JP2020010359A - Tunnel disaster prevention system - Google Patents

Tunnel disaster prevention system Download PDF

Info

Publication number
JP2020010359A
JP2020010359A JP2019152418A JP2019152418A JP2020010359A JP 2020010359 A JP2020010359 A JP 2020010359A JP 2019152418 A JP2019152418 A JP 2019152418A JP 2019152418 A JP2019152418 A JP 2019152418A JP 2020010359 A JP2020010359 A JP 2020010359A
Authority
JP
Japan
Prior art keywords
current value
line
disaster prevention
current
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019152418A
Other languages
Japanese (ja)
Other versions
JP6885994B2 (en
Inventor
泰周 杉山
Yasunori Sugiyama
泰周 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2019152418A priority Critical patent/JP6885994B2/en
Publication of JP2020010359A publication Critical patent/JP2020010359A/en
Priority to JP2021081399A priority patent/JP7054749B2/en
Application granted granted Critical
Publication of JP6885994B2 publication Critical patent/JP6885994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Abstract

To make it possible to adequately determine a situation of insulation deterioration by continuing measurement and recording of line current without being disturbed by warning of current value abnormality even when the warning of current value abnormality is obtained via periodical measurement of current of a signal line to which a terminal apparatus is connected.SOLUTION: A tunnel disaster prevention system performs monitoring by connecting a terminal apparatus including a notification device and detector 16, 18 to a signal line drawn out from a disaster prevention reception board 10 into a tunnel. The disaster prevention reception board 10 includes line current monitoring means 72 for measuring and recording, in each predetermined period, a value of current flowing through the signal line to which the terminal apparatus is connected, determining current value abnormality and originating warning before notifying an external remote supervisory control facility 27 of the current value abnormality to make the facility originate warning when the measured value of current is equal to or larger than a predetermined threshold or exceeds the threshold, and canceling the current value abnormality before resuming current value measurement in each predetermined period when recovery operation by the disaster prevention reception board 10 or the remote supervisory control facility 27 is detected.SELECTED DRAWING: Figure 2

Description

本発明は、トンネル内に設置した通報装置や検知器等の端末機器を防災受信盤に接続してトンネル内の異常を監視するトンネル防災システムに関する。   TECHNICAL FIELD The present invention relates to a tunnel disaster prevention system that connects terminal devices such as a notification device and a detector installed in a tunnel to a disaster prevention receiver to monitor an abnormality in the tunnel.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両を守るため、非常用施設が設置されている。   2. Description of the Related Art Conventionally, an emergency facility is installed in a tunnel such as a motorway to protect persons and vehicles from a fire accident occurring in the tunnel.

このような非常用施設としては、火災の監視と通報のため火災検知器、手動通報装置、非常電話が設けられ、また火災の消火や延焼防止のために消火栓装置が設けられ、更にト
ンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧などが設置され、これらの非常用施設の端末機器を監視制御する防災受信盤を設けることで、トンネル防災システムを構築している。
Such emergency facilities are provided with fire detectors, manual notification devices, and emergency telephones for monitoring and reporting fires, and fire hydrant devices for extinguishing fires and preventing fire spread. To protect the inside of the duct from fire, a water spray that sprays water for fire extinguishing from a water spray head is installed, and a disaster prevention receiver that monitors and controls the terminal equipment of these emergency facilities is built to construct a tunnel disaster prevention system. are doing.

防災受信盤と端末機器で構成するトンネル防災システムは、R型伝送方式とP型直送方式に大別される。R型伝送方式は、伝送回線にアドレスを設定した火災検知器等の端末機器を接続し、伝送制御により端末機器単位に検知と制御を行う個別管理を可能とする。P型直送方式は、端末機器の種別に応じて所定の区画単位に分け、区画単位に引き出した信号回線に同一区画に属する複数の端末機器を接続し、信号回線単位に検知と制御を行う。   Tunnel disaster prevention systems composed of disaster prevention receivers and terminal devices are broadly classified into R-type transmission systems and P-type direct transmission systems. The R-type transmission system enables individual management by connecting a terminal device such as a fire detector having an address set to a transmission line and performing detection and control for each terminal device by transmission control. In the P-type direct transmission method, a plurality of terminal devices belonging to the same block are connected to a signal line drawn out in block units and are detected and controlled in signal line units.

R型伝送方式のトンネル防災システムは、端末機器による検知や制御が個別にできるため、機能及び管理面で様々な利点がある。一方、P型直送方式のトンネル防災システムは、火災検知器に伝送制御機能を設ける必要がなく、また、伝送距離が長くなっても中継増幅盤を設ける必要がないことから、R型伝送方式と比較してシステム構成が簡単で安価である。   The tunnel type disaster prevention system of the R-type transmission system has various advantages in terms of functions and management since detection and control can be individually performed by terminal devices. On the other hand, the tunnel type disaster prevention system of the P-type direct transmission system does not need to provide a transmission control function in the fire detector, and it is not necessary to provide a relay amplifier even if the transmission distance is long. The system configuration is simple and inexpensive in comparison.

トンネル防災システムとしては、R型伝送方式とP型直送方式のメリットとデメリット、トンネル長や車両の交通量等を考慮して、R型伝送方式又はP型直送方式のトンネル防災システムを構築するようにしている。   Considering the advantages and disadvantages of the R-type transmission method and the P-type direct transmission method, the tunnel length and the traffic volume of vehicles, etc., a tunnel disaster prevention system with an R-type transmission method or a P-type direct transmission method should be constructed. I have to.

ところで、P型直送方式のトンネル防災システムにあっては、手動通報装置、消火栓起動装置、ダクト温度検知器等の端末機器は、操作又は検知による信号出力部を無電圧a接点スイッチとして構成し、防災受信盤から引き出された信号回線に無電圧a接点スイッチを接続している。無電圧a接点スイッチは通常監視状態でオフしており、操作や検知動作によりオンして無電圧接点信号を出力する。   By the way, in the tunnel disaster prevention system of the P-type direct delivery system, terminal devices such as a manual notification device, a fire hydrant activation device, and a duct temperature detector configure a signal output unit by operation or detection as a no-voltage a contact switch, A no-voltage a-contact switch is connected to a signal line drawn from the disaster prevention receiver. The no-voltage a-contact switch is normally off in the monitoring state, and is turned on by an operation or a detection operation to output a no-voltage contact signal.

具体的には、防災受信盤側から信号回線の一方にプルアップ抵抗を介して電源電圧を印加しており、無電圧a接点スイッチがオフした定常監視状態では、信号回線に消費電流は殆ど流れず、防災受信盤から見た信号回線間の電源電圧は略電源電圧に保たれている。無
電圧a接点スイッチがオンすると信号回線に電流が流れ、防災受信盤から見た信号回線間の電圧は略零ボルトに低下し、防災受信盤は信号回線の消費電流の増加又は信号回線間の電圧低下を検出して端末機器の操作又は検知を示す受信信号を制御部に出力する。
Specifically, the power supply voltage is applied from the disaster prevention receiver side to one of the signal lines via a pull-up resistor, and in a steady monitoring state in which the no-voltage a-contact switch is turned off, almost no current flows through the signal line. Instead, the power supply voltage between the signal lines as viewed from the disaster prevention receiver is maintained at substantially the power supply voltage. When the no-voltage a contact switch is turned on, a current flows through the signal line, the voltage between the signal lines as seen from the disaster prevention receiver drops to approximately zero volts, and the disaster prevention receiver increases the current consumption of the signal line or between the signal lines. A voltage drop is detected and a reception signal indicating operation or detection of the terminal device is output to the control unit.

例えば手動通報装置からの火災通報信号であれば、防災受信盤は、火災表示、端末側の応答ランプの点灯制御、手動通報区画表示、消火ポンプ起動信号の出力といった制御動作を行うと共に、遠方監視制御設備、テレビ監視設備、可変式道路情報板設備、トンネル換気設備、照明設備等の外部設備に火災通報信号を送信して所定の対処制御を行わせるようにしている   For example, in the case of a fire notification signal from a manual notification device, the disaster prevention receiver performs control operations such as display of a fire, lighting control of a response lamp on a terminal side, display of a manual notification section, and output of a fire extinguishing pump start signal, and remote monitoring. A fire alarm signal is sent to external equipment such as control equipment, TV monitoring equipment, variable road information board equipment, tunnel ventilation equipment, lighting equipment, etc., and predetermined countermeasures are performed.

特開2002−246962号公報JP 2002-246962 A 特開平11−128381号公報JP-A-11-128381

ところで、このような従来のP型直送方式のトンネル防災システムにあっては、端末機器を接続している信号回線(外線ケーブル)の経年劣化等により絶縁低下が進み、端末機器を接続している信号回線に通常監視状態で想定される以上の電流が流れ、防災受信盤は端末機器の操作又は検知動作による信号受信と判断して警報動作を行うと共に、遠方監視制御設備、テレビ監視設備、可変式道路情報板設備、トンネル換気設備、照明設備等の他設備を連動し、トンネルを通行止めにすることが度々生じている。   By the way, in such a conventional P-type direct transport type tunnel disaster prevention system, the insulation is deteriorated due to aging of a signal line (external cable) connecting the terminal device, and the terminal device is connected. A current greater than expected in the normal monitoring state flows through the signal line, and the disaster prevention receiver performs an alarm operation by judging that a signal has been received by operating or detecting the terminal device, and performs remote monitoring control equipment, television monitoring equipment, variable It is often the case that other facilities such as a roadside information board facility, a tunnel ventilation facility, a lighting facility, etc. are interlocked and a tunnel is closed.

この問題を解決するため、防災受信盤で無電圧a接点スイッチを設けた端末機器を接続した信号回線に流れる電流を、例えば1日1回というように定期的に測定して記録し、更に、測定した電流が所定の閾値を超えた場合に信号回線の電流値異常を判定して警報し、更に、防災受信盤から遠方監視制御設備へ信号回線の電流値異常信号を送信して警報することが考えられている。   In order to solve this problem, the current flowing in the signal line connected to the terminal device provided with the no-voltage a-contact switch in the disaster prevention receiver is periodically measured and recorded, for example, once a day, and further recorded. When the measured current exceeds a predetermined threshold, determine the current value abnormality of the signal line and give an alarm, and further send the signal line current value abnormality signal from the disaster prevention receiver to the remote monitoring control equipment to give an alarm. Is considered.

このように防災受信盤に信号回線の電流値を測定記録して絶縁劣化を監視する機能を設けた場合、電流値異常が発生して警報が行われても、直ぐに電流値異常を起こした信号回線を交換して障害を復旧するような保守管理は行わず、電流値の測定記録を見て信号回線の絶縁劣化の進み具合を判断しながら信号回線の交換工事等を立案して対応することとなり、信号回線の交換による障害復旧にはある程度の期間を必要とする。   If the disaster prevention receiver is equipped with a function to monitor the insulation deterioration by measuring and recording the current value of the signal line, even if an abnormal current value occurs and a warning is given, the signal that caused the abnormal current value immediately Do not perform maintenance such as replacing the line to recover from the fault, and plan and respond to signal line replacement work while judging the progress of signal line insulation deterioration based on the current value measurement record. Thus, it takes a certain period of time to recover from a failure by exchanging signal lines.

しかしながら、電流値異常が判定されて警報が出されると、定期的に電流測定を行う毎に電流値異常が判定されて防災受信盤及び遠方監視制御設備で警報出力が繰り返し行われ、その都度、警報出力に対する対処が必要となり、トンネルの監視業務に支障を来たす問題がある。   However, when the current value abnormality is determined and an alarm is issued, the current value abnormality is determined every time the current measurement is performed periodically, and the alarm output is repeatedly performed in the disaster prevention receiver and the remote monitoring control device. It is necessary to take measures against the alarm output, and there is a problem that the monitoring of the tunnel is hindered.

本発明は、端末機器を接続した信号回線の電流を定期的に測定して電流値異常が警報されても、電流値異常の警報に煩わされることなく回線電流の測定記録を継続して絶縁劣化の状況を適確に判断可能とするトンネル防災システムを提供することを目的とする。   The present invention measures the current of a signal line to which a terminal device is connected, and periodically warns the abnormal current value even if the abnormal current value is alarmed. It is an object of the present invention to provide a tunnel disaster prevention system which can accurately judge a situation of a tunnel.

(電流値異常の復旧操作)
本発明は、防災受信盤からトンネル内に引き出した信号回線に端末機器を接続して監視するトンネル防災システムに於いて、
信号回線に流れる電流値を測定し、測定した電流値が所定の閾値以上であるか又は所定の閾値を超えた場合に電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を設けたことを特徴とする。
(Recovery operation for abnormal current value)
The present invention relates to a tunnel disaster prevention system for monitoring by connecting a terminal device to a signal line drawn into a tunnel from a disaster prevention receiver,
Measure the current value flowing in the signal line, determine that the current value is abnormal when the measured current value is equal to or more than the predetermined threshold value or exceeds the predetermined threshold value, and transmit the current value abnormality signal to external equipment A line current monitoring means for giving an alarm is provided.

回線電流監視手段は、電流値異常と判定した場合に、電流値の測定を中断する。   The line current monitoring means suspends the measurement of the current value when it is determined that the current value is abnormal.

回線電流監視手段は、測定した前記信号回線に流れる電流値を記録する。   The line current monitoring means records a measured current value flowing through the signal line.

回線電流監視手段は、防災受信盤又は外部の設備による所定の復旧操作を検出した場合に、電流値異常の警報を解除する。   The line current monitoring means releases the alarm of the abnormal current value when a predetermined recovery operation by the disaster prevention receiver or the external equipment is detected.

回線電流監視手段は、防災受信盤又は外部の設備による所定の復旧操作を検出した場合に、信号回線に流れる電流値の測定を再開する。   The line current monitoring means restarts the measurement of the value of the current flowing through the signal line when a predetermined recovery operation by the disaster prevention receiver or external equipment is detected.

(閾値の変更)
回線電流監視手段は、回線単位に電流値異常を判定する閾値を設定し、電流値異常と判定した場合に、所定の閾値を変更して、変更前に比べて当該電流値異常と判定し難くなるようにする。
(Change of threshold)
The line current monitoring means sets a threshold value for judging a current value abnormality for each line, and when it is judged that the current value is abnormal, it changes a predetermined threshold value, making it difficult to determine that the current value is abnormal as compared to before the change. To be.

(電流値測定のマスク)
回線電流監視手段は、複数の信号回線の何れかで電流値異常と判定した場合、当該電流値異常と判定した信号回線を電流値の測定対象から除外する。
(Current value measurement mask)
When the line current monitoring unit determines that the current value is abnormal in any of the plurality of signal lines, the line current monitoring unit excludes the signal line determined to be abnormal in the current value from the current value measurement target.

(環境条件に関連した電流値異常の判定)
回線電流監視手段は、信号回線の電流値と共に所定の環境条件を測定し、測定した信号回線の電流値及び環境条件に応じて電流値異常を判定する。
(Judgment of abnormal current value related to environmental conditions)
The line current monitoring means measures a predetermined environmental condition together with the current value of the signal line, and determines an abnormal current value according to the measured current value of the signal line and the environmental condition.

(環境条件による閾値変更)
回線電流監視手段は、所定の環境条件の測定結果に基づき、電流値異常を判定する所定の閾値を変更する。
(Change of threshold value due to environmental conditions)
The line current monitoring means changes a predetermined threshold value for determining an abnormal current value based on a measurement result of a predetermined environmental condition.

(環境条件の時間的変化に応じた閾値変更)
回線電流監視手段は、所定の環境条件の測定結果に基づき、電流値異常と判定する所定の閾値を所定の期間、変更する。
(Change of threshold value according to temporal change of environmental conditions)
The line current monitoring means changes a predetermined threshold for determining that the current value is abnormal for a predetermined period based on a measurement result of a predetermined environmental condition.

(季節や一日の時間帯に応じた閾値変更)
回線電流監視手段は、季節又は一日の時間帯における所定の環境条件の測定結果に基づき、電流値異常と判定する所定の閾値を季節又は一日の時間帯に応じて変更する。
(Change threshold value according to season and time of day)
The line current monitoring means changes a predetermined threshold value for determining that the current value is abnormal based on a measurement result of a predetermined environmental condition in a seasonal or daily time zone according to the seasonal or daily time zone.

(高温多湿と低温乾燥に応じた閾値変更)
回線電流監視手段は、所定の閾値を所定の基準閾値として予め設定し、所定の環境条件の測定結果から高温多湿と判定した場合に基準閾値をそれより高い閾値に変更し、所定の環境条件の測定結果から低温乾燥と判定した場合に基準閾値をそれより低い閾値に変更する。
(Change threshold value according to high temperature and high humidity and low temperature drying)
The line current monitoring means sets a predetermined threshold value in advance as a predetermined reference threshold value, and changes the reference threshold value to a higher threshold value when it is determined as high temperature and high humidity from the measurement result of the predetermined environmental condition, When it is determined from the measurement result that the drying is at a low temperature, the reference threshold is changed to a lower threshold.

(電流値異常が所定回数継続したら外部通報)
回線電流監視手段は、同一の信号回線について所定回数継続して電流値異常と判定した場合に、外部の設備に電流値異常信号を送信して警報させる。
(External notification if current value abnormality continues for a predetermined number of times)
The line current monitoring means sends a current value abnormality signal to an external facility to alert when an abnormal current value is determined for the same signal line continuously for a predetermined number of times.

(電流値異常が出たら周期を短くして電流値を測定記録)
回線電流監視手段は、所定周期毎に信号回線の電流値を測定し、所定周期毎の信号回線の電流値測定で電流値異常と判定した場合は、該電流値異常と判定された信号回線について、所定周期より短い周期毎に、信号回線の電流値を測定する。
(If the current value is abnormal, shorten the cycle and measure and record the current value)
The line current monitoring means measures the current value of the signal line at predetermined intervals, and if it is determined that the current value of the signal line is abnormal at the measurement of the signal line at predetermined intervals, the signal line determined to be abnormal is detected. The current value of the signal line is measured for each cycle shorter than the predetermined cycle.

(上位設備への通報と通報停止)
回線電流監視手段は、電流値異常と判定した場合に、電流値異常信号を外部の設備に送信して警報させ、その後、当該通報から所定時間を経過した場合に、警報を解除させる。
(Report to upper-level equipment and stop report)
The line current monitoring means sends a current value abnormality signal to an external facility to make an alarm when it is determined that the current value is abnormal, and then cancels the alarm when a predetermined time has elapsed since the notification.

また、回線電流監視手段は、所定の閾値を信号回線に通常流れる電流値よりも低い所定の下限閾値とし、回線電流監視手段で測定した電流値が、下限閾値以下であるか又は下限閾値を下回る場合に、電流値異常と判定する。   Further, the line current monitoring means sets the predetermined threshold to a predetermined lower threshold lower than the current value normally flowing through the signal line, and the current value measured by the line current monitoring means is equal to or less than the lower threshold or lower than the lower threshold. In this case, it is determined that the current value is abnormal.

(電流値異常の復旧操作による効果)
本発明は、防災受信盤からトンネル内に引き出した信号回線に通報装置及び検知器を含む端末機器を接続して監視するトンネル防災システムに於いて、所定周期毎に端末機器を接続した信号回線に流れる電流値を測定して記録し、測定した電流値が所定の閾値以上又は閾値を超えた場合に電流値異常と判定して警報すると共に電流値異常信号を外部の上位設備に送信して警報させ、防災受信盤又は上位設備による復旧操作を検出した場合に、電流値異常を解除して所定周期毎の電流値測定を再開する回線電流監視手段を設けるようにしたため、一度、電流値異常が発生して警報が出されても、復旧操作を行うことで、継続して電流値の警報を測定記録することができ、記録した電流値の変化から信号回線の絶縁劣化の傾向を判断して適切に対処可能とする。
(Effect of restoration operation of abnormal current value)
The present invention relates to a tunnel disaster prevention system for monitoring by connecting a terminal device including a notification device and a detector to a signal line drawn into a tunnel from a disaster prevention receiver. Measures and records the flowing current value, and when the measured current value is equal to or greater than a predetermined threshold value, determines that the current value is abnormal and issues an alarm, and sends a current value abnormality signal to an external host equipment to issue an alarm When a recovery operation by the disaster prevention receiver or higher-level equipment is detected, line current monitoring means is provided to release the abnormal current value and restart the current value measurement at predetermined intervals. Even if an alarm occurs and a warning is issued, by performing a recovery operation, it is possible to continuously measure and record the current value alarm, and determine the tendency of insulation deterioration of the signal line from the change in the recorded current value. Properly Possible to be.

(閾値の変更による効果)
また、回線電流監視手段は、回線単位に電流値異常を判定する閾値を設定し、電流値異常と判定した場合に、当該電流値異常と判定しないように閾値を変更するようにしたため、一度、電流値異常が発生して警報が出されても、この電流値異常と判定しないように例えば閾値をそれより高い値に変更することで、変更した閾値により電流値異常と判定されるまでは電流値異常の警報が出されることはなく、電流値異常の警報に煩わされることなく継続して電流値を測定記録することができ、記録した電流値の変化から信号回線における絶縁劣化の傾向を判断して適切に対処可能とする。
(Effect of changing the threshold)
Further, the line current monitoring means sets a threshold value for determining a current value abnormality for each line, and when it is determined that the current value is abnormal, the threshold value is changed so as not to determine the current value abnormality. Even if a current value abnormality occurs and an alarm is issued, the threshold value is changed to a higher value, for example, so that the current value is not abnormally determined. The alarm of abnormal value is not issued, and the current value can be measured and recorded continuously without bothering with the alarm of abnormal current value, and the tendency of insulation deterioration in the signal line is judged from the change of the recorded current value. And make it possible to deal with it appropriately.

(電流値測定のマスクによる効果)
また、回線電流監視手段は、複数の信号回線の何れかで電流値異常と判定した場合、電流値異常と判定した信号回線の電流値の測定を抑止するようにしたため、電流値異常が判定された信号回線を測定対象から除外することで、特定の信号回線に絶縁劣化が起きても、他の信号回線の電流値の測定記録を継続できる。
(Effect of current value measurement mask)
In addition, when the line current monitoring unit determines that the current value is abnormal in any of the plurality of signal lines, the line current monitoring unit suppresses the measurement of the current value of the signal line determined to be abnormal, so that the current value abnormality is determined. By excluding the signal line from the measurement target, even if insulation deterioration occurs in a specific signal line, measurement and recording of the current value of another signal line can be continued.

(環境条件に関連した電流値異常の判定による効果)
また、回線電流監視手段は、信号回線の電流値と共に所定の環境条件を測定し、測定した環境条件に関連して電流値異常を判定し、例えば、回線電流監視手段は、環境条件として温度と湿度の何れか一方又は両方を測定し、温度と湿度の何れか一方又は両方に応じて電流値異常を判定する閾値を変更し、具体的には、回線電流監視手段は、所定の基準閾値を予め設定し、温度及び湿度から高温多湿と判定した場合に基準閾値をそれより高い閾値に変更し、温度及び湿度から低温乾燥と判定した場合に基準閾値をそれより低い閾値に変更するようにしたため、例えば高温多湿といった環境条件により一時的に絶縁劣化が発生した場合、環境条件の変化に応じて閾値を変更することで、電流値異常と判定されることが回避され、不要な警報出力を未然に抑止することを可能とする。
(Effect of judging abnormal current value related to environmental conditions)
Further, the line current monitoring unit measures predetermined environmental conditions together with the current value of the signal line, and determines an abnormal current value in relation to the measured environmental conditions. One or both of the humidity is measured, and the threshold value for judging the current value abnormality is changed in accordance with one or both of the temperature and the humidity. Specifically, the line current monitoring means sets a predetermined reference threshold value. To be set in advance, the reference threshold is changed to a higher threshold when it is determined to be high temperature and high humidity from temperature and humidity, and the reference threshold is changed to a lower threshold when it is determined to be low temperature drying from temperature and humidity. For example, when insulation degradation temporarily occurs due to environmental conditions such as high temperature and high humidity, by changing the threshold value according to the change in environmental conditions, it is possible to avoid being determined that the current value is abnormal, and to output an unnecessary alarm output. It makes it possible to deter the deer.

(環境条件の時間的変化に応じた閾値変更による効果)
また、回線電流監視手段は、記環境条件と電流値の時間的な測定結果に基づき、電流値異常を判定する記閾値を時間的に変更、例えば温度と湿度の何れか一方又は両方と電流値の時間的な測定結果に基づき、電流値異常を判定する閾値を時間的に変更するようにしたため、温度又は湿度と電流値の測定結果となるログを人為的に確認し、例えば高温多湿となって電流値が増加する傾向にある6月から9月は閾値を高い値に変更し、また、一日の時間帯で気温が高めとなる例えば10時から18時までの時間帯は閾値を高めに変更し、環境条件の時間的な変化に応じて閾値を変更することで、電流値異常と判定されることが回避され、不要な警報出力を未然に抑止することを可能とする。
(Effects of threshold changes according to temporal changes in environmental conditions)
Further, the line current monitoring means changes the threshold value for determining the current value abnormality based on the environmental conditions and the temporal measurement result of the current value over time, for example, one or both of temperature and humidity and the current value. Based on the time measurement results, the threshold value for judging the current value abnormality was temporally changed, so that the log that is the measurement result of the temperature or humidity and the current value was artificially confirmed, for example, when the temperature and humidity became high. The threshold value is changed to a higher value from June to September when the current value tends to increase, and the threshold value is increased during a time period of one day, for example, from 10:00 to 18:00 when the temperature is high. By changing the threshold value according to the temporal change of the environmental condition, it is possible to prevent the current value from being determined to be abnormal, and to suppress unnecessary alarm output.

(電流値異常が所定回数継続した場合の上位通報による効果)
また、回線電流監視手段は、電流値異常と所定回数継続して判定した場合に上位設備に電流値異常信号を送信して警報させるようにしたため、環境条件の変化等により一時的な信号回線の絶縁劣化が起きても、絶縁劣化が継続しない限り、電流値異常と判定しても上位設備として例えば遠方監視制御設備等に電流値異常信号は送信されず、一過性の要因による電流値異常に対し不必要な警報を抑止することを可能とする。
(Effect of higher-level notification when current value abnormality continues a predetermined number of times)
In addition, the line current monitoring means sends a current value abnormality signal to a higher-level facility to alert when a current value abnormality is determined to be continued for a predetermined number of times. Even if insulation deterioration occurs, unless the insulation deterioration continues, even if it is determined that the current value is abnormal, the current value abnormality signal is not transmitted to the upper-level equipment, for example, a remote monitoring control equipment, etc. It is possible to suppress unnecessary alarms.

(電流値異常が発生した場合に周期を短くして電流値を測定記録する効果)
また、回線電流監視手段は、所定周期毎の信号回線の電流値測定で電流値異常と判定した場合、所定周期より短い所定の第2周期毎に、信号回線の電流値を測定して記録するようしたため、例えば1日1回の所定周期毎の電流値測定で電流値異常と判定した場合、それより短い例えば1時間毎の第2周期に変更することで、電流値異常と判定した信号回線の電流値を短い時間間隔で測定記録して、絶縁劣化による電流値の変化をより正確に把握して対処することを可能とする。
(Effect of measuring and recording the current value by shortening the cycle when a current value abnormality occurs)
When the current value of the signal line is determined to be abnormal in the measurement of the current value of the signal line at a predetermined cycle, the line current monitoring means measures and records the current value of the signal line at a predetermined second cycle shorter than the predetermined cycle. For this reason, for example, when it is determined that the current value is abnormal by measuring the current value once a day at a predetermined cycle, the signal line is determined to be abnormal by changing the current value to a shorter second cycle, for example, an hour. The current value is measured and recorded at short time intervals, so that a change in the current value due to insulation deterioration can be more accurately grasped and dealt with.

(上位設備への通報と通報停止による効果)
また、回線電流監視手段は、電流値異常と判定した場合に、信号回線情報を含めた電流値異常信号を上位設備に送信して警報させ、当該通報から所定時間を経過した場合に電流値異常信号の送信を停止して警報を解除させるようにしたため、防災受信盤で信号回線の電流値異常と判定されて警報が出力されても、外部の上位設備となる例えば遠方監視制御設備では、所定時間の間のみ電流値異常の警報が出力されるだけであり、電流値異常の警報状態が継続して管理業務に支障を来たすことを回避可能とする。
(Effects of reporting to higher-level equipment and stopping reporting)
In addition, the line current monitoring means transmits a current value abnormality signal including signal line information to a higher-level facility to be alerted when it is determined that the current value is abnormal, and when a predetermined time has elapsed from the notification, the current value abnormality is detected. Since the signal transmission is stopped and the alarm is released, even if the disaster prevention receiver determines that the current value of the signal line is abnormal and outputs an alarm, the external upper-level equipment, for example, a remote monitoring and control equipment, requires a predetermined value. Only the alarm of the abnormal current value is output only during the time, and it is possible to prevent the alarm state of the abnormal current value from continuing and hindering the management work.

トンネル防災システムの概要を示した説明図Explanatory diagram showing the outline of the tunnel disaster prevention system トンネル防災システムの機能構成の概略を示したブロック図Block diagram showing an outline of the functional configuration of the tunnel disaster prevention system P型伝送部の詳細を示したブロック図Block diagram showing details of P-type transmission unit 電流測定部の詳細を示した回路ブロック図Circuit block diagram showing details of the current measurement unit 電流値異常の警報を復旧操作により解除する回線電流監視制御の第1実施形態を示したフローチャートFlowchart showing a first embodiment of line current monitoring control for releasing an alarm of a current value abnormality by a recovery operation 閾値変更により電流値異常の警報を解除する回線電流監視制御の第2実施形態を示したフローチャートFlowchart showing a second embodiment of line current monitoring control for canceling a current value abnormality alarm by changing a threshold value 電流値異常の回線の電流値測定をマスクする回線電流監視制御の第3実施形態を示したフローチャートFlowchart showing a third embodiment of the line current monitoring control for masking the current value measurement of a line having an abnormal current value 環境条件に応じた閾値により電流値異常を判定する回線電流監視制御の第4実施形態を示したフローチャートFlowchart showing a fourth embodiment of line current monitoring control for determining a current value abnormality based on a threshold value according to environmental conditions 電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第5実施形態を示したフローチャートFlow chart showing a fifth embodiment of the line current monitoring control for notifying the host equipment when the current value abnormality exceeds a predetermined number of times. 電流値異常と判定した場合に測定周期を短くして電流値を測定記録する回線電流監視制御の第6実施形態を示したフローチャートFlow chart showing a sixth embodiment of line current monitoring control for measuring and recording a current value by shortening a measurement cycle when it is determined that a current value is abnormal. 電流値異常と判定した場合に一定時間だけ上位設備に通報して警報させる回線電流監視制御の第7実施形態を示したフローチャートA flow chart showing a seventh embodiment of the line current monitoring control for notifying a higher-level equipment for a certain period of time and making an alarm when a current value abnormality is determined.

[トンネル防災システムの概要]
図1はトンネル防災システムの概要を示した説明図である。図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築され、上り線トンネル1aと下り線トンネル1bは避難連絡坑2でつながっている。
[Overview of tunnel disaster prevention system]
FIG. 1 is an explanatory diagram showing an outline of a tunnel disaster prevention system. As shown in FIG. 1, an up line tunnel 1 a and a down line tunnel 1 b are constructed as tunnels for a motorway, and the up line tunnel 1 a and the down line tunnel 1 b are connected by an evacuation connection tunnel 2.

上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器16を設置している。火災検知
器16は左右25メートル又は50メートルとなる両側に監視エリアを設定し、火災による炎を検出して火災発報する。
Inside the up line tunnel 1a and the down line tunnel 1b, fire detectors 16 are installed at intervals of, for example, 25 meters or 50 meters along the wall surface in the longitudinal direction of the tunnel. The fire detector 16 sets a monitoring area on both sides of 25 meters or 50 meters on the left and right sides, detects a flame due to a fire, and issues a fire alert.

また、上り線トンネル1aと下り線トンネル1b内のトンネル長手方向の監視員通路の内部にはダクトを形成して配管やケーブルを敷設しており、このダクト内に所定間隔でダクト内温度検知器18を設置している。ダクト内温度検知器18はケーブル火災等によるダクト内の温度上昇を検出し、接点手段として機能する無電圧a接点スイッチのオンにより温度検知信号を出力する。   In addition, ducts and cables are laid with ducts formed inside the observer passages in the longitudinal direction of the tunnels in the up line tunnel 1a and the down line tunnel 1b. 18 are installed. The duct temperature detector 18 detects a temperature rise in the duct due to a cable fire or the like, and outputs a temperature detection signal when a non-voltage a contact switch functioning as a contact means is turned on.

また、上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の監視員通路の壁面に沿って例えば50メートル間隔で消火栓装置20と自動弁装置22を設置している。   In addition, inside the up line tunnel 1a and the down line tunnel 1b, a fire hydrant device 20 and an automatic valve device 22 are installed at intervals of, for example, 50 meters along a wall surface of a guard path in the longitudinal direction of the tunnel.

消火栓装置20は消火栓扉内にノズル付きホースを収納しており、火災時には消火栓扉を開いてノズル付きホースを引き出し、消火栓弁開閉レバーを開操作すると消火用水が放水され、また、消火栓弁開閉検出スイッチがオンして消火ポンプを起動させる。また、消火栓装置20には消火器扉を設け、その中に消火器を収納している。   The fire hydrant device 20 houses a hose with a nozzle in the fire hydrant door. In the event of a fire, open the fire hydrant door, pull out the hose with the nozzle, and open the fire hydrant valve opening / closing lever to discharge water for fire extinguishing. The switch turns on and starts the fire pump. The fire hydrant device 20 is provided with a fire extinguisher door, in which the fire extinguisher is housed.

また、消火栓装置20には消防隊が使用する給水栓が設けられ、これに合わせて消防隊員が操作するポンプ起動スイッチを設けている。更に、消火栓装置20には通報装置扉を設けており、通報装置扉には手動通報装置(発信機)を設けている。このため消火栓装置20は端末機器として、発信機、消火栓弁開閉検出スイッチ、及びポンプ起動スイッチを備えており、それぞれ接点手段として機能する無電圧a接点スイッチのオンにより火災通報信号、消火栓検出信号又はポンプ起動信号を出力する。   In addition, the fire hydrant device 20 is provided with a water tap used by the fire brigade, and a pump start switch operated by a fire brigade member is provided accordingly. Further, the fire hydrant device 20 is provided with a notification device door, and the notification device door is provided with a manual notification device (transmitter). For this reason, the hydrant device 20 includes a transmitter, a hydrant valve opening / closing detection switch, and a pump start switch as terminal devices, and a fire notification signal, a hydrant detection signal or Outputs pump start signal.

なお、消火栓弁開閉検出スイッチとポンプ起動スイッチは、同じポンプ起動信号を出力するシステム的には同一のスイッチであることから、以下、消火栓弁開閉検出スイッチ(ポンプ起動スイッチを含む)として説明する場合がある。また、手動通報装置は、消火栓装置20以外に、非常電話ボックス内にも設置しているが、以下の説明では、消火栓装置20に設けた手動通報装置を代表として説明する。   The hydrant valve open / close detection switch and the pump start switch are the same switch in terms of a system that outputs the same pump start signal. Therefore, hereinafter, the hydrant valve open / close detection switch (including the pump start switch) will be described. There is. The manual notification device is installed in the emergency telephone booth in addition to the fire hydrant device 20, but in the following description, the manual notification device provided in the fire hydrant device 20 will be described as a representative.

自動弁装置22は水噴霧設備を構成しており、作動用電動弁の遠隔開制御により主弁を開駆動し、トンネル壁面の上部の長手方向に設置した複数の水噴霧ヘッドから消火用水を放水してトンネル躯体を火災から防護する。このため自動弁装置22は端末機器として作動用電動弁を備えている。   The automatic valve device 22 constitutes a water spraying device, and opens and drives the main valve by remote opening control of an operating electric valve, and discharges fire extinguishing water from a plurality of water spraying heads installed in a longitudinal direction on an upper portion of a tunnel wall surface. To protect the tunnel frame from fire. For this reason, the automatic valve device 22 is provided with an operating electric valve as a terminal device.

トンネル内に設置している火災検知器16、ダクト内温度検知器18、消火栓装置20、及び自動弁装置22などの端末機器を接続してトンネル内の異常を監視するため、監視センター等に防災受信盤10を設置している。   To monitor the abnormalities in the tunnel by connecting terminal equipment such as the fire detector 16, the temperature detector 18 in the duct, the fire hydrant device 20, and the automatic valve device 22 installed in the tunnel. A receiving panel 10 is provided.

防災受信盤10からは上り線トンネル1aと下り線トンネル1b内に、トンネル長手方向に分割した所定の区画毎にP型の信号回線12を複数本引き出し、トンネル内に設置した火災検知器16を接続している。   From the disaster prevention receiver 10, a plurality of P-type signal lines 12 are drawn out into the up line tunnel 1a and the down line tunnel 1b for each predetermined section divided in the longitudinal direction of the tunnel, and the fire detector 16 installed in the tunnel is installed. Connected.

また、防災受信盤10からは上り線トンネル1aと下り線トンネル1b内に、トンネル内を長手方向に分割した区画と、端末機器の種別とに分けて、P型の信号回線12を複数本引き出し、火災検知器16以外の端末機器として、消火栓装置20に設けた手動通報装置、消火栓弁開閉検出スイッチ(ポンプ起動スイッチを含む)、ダクト内温度検知器18等の端末機器を接続している。   In addition, a plurality of P-type signal lines 12 are drawn from the disaster prevention receiver 10 into the up line tunnel 1a and the down line tunnel 1b by dividing the inside of the tunnel into longitudinal sections and terminal device types. As terminal devices other than the fire detector 16, terminal devices such as a manual notification device provided in the fire hydrant device 20, a fire hydrant valve opening / closing detection switch (including a pump activation switch), and a duct temperature detector 18 are connected.

P型の信号回線12は信号線とコモン線で構成し、消火栓装置20の手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、及びダクト内温度検知器18の各々に設けた無電圧a接点スイッチを接続した場合は、それぞれの操作又は検知動作により無電圧a接点スイッチをオンして回線電流を流すことで、火災通報信号、ポンプ起動信号、温度検知信号を防災受信盤10に送るようにしている。   The P-type signal line 12 is composed of a signal line and a common line, and is provided with a manual notification device of the fire hydrant device 20, a fire hydrant valve opening / closing detection switch, a pump activation switch, and a non-voltage a contact provided in each of the duct temperature detectors 18. When the switches are connected, the non-voltage a-contact switch is turned on by each operation or detection operation to flow the line current, so that a fire notification signal, a pump start signal, and a temperature detection signal are sent to the disaster prevention receiving panel 10. ing.

またトンネルの非常用施設としては、火災検知器16、消火栓装置20及び自動弁装置22以外に、消火ポンプ設備24、ダクト用の冷却ポンプ設備25、IG子局設備26、換気設備28、警報表示板設備30、ラジオ再放送設備32、テレビ監視設備34及び照明設備36等を設けており、IG子局設備26をデータ伝送回線で接続する点を除き、それ以外の設備はP型の信号回線12により防災受信盤10に個別に接続している。ここで、IG子局設備26は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備27とをネットワークを経由して結ぶ通信設備である。   As emergency facilities for the tunnel, in addition to the fire detector 16, the fire hydrant device 20, and the automatic valve device 22, a fire extinguishing pump device 24, a cooling pump device 25 for ducts, an IG substation device 26, a ventilation device 28, an alarm display. The board equipment 30, the radio rebroadcast equipment 32, the television monitoring equipment 34, the lighting equipment 36, etc. are provided. Except for connecting the IG slave station equipment 26 with a data transmission line, the other equipment is a P-type signal line. Reference numeral 12 denotes an individual connection to the disaster prevention receiver 10. Here, the IG slave station equipment 26 is a communication equipment that connects the disaster prevention receiver 10 and a remote monitoring and control equipment 27 that is a higher-order equipment provided outside via a network.

換気設備28は、トンネル内の天井側に設置しているジェットファンの運転による高い吹き出し風速によってトンネル内の空気にエネルギーを与えて、トンネル長手方向に換気の流れを起こす設備である。   The ventilation equipment 28 is an equipment that gives energy to the air in the tunnel by the high blowing wind speed by the operation of the jet fan installed on the ceiling side in the tunnel and causes a flow of ventilation in the longitudinal direction of the tunnel.

また、警報表示板設備30は、トンネル内の利用者に対して、トンネル内の異常を、電光表示板に表示して知らせる設備である。ラジオ再放送設備32は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備34は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備36はトンネル内の照明機器を駆動して管理する設備である。   Further, the alarm display panel equipment 30 is an equipment for displaying an abnormality in the tunnel to a user in the tunnel by displaying it on an electronic display panel. The radio rebroadcasting facility 32 is a facility for enabling a driver or the like to receive information from a road manager in a tunnel. The television monitoring facility 34 is a facility for confirming the scale and position of the fire, and for grasping the situation in the tunnel when the water spray facility is operated and evacuation guidance is performed. The lighting equipment 36 is equipment for driving and managing lighting equipment in the tunnel.

[防災受信機の構成]
図2はトンネル防災システムの機能構成の概略を示したブロック図である。図2に示すように、防災受信盤10は制御部40を備え、制御部40は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、AD変換ポートを含む各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Configuration of disaster prevention receiver]
FIG. 2 is a block diagram schematically showing a functional configuration of the tunnel disaster prevention system. As shown in FIG. 2, the disaster prevention receiver 10 includes a control unit 40. The control unit 40 is a function realized by, for example, executing a program. The hardware includes various input / output units including a CPU, a memory, and an AD conversion port. A computer circuit having an output port or the like is used.

制御部40に対しては、トンネル内に設置した各種の端末機器をP型の信号回線12により接続したP型伝送部42を設け、また、制御部40に対しスピーカ、ブザー、警報表示灯等を備えた警報部44、液晶ディスプレイ等を備えた表示部46、各種スイッチを備えた操作部48を設け、更に、換気設備28、警報表示板設備30、ラジオ再放送設備32、テレビ監視設備34、照明設備36、消火ポンプ設備24及び冷却ポンプ設備25をP型の信号回線12により個別に接続したP型伝送部52を設けている。   The control unit 40 is provided with a P-type transmission unit 42 in which various terminal devices installed in the tunnel are connected by the P-type signal line 12. Also, the control unit 40 has a speaker, a buzzer, an alarm indicator, and the like. , A display unit 46 having a liquid crystal display, etc., and an operation unit 48 having various switches. Further, a ventilation system 28, an alarm display panel system 30, a radio rebroadcasting system 32, and a television monitoring system 34 are provided. , A lighting device 36, a fire pumping device 24, and a cooling pumping device 25 are provided with a P-type transmission unit 52 which is individually connected by a P-type signal line 12.

制御部40にはプログラムの実行により実現される機能として、監視制御手段70と回線電流監視手段72を設けている。監視制御手段70はトンネル内に設置した火災検知器16、ダクト内温度検知器18、消火栓装置20及び自動弁装置22等の端末機器からの検知信号や操作信号に基づき、所定の監視制御を行う。   The control unit 40 includes a monitoring control unit 70 and a line current monitoring unit 72 as functions realized by executing the program. The monitoring control means 70 performs predetermined monitoring control based on detection signals and operation signals from terminal devices such as the fire detector 16 installed in the tunnel, the temperature detector 18 in the duct, the fire hydrant device 20 and the automatic valve device 22. .

監視制御手段70は、例えば消火栓装置20に設けた手動通報装置の操作による火災通報信号を受信した場合、警報部44により主音響鳴動を行うと共に表示部46に火災表示と手動通報区画表示を行い、また消火栓装置20に応答信号を送信して応答ランプを点灯し、更に、ポンプ起動信号を消火ポンプ設備24に出力して消火ポンプを起動する。更に、監視制御手段70は他設備に対する制御として、IG子局設備26を介して遠方監視制御設備27に火災通報信号を送信して警報させる制御、テレビ監視設備34により火災通報区画を表示する制御、警報表示板設備30により手動通報区画の火災通報を表示する制
御、換気設備28により手動通報区画を換気する制御、照明設備36により手動通報区画を照明する制御等を行う。
For example, when receiving a fire notification signal by operating a manual notification device provided in the fire hydrant device 20, the monitoring control unit 70 performs a main sounding sound by the alarm unit 44 and displays a fire display and a manual notification section display on the display unit 46. Also, a response signal is transmitted to the fire hydrant device 20 to turn on the response lamp, and a pump start signal is output to the fire extinguishing pump equipment 24 to start the fire pump. Further, the monitoring control means 70 controls the other equipment by transmitting a fire notification signal to the remote monitoring control equipment 27 via the IG slave station equipment 26 to give an alarm, and by the TV monitoring equipment 34 to display a fire notification section. The control to display a fire report in the manual report section by the alarm display panel equipment 30, the control to ventilate the manual report section by the ventilation equipment 28, the control to illuminate the manual report section by the lighting equipment 36, and the like are performed.

また、監視制御手段70は、ダクト内温度が上昇してダクト内温度検知器18から温度検知信号を受信した場合、冷却ポンプ設備25にポンプ起動信号を出力し、ダクト内に設置したヘッドから散水してダクト内を冷却する制御を行う。   Further, when the temperature in the duct rises and the temperature detection signal is received from the temperature detector 18 in the duct, the monitoring control means 70 outputs a pump start signal to the cooling pump equipment 25 to spray water from the head installed in the duct. Control to cool the inside of the duct.

回線電流監視手段72は、手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、ダクト内温度検知器18を含む無電圧a接点スイッチを備えた端末機器を接続した信号回線12の電流値を所定周期毎、例えば1日1回の周期で測定してメモリに記憶し、測定した電流値が所定の閾値以上又は所定の閾値を超えた場合に電流値異常を判定して警報すると共に電流値異常信号をIG子局設備26を介して外部の上位設備となる遠方監視制御設備27に送信して警報させる制御を行う。   The line current monitoring means 72 determines the current value of the signal line 12 connected to a terminal device equipped with a manual notification device, a fire hydrant valve open / close detection switch, a pump start switch, and a no-voltage a contact switch including a duct temperature detector 18. It is measured every cycle, for example, once a day, and stored in the memory. When the measured current value is equal to or more than a predetermined threshold value or exceeds a predetermined threshold value, it is determined that the current value is abnormal and an alarm is issued, and the current value is abnormal A signal is transmitted to a remote monitoring and control facility 27 which is an external higher-level facility via an IG slave station facility 26 so as to perform an alarm.

また、回線電流監視手段72は、信号回線12の電流値異常を判定して警報した状態で、操作部48による復旧操作又は遠方監視制御設備による復旧操作の通知信号を検出した場合に、電流値異常による警報を解除して所定周期毎の電流値測定を再開する制御を行う。この制御は、後の説明で明らかにする回線電流監視手段72による回線電流監視制御の第1実施形態となる。   The line current monitoring unit 72 determines the current value of the signal line 12 and issues an alarm. When the recovery signal from the operation unit 48 or the notification signal of the recovery operation by the remote monitoring control equipment is detected, A control for canceling the alarm due to the abnormality and restarting the current value measurement at predetermined intervals is performed. This control is the first embodiment of the line current monitoring control by the line current monitoring means 72 which will be described later.

[P型伝送部]
図3は防災受信盤に設けたP型伝送部の詳細を示したブロック図である。図3に示すように、P型伝送部42には、トンネル内に設置している端末機器の区画に対応して複数の区画モジュール60を設けており、例えば最初の区画モジュール60に対応したトンネル内の区画には、その右側に代表して示す消火栓装置20とダクト内温度検知器18を複数台配置している。
[P-type transmission unit]
FIG. 3 is a block diagram showing details of a P-type transmission unit provided in the disaster prevention receiver. As shown in FIG. 3, the P-type transmission unit 42 is provided with a plurality of partition modules 60 corresponding to the partitions of the terminal devices installed in the tunnel. For example, a tunnel corresponding to the first partition module 60 is provided. In the section inside, a plurality of fire hydrant devices 20 and a plurality of duct temperature detectors 18 shown on the right side are arranged.

消火栓装置20には無電圧a接点スイッチを備えた端末機器として、手動通報装置(発信機)54、消火栓弁開閉検出スイッチ56及びポンプ起動スイッチ58を設けている。   The hydrant device 20 is provided with a manual notification device (transmitter) 54, a hydrant valve opening / closing detection switch 56, and a pump start switch 58 as terminal devices provided with a no-voltage a-contact switch.

区画モジュール60には、手動通報装置54に対応して回線受信部62aを設け、消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58に対応して回線受信部62bを設け、ダクト内温度検知器18に対応して回線受信部62cを設けている。   The compartment module 60 is provided with a line receiving unit 62a corresponding to the manual notification device 54, and provided with a line receiving unit 62b corresponding to the fire hydrant valve open / close detection switch 56 and the pump start switch 58. Correspondingly, a line receiving section 62c is provided.

回線受信部62aから引き出した信号回線12aには、複数の消火栓装置20に設けた複数の手動通報装置54を並列接続している。このため同じ区画に属する複数の手動通報装置54の何れかの押し釦操作により無電圧a接点スイッチがオンすると、回線電流が流れることで回線受信部62aが火災通報信号を受信し、区画を特定した火災通報信号を制御部40に出力する。   A plurality of manual notification devices 54 provided in a plurality of fire hydrant devices 20 are connected in parallel to the signal line 12a drawn from the line receiving unit 62a. For this reason, when the no-voltage a-contact switch is turned on by operating any one of the push buttons of the plurality of manual notification devices 54 belonging to the same section, the line current flows, and the line receiving section 62a receives the fire notification signal and specifies the section. The fire notification signal is output to the control unit 40.

また、回線受信部62bから引き出した信号回線12bには、複数の消火栓装置20に設けた複数の消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58のそれぞれを並列接続している。ここで、消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58は、火災に関連する操作に基づきポンプ起動信号を出力するものであり、ポンプ起動操作手段として共通していることから同じ種別としており、このため同種の端末機器として同じ信号回線12bに並列接続している。   A plurality of fire hydrant valve open / close detection switches 56 and a pump start switch 58 provided in the plurality of fire hydrant devices 20 are connected in parallel to the signal line 12b drawn from the line receiving unit 62b. Here, the fire hydrant valve opening / closing detection switch 56 and the pump start switch 58 output a pump start signal based on an operation related to fire, and since they are common as pump start operating means, they are of the same type. Therefore, they are connected in parallel to the same signal line 12b as the same type of terminal device.

このため利用者が消火栓装置20のノズル付きホースを引き出して消火栓弁開閉レバーを操作した場合に、消火栓弁開閉検出スイッチ56がオンして回線電流が流れることで回線受信部62bがポンプ起動信号を受信し、区画を特定したポンプ起動信号を制御部40
に出力する。また、消防隊員が消火栓装置20の扉を開いて給水栓に消防ホースを接続し、ポンプ起動スイッチ58をオン操作した場合にも、回線電流が流れることで回線受信部62bがポンプ起動信号を受信し、区画を特定したポンプ起動信号を制御部40に出力する。
For this reason, when the user pulls out the hose with the nozzle of the fire hydrant device 20 and operates the fire hydrant valve opening / closing lever, the fire hydrant valve opening / closing detection switch 56 is turned on and the line current flows, so that the line receiving section 62b generates the pump start signal. The control unit 40 receives the pump start signal specifying the section and
Output to Also, when the fireman opens the door of the fire hydrant device 20, connects the fire hose to the water tap, and turns on the pump start switch 58, the line current flows and the line receiving unit 62b receives the pump start signal. Then, a pump start signal specifying the section is output to the control unit 40.

更に、回線受信部62cから引き出した信号回線12cには、同一区画に設けたダクト内温度検知器18を並列接続している。このため同じ区画に属する複数のダクト内温度検知器18の何れかによりダクト内の検出温度が所定の閾値温度以上となった場合に無電圧a接点スイッチをオンし、回線電流が流れることで回線受信部62cが温度検知信号を受信し、区画を特定したダクト火災検知信号を制御部40に出力する。   Further, a duct temperature detector 18 provided in the same section is connected in parallel to the signal line 12c drawn from the line receiving section 62c. Therefore, when the detected temperature in the duct becomes equal to or higher than a predetermined threshold temperature by one of the plurality of duct temperature detectors 18 belonging to the same section, the no-voltage a contact switch is turned on, and the line current flows, The receiving unit 62c receives the temperature detection signal, and outputs a duct fire detection signal specifying the section to the control unit 40.

区画モジュール60に設けた回線受信部62a〜62cに対しては電流測定部64a〜64cを設けている。電流測定部64a〜64cは信号回線12a〜12cの各々に流れる電流値を検出した電流値検出信号をセレクタ部65に入力している。セレクタ部65は図2の制御部40に設けた回線電流監視手段72により1日1回の周期となる所定の測定タイミングで制御信号を受け、区画モジュール60に入力している信号回線に対応した電流値検出信号を順次選択して制御部40のAD変換ポートに出力し、回線電流監視手段72はAD変換ポートに入力したアナログ電流値をデジタル電流値に変換して読み込んでメモリに記憶することで、各信号回線の電流値を周期的に測定記録している。   Current measuring units 64a to 64c are provided for the line receiving units 62a to 62c provided in the partition module 60. The current measuring units 64a to 64c input a current value detection signal, which detects a current value flowing through each of the signal lines 12a to 12c, to the selector unit 65. The selector unit 65 receives a control signal at a predetermined measurement timing that is once a day by the line current monitoring means 72 provided in the control unit 40 of FIG. The current value detection signal is sequentially selected and output to the AD conversion port of the control unit 40, and the line current monitoring means 72 converts the analog current value input to the AD conversion port into a digital current value, reads the digital current value, and stores it in the memory. The current value of each signal line is periodically measured and recorded.

図4は図3のP型伝送部に設けた電流測定部の詳細を示した回路ブロック図であり、1つの信号回線を例にとって示している。図4に示すように、防災受信盤10からは引き出された信号線Lとコモン線Cからなる信号回線12には、端末機器14に設けた無電圧a接点スイッチ68及び終端抵抗15を並列に接続しており、通常監視状態で無電圧a接点スイッチ68は図示のようにオフしている。   FIG. 4 is a circuit block diagram showing details of the current measuring unit provided in the P-type transmission unit of FIG. 3, and shows one signal line as an example. As shown in FIG. 4, a non-voltage a contact switch 68 and a terminating resistor 15 provided in the terminal device 14 are connected in parallel to a signal line 12 including a signal line L and a common line C drawn from the disaster prevention receiver 10. In the normal monitoring state, the no-voltage a-contact switch 68 is off as shown in the figure.

信号回線12の信号線Lは抵抗66により電源電圧+Vcの電源ラインにプルアップ接続しており、コモン線Cは接地接続している。このため端末機器14の無電圧a接点スイッチ68がオフしている定常監視状態では、信号回線12の信号線Lとコモン線Cの間の回線電圧VLは電源電圧+Vcとなっており、この回線電圧VLが回線受信部62に入力している。   The signal line L of the signal line 12 is connected to a power supply line of the power supply voltage + Vc by a resistor 66, and the common line C is grounded. For this reason, in the steady monitoring state in which the no-voltage a contact switch 68 of the terminal device 14 is off, the line voltage VL between the signal line L of the signal line 12 and the common line C is the power supply voltage + Vc. The voltage VL is input to the line receiving unit 62.

信号回線12に接続している端末機器14の何れかの無電圧a接点スイッチ68がオンすると、信号線Lとコモン線Cの間の回線電圧VLは略零ボルトに低下する。回線受信部62には回線電圧VLが零ボルト付近に低下した場合にオンするスイッチング回路を備えており、スイッチング回路のオンにより受信信号を制御部40に出力する。   When any of the no-voltage a-contact switches 68 of the terminal devices 14 connected to the signal line 12 is turned on, the line voltage VL between the signal line L and the common line C decreases to substantially zero volt. The line receiving unit 62 includes a switching circuit that is turned on when the line voltage VL drops to around zero volt, and outputs a received signal to the control unit 40 when the switching circuit is turned on.

電流測定部64は、抵抗66により電源ラインにプルアップした信号線Lとコモン線Cの間の回線電圧VLを電流検出信号VLとして検出する回路であり、抵抗値をR、終端抵抗15の抵抗値をRs、信号回線12の絶縁抵抗をZとすると、無電圧a接点スイッチ68がオフしているときに信号回線12に流れる電流Iは次式となる。   The current measuring unit 64 is a circuit that detects the line voltage VL between the signal line L and the common line C pulled up to the power supply line by the resistor 66 as a current detection signal VL. Assuming that the value is Rs and the insulation resistance of the signal line 12 is Z, the current I flowing through the signal line 12 when the no-voltage a contact switch 68 is off is expressed by the following equation.

Figure 2020010359
Figure 2020010359

ここで、(RS//Z)は、並列抵抗値 Here, ( RS // Z) is the parallel resistance value.

Figure 2020010359
Figure 2020010359

を表す。このため電流検出信号(回線電圧)VLは、 Represents Therefore, the current detection signal (line voltage) VL is

Figure 2020010359
Figure 2020010359

となり、回線電流Iに比例して増加する電流検出信号(回線電圧)VLが得られる。 And a current detection signal (line voltage) VL that increases in proportion to the line current I is obtained.

信号回線12の絶縁劣化が起きると、絶縁抵抗Zが低下し、これにより信号回線12を流れる電流Iが増加し、電流検出信号(回線電圧)VLも増加する。   When the insulation deterioration of the signal line 12 occurs, the insulation resistance Z decreases, thereby increasing the current I flowing through the signal line 12 and increasing the current detection signal (line voltage) VL.

電流測定部64で検出された、回線電圧(電流検出信号)VLはセレクタ部65に入力され、所定の測定タイミングで他の電流検出信号と共にセレクタ部65から順次読み出され、AD変換ポートから読み込んだ電流検出値VLに基づき、制御部40の回線電流監視手段72は、
I=(Vc−VL)/R (式3)
として電流値Iを求めて記録すると共に、所定の閾値と比較して信号回線の絶縁劣化による電流値異常と判定して警報することになる。
The line voltage (current detection signal) VL detected by the current measuring unit 64 is input to the selector unit 65, and is sequentially read out from the selector unit 65 together with another current detection signal at a predetermined measurement timing, and is read from the AD conversion port. The line current monitoring means 72 of the control unit 40
I = (Vc−VL) / R (Equation 3)
The current value I is obtained and recorded, and compared with a predetermined threshold value, it is determined that the current value is abnormal due to deterioration of the insulation of the signal line, and an alarm is issued.

また、電流測定部64の他の実施例として、抵抗66によるプルアップ接続点に続く信号線L側に電流検出抵抗を挿入接続し、電流に比例した電流検出抵抗の両端に発生する電流検出電圧をセレクタ部65に入力し、所定の測定タイミングで他の電流検出信号と共にセレクタ部65から順次読み出し、制御部40の回線電流監視手段72により、AD変換ポートから電流検出値として読み込んで記録すると共に、所定の閾値と比較して信号回線の絶縁劣化による電流値異常を判定して警報するようにしても良い。   As another embodiment of the current measuring unit 64, a current detecting resistor is inserted and connected to the signal line L side following the pull-up connection point by the resistor 66, and a current detecting voltage generated at both ends of the current detecting resistor in proportion to the current. Is input to the selector unit 65, and sequentially read out from the selector unit 65 together with another current detection signal at a predetermined measurement timing, and read and recorded as a current detection value from the AD conversion port by the line current monitoring unit 72 of the control unit 40. Alternatively, a warning may be made by comparing with a predetermined threshold value and determining an abnormal current value due to insulation deterioration of the signal line.

[回線電流監視制御の第1実施形態]
図5は電流値異常の警報を復旧操作により解除する回線電流監視制御の第1実施形態を示したフローチャートである。図2の制御部40に設けた回線電流監視手段72による回線電流監視制御の第1実施形態は、前述したように、電流値異常を判定して警報すると共に電流値異常信号を遠方監視制御設備27に送信して警報させ、警報中に防災受信盤10又は遠方監視制御設備27による復旧操作を検出した場合に、電流値異常による警報状態を解除して所定周期毎の電流値測定を再開するようにしたことを特徴とする。
[First Embodiment of Line Current Monitoring and Control]
FIG. 5 is a flowchart showing a first embodiment of the line current monitoring control for canceling the alarm of the current value abnormality by a recovery operation. As described above, the first embodiment of the line current monitoring control by the line current monitoring means 72 provided in the control unit 40 shown in FIG. 27, an alarm is issued. When a recovery operation by the disaster prevention receiver 10 or the remote monitoring and control equipment 27 is detected during the alarm, the alarm state due to the abnormal current value is released and the current value measurement is restarted at predetermined intervals. It is characterized by doing so.

図5に示すように、回線電流監視手段72は、ステップS1で例えば1日1回の所定刻となる回線電流測定タイミングへの到達を判別すると、ステップS2に進んで回線番号NをN=1に初期化し、続いてステップS3で図3に示したセレクタ部65の制御によるN=1で決まる最初の信号回線の電流値を測定してメモリに記憶する記録を行う。    As shown in FIG. 5, when the line current monitoring means 72 determines in step S1 that the line current measurement timing reaches a predetermined time, for example, once a day, the flow proceeds to step S2, where the line number N is set to N = 1. Then, in step S3, the current value of the first signal line determined by N = 1 under the control of the selector unit 65 shown in FIG. 3 is measured and recorded in the memory.

続いてステップS4で測定した電流値が所定の閾値以上か否か(又は閾値を超えたか否か)を判定し、電流値が所定の閾値以上となることを判別した場合はステップS5に進んで信号回線の絶縁劣化による電流値異常と判定し、防災受信盤10の警報部44による音響警報と表示部46による警報表示を行い、更に、ステップS7に進み、IG子局設備26を介して外部の遠方監視制御設備27に電流値異常信号を送信して警報させる。ステップS4で電流値が閾値未満の場合はステップS5〜S7の処理はスキップする。   Subsequently, it is determined whether or not the current value measured in step S4 is equal to or greater than a predetermined threshold (or whether or not the current value is greater than the threshold). If it is determined that the current value is equal to or greater than the predetermined threshold, the process proceeds to step S5. It is determined that the current value is abnormal due to the deterioration of the insulation of the signal line, an audible alarm is issued by the alarm unit 44 of the disaster prevention receiver 10, and an alarm is displayed by the display unit 46. The current value abnormality signal is transmitted to the remote monitoring and control equipment 27 to warn the user. If the current value is less than the threshold value in step S4, the processing in steps S5 to S7 is skipped.

続いて、回線番号Nが最大値Nmaxに達するまでは、ステップS9で回線番号Nを1つ増加してステップS3からの処理を繰り返す。全ての信号回線の電流値の測定記録と電流値異常の判定が済むとステップS10に進み、現在、電流値異常を警報中か否か判別し、警報中を判別した場合はステップS11に進み、防災受信盤10による直接の異常復旧操作又は遠方監視制御設備27による遠方の異常復旧操作の有無を判別する。   Subsequently, until the line number N reaches the maximum value Nmax, the line number N is incremented by one in step S9, and the processing from step S3 is repeated. When the measurement recording of the current values of all the signal lines and the determination of the current value abnormality are completed, the process proceeds to step S10, and it is determined whether or not the current value abnormality is currently being warned. If it is determined that the current value is being warned, the process proceeds to step S11. It is determined whether there is a direct error recovery operation by the disaster prevention receiver 10 or a remote error recovery operation by the remote monitoring control equipment 27.

ステップS11で直接又は遠方による異常復旧操作を判別するとステップS12に進み、電流値異常の警報を復旧して警報状態を解除し、ステップS1に戻って次の回線電流の測定タイミングを待つ。   If it is determined in step S11 that the abnormality recovery operation has been performed directly or remotely, the process proceeds to step S12, in which the alarm of the current value abnormality is restored to release the alarm state, and the process returns to step S1 to wait for the next line current measurement timing.

このような回線電流監視制御の第1実施形態によれば、一度、電流値異常が発生して警報が出されても、防災受信盤10又は遠方監視制御設備27により復旧操作作を行うことで警報状態が解除され、継続して電流値を測定記録することができ、記録した電流値の変化から信号回線の絶縁劣化の傾向を判断して適切に対処可能とする。   According to the first embodiment of such line current monitoring control, even if a current value abnormality occurs once and an alarm is issued, a recovery operation is performed by the disaster prevention receiver 10 or the remote monitoring control device 27. The alarm state is released, the current value can be measured and recorded continuously, and the tendency of insulation deterioration of the signal line can be determined from the change in the recorded current value so that appropriate measures can be taken.

[回線電流監視制御の第2実施形態]
図6は閾値変更により電流値異常の警報を解除する回線電流監視制御の第2実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第2実施形態は、回線単位に電流値異常を判定する閾値を設定し、電流値異常と判定した場合に、当該電流値異常と判定しないように閾値を変更するようにしたことを特徴とする。
[Second embodiment of line current monitoring control]
FIG. 6 is a flowchart showing a second embodiment of the line current monitoring control for canceling the current value alarm by changing the threshold value. In the second embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2, a threshold value for judging a current value abnormality is set for each line, and when the current value is judged to be abnormal, the current value is not judged to be abnormal. The threshold value is changed as described above.

図6に示すように、回線電流監視手段72によるステップS21〜S32の処理は、図5のステップS1〜S12の処理と同じになることから説明は省略する。   As shown in FIG. 6, the processing in steps S21 to S32 by the line current monitoring means 72 is the same as the processing in steps S1 to S12 in FIG.

回線電流監視手段72は、ステップS31で直接又は遠方による異常復旧操作を判別するとステップS32に進み、電流値異常の警報を復旧して警報状態を解除し、続いてステップS33に進み、電流値異常と判定した信号回線に設定している閾値を読出して表示部46に表示し、ステップS34で操作部48による閾値変更操作を判別するとステップS35で現在の閾値を電流値異常と判定しないように変更する。   If the line current monitoring means 72 determines in step S31 that the abnormality has been restored directly or remotely, the process proceeds to step S32, in which the alarm of the abnormal current value is restored and the alarm state is released, and then the process proceeds to step S33, where the abnormal current value is detected. The threshold set for the signal line determined to be is read out and displayed on the display unit 46. If the threshold change operation by the operation unit 48 is determined in step S34, the current threshold is changed so as not to be determined as abnormal current value in step S35. I do.

この閾値の変更は、現在の閾値をそれより大きな閾値に変更する。この閾値を増加する変更は、現在の閾値に所定の閾値増加値を加算しても良いし、1以上の所定の係数を乗算しても良い。但し、閾値の増加に対し上限値を決めており、それ以上の増加は行わない。   Changing this threshold changes the current threshold to a larger threshold. This change to increase the threshold may be performed by adding a predetermined threshold increase value to the current threshold or by multiplying the current threshold by one or more predetermined coefficients. However, the upper limit is determined for the increase in the threshold, and no further increase is performed.

続いてステップS36で全ての電流値異常の信号回線について閾値変更の処理を行うまではステップS33からの処理を繰り返し、これが終了するとステップS21に戻って次
の回線電流の測定タイミングを待つ。
Subsequently, the process from step S33 is repeated until the process of changing the threshold value is performed for all the signal lines having abnormal current values in step S36, and when this is completed, the process returns to step S21 to wait for the next line current measurement timing.

このような回線電流監視制御の第2実施形態によれば、一度、電流値異常が発生して警報が出されても、この電流値異常を判定しないように例えば閾値をそれより高い値に変更することで、変更した閾値により電流値異常が判定されるまでは電流値異常の警報が出されることはなく、電流値異常の警報に煩わされることなく継続して電流値を測定記録することができ、記録した電流値の変化から信号回線における絶縁劣化の傾向を判断して適切に対処可能とする。   According to the second embodiment of such line current monitoring control, even if a current value abnormality occurs once and an alarm is issued, for example, the threshold value is changed to a higher value so as not to determine the current value abnormality. By doing so, the alarm of the current value abnormality is not issued until the current value abnormality is determined by the changed threshold value, and the current value can be continuously measured and recorded without bothering with the current value abnormality alarm. It is possible to judge the tendency of insulation deterioration in the signal line from the change in the recorded current value and to take appropriate measures.

[回線電流監視制御の第3実施形態]
図7は電流値異常の回線の電流値測定をマスクする回線電流監視制御の第3実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第3実施形態は、複数の信号回線の何れかで電流値異常を判定した場合、電流値異常と判定した信号回線の電流値の測定を抑止するマスク処理を行うことを特徴とする。
[Third Embodiment of Line Current Monitoring and Control]
FIG. 7 is a flowchart showing a third embodiment of the line current monitoring control for masking the current value measurement of a line having an abnormal current value. In the third embodiment of the line current monitoring control by the line current monitoring means 72 in FIG. 2, when an abnormality in the current value is determined in any of the plurality of signal lines, the measurement of the current value of the signal line determined to be abnormal is performed. It is characterized in that mask processing for suppressing is performed.

図7に示すように、回線電流監視手段72によるステップS41,S42及びS44〜S53の処理は、図5のステップS1〜S12の処理と同じになり、新たにステップS43の処理が加わっている。   As shown in FIG. 7, the processing of steps S41, S42 and S44 to S53 by the line current monitoring means 72 is the same as the processing of steps S1 to S12 in FIG. 5, and the processing of step S43 is newly added.

回線電流監視手段72は、ステップS43において、前回までの処理で電流値異常と判定した信号回線か否か判別しており、電流値異常と判定していない信号回線の場合はステップS44〜S48の処理により、信号回線の電流値を測定して記録すると共に測定した電流値を閾値と比較して電流値異常の有無を判定し、電流値異常と判定した場合は防災受信盤10及び遠方監視制御設備27で電流値異常の警報出力を行う。   In step S43, the line current monitoring means 72 determines whether or not the signal line has been determined to have an abnormal current value in the previous processing. If the signal line has not been determined to have an abnormal current value, the process proceeds to steps S44 to S48. By processing, the current value of the signal line is measured and recorded, and the measured current value is compared with a threshold to determine the presence or absence of a current value abnormality. If the current value is determined to be abnormal, the disaster prevention receiver 10 and the remote monitoring control The equipment 27 outputs an alarm for abnormal current value.

これに対しステップS43で電流値異常を判定済みの信号回線を判別するとステップS44〜S48の処理をスキップすることで、その信号回線に対する電流値の測定と記録は行わず、電流値異常と判定した信号回線は監視対象から除外するマスク処理を行う。   On the other hand, if it is determined in step S43 that the signal line for which the current value abnormality has been determined is determined, the processing in steps S44 to S48 is skipped, and the current value for the signal line is not measured and recorded. The signal line is subjected to a mask process for excluding the signal line from monitoring targets.

このような回線電流監視制御の第3実施形態によれば、電流値異常と判定された信号回線を測定対象から除外することで、特定の信号回線に絶縁劣化が起きても、他の信号回線の電流値の測定記録を継続できる。   According to the third embodiment of such line current monitoring control, by excluding a signal line determined to have an abnormal current value from a measurement target, even if insulation deterioration occurs in a specific signal line, other signal lines are not affected. The measurement record of the current value can be continued.

[回線電流監視制御の第4実施形態]
図8は環境条件に応じた閾値により電流値異常を判定する回線電流監視制御の第4実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第4実施形態は、信号回線の電流値と共に所定の環境条件、例えば温度及び湿度を測定し、温度及び湿度に応じて電流値異常を判定する閾値を変更することを特徴とする。
[Fourth Embodiment of Line Current Monitoring and Control]
FIG. 8 is a flowchart showing a fourth embodiment of the line current monitoring control for determining a current value abnormality based on a threshold value according to environmental conditions. The fourth embodiment of the line current monitoring control by the line current monitoring means 72 in FIG. 2 measures a predetermined environmental condition, for example, temperature and humidity, together with the current value of the signal line, and determines an abnormal current value according to the temperature and humidity. The threshold value is changed.

回線電流監視手段72による環境条件に応じた閾値の変更は、例えば、所定の基準閾値を予め設定し、温度及び湿度から高温多湿と判定した場合に基準閾値をそれより高い閾値に変更し、温度及び湿度から低温乾燥と判定した場合に基準閾値をそれより低い閾値に変更する。   The change of the threshold value according to the environmental condition by the line current monitoring means 72 is performed, for example, by setting a predetermined reference threshold value in advance, and changing the reference threshold value to a higher threshold value when it is determined that the temperature and the humidity are high and high humidity. If the low-temperature drying is determined from the humidity and the humidity, the reference threshold is changed to a lower threshold.

図8に示すように、回線電流監視手段72は、ステップS61で所定の回線電流測定タイミングへの到達を判別すると、ステップS62に進んでトンネル内に設置した温度検出器により温度を測定すると共に湿度検出器により湿度を測定して取り込む。   As shown in FIG. 8, when the line current monitoring unit 72 determines in step S61 that the predetermined line current measurement timing has been reached, the process proceeds to step S62, in which the line current monitoring unit 72 measures the temperature with the temperature detector installed in the tunnel, and adjusts the humidity. Measure the humidity with a detector and capture it.

続いてステップS63に進み、ステップS62で測定して取り込んだ温度及び湿度に応じて電流値異常を判定する閾値を変更する。この閾値変更は、環境条件として夏場の高温
多湿となる環境条件では、信号回線12の絶縁劣化が起きやすいことから、基準閾値をそれより高い閾値に変更し、環境条件に起因した一時的な絶縁劣化により電流値異常と判定して警報しないようにできる。
Subsequently, the process proceeds to step S63, and the threshold value for judging the current value abnormality is changed according to the temperature and humidity measured and taken in step S62. This change in the threshold value is performed because the insulation deterioration of the signal line 12 is likely to occur under the environmental conditions of high temperature and high humidity in the summer, so that the reference threshold value is changed to a higher threshold value, and the temporary insulation caused by the environmental condition is changed. It is possible to determine that the current value is abnormal due to deterioration and not to issue an alarm.

続いてステップS64〜S74の処理を行うが、この処理は図5のステップS2〜S12と同じになることから、その説明は省略する。   Subsequently, the processes of steps S64 to S74 are performed, but since this process is the same as steps S2 to S12 of FIG. 5, the description thereof will be omitted.

なお、環境条件に応じて閾値を変更する回線電流監視制御の第4実施形態の変形例として、回線電流監視手段72は、記環境条件と電流値の時間的な測定結果に基づき、電流値異常を判定する閾値を時間的に変更するようにしても良い。   As a modified example of the fourth embodiment of the line current monitoring control for changing the threshold value according to the environmental condition, the line current monitoring means 72 detects the abnormal current value based on the environmental condition and the temporal measurement result of the current value. May be changed over time.

この場合、回線電流監視手段72は、例えば温度又は湿度と電流値の測定結果となるログを人為的に確認し、例えば高温多湿となって電流値が増加する傾向にある例えば6月から9月は基準閾値を高い閾値に変更し、また、一日の時間帯で気温が高めとなる例えば10時から18時までの時間帯は基準閾値を高い閾値に変更し、このように環境条件の時間的な変化に応じて閾値を変更することで、電流値異常の判定を回避し、不要な警報出力を未然に抑止することを可能とする。   In this case, the line current monitoring unit 72 artificially checks a log that is a measurement result of the temperature or humidity and the current value, for example, from June to September when the current value tends to increase due to high temperature and high humidity, for example. Changes the reference threshold to a higher threshold, and changes the reference threshold to a higher threshold during the time of day when the temperature becomes higher, for example, from 10:00 to 18:00, and thus changes the time of the environmental condition. By changing the threshold value in accordance with a specific change, it is possible to avoid the determination of the abnormal current value and to suppress unnecessary alarm output.

ここで、環境条件の時間的変化に対応した閾値の変更は、季節や一日の時間帯に対応して時間的に変化する閾値を予め記憶しておくことで、時間の経過に応じて自動的に閾値を変更設定しても良いし、手動操作により閾値を時間的に変更しても良い。   Here, the change of the threshold value corresponding to the temporal change of the environmental condition is performed by automatically storing a threshold value that temporally changes in accordance with the season or the time zone of the day, so that the threshold value is automatically changed according to the passage of time. The threshold value may be changed and set, or the threshold value may be temporally changed by a manual operation.

[回線電流監視制御の第5実施形態]
図9は電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第5実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第5実施形態は、信号回線の電流値異常を所定回数継続して判定した場合に前記上位設備に電流値異常信号を送信して警報させることを特徴とする。
[Fifth Embodiment of Line Current Monitoring and Control]
FIG. 9 is a flowchart showing a fifth embodiment of the line current monitoring control for notifying the host equipment when the current value abnormality exceeds a predetermined number. In the fifth embodiment of the line current monitoring control by the line current monitoring means 72 in FIG. 2, when the abnormal current value of the signal line is determined continuously for a predetermined number of times, a current value abnormal signal is transmitted to the higher-level equipment to make an alarm. It is characterized by the following.

図9に示すように、回線電流監視手段72によるステップS81〜S87の処理は図5のステップS1〜S6の処理と同じになることから説明は省略する。   As shown in FIG. 9, the processing in steps S81 to S87 by the line current monitoring means 72 is the same as the processing in steps S1 to S6 in FIG.

S81〜S87の処理により全ての信号回線の電流値の測定記録と電流値異常の判定を行ってステップS89に進むと、同一の信号回線について電流値異常の判定が所定回数以上継続しているか否か判別し、継続回数が所定回数未満の場合はステップS90をスキップして遠方監視制御設備27への電流値異常信号の送信は行わず、ステップS89で電流値異常が所定回数以上継続したことを判別するとステップS90に進み、この段階で初めて遠方監視制御設備27に電流値異常信号の送信により通報して警報させる。   When the measurement and recording of the current values of all the signal lines and the determination of the current value abnormality are performed by the processing of S81 to S87 and the process proceeds to step S89, it is determined whether the determination of the current value abnormality has been continued for the same signal line for a predetermined number of times or more. If the number of continuations is less than the predetermined number of times, step S90 is skipped and the current value abnormality signal is not transmitted to the remote monitoring control equipment 27, and it is determined in step S89 that the current value abnormality has continued for the predetermined number of times or more. If it is determined, the process proceeds to step S90, and at this stage, the remote monitoring and control equipment 27 is notified by sending a current value abnormality signal to give an alarm.

これに続くステップS91〜S93の処理は図5のステップS10〜S12と同じになることから説明を省略する。   Subsequent processes in steps S91 to S93 are the same as steps S10 to S12 in FIG.

このような回線電流監視制御の第5実施形態によれば、環境条件の変化等により一時的な信号回線の絶縁劣化が起きても、絶縁劣化が継続しない限り、電流値異常と判定しても遠方監視制御設備27等に電流値異常信号は送信されず、一過性の要因による電流値異常に対し不必要な警報を抑止することを可能とする。   According to the fifth embodiment of such line current monitoring control, even if insulation degradation of a signal line temporarily occurs due to a change in environmental conditions or the like, it is determined that the current value is abnormal unless insulation degradation continues. The current value abnormality signal is not transmitted to the remote monitoring control equipment 27 and the like, and it is possible to suppress unnecessary alarms for the current value abnormality due to the transient factor.

[回線電流監視制御の第6実施形態]
図10は電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第6実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第6実施形態は、電流値異常と判定した場合に測定周期を短くして電流値を
測定記録するようにしたことを特徴とする。
[Sixth Embodiment of Line Current Monitoring and Control]
FIG. 10 is a flowchart showing a sixth embodiment of the line current monitoring control for notifying the host equipment when the current value abnormality exceeds a predetermined number. The sixth embodiment of the line current monitoring control by the line current monitoring means 72 in FIG. 2 is characterized in that when it is determined that the current value is abnormal, the measurement period is shortened and the current value is measured and recorded.

図10に示すように、回線電流監視手段72は、ステップS101で例えば1日1回の所定時刻となる回線電流測定の第1タイミングへの到達を判別すると、ステップS102で回線番号NをN=1に初期設定し、続いてステップS103〜S109の処理を行うが、この処理は図5のステップS3〜S9の処理と同じになることから説明は省略する。   As shown in FIG. 10, when the line current monitoring means 72 determines in step S101 that the line current measurement has reached the first timing, for example, once a day at a predetermined time, the line number N is changed to N = N in step S102. The process is initially set to 1, and the processes of steps S103 to S109 are performed. However, since this process is the same as the processes of steps S3 to S9 in FIG.

続いて、回線電流監視手段72は、信号回線12の電流値測定と電流値異常の判定結果から、ステップS110で電流値異常の信号回線がある場合はステップS111に進み、ステップS101と同様に1日1回の第1測定タイミングか否か判別し、そうでない場合はステップS112に進み、第1測定タイミングの周期より短い例えば1時間に1回の第2測定タイミングか否か判別し、第2測定タイミングへの到達を判別するとステップS113に進み、電流値異常を判定している信号回線の電流値を測定して記録し、ステップS114で全ての電流値異常を判定した信号回線の測定が済むまでステップS113の処理を繰り返す。   Subsequently, based on the current value measurement of the signal line 12 and the determination result of the abnormal current value, if there is a signal line having an abnormal current value in step S110, the line current monitoring unit 72 proceeds to step S111. It is determined whether or not the first measurement timing is once a day. If not, the process proceeds to step S112, and it is determined whether or not the second measurement timing is shorter than the period of the first measurement timing, for example, once every hour. When it is determined that the measurement timing has been reached, the process proceeds to step S113, in which the current value of the signal line for which the current value abnormality is determined is measured and recorded, and in step S114, the measurement of all the signal lines for which the current value abnormality is determined is completed. The process of step S113 is repeated until.

続いて、ステップS115,S116の処理を行うが、これは図5のステップS11,S12と同じになることから説明は省略する。   Subsequently, the processing of steps S115 and S116 is performed, but since this is the same as steps S11 and S12 in FIG. 5, the description is omitted.

このような回線電流監視制御の第6実施形態によれば、例えば1日1回の所定周期毎の電流値測定で電流値異常と判定した場合、それより短い第2周期に変更することで、電流値異常を判定した信号回線の電流値を短い時間間隔で測定記録して、絶縁劣化による電流値の変化をより正確に把握して対処することを可能とする。   According to the sixth embodiment of such a line current monitoring control, for example, when it is determined that the current value is abnormal in the current value measurement once a day at predetermined intervals, the current value is changed to a second period shorter than that. It is possible to measure and record the current value of a signal line for which a current value abnormality has been determined at short time intervals, and to more accurately grasp the change in the current value due to insulation deterioration and to deal with it.

[回線電流監視制御の第7実施形態]
図11は電流値異常と判定した場合に一定時間だけ上位設備に通報して警報させる回線電流監視制御の第7実施形態を示したフローチャートである。図11の回線電流監視手段72による回線電流監視制御の第7実施形態は、信号回線の電流値異常と判定した場合に、信号回線情報を含めた電流値異常信号を遠方監視制御設備27に送信して警報させ、所定時間を経過した場合に電流値異常信号の送信を停止して遠方監視制御設備27での電流値異常の警報を解除させることを特徴とする。
[Seventh embodiment of line current monitoring control]
FIG. 11 is a flowchart showing a seventh embodiment of the line current monitoring control in which a higher-level facility is notified and warned for a predetermined time when it is determined that the current value is abnormal. In the seventh embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 11, when it is determined that the current value of the signal line is abnormal, a current value abnormal signal including the signal line information is transmitted to the remote monitoring control equipment 27. Then, when a predetermined time has passed, the transmission of the current value abnormality signal is stopped, and the warning of the current value abnormality in the remote monitoring control equipment 27 is released.

図11に示すように、回線電流監視手段72によるステップS121〜S126の処理は図5のステップS1〜S6の処理と基本的に同じになるが、図5のステップS6に対応した図11のステップS126の処理にあっては、電流値異常の警報を防災受信盤10では行うが、この段階では電流値異常信号を遠方監視制御設備27に送信せず、電流値異常の警報は行わない点で相違する。   As shown in FIG. 11, the processing of steps S121 to S126 by the line current monitoring means 72 is basically the same as the processing of steps S1 to S6 of FIG. 5, but the steps of FIG. 11 corresponding to step S6 of FIG. In the process of S126, the current value abnormality is alarmed by the disaster prevention receiver 10. However, at this stage, the current value abnormality signal is not transmitted to the remote monitoring control equipment 27 and the current value abnormality alarm is not performed. Different.

遠方監視制御設備27は、ステップS121〜S128の処理が済んでステップS129に進み、電流値異常の信号回線がある場合にはステップS130で遠方監視制御設備27に対し回線情報を含む電流値異常信号を送信し、遠方監視制御設備27で回線情報を含む電流値異常を警報出力させる。   The remote monitoring and control equipment 27 proceeds to step S129 after the processing of steps S121 to S128 is completed, and if there is a signal line with an abnormal current value, the remote monitoring and control equipment 27 sends the current value abnormal signal including the line information to the remote monitoring and control equipment 27 in step S130. Is transmitted, and the remote monitoring control equipment 27 outputs an alarm for an abnormal current value including the line information.

続いてステップS131で遠方監視制御設備27側で電流値異常の警報に対し対応可能な所定時間の経過を判別するとステップS132に進み、遠方監視制御設備27への電流値異常信号の送信を停止し、警報出力を解除させる。   Subsequently, if it is determined in step S131 that the remote monitoring and control equipment 27 has passed a predetermined time which can respond to the alarm of the current value abnormality, the process proceeds to step S132, and the transmission of the current value abnormal signal to the remote monitoring and control equipment 27 is stopped. , Release the alarm output.

続いて、ステップS133,S134の処理を行うが、これは図5のステップS11,S12と同じになることから説明は省略する。   Subsequently, the processing of steps S133 and S134 is performed, but since this is the same as steps S11 and S12 in FIG. 5, the description is omitted.

このような回線電流監視制御の第7実施形態によれば、防災受信盤10で信号回線について電流値異常と判定されて警報が出力されても、外部の上位設備となる例えば遠方監視制御設備27では、所定時間の間のみ電流値異常の警報が出力されるだけであり、電流値異常の警報状態が継続して複数のトンネルを集中監視している遠方監視制御設備27での管理業務に支障を来たすことを回避可能とする。   According to the seventh embodiment of such line current monitoring control, even if the disaster prevention receiver 10 determines that the signal line has an abnormal current value and outputs an alarm, for example, the remote monitoring and control equipment 27 serving as an external higher-level equipment In this case, only the alarm of the abnormal current value is output only during the predetermined time, and the alarming condition of the abnormal current value continues to interfere with the management work in the remote monitoring and control equipment 27 that centrally monitors a plurality of tunnels. Can be avoided.

[本発明の変形例]
(端末機器)
上記の実施形態は、絶縁劣化による電流値を測定して監視する信号回線に接続した端末機器として、手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、ダクト内温度検知器を例にとっているが、無電圧a接点スイッチを防災受信盤からの信号回線に接続している端末機器であれば、それ以外の適宜の端末機器が含まれる。
[Modification of the present invention]
(Terminal equipment)
In the above embodiment, as a terminal device connected to a signal line for measuring and monitoring a current value due to insulation deterioration, a manual notification device, a hydrant valve opening / closing detection switch, a pump activation switch, and a temperature detector in the duct are taken as an example. As long as the terminal device connects the non-voltage a contact switch to the signal line from the disaster prevention receiver, other appropriate terminal devices are included.

(信号回線の断線監視)
また、上記の実施形態は、信号回線の測定電流値が絶縁劣化により所定の閾値以上又は上限の閾値を超えた場合に電流値異常と判定しているが、通常監視状態で信号回線に流れている消費電流に対し、それより低い所定の下限の閾値を設定し、測定電流値が下限の閾値以下又は下限の閾値を下回った場合に電流値異常と判定して警報するようにしても良い。このように下限の閾値以下又は下回るような電流値異常は信号回線の断線障害を検出して警報することになる。
(Disconnection monitoring of signal line)
Further, in the above embodiment, when the measured current value of the signal line exceeds a predetermined threshold value or exceeds an upper limit threshold value due to insulation deterioration, it is determined that the current value is abnormal, but the current value flows to the signal line in a normal monitoring state. It is also possible to set a predetermined lower threshold value lower than the current consumption, and determine that the current value is abnormal when the measured current value is equal to or lower than the lower threshold value or lower than the lower threshold value, and issue an alarm. In this manner, an abnormal current value such as being equal to or less than the lower threshold value is detected and alarmed by detecting a disconnection failure of the signal line.

(その他)
また、本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
Further, the present invention includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:信号回線
14:端末機器
16:火災検知器
18:ダクト内温度検知器
20:消火栓装置
22:自動弁装置
24:消火ポンプ設備
25:冷却ポンプ設備
26:IG子局設備
27:遠方監視制御設備
28:換気設備
30:警報表示板設備
32:ラジオ再放送設備
34:テレビ監視設備
36:照明設備
40:制御部
42,52:P型伝送部
44:警報部
46:表示部
48:操作部
54:手動通報装置
56:消火栓弁開閉検出スイッチ
58:ポンプ起動スイッチ
60:区画モジュール
62:回線受信部
64:電流測定部
65:セレクタ部
68:無電圧a接点スイッチ
70:監視制御手段
72:回線電流監視手段
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiver 12: Signal line 14: Terminal equipment 16: Fire detector 18: Duct temperature detector 20: Fire hydrant device 22: Automatic valve device 24: Fire extinguishing pump equipment 25 : Cooling pump equipment 26: IG slave station equipment 27: Remote monitoring control equipment 28: Ventilation equipment 30: Alarm display board equipment 32: Radio rebroadcast equipment 34: Television monitoring equipment 36: Lighting equipment 40: Control units 42, 52: P Type transmission unit 44: Alarm unit 46: Display unit 48: Operation unit 54: Manual notification device 56: Fire hydrant valve open / close detection switch 58: Pump start switch 60: Partition module 62: Line reception unit 64: Current measurement unit 65: Selector unit 68: no-voltage a contact switch 70: monitoring control means 72: line current monitoring means

Claims (16)

防災受信盤からトンネル内に引き出した信号回線に端末機器を接続して監視するトンネル防災システムに於いて、
前記信号回線に流れる電流値を測定し、測定した電流値が所定の閾値以上であるか又は前記所定の閾値を超えた場合に電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を設けたことを特徴とするトンネル防災システム。
In a tunnel disaster prevention system that connects terminal equipment to the signal line drawn into the tunnel from the disaster prevention receiver and monitors it,
A current value flowing through the signal line is measured, and when the measured current value is equal to or greater than a predetermined threshold value or exceeds the predetermined threshold value, it is determined that the current value is abnormal, and a current value abnormality signal is transmitted to external equipment. A tunnel disaster prevention system comprising a line current monitoring means for giving an alarm when a warning is issued.
請求項1記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記電流値異常と判定した場合に、前記電流値の測定を中断することを特徴とするトンネル防災システム。
2. The tunnel disaster prevention system according to claim 1, wherein the line current monitoring means interrupts the measurement of the current value when it is determined that the current value is abnormal.
請求項1又は2記載のトンネル防災システムに於いて、前記回線電流監視手段は、測定した前記信号回線に流れる電流値を記録することを特徴とするトンネル防災システム。
3. The tunnel disaster prevention system according to claim 1, wherein the line current monitoring means records a measured current value flowing through the signal line.
請求項1又は2記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記防災受信盤又は前記外部の設備による所定の復旧操作を検出した場合に、前記電流値異常の警報を解除することを特徴とするトンネル防災システム。
3. The tunnel disaster prevention system according to claim 1, wherein the line current monitoring unit cancels the alarm of the abnormal current value when a predetermined recovery operation by the disaster prevention receiver or the external equipment is detected. Tunnel disaster prevention system.
請求項3又は4記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記防災受信盤又は前記外部の設備による所定の復旧操作を検出した場合に、前記信号回線に流れる電流値の測定を再開することを特徴とするトンネル防災システム。
5. The tunnel disaster prevention system according to claim 3, wherein the line current monitoring unit measures a current value flowing through the signal line when detecting a predetermined restoration operation by the disaster prevention receiver or the external equipment. Tunnel disaster prevention system characterized by restarting.
請求項1乃至5の何れかに記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記信号回線単位に電流値異常と判定する閾値を設定し、前記電流値異常と判定した場合に、前記所定の閾値を変更して、変更前に比べて当該電流値異常と判定し難くなるようにすることを特徴とするトンネル防災システム。
The tunnel disaster prevention system according to any one of claims 1 to 5, wherein the line current monitoring unit sets a threshold value for determining an abnormal current value for each signal line, and determines that the current value is abnormal. And changing the predetermined threshold value so that it is difficult to determine that the current value is abnormal as compared to before the change.
請求項1乃至5の何れかに記載のトンネル防災システムに於いて、前記回線電流監視手段は、複数の信号回線の何れかで電流値異常と判定した場合、当該電流値異常と判定した信号回線を電流値の測定対象から除外することを特徴とするトンネル防災システム。
6. The tunnel disaster prevention system according to claim 1, wherein the line current monitoring unit determines that the current value is abnormal when any of the plurality of signal lines determines that the current value is abnormal. A tunnel disaster prevention system characterized by excluding from the current value measurement target.
請求項1乃至5の何れかに記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記信号回線の電流値と共に所定の環境条件を測定し、測定した前記信号回線の電流値及び前記環境条件に応じて前記電流値異常を判定することを特徴とするトンネル防災システム。
6. The tunnel disaster prevention system according to claim 1, wherein the line current monitoring unit measures a predetermined environmental condition together with a current value of the signal line, and measures the measured current value of the signal line and the current value of the signal line. A disaster prevention system for a tunnel, wherein the abnormal current value is determined according to an environmental condition.
請求項8記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記所定の環境条件の測定結果に基づき、前記電流値異常を判定する前記所定の閾値を変更することを特徴とするトンネル防災システム。
9. The tunnel disaster prevention system according to claim 8, wherein said line current monitoring means changes said predetermined threshold value for judging said current value abnormality based on a measurement result of said predetermined environmental condition. Disaster prevention system.
請求項9記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記所定の環境条件の測定結果に基づき、前記電流値異常と判定する前記所定の閾値を所定の期間、変更することを特徴とするトンネル防災システム。
10. The tunnel disaster prevention system according to claim 9, wherein the line current monitoring unit changes the predetermined threshold value for determining that the current value is abnormal for a predetermined period based on a measurement result of the predetermined environmental condition. Tunnel disaster prevention system.
請求項10記載のトンネル防災システムに於いて、前記回線電流監視手段は、季節又は一日の時間帯における前記所定の環境条件の測定結果に基づき、前記電流値異常と判定する前記所定の閾値を前記季節又は一日の時間帯に応じて変更することを特徴とするトンネル防災システム。
11. The tunnel disaster prevention system according to claim 10, wherein the line current monitoring unit is configured to determine the current value to be abnormal based on a measurement result of the predetermined environmental condition during a season or a day. A tunnel disaster prevention system, which changes according to the season or the time of day.
請求項9又は11記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記所定の閾値を所定の基準閾値として予め設定し、前記所定の環境条件の測定結果から高温多湿と判定した場合に前記基準閾値をそれより高い閾値に変更し、前記所定の環境条件の測定結果から低温乾燥と判定した場合に前記基準閾値をそれより低い閾値に変更することを特徴とするトンネル防災システム。
12. The tunnel disaster prevention system according to claim 9, wherein the line current monitoring unit sets the predetermined threshold value as a predetermined reference threshold value in advance, and determines that the temperature is high and high from the measurement result of the predetermined environmental condition. Wherein the reference threshold is changed to a higher threshold, and when it is determined that the temperature is low-temperature drying from the measurement result of the predetermined environmental condition, the reference threshold is changed to a lower threshold.
請求項1乃至5の何れかに記載のトンネル防災システムに於いて、前記回線電流監視手段は、同一の前記信号回線について所定回数継続して前記電流値異常と判定した場合に、前記外部の設備に前記電流値異常信号を送信して警報させることを特徴とするトンネル防災システム。
6. The tunnel disaster prevention system according to claim 1, wherein the line current monitoring unit determines that the current value is abnormal for a predetermined number of times with respect to the same signal line and the external equipment. 7. Wherein the current value abnormal signal is transmitted to cause an alarm.
請求項1乃至5の何れかに記載のトンネル防災システムに於いて、前記回線電流監視手段は、所定周期毎に前記信号回線の電流値を測定し、前記所定周期毎の前記信号回線の電流値測定で電流値異常と判定した場合は、当該電流値異常と判定された前記信号回線について、前記所定周期より短い周期毎に、前記信号回線の電流値を測定することを特徴とするトンネル防災システム。
6. The tunnel disaster prevention system according to claim 1, wherein the line current monitoring means measures a current value of the signal line at predetermined intervals, and measures a current value of the signal line at predetermined intervals. When the current value is determined to be abnormal in the measurement, the current value of the signal line is measured for each of the signal lines determined to have the abnormal current value for each cycle shorter than the predetermined cycle. .
請求項1乃至5の何れかに記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記電流値異常と判定した場合に、前記電流値異常信号を前記外部の設備に送信して警報させ、その後、所定時間を経過した場合に、前記警報を解除させることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to any one of claims 1 to 5, when the line current monitoring unit determines that the current value is abnormal, the line current monitoring unit transmits the current value abnormal signal to the external facility to issue an alarm. And after that, when a predetermined time has elapsed, the warning is released.
請求項1乃至15の何れかに記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記所定の閾値を前記信号回線に通常流れる電流値よりも低い所定の下限閾値とし、前記回線電流監視手段で測定した電流値が、前記下限閾値以下であるか又は前記下限閾値を下回る場合に、前記電流値異常と判定することを特徴とするトンネル防災システム。
16. The tunnel disaster prevention system according to claim 1, wherein the line current monitoring unit sets the predetermined threshold to a predetermined lower threshold lower than a current value normally flowing through the signal line. When the current value measured by the monitoring means is equal to or less than the lower threshold value or lower than the lower threshold value, it is determined that the current value is abnormal.
JP2019152418A 2019-08-23 2019-08-23 Tunnel disaster prevention system Active JP6885994B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019152418A JP6885994B2 (en) 2019-08-23 2019-08-23 Tunnel disaster prevention system
JP2021081399A JP7054749B2 (en) 2019-08-23 2021-05-13 Disaster prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019152418A JP6885994B2 (en) 2019-08-23 2019-08-23 Tunnel disaster prevention system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015153017A Division JP6577780B2 (en) 2015-08-03 2015-08-03 Tunnel disaster prevention system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021081399A Division JP7054749B2 (en) 2019-08-23 2021-05-13 Disaster prevention system

Publications (2)

Publication Number Publication Date
JP2020010359A true JP2020010359A (en) 2020-01-16
JP6885994B2 JP6885994B2 (en) 2021-06-16

Family

ID=69152471

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019152418A Active JP6885994B2 (en) 2019-08-23 2019-08-23 Tunnel disaster prevention system
JP2021081399A Active JP7054749B2 (en) 2019-08-23 2021-05-13 Disaster prevention system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021081399A Active JP7054749B2 (en) 2019-08-23 2021-05-13 Disaster prevention system

Country Status (1)

Country Link
JP (2) JP6885994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111951509A (en) * 2020-08-17 2020-11-17 江苏建筑职业技术学院 Real-time monitoring and alarming system for electrical fire of old apartment
US11676477B2 (en) 2021-02-02 2023-06-13 Mitsubishi Electric Corporation Fire alarm system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4379242A1 (en) 2021-07-27 2024-06-05 NOK Corporation Sealing device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221347A (en) * 1985-07-19 1987-01-29 Hochiki Corp Fault supervisory equipment
JPH0543300U (en) * 1991-03-27 1993-06-11 綜合警備保障株式会社 Mechanical security device
JPH05153243A (en) * 1991-12-02 1993-06-18 Nec Corp Alarm supervisory system
JPH06266990A (en) * 1993-03-16 1994-09-22 Hochiki Corp Disaster prevention monitor
JPH10248951A (en) * 1997-03-12 1998-09-22 Hochiki Corp Disaster preventive system for tunnel
JPH11283168A (en) * 1998-03-31 1999-10-15 Nohmi Bosai Ltd Transmission line short-circuit compensator and tunnel disaster prevention system
JP2002042263A (en) * 2000-07-28 2002-02-08 Hochiki Corp Fire detector
JP2004312354A (en) * 2003-04-07 2004-11-04 Nippon Telegr & Teleph Corp <Ntt> Environmental monitor system, data logger used therein, and program thereof
JP2012145418A (en) * 2011-01-11 2012-08-02 Lapis Semiconductor Co Ltd Semiconductor circuit, semiconductor device, disconnection detecting method, and disconnection detecting program
JP2012242330A (en) * 2011-05-23 2012-12-10 Omron Automotive Electronics Co Ltd Electric leakage detection device
JP2014157440A (en) * 2013-02-15 2014-08-28 Nohmi Bosai Ltd Fire alarm facilities

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166076A (en) * 1991-12-12 1993-07-02 Hochiki Corp Analog fire alarm
JP3382370B2 (en) 1994-08-18 2003-03-04 能美防災株式会社 Transmission line monitoring equipment for fire alarm equipment
JPH09319984A (en) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd Disaster prevention system equipped with isolator incorporated type integrated board
JP2003281639A (en) 2002-03-25 2003-10-03 Matsushita Electric Works Ltd Fire and abnormality discrimination method for sensor line and fire reporting system
JP3899280B2 (en) 2002-04-05 2007-03-28 テンパール工業株式会社 Overcurrent detection device
JP4989094B2 (en) 2006-04-06 2012-08-01 ホーチキ株式会社 Fire alarm system
JP6068024B2 (en) 2012-07-05 2017-01-25 ホーチキ株式会社 Distributed fire monitoring system
JP6253913B2 (en) 2013-07-29 2017-12-27 能美防災株式会社 Fire alarm system
JP6317928B2 (en) 2014-01-14 2018-04-25 ホーチキ株式会社 Disaster prevention system, receiver, ringing sound control device, and alarm signal receiving device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221347A (en) * 1985-07-19 1987-01-29 Hochiki Corp Fault supervisory equipment
JPH0543300U (en) * 1991-03-27 1993-06-11 綜合警備保障株式会社 Mechanical security device
JPH05153243A (en) * 1991-12-02 1993-06-18 Nec Corp Alarm supervisory system
JPH06266990A (en) * 1993-03-16 1994-09-22 Hochiki Corp Disaster prevention monitor
JPH10248951A (en) * 1997-03-12 1998-09-22 Hochiki Corp Disaster preventive system for tunnel
JPH11283168A (en) * 1998-03-31 1999-10-15 Nohmi Bosai Ltd Transmission line short-circuit compensator and tunnel disaster prevention system
JP2002042263A (en) * 2000-07-28 2002-02-08 Hochiki Corp Fire detector
JP2004312354A (en) * 2003-04-07 2004-11-04 Nippon Telegr & Teleph Corp <Ntt> Environmental monitor system, data logger used therein, and program thereof
JP2012145418A (en) * 2011-01-11 2012-08-02 Lapis Semiconductor Co Ltd Semiconductor circuit, semiconductor device, disconnection detecting method, and disconnection detecting program
JP2012242330A (en) * 2011-05-23 2012-12-10 Omron Automotive Electronics Co Ltd Electric leakage detection device
JP2014157440A (en) * 2013-02-15 2014-08-28 Nohmi Bosai Ltd Fire alarm facilities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111951509A (en) * 2020-08-17 2020-11-17 江苏建筑职业技术学院 Real-time monitoring and alarming system for electrical fire of old apartment
US11676477B2 (en) 2021-02-02 2023-06-13 Mitsubishi Electric Corporation Fire alarm system

Also Published As

Publication number Publication date
JP7054749B2 (en) 2022-04-14
JP6885994B2 (en) 2021-06-16
JP2021122141A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6577780B2 (en) Tunnel disaster prevention system
JP7054749B2 (en) Disaster prevention system
JP2018067032A (en) Tunnel disaster prevention system
JP2018049487A (en) Tunnel disaster prevention system
JP6709146B2 (en) Tunnel disaster prevention system
KR20160010896A (en) Smart fire-fighting management system for cultural assets and method thereof
JP6498917B2 (en) Tunnel disaster prevention system
JP7441919B2 (en) disaster prevention system
JP6746444B2 (en) Tunnel disaster prevention system
JP7507200B2 (en) Disaster Prevention System
JP6689711B2 (en) Tunnel disaster prevention system
JP7181039B2 (en) disaster prevention system
JP7304325B2 (en) disaster prevention system
JP6990746B2 (en) Disaster prevention system
JP6899177B2 (en) Tunnel disaster prevention system
JP7207907B2 (en) disaster prevention system
JP2023089167A (en) disaster prevention system
JP7379621B2 (en) disaster prevention system
JP2020115382A (en) Tunnel disaster prevention system
JP7265608B2 (en) disaster prevention system
JP7203152B2 (en) disaster prevention system
JP7207925B2 (en) disaster prevention system
JP7475114B2 (en) Monitoring system
KR200429451Y1 (en) P-type compound fire receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210513

R150 Certificate of patent or registration of utility model

Ref document number: 6885994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150