を、その凝集物と区別して監視する凝集モニタリング装置であって、
所定の周波数にてAM変調したレーザ光を前記被測定流体中に照射するレーザ光照射部と、
前記レーザ光の照射領域における前記被測定流体中の粒子により散乱された散乱光を受光する散乱光受光部と、
この散乱光受光部によって受光された散乱光を電気信号に変換する光電変換回路と、
この光電変換回路にて変換された電気信号を前記所定の周波数にてAM検波して前記レーザ光による散乱光成分を抽出する検波回路と、
この検波回路による検波後の信号がピーク変動しているとき、前記検波後の信号の最低値の信号強度を前記被測定流体中における未凝集の懸濁物により散乱した散乱光の強度として、前記被測定流体中の凝集物による散乱光と区別して検出する最低値検出回路と
を備え、
前記信号強度の最低値の変化を前記被測定流体中における未凝集のコロイド粒子数の変化として検出することを特徴とする凝集モニタリング装置。」
である。
In addition, the coagulation monitoring device of Patent No. 4605327
An agglutination monitoring device that monitors a state of a suspension in a fluid to be measured to be subjected to agglutination, separately from the agglutinate,
A laser light irradiating unit for irradiating the laser light modulated at a predetermined frequency into the fluid to be measured,
A scattered light receiving unit that receives scattered light scattered by particles in the fluid to be measured in the irradiation region of the laser light,
A photoelectric conversion circuit that converts the scattered light received by the scattered light receiving unit into an electric signal;
A detection circuit for performing AM detection on the electric signal converted by the photoelectric conversion circuit at the predetermined frequency and extracting a scattered light component due to the laser light;
When the signal after detection by the detection circuit has a peak fluctuation, the signal intensity of the lowest value of the signal after the detection as the intensity of scattered light scattered by unagglomerated suspensions in the fluid to be measured, With a minimum value detection circuit to detect and distinguish from scattered light due to aggregates in the fluid to be measured,
An agglutination monitoring device, wherein a change in the minimum value of the signal intensity is detected as a change in the number of unagglomerated colloid particles in the fluid to be measured. "
It is.

特許第6281534号の凝集モニタリング装置は、
「 凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、
計測光を前記被処理水の計測領域に照射する計測光照射部と、
前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光部と、
前記散乱光受光部に得られる受光信号の振幅を計測する振幅計測手段を含み、計測された前記振幅の出現を監視および集計し、特定の振幅の発生率または発生頻度を算出して、前記被処理水中のフロックの粒径を表す前記被処理水の凝集に関わる指標を算出する計測値演算部と、
を備え、
前記振幅計測手段は、前記受光信号が上昇から下降に変化する第1の変曲点および下降から上昇に変化する第2の変曲点を検出し、前記第1の変曲点および第2の変曲点のレベル差から前記振幅を計測することを特徴とする凝集モニタリング装置。」
である。
The coagulation monitoring device of Japanese Patent No. 6281534 is
A coagulation monitoring device for monitoring the treatment state of the water to be coagulated,
A measurement light irradiator that irradiates the measurement region with the measurement light of the water to be treated,
A scattered light receiving unit that receives scattered light due to the particles of the water to be treated in the measurement region,
An amplitude measuring means for measuring an amplitude of a received light signal obtained by the scattered light receiving unit, monitoring and counting the appearance of the measured amplitude, calculating an occurrence rate or occurrence frequency of a specific amplitude, and A measurement value calculating unit that calculates an index related to the aggregation of the water to be treated, which represents the particle size of the floc in the treated water,
With
The amplitude measuring means detects a first inflection point where the light receiving signal changes from rising to falling and a second inflection point changing from falling to rising, and detects the first inflection point and the second inflection point. An agglutination monitoring device, wherein the amplitude is measured from a level difference at an inflection point. "
It is.

本発明の一態様では、図1の実施の形態において、第1凝集剤として無機凝集剤を用い、第2凝集剤として高分子凝集剤を用い、凝集状態モニタリングセンサーとして上記特許文献1又は2等のものを用いる。   In one embodiment of the present invention, in the embodiment of FIG. 1, an inorganic coagulant is used as the first coagulant, a polymer coagulant is used as the second coagulant, and the above-mentioned Patent Document 1 or 2 is used as the coagulation state monitoring sensor Use

この場合、第1凝集槽3での無機凝集剤による凝集時に発生する細かなフロックの粒径分布を凝集状態モニタリングセンサー5の粒径計測機能により計測し、第2凝集槽8での高分子凝集剤によるフロック成長で計測可能となるフロック間濁度を凝集状態モニタリングセンサー10の濁度計測機能により計測する。または、もしくはこれに加えて、第1及び第2凝集状態モニタリングセンサーに、形成されるフロックの粒径分布計測機能を持たせることにより、第1及び第2凝集剤の注入量を個別に最適化させる。ただし、高分子凝集剤と無機凝集剤の投入量関係には、組み合わせによる最適薬注点の遷移が発生する場合があるため、あらかじめ制御器6には調整方法を組み込むことで、現場の管理者が目視管理する状態に近い、またはそれ以上の安定した凝集制御を実現する。   In this case, the particle size distribution of fine flocs generated at the time of coagulation by the inorganic coagulant in the first coagulation tank 3 is measured by the particle size measurement function of the coagulation state monitoring sensor 5, and the polymer coagulation in the second coagulation tank 8 is performed. The turbidity between flocs, which can be measured by floc growth by the agent, is measured by the turbidity measuring function of the coagulation state monitoring sensor 10. Alternatively, or additionally, the first and second coagulation state monitoring sensors are provided with a function of measuring the particle size distribution of the formed floc, so that the injection amounts of the first and second coagulants are individually optimized. Let it. However, since the transition of the optimal medicine dosing point may occur due to the combination in the relation between the amounts of the polymer flocculant and the inorganic flocculant, the controller 6 incorporates an adjustment method in advance, so that Realizes stable coagulation control close to or more than the state of visual management.

例えば、凝集状態モニタリングセンサー5から得た、粒径分布情報、またはフロック間濁度情報により第1凝集槽3への無機凝集剤注入量の過不足を判断し、薬注装置4による薬注量を制御するとともに、凝集状態モニタリングセンサー10から得た、粒径分布情報、またはフロック間濁度情報により第2凝集槽8における高分子凝集剤注入量の過不足を判断し、薬注装置9による薬注量を制御する。また、この時の第1薬注装置4による薬注量は、現状の薬注装置9の注入量における薬注装置4の薬注量の上限または下限を超えていないかを確認するとともに、これが下限〜上限間の範囲を逸脱しているときには、薬注装置4の下限〜上限の範囲内に設定するか、または第2薬注装置9の現状の薬注量を、第1薬注装置4の新たな注入量に変更することが可能(ただし、下限〜上限)となる薬注量に薬注装置9の薬注量を変更する機能が制御装置6に設けられている。   For example, the amount of the inorganic coagulant injected into the first coagulation tank 3 is determined based on the particle size distribution information or the inter-floc turbidity information obtained from the coagulation state monitoring sensor 5, and And controlling the amount of the polymer coagulant injected into the second coagulation tank 8 based on the particle size distribution information or the inter-floc turbidity information obtained from the coagulation state monitoring sensor 10. Control the dose of medicine. In addition, while confirming whether or not the amount of the medicine injected by the first injection device 4 at this time does not exceed the upper limit or the lower limit of the injection amount of the injection device 4 at the current injection amount of the injection device 9, When the value is out of the range between the lower limit and the upper limit, the value is set within the range from the lower limit to the upper limit of the dosing device 4 or the current dosing amount of the second dosing device 9 is changed to the first dosing device 4. The control device 6 has a function of changing the injection amount of the injection device 9 to the injection amount that can be changed to the new injection amount (however, the lower limit to the upper limit).

また、第2薬注装置9による薬注量は、現状の薬注装置4の注入量における薬注装置9の薬注量の上限または下限を超えていないかを確認するとともに、これが下限〜上限間の範囲を逸脱しているときには、薬注装置9の下限〜上限の範囲内に設定するか、または第1薬注装置4の現状の薬注量を、第2薬注装置9の新たな注入量に変更することが可能(ただし、下限〜上限)となる薬注量に薬注装置4の薬注量を変更する機能が制御装置6に設けられている。   In addition, while confirming whether or not the amount of the injection by the second injection device 9 exceeds the upper limit or the lower limit of the injection amount of the injection device 9 at the current injection amount of the injection device 4, the lower limit or the upper limit is checked. If it is out of the range, the value is set within the range from the lower limit to the upper limit of the chemical dosing device 9 or the current chemical dosing amount of the first chemical dosing device 4 is set to a new value. The control device 6 has a function of changing the injection amount of the injection device 4 to the injection amount that can be changed to the injection amount (however, the lower limit to the upper limit).

図1の凝集剤注入制御装置1において、薬注装置4,9により、凝集槽3,8にそれぞれ十分な凝集効果が得られるように凝集剤が過不足なく注入されている凝集良好状態において、原水流入量や、原水組成・性状に急激な変化が生じた場合、第1凝集剤の注入量を適正値に変更しないと、第1凝集槽3の凝集状態が悪化する。   In the coagulant injection control device 1 of FIG. 1, in the coagulation good state in which the coagulant is injected by the chemical dosing devices 4 and 9 so that a sufficient coagulation effect can be obtained in the coagulation tanks 3 and 8, respectively. In the case where the raw water inflow amount or the raw water composition / properties suddenly change, the coagulation state of the first coagulation tank 3 is deteriorated unless the injection amount of the first coagulant is changed to an appropriate value.

第1凝集剤(無機凝集剤)の注入量が不足する場合、第1凝集槽3にフロック形成速度の遅れやフロック成長不足が生じる。この現象は、凝集状態モニタリングセンサー5における散乱光強度において、一定以上の散乱光強度の発生割合の減少という形で観察される。逆に、無機凝集剤注入量が過剰となった場合には、フロック成長の促進であれば、より大きな散乱光の出現割合が増加することとなり、また十分な成長状態であれば、全体的な出現割合の増加となって表れる。   When the injection amount of the first flocculant (inorganic flocculant) is insufficient, the first flocculation tank 3 has a delay in floc formation speed or insufficient floc growth. This phenomenon is observed in the form of a decrease in the occurrence ratio of the scattered light intensity that is equal to or more than a certain value in the scattered light intensity in the aggregation state monitoring sensor 5. Conversely, when the amount of injected inorganic coagulant is excessive, if the growth of floc is promoted, the appearance ratio of larger scattered light will increase, and if the growth state is sufficient, the overall It appears as an increase in the appearance ratio.

第2凝集槽8における高分子凝集剤の注入量が不足するようになった場合には、架橋効果が薄れることで、十分なフロック成長が得られなくなり、凝集状態モニタリングセンサー10の検出散乱光強度において、一定以上の散乱光強度の出現割合が減少する。一方、高分子凝集剤の注入量が過剰であれば、凝集状態モニタリングセンサー10の検出散乱光強度において、比較的小さな散乱光強度の出現割合が減少する。また、高分子凝集剤が不足する場合、液中のSS分(フロックになりきらない懸濁物の量)が増加するので、フロックからの散乱光を除いた部分のフロックによらない散乱光強度(フロック間濁度)の最低値が上昇する。かかる最低値の上昇からも、高分子凝集剤の薬注量不足状態は検出可能となる。   When the injection amount of the polymer flocculant in the second flocculation tank 8 becomes insufficient, the crosslinking effect is weakened, so that sufficient floc growth cannot be obtained, and the scattered light intensity detected by the flocculation state monitoring sensor 10 , The appearance ratio of the scattered light intensity equal to or higher than a certain value decreases. On the other hand, if the injection amount of the polymer coagulant is excessive, the appearance ratio of relatively small scattered light intensity in the scattered light intensity detected by the aggregation state monitoring sensor 10 decreases. In addition, when the amount of the polymer flocculant is insufficient, the amount of the SS in the liquid (the amount of the suspension that cannot completely become a floc) increases, so that the scattered light intensity not depending on the floc except for the scattered light from the floc is increased. The minimum value of (turbidity between flocs) increases. Even from such a rise in the minimum value, it is possible to detect a state where the amount of the polymer coagulant is insufficient.

原水性状の変化により、凝集状態モニタリングセンサーの検出信号に変化が生じたとき、その変化が薬注量不足を表わすものであれば、薬注装置4,9による薬注量を増加させ、薬注量過剰を表わすものであるときには、各薬注装置4,9による薬注量を減少させるように制御器6による薬注制御が行われる。   When a change occurs in the detection signal of the agglutination state monitoring sensor due to a change in the raw water state, if the change indicates a shortage of the drug injection amount, the drug injection amount by the drug injection devices 4 and 9 is increased, and the drug injection is performed. When it indicates excess quantity, the control of the chemical injection by the controller 6 is performed so as to reduce the amount of chemical injection by each of the chemical injection devices 4 and 9.

なお、無機凝集剤と高分子凝集剤の注入量は、ほとんどの排水種においてある程度の相関性を持っている(例えば、無機凝集剤を増加させるときに高分子凝集剤も増加させる。)。また、凝集剤の種類によっては、無機凝集剤投入量のある程度の範囲までは、高分子凝集剤の注入量を一定量に維持しても凝集状態に問題を生じさせなかったり、逆に、汚泥ケーキ量に直結する無機凝集剤の注入量を抑えながら、無機凝結剤の注入量を制御することで対応可能な場合もある。これらの条件を織り込んだ演算式をあらかじめ制御器6に設定しておくことで、流入が想定される排水種に応じた薬注制御が可能となる。 In addition, the injection amount of the inorganic coagulant and the polymer coagulant has a certain degree of correlation in most of the drainage species (for example, when the inorganic coagulant is increased, the polymer coagulant is also increased). Also, depending on the type of coagulant, up to a certain range of the inorganic coagulant input amount, even if the injection amount of the polymer coagulant is maintained at a constant amount, no problem is caused in the coagulation state, and In some cases, this can be achieved by controlling the injection amount of the inorganic coagulant while suppressing the injection amount of the inorganic coagulant directly linked to the cake amount. By setting an arithmetic expression incorporating these conditions in the controller 6 in advance, it becomes possible to perform chemical injection control according to the type of drainage expected to flow.

上記説明では、凝集槽は2段に設けられているが、3段以上に設けられ、各々に薬注装置とそれを制御するための凝集状態モニタリングセンサーが設けられてもよい。   In the above description, the coagulation tank is provided in two stages. However, the coagulation tank may be provided in three or more stages, and each may be provided with a chemical dosing device and a coagulation state monitoring sensor for controlling the same.

1 凝集剤注入制御装置
3,8 凝集槽
4,9 薬注装置
5,10 凝集状態モニタリングセンサー
6 制御器
DESCRIPTION OF SYMBOLS 1 Coagulant injection control device 3,8 Coagulation tank 4,9 Chemical infusion device 5,10 Coagulation state monitoring sensor 6 Controller

Claims (3)

第1ないし第n(nは2以上)の凝集槽に設けられた第1ないし第nの薬注装置と、
該第1ないし第nの凝集槽の処理液を測定可能に設けられた第1ないし第nの凝集状態モニタリングセンサーと、
各凝集状態モニタリングセンサーの検出結果に基づいて各薬注装置の薬注量を制御する制御器とを有し、
各凝集状態モニタリングセンサーは、水中にレーザ光を照射する照射部と、散乱光を受光する受光部とを有し、
該制御器は、散乱光強度信号の時間的な変化から、凝集槽内のフロック形成状態を判断する凝集剤注入制御装置。
First to n-th chemical infusion devices provided in first to n-th (n is 2 or more) coagulation tanks;
First to n-th aggregation state monitoring sensors provided so as to be able to measure the processing liquid in the first to n-th aggregation tanks;
Having a controller to control the amount of drug injection of each drug injection device based on the detection result of each aggregation state monitoring sensor,
Each aggregation state monitoring sensor has an irradiation unit that irradiates laser light into water, and a light receiving unit that receives scattered light,
The controller is a coagulant injection controller that determines a floc formation state in the coagulation tank from a temporal change of a scattered light intensity signal.
前記制御器は、あらかじめ設定した演算式により必要な薬注量を算出する請求項1の凝集剤注入制御装置。   2. The coagulant injection control device according to claim 1, wherein the controller calculates a required amount of the medicine to be injected according to a preset arithmetic expression. 前記第1の凝集剤として無機凝集剤が薬注される第1の凝集槽と、前記第2の凝集剤として高分子凝集剤が薬注される第2の凝集槽とを有する請求項1又は2の凝集剤注入制御装置。   2. The method according to claim 1, further comprising a first coagulation tank in which an inorganic coagulant is dispensed as the first coagulant, and a second coagulation tank in which a polymer coagulant is dispensed as the second coagulant. 3. 2. Coagulant injection control device.
JP2018136048A 2018-07-19 2018-07-19 Flocculant injection controller Active JP6699690B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018136048A JP6699690B2 (en) 2018-07-19 2018-07-19 Flocculant injection controller
PCT/JP2019/028113 WO2020017560A1 (en) 2018-07-19 2019-07-17 Flocculant injection control device
TW108125619A TW202007951A (en) 2018-07-19 2019-07-19 Flocculant injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018136048A JP6699690B2 (en) 2018-07-19 2018-07-19 Flocculant injection controller

Publications (2)

Publication Number Publication Date
JP2020011207A true JP2020011207A (en) 2020-01-23
JP6699690B2 JP6699690B2 (en) 2020-05-27

Family

ID=69163909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136048A Active JP6699690B2 (en) 2018-07-19 2018-07-19 Flocculant injection controller

Country Status (3)

Country Link
JP (1) JP6699690B2 (en)
TW (1) TW202007951A (en)
WO (1) WO2020017560A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220023574A (en) * 2020-08-21 2022-03-02 주식회사 에코노벨 Automatic coagulant injection system using analysis of floc
KR20220023573A (en) * 2020-08-21 2022-03-02 주식회사 에코노벨 Floc growth measurement system for water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263506A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Dehydration method and device of sludge
JP2008264723A (en) * 2007-04-24 2008-11-06 Toray Ind Inc Method and apparatus for coagulating impurity
JP2015054284A (en) * 2013-09-12 2015-03-23 株式会社東芝 Water treatment system
JP2015085252A (en) * 2013-10-30 2015-05-07 株式会社日立製作所 Water treatment method and apparatus
WO2018110043A1 (en) * 2016-12-12 2018-06-21 栗田工業株式会社 Aggregation monitoring method, aggregation monitoring device, aggregation monitoring probe, and aggregation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263506A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Dehydration method and device of sludge
JP2008264723A (en) * 2007-04-24 2008-11-06 Toray Ind Inc Method and apparatus for coagulating impurity
JP2015054284A (en) * 2013-09-12 2015-03-23 株式会社東芝 Water treatment system
JP2015085252A (en) * 2013-10-30 2015-05-07 株式会社日立製作所 Water treatment method and apparatus
WO2018110043A1 (en) * 2016-12-12 2018-06-21 栗田工業株式会社 Aggregation monitoring method, aggregation monitoring device, aggregation monitoring probe, and aggregation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220023574A (en) * 2020-08-21 2022-03-02 주식회사 에코노벨 Automatic coagulant injection system using analysis of floc
KR20220023573A (en) * 2020-08-21 2022-03-02 주식회사 에코노벨 Floc growth measurement system for water
KR102426345B1 (en) 2020-08-21 2022-07-29 주식회사 에코노벨 Automatic coagulant injection system using analysis of floc
KR102462778B1 (en) * 2020-08-21 2022-11-04 주식회사 에코노벨 Floc growth measurement system for water

Also Published As

Publication number Publication date
TW202007951A (en) 2020-02-16
JP6699690B2 (en) 2020-05-27
WO2020017560A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6281534B2 (en) Aggregation monitoring apparatus, aggregation monitoring method, and aggregation system
WO2020017560A1 (en) Flocculant injection control device
JP2012196628A5 (en)
KR101648368B1 (en) Apparatus for water treatment injection, and control method
KR101523471B1 (en) Apparatus for automatic control of coagulant dosing and method for automatic control of coagulant dosing using the same
WO2023017637A1 (en) Flocculation processing device
JP6881515B2 (en) Coagulation processing equipment
WO2018110043A1 (en) Aggregation monitoring method, aggregation monitoring device, aggregation monitoring probe, and aggregation system
JP6673390B2 (en) Coagulant addition control method, control device and water treatment system
JP2013120107A (en) Floc strength measuring instrument
JP4985088B2 (en) Chemical injection control method
WO2016006419A1 (en) Clumping method and clumping device
JP4400721B2 (en) Water treatment system
WO2021070545A1 (en) Monitoring device and monitoring method for belt press dehydration system, and control device
JP4400720B2 (en) Water treatment system
JP7484974B2 (en) Method for determining flocculation state and method for flocculation treatment
WO2024018882A1 (en) Aggregation state determination method and aggregation processing method
WO2024018885A1 (en) Method for determining state of aggregation and method for processing aggregation
JP7363984B1 (en) Method for determining agglomeration state and agglomeration treatment method
Chou et al. Application of optical monitor to evaluate the coagulation of pulp wastewater
TW202415938A (en) Aggregation state determination method and aggregation processing method
JP2024044564A (en) Treatment method for wastewater from civil engineering works
JP2022156300A (en) Monitoring device, monitoring method and control device for dehydration system
WO2015151140A1 (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150