JP6577780B2 - Tunnel disaster prevention system - Google Patents

Tunnel disaster prevention system Download PDF

Info

Publication number
JP6577780B2
JP6577780B2 JP2015153017A JP2015153017A JP6577780B2 JP 6577780 B2 JP6577780 B2 JP 6577780B2 JP 2015153017 A JP2015153017 A JP 2015153017A JP 2015153017 A JP2015153017 A JP 2015153017A JP 6577780 B2 JP6577780 B2 JP 6577780B2
Authority
JP
Japan
Prior art keywords
current
current value
disaster prevention
line
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015153017A
Other languages
Japanese (ja)
Other versions
JP2017034489A (en
Inventor
泰周 杉山
泰周 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2015153017A priority Critical patent/JP6577780B2/en
Publication of JP2017034489A publication Critical patent/JP2017034489A/en
Application granted granted Critical
Publication of JP6577780B2 publication Critical patent/JP6577780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、トンネル内に設置した通報装置や検知器等の端末機器を防災受信盤に接続してトンネル内の異常を監視するトンネル防災システムに関する。   The present invention relates to a tunnel disaster prevention system in which terminal devices such as a notification device and a detector installed in a tunnel are connected to a disaster prevention receiving board and an abnormality in the tunnel is monitored.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両を守るため、非常用施設が設置されている。   Conventionally, emergency facilities have been installed in tunnels for exclusive use of automobiles and the like in order to protect people and vehicles from fire accidents that occur in the tunnel.

このような非常用施設としては、火災の監視と通報のため火災検知器、手動通報装置、非常電話が設けられ、また火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧などが設置され、これらの非常用施設の端末機器を監視制御する防災受信盤を設けることで、トンネル防災システムを構築している。   Such emergency facilities are equipped with fire detectors, manual notification devices, emergency telephones for fire monitoring and reporting, fire hydrant devices for fire extinguishing and fire prevention, and tunnel enclosures and In order to protect the inside of the duct from fire, a water spray that sprays water for fire extinguishing from the water spray head is installed, and a disaster prevention reception panel that monitors and controls the terminal equipment of these emergency facilities is built to build a tunnel disaster prevention system is doing.

防災受信盤と端末機器で構成するトンネル防災システムは、R型伝送方式とP型直送方式に大別される。R型伝送方式は、伝送回線にアドレスを設定した火災検知器等の端末機器を接続し、伝送制御により端末機器単位に検知と制御を行う個別管理を可能とする。P型直送方式は、端末機器の種別に応じて所定の区画単位に分け、区画単位に引き出した信号回線に同一区画に属する複数の端末機器を接続し、信号回線単位に検知と制御を行う。   A tunnel disaster prevention system composed of a disaster prevention receiving board and terminal equipment is roughly divided into an R type transmission system and a P type direct transmission system. The R-type transmission method enables individual management in which a terminal device such as a fire detector having an address set on the transmission line is connected and detection and control are performed for each terminal device by transmission control. In the P-type direct transmission method, a plurality of terminal devices belonging to the same partition are connected to a signal line drawn out in each partition unit according to the type of terminal device, and detection and control are performed in signal line units.

R型伝送方式のトンネル防災システムは、端末機器による検知や制御が個別にできるため、機能及び管理面で様々な利点がある。一方、P型直送方式のトンネル防災システムは、火災検知器に伝送制御機能を設ける必要がなく、また、伝送距離が長くなっても中継増幅盤を設ける必要がないことから、R型伝送方式と比較してシステム構成が簡単で安価である。   The R-type transmission disaster prevention system has various advantages in terms of functions and management because it can be individually detected and controlled by a terminal device. On the other hand, the P-type direct-sending tunnel disaster prevention system does not need to have a transmission control function in the fire detector, and it is not necessary to provide a relay amplifier board even if the transmission distance becomes long. In comparison, the system configuration is simple and inexpensive.

トンネル防災システムとしては、R型伝送方式とP型直送方式のメリットとデメリット、トンネル長や車両の交通量等を考慮して、R型伝送方式又はP型直送方式のトンネル防災システムを構築するようにしている。   As a tunnel disaster prevention system, considering the merits and demerits of the R type transmission method and the P type direct delivery method, the tunnel length, the traffic volume of the vehicle, etc., the tunnel disaster prevention system of the R type transmission method or the P type direct delivery method will be constructed. I have to.

ところで、P型直送方式のトンネル防災システムにあっては、手動通報装置、消火栓起動装置、ダクト温度検知器等の端末機器は、操作又は検知による信号出力部を無電圧a接点スイッチとして構成し、防災受信盤から引き出された信号回線に無電圧a接点スイッチ接続している。無電圧a接点スイッチは通常監視状態でオフしており、操作や検知動作によりオンして無電圧接点信号を出力する。
By the way, in the P-type direct transmission type tunnel disaster prevention system, terminal devices such as a manual notification device, a fire hydrant starting device, a duct temperature detector, etc. are configured with a signal output unit by operation or detection as a no-voltage a contact switch, A no-voltage a contact switch is connected to the signal line drawn from the disaster prevention reception board. The no-voltage a contact switch is normally turned off in a monitoring state, and is turned on by an operation or detection operation to output a no-voltage contact signal.

具体的には、防災受信盤側から信号回線の一方にプルアップ抵抗を介して電源電圧を印加しており、無電圧a接点スイッチがオフした定常監視状態では、信号回線に消費電流は殆ど流れず、防災受信盤から見た信号回線間の電源電圧は略電源電圧に保たれている。無電圧a接点スイッチがオンすると信号回線に電流が流れ、防災受信盤から見た信号回線間の電圧は略零ボルトに低下し、防災受信盤は信号回線の消費電流の増加又は信号回線間の電圧低下を検出して端末機器の操作又は検知を示す受信信号を制御部に出力する。   Specifically, the power supply voltage is applied from the disaster prevention receiver side to one of the signal lines via a pull-up resistor, and in a steady monitoring state in which the no-voltage a contact switch is turned off, current consumption almost flows through the signal line. First, the power supply voltage between the signal lines as seen from the disaster prevention reception board is maintained at substantially the power supply voltage. When the no-voltage a contact switch is turned on, current flows in the signal line, and the voltage between the signal lines as seen from the disaster prevention receiving board decreases to approximately zero volts. The disaster prevention receiving board increases the current consumption of the signal line or between the signal lines. A voltage drop is detected and a reception signal indicating operation or detection of the terminal device is output to the control unit.

例えば手動通報装置からの火災通報信号であれば、防災受信盤は、火災表示、端末側の応答ランプの点灯制御、手動通報区画表示、消火ポンプ起動信号の出力といった制御動作を行うと共に、遠方監視制御設備、テレビ監視設備、可変式道路情報板設備、トンネル換気設備、照明設備等の外部設備に火災通報信号を送信して所定の対処制御を行わせるようにしている。   For example, if it is a fire notification signal from a manual notification device, the disaster prevention reception board performs control operations such as fire display, lighting control of the response lamp on the terminal side, manual notification section display, output of fire extinguishing pump start signal, and remote monitoring Fire notification signals are transmitted to external equipment such as control equipment, television monitoring equipment, variable road information board equipment, tunnel ventilation equipment, lighting equipment, etc., so that predetermined countermeasure control is performed.

特開2002−246962号公報Japanese Patent Laid-Open No. 2002-246962 特開平11−128381号公報JP-A-11-128381

ところで、このような従来のP型直送方式のトンネル防災システムにあっては、端末機器を接続している信号回線(外線ケーブル)の経年劣化等により絶縁低下が進み、端末機器を接続している信号回線に通常監視状態で想定される以上の電流が流れ、防災受信盤は端末機器の操作又は検知動作による信号受信と判断して警報動作を行うと共に、遠方監視制御設備、テレビ監視設備、可変式道路情報板設備、トンネル換気設備、照明設備等の他設備を連動し、トンネルを通行止めにすることが度々生じている。   By the way, in such a conventional P-type direct transmission type tunnel disaster prevention system, the insulation deterioration has progressed due to aged deterioration of the signal line (external cable) connecting the terminal equipment, and the terminal equipment is connected. More current than expected in the normal monitoring state flows through the signal line, and the disaster prevention reception panel determines that the signal is received by the operation or detection operation of the terminal equipment and performs an alarm operation, as well as remote monitoring control equipment, TV monitoring equipment, variable Interlocking other facilities such as road information board equipment, tunnel ventilation equipment, lighting equipment, etc., is often closed.

この問題を解決するため、防災受信盤で無電圧a接点スイッチを設けた端末機器を接続した信号回線に流れる電流を、例えば1日1回というように定期的に測定して記録し、更に、測定した電流が所定の閾値を超えた場合に信号回線の電流値異常を判定して警報し、更に、防災受信盤から遠方監視制御設備へ信号回線の電流値異常信号を送信して警報することが考えられている。   In order to solve this problem, the current flowing through the signal line connected to the terminal device provided with the no-voltage a contact switch in the disaster prevention receiver is periodically measured and recorded, for example, once a day, When the measured current exceeds the specified threshold value, the signal line current value abnormality is judged and alarmed, and further, the signal line current value abnormality signal is sent from the disaster prevention reception panel to the remote monitoring and control equipment to alarm. Is considered.

このように防災受信盤に信号回線の電流値を測定記録して絶縁劣化を監視する機能を設けた場合、電流値異常が発生して警報が行われても、直ぐに電流値異常を起こした信号回線を交換して障害を復旧するような保守管理は行わず、電流値の測定記録を見て信号回線の絶縁劣化の進み具合を判断しながら信号回線の交換工事等を立案して対応することとなり、信号回線の交換による障害復旧にはある程度の期間を必要とする。   In this way, when the disaster prevention receiver has a function to measure and record the current value of the signal line and monitor insulation deterioration, even if an alarm is issued due to an abnormal current value, the signal that caused the abnormal current value immediately Do not perform maintenance and management to restore the fault by exchanging the circuit, and plan and respond to the replacement work of the signal line while judging the progress of the insulation deterioration of the signal line by looking at the current measurement record. Thus, it takes a certain period of time to recover from a failure by exchanging signal lines.

しかしながら、電流値異常が判定されて警報が出されると、定期的に電流測定を行う毎に電流値異常が判定されて防災受信盤及び遠方監視制御設備で警報出力が繰り返し行われ、その都度、警報出力に対する対処が必要となり、トンネルの監視業務に支障を来たす問題がある。   However, when a current value abnormality is determined and an alarm is issued, a current value abnormality is determined each time a current measurement is performed periodically, and alarm output is repeatedly performed at the disaster prevention reception panel and remote monitoring control equipment, It is necessary to deal with the alarm output and there is a problem that hinders the monitoring work of the tunnel.

本発明は、端末機器を接続した信号回線の電流を定期的に測定して電流値異常が警報されても、電流値異常の警報に煩わされることなく回線電流の測定記録を継続して絶縁劣化の状況を適確に判断可能とするトンネル防災システムを提供することを目的とする。   Even if a current value abnormality is alarmed by periodically measuring the current of a signal line connected to a terminal device, the present invention continuously records and measures the line current without being bothered by a current value abnormality alarm. The purpose of this project is to provide a tunnel disaster prevention system that can accurately determine the situation.

(電流値異常の復旧操作)
本発明は、防災受信盤からトンネル内に引き出した信号回線端末機器を接続して監視するトンネル防災システムに於いて、
防災受信盤に信号回線に流れる電流値を測定、測定した電流値が所定の閾値以上であるか又は所定の閾値を超えた場合に電流値異常判定して電流値異常信号を外部設備に送信して警報させ、防災受信盤又は外部の設備による所定の復旧操作を検出した場合に、電流値異常の警を解除する回線電流監視手段を設けたことを特徴とする。
(Recovery operation for abnormal current value)
The present invention, in the tunnel disaster prevention system for monitoring by connecting a terminal equipment from the disaster prevention receiving board the signal lines drawn in the tunnel,
Disaster prevention receiving plate, to measure the current flowing through the signal line, the measured current value is outside the current abnormality signal determines the current value abnormality if it exceeds or predetermined threshold value is above a predetermined threshold value A line current monitoring means is provided for canceling a warning of an abnormal current value when an alarm is transmitted to the equipment and a predetermined recovery operation is detected by the disaster prevention reception board or external equipment.

本発明は、防災受信盤からトンネル内に引き出した信号回線に端末機器を接続して監視するトンネル防災システムに於いて、The present invention is a tunnel disaster prevention system for monitoring by connecting a terminal device to a signal line drawn into a tunnel from a disaster prevention reception board,
防災受信盤に、信号回線に流れる電流値を測定し、測定した電流値が所定の閾値以上であるか又は所定の閾値を超えた場合に電流値異常と判定して電流値異常信号を外部の設備に送信して警報させると共に電流値の測定を中断し、防災受信盤又は前記外部の設備による所定の復旧操作を検出した場合に、電流値異常の警報を解除すると共に電流値を測定する処理を再開する回線電流監視手段を設けたことを特徴とする。Measure the current value flowing through the signal line on the disaster prevention receiver, and if the measured current value is greater than or equal to the predetermined threshold value or exceeds the predetermined threshold value, it is determined that the current value is abnormal and the current value abnormal signal is A process for canceling the current value abnormality alarm and measuring the current value when a predetermined recovery operation by the disaster prevention reception panel or the external equipment is detected while interrupting the current value measurement by transmitting to the equipment and alarming Line current monitoring means for resuming the operation is provided.

(閾値の変更)
回線電流監視手段は、回線単位に電流値異常を判定する閾値を設定し、電流値異常判定した場合に、所定の閾値を変更して、変更前に比べて当該電流値異常と判定し難くなるようにする。
(Change threshold)
The line current monitoring means sets a threshold value for determining a current value abnormality for each line, and when it is determined that the current value is abnormal , the predetermined current threshold value is changed and it is difficult to determine the current value abnormality compared to before the change. To be .

(電流値測定のマスク)
回線電流監視手段は、複数の信号回線の何れかで電流値異常判定した場合、当該電流値異常判定した信号回線電流値の測定対象から除外する。
(Mask for current measurement)
Line current monitoring means, when it is determined that the current value abnormality in one of the plurality of signal lines, excluding the signal line is determined with the current value abnormality from the measurement target current value.

(環境条件に関連した電流値異常の判定)
回線電流監視手段は、信号回線の電流値と共に所定の環境条件を測定し、測定した信号回線の電流値及び環境条件に応じて電流値異常を判定する。
(Determination of abnormal current values related to environmental conditions)
The line current monitoring means measures a predetermined environmental condition together with the current value of the signal line, and determines a current value abnormality according to the measured current value of the signal line and the environmental condition.

(環境条件による閾値変更)
回線電流監視手段は、所定の環境条件の測定結果に基づき、電流値異常を判定する所定の閾値を変更する。
(Threshold change according to environmental conditions)
The line current monitoring means changes a predetermined threshold value for determining a current value abnormality based on a measurement result of a predetermined environmental condition.

(環境条件の時間的変化に応じた閾値変更)
回線電流監視手段は、所定の環境条件測定結果に基づき、電流値異常判定する所定の閾値を所定の期間、変更する。
(Change threshold according to temporal changes in environmental conditions)
The line current monitoring means changes a predetermined threshold value for determining a current value abnormality for a predetermined period based on a measurement result of a predetermined environmental condition.

(季節や一日の時間帯に応じた閾値変更)
回線電流監視手段は、季節又は一日の時間帯における所定の環境条件の測定結果に基づき、電流値異常判定する所定の閾値を季節又は一日の時間帯に応じて変更する。
(Change threshold according to season and time of day)
Line current monitoring means, based on the measurement result of the predetermined environmental condition in the time zone of the season or day is changed in accordance with a predetermined threshold and determines a current value abnormality in the time zone of the season or day.

(高温多湿と低温乾燥に応じた閾値変更)
回線電流監視手段は、所定の閾値を所定の基準閾値として予め設定し、所定の環境条件の測定結果から高温多湿判定した場合に基準閾値をそれより高い閾値に変更し、所定の環境条件の測定結果から低温乾燥判定した場合に基準閾値をそれより低い閾値に変更する。
(Change threshold according to high temperature and humidity and low temperature drying)
Line current monitoring means sets in advance a predetermined threshold value as a predetermined reference threshold, and change the reference threshold to a higher threshold than when it is determined that the high temperature and humidity measurement results of a predetermined environmental condition, the predetermined environmental condition When it is determined that the drying is performed at a low temperature from the measurement result , the reference threshold value is changed to a lower threshold value.

(電流値異常が所定回数継続したら外部通報)
回線電流監視手段は、同一の信号回線について所定回数継続して電流値異常と判定した場合に、外部の設備に電流値異常信号を送信して警報させる。
(External notification if current value abnormality continues a predetermined number of times)
The line current monitoring means transmits a current value abnormality signal to an external facility for alarm when it is determined that the current value abnormality continues for a predetermined number of times for the same signal line .

(電流値異常が出たら周期を短くして電流値を測定記録)
回線電流監視手段は、所定周期毎に信号回線の電流値を測定し、所定周期毎の信号回線の電流値測定で電流値異常判定した場合は、該電流値異常と判定された信号回線について、所定周期より短い周期毎に、信号回線の電流値を測定する
(If an abnormal current value appears, shorten the cycle and measure the current value.)
Line current monitoring means measures the current value of the signal line at each predetermined period, if it is determined that the current value abnormal current value measurement of the signal line at predetermined intervals, the current value abnormal determination signal line , each shorter than the predetermined period cycle, and the current value of the signal line.

(上位設備への通報と通報停止)
回線電流監視手段は、電流値異常判定した場合に電流値異常信号を外部の設備に送信して警報させ、その後、当該通報から所定時間を経過した場合に警報を解除させる。
また、回線電流監視手段は、所定の閾値を信号回線に通常流れる電流値よりも低い所定の下限閾値とし、回線電流監視手段で測定した電流値が、下限閾値以下であるか又は下限閾値を下回る場合に、電流値異常と判定する。
(Report to upper equipment and stop report)
When it is determined that the current value is abnormal, the line current monitoring means transmits a current value abnormality signal to an external facility to give an alarm, and then cancels the alarm when a predetermined time has elapsed since the notification.
The line current monitoring means sets a predetermined threshold as a predetermined lower threshold lower than a current value normally flowing in the signal line, and the current value measured by the line current monitoring means is equal to or lower than the lower threshold or lower than the lower threshold. In this case, it is determined that the current value is abnormal.

(電流値異常の復旧操作による効果)
本発明は、防災受信盤からトンネル内に引き出した信号回線に通報装置及び検知器を含む端末機器を接続して監視するトンネル防災システムに於いて、防災受信盤に、所定周期毎に端末機器を接続した信号回線に流れる電流値を測定して記録し、測定した電流値が所定の閾値以上又は閾値を超えた場合に電流値異常判定して警報すると共に電流値異常信号を外部の上位設備に送信して警報させ、防災受信盤又は上位設備による復旧操作を検出した場合に、電流値異常の警報を解除して所定周期毎の電流値測定を再開する回線電流監視手段を設けるようにしたため、一度、電流値異常が発生して警報が出されても、復旧操作を行うことで、継続して電流値を測定記録することができ、記録した電流値の変化から信号回線の絶縁劣化の傾向を判断して適切に対処可能とする。
(Effect of current value abnormality recovery operation)
The present invention relates to a tunnel disaster prevention system in which a terminal device including a notification device and a detector is connected to a signal line drawn out from a disaster prevention reception board into a tunnel for monitoring. Measures and records the current value flowing in the connected signal line, and when the measured current value exceeds or exceeds the specified threshold value, it is determined that the current value is abnormal and an alarm is given, and the current value abnormal signal is sent to the external host device. When a recovery operation is detected by the disaster prevention reception board or higher-level equipment, a line current monitoring means is provided to cancel the current value abnormality alarm and restart current value measurement every predetermined period. Even if a current value abnormality occurs and an alarm is issued, the current value can be continuously measured and recorded by performing a recovery operation. Judge trends And properly it can be dealt with.

(閾値の変更による効果)
また、回線電流監視手段は、回線単位に電流値異常を判定する閾値を設定し、電流値異常判定した場合に、当該電流値異常判定しないように閾値を変更するようにしたため、一度、電流値異常が発生して警報が出されても、この電流値異常判定しないように例えば閾値をそれより高い値に変更することで、変更した閾値により電流値異常判定されるまでは電流値異常の警報が出されることはなく、電流値異常の警報に煩わされることなく継続して電流値を測定記録することができ、記録した電流値の変化から信号回線における絶縁劣化の傾向を判断して適切に対処可能とする。
(Effect of changing threshold)
The line current monitoring means sets the threshold determining a current value faulty circuit unit, when it is determined that the current value anomaly, because you to change the threshold value to not determined that the current value abnormality, once, Even if a current value abnormality occurs and an alarm is issued, for example, by changing the threshold value to a higher value so as not to determine this current value abnormality , the current value is determined until the current value abnormality is determined by the changed threshold value. No abnormal value alarm is issued, current value can be measured and recorded without being bothered by an abnormal current value alarm, and the tendency of insulation deterioration in the signal line is judged from the change in the recorded current value Can be handled appropriately.

(電流値測定のマスクによる効果)
また、回線電流監視手段は、複数の信号回線の何れかで電流値異常判定した場合、電流値異常判定した信号回線の電流値の測定を抑止するようにしたため、電流値異常が判定された信号回線を測定対象から除外することで、特定の信号回線に絶縁劣化が起きても、他の信号回線の電流値の測定記録を継続できる。
(Effects of current measurement mask)
The line current monitoring means, when it is determined that the current value abnormality in one of the plurality of signals lines, for which is adapted to suppress measurement of the current value of the signal line is determined as the current value abnormal current abnormality is determined By excluding the signal line from the measurement target, it is possible to continue the measurement recording of the current value of the other signal line even if the insulation deterioration occurs in the specific signal line.

(環境条件に関連した電流値異常の判定による効果)
また、回線電流監視手段は、信号回線の電流値と共に所定の環境条件を測定し、測定した環境条件に関連して電流値異常を判定し、例えば、回線電流監視手段は、環境条件として温度と湿度の何れか一方又は両方を測定し、温度と湿度の何れか一方又は両方に応じて電流値異常を判定する閾値を変更し、具体的には、回線電流監視手段は、所定の基準閾値を予め設定し、温度及び湿度から高温多湿判定した場合に基準閾値をそれより高い閾値に変更し、温度及び湿度から低温乾燥判定した場合に基準閾値をそれより低い閾値に変更するようにしたため、例えば高温多湿といった環境条件により一時的に絶縁劣化が発生した場合、環境条件の変化に応じて閾値を変更することで、電流値異常判定されることが回避され、不要な警報出力を未然に抑止することを可能とする。
(Effects of judgment of current value abnormality related to environmental conditions)
Further, the line current monitoring means measures a predetermined environmental condition together with the current value of the signal line, and determines a current value abnormality in relation to the measured environmental condition. One or both of the humidity is measured, and the threshold value for determining the current value abnormality is changed according to either or both of the temperature and humidity. Specifically, the line current monitoring means sets a predetermined reference threshold value. preset order to change the reference threshold to a higher threshold than when it is determined from the temperature and humidity and high temperature and humidity, and to change the reference threshold lower than the threshold value when it is determined that the low-temperature drying temperature and humidity , for example, if the temporary insulation deterioration by environmental conditions such as high temperature and high humidity has occurred, by changing the threshold value in response to changes in environmental conditions, is prevented from being determined that the current abnormalities, unwanted alarm output It makes it possible to deter the deer.

(環境条件の時間的変化に応じた閾値変更による効果)
また、回線電流監視手段は、記環境条件と電流値の時間的な測定結果に基づき、電流値異常を判定する記閾値を時間的に変更、例えば温度と湿度の何れか一方又は両方電流値の時間的な測定結果に基づき、電流値異常を判定する閾値を時間的に変更するようにしたため、温度又は湿度と電流値の測定結果となるログを人為的に確認し、例えば高温多湿となって電流値が増加する傾向にある6月から9月は閾値を高い値に変更し、また、一日の時間帯で気温が高めとなる例えば10時から18時までの時間帯は閾値を高めに変更し、環境条件の時間的な変化に応じて閾値を変更することで、電流値異常判定されることが回避され、不要な警報出力を未然に抑止することを可能とする。
(Effect by changing threshold according to temporal change of environmental conditions)
Also, the line current monitoring means changes the threshold value for determining the current value abnormality temporally based on the environmental condition and the temporal measurement result of the current value, for example, one or both of temperature and humidity and the current value. Based on the temporal measurement results, the threshold for judging abnormal current values was changed temporally, so the logs that result in the measurement of temperature or humidity and current values were checked artificially, for example, high temperature and humidity From June to September, when the current value tends to increase, the threshold value is changed to a high value. Also, the temperature rises in the time zone of the day. For example, the threshold value is raised during the time zone from 10:00 to 18:00. By changing to the threshold value and changing the threshold according to the temporal change of the environmental condition, it is avoided that it is determined that the current value is abnormal, and unnecessary alarm output can be suppressed in advance.

(電流値異常が所定回数継続した場合の上位通報による効果)
また、回線電流監視手段は、電流値異常所定回数継続して判定した場合に上位設備に電流値異常信号を送信して警報させるようにしたため、環境条件の変化等により一時的な信号回線の絶縁劣化が起きても、絶縁劣化が継続しない限り、電流値異常判定しても上位設備として例えば遠方監視制御設備等に電流値異常信号は送信されず、一過性の要因による電流値異常に対し不必要な警報を抑止することを可能とする。
(Effect of higher-level notification when current value abnormality continues for a predetermined number of times)
The line current monitoring means, since so as to alarm by sending a current abnormality signal when it is determined to continue current abnormality and a predetermined number of times to the upper equipment, the temporary signal line by the environmental conditions change, such as even happening insulation degradation, so long as the insulation deterioration does not continue, the current value abnormality signal to be determined that the current value abnormality as the upper equipment eg remote monitor control facilities is not sent, the current abnormalities due to factors transient It is possible to suppress unnecessary warnings.

(電流値異常が発生した場合に周期を短くして電流値を測定記録する効果)
また、回線電流監視手段は、所定周期毎の信号回線の電流値測定で電流値異常判定した場合、所定周期より短い所定の第2周期毎に、信号回線の電流値を測定して記録するようしたため、例えば1日1回の所定周期毎の電流値測定で電流値異常判定した場合、それより短い例えば1時間毎の第2周期に変更することで、電流値異常判定した信号回線の電流値を短い時間間隔で測定記録して、絶縁劣化による電流値の変化をより正確に把握して対処することを可能とする。
(Effect of measuring and recording current value by shortening the cycle when an abnormal current value occurs)
The line current monitoring means measures and records the current value of the signal line every predetermined second period shorter than the predetermined period when it is determined that the current value is abnormal by measuring the current value of the signal line every predetermined period. Therefore, for example, when it is determined that the current value is abnormal by measuring the current value once every predetermined cycle once a day, for example, the signal line that is determined to be abnormal in current value by changing to the second cycle shorter than that, for example, every hour It is possible to measure and record the current value at a short time interval to more accurately grasp and deal with the change in the current value due to insulation deterioration.

(上位設備への通報と通報停止による効果)
また、回線電流監視手段は、電流値異常判定した場合に、信号回線情報を含めた電流値異常信号を上位設備に送信して警報させ、当該通報から所定時間を経過した場合に電流値異常信号の送信を停止して警報を解除させるようにしたため、防災受信盤で信号回線の電流値異常判定されて警報が出力されても、外部の上位設備となる例えば遠方監視制御設備では、所定時間の間のみ電流値異常の警報が出力されるだけであり、電流値異常の警報状態が継続して管理業務に支障を来たすことを回避可能とする。
(Effects of reporting to upper equipment and suspension of reporting)
The line current monitoring means, when it is determined that the current value anomaly, then the alarm by sending a current abnormality signal including the signal line information to the upper equipment, current abnormality when a predetermined time has elapsed from the notification Since the transmission of the signal is stopped and the alarm is released, even if it is determined that the current value of the signal line is abnormal and the alarm is output by the disaster prevention reception board, for example, in a remote monitoring control facility that is an external higher-level equipment, Only a current value abnormality alarm is output only during the time, and it is possible to prevent the current value abnormality alarm state from continuing to interfere with management work.

トンネル防災システムの概要を示した説明図Explanatory diagram showing an overview of the tunnel disaster prevention system トンネル防災システムの機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the tunnel disaster prevention system P型伝送部の詳細を示したブロック図Block diagram showing details of P-type transmission unit 電流測定部の詳細を示した回路ブロック図Circuit block diagram showing details of current measurement unit 電流値異常の警報を復旧操作により解除する回線電流監視制御の第1実施形態を示したフローチャートFlowchart showing a first embodiment of line current monitoring control for canceling a current value abnormality alarm by a recovery operation 閾値変更により電流値異常の警報を解除する回線電流監視制御の第2実施形態を示したフローチャートThe flowchart which showed 2nd Embodiment of the line current monitoring control which cancels | releases the alarm of an electric current value by changing a threshold value 電流値異常の回線の電流値測定をマスクする回線電流監視制御の第3実施形態を示したフローチャートFlowchart showing a third embodiment of line current monitoring control for masking current value measurement of a current value abnormal line 環境条件に応じた閾値により電流値異常判定する回線電流監視制御の第4実施形態を示したフローチャートThe flowchart which showed 4th Embodiment of the line current monitoring control which judges current value abnormality by the threshold value according to environmental conditions 電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第5実施形態を示したフローチャートFlowchart showing a fifth embodiment of line current monitoring control for notifying the higher-level equipment when the current value abnormality exceeds a predetermined number of times. 電流値異常判定した場合に測定周期を短くして電流値を測定記録する回線電流監視制御の第6実施形態を示したフローチャートFlowchart showing a sixth embodiment of line current monitoring control for measuring and recording the current value by shortening the measurement cycle when it is determined that the current value is abnormal. 電流値異常判定した場合に一定時間だけ上位設備に通報して警報させる回線電流監視制御の第7実施形態を示したフローチャートFlowchart showing a seventh embodiment of line current monitoring control in which a higher-level equipment is notified and alarmed for a certain period of time when it is determined that the current value is abnormal.

[トンネル防災システムの概要]
図1はトンネル防災システムの概要を示した説明図である。図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築され、上り線トンネル1aと下り線トンネル1bは避難連絡坑2でつながっている。
[Outline of tunnel disaster prevention system]
FIG. 1 is an explanatory diagram showing an outline of a tunnel disaster prevention system. As shown in FIG. 1, an up-line tunnel 1 a and a down-line tunnel 1 b are constructed as tunnels for an automobile exclusive road, and the up-line tunnel 1 a and the down-line tunnel 1 b are connected by an evacuation connection pit 2.

上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器16を設置している。火災検知器16は左右25メートル又は50メートルとなる両側に監視エリアを設定し、火災による炎を検出して火災発報する。   Fire detectors 16 are installed inside the upstream tunnel 1a and the downstream tunnel 1b along the wall surface in the longitudinal direction of the tunnel, for example, at intervals of 25 meters or 50 meters. The fire detector 16 sets monitoring areas on both sides, which are 25 meters or 50 meters on the left and right sides, detects a flame due to a fire, and issues a fire.

また、上り線トンネル1aと下り線トンネル1b内のトンネル長手方向の監視員通路の内部にはダクトを形成して配管やケーブルを敷設しており、このダクト内に所定間隔でダクト内温度検知器18を設置している。ダクト内温度検知器18はケーブル火災等によるダクト内の温度上昇を検出し、接点手段として機能する無電圧a接点スイッチのオンにより温度検知信号を出力する。   In addition, a duct is formed in the inside of the monitoring passage in the longitudinal direction of the tunnel in the upstream tunnel 1a and the downstream tunnel 1b, and piping and cables are laid in the duct. 18 is installed. The duct internal temperature detector 18 detects a temperature rise in the duct due to a cable fire or the like, and outputs a temperature detection signal when the no-voltage a contact switch functioning as a contact means is turned on.

また、上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の監視員通路の壁面に沿って例えば50メートル間隔で消火栓装置20と自動弁装置22を設置している。   In addition, fire hydrant devices 20 and automatic valve devices 22 are installed at intervals of, for example, 50 meters along the wall surface of the supervisor passage in the longitudinal direction of the tunnel inside the upstream tunnel 1a and the downstream tunnel 1b.

消火栓装置20は消火栓扉内にノズル付きホースを収納しており、火災時には消火栓扉を開いてノズル付きホースを引き出し、消火栓弁開閉レバーを開操作すると消火用水が放水され、また、消火栓弁開閉検出スイッチがオンして消火ポンプを起動させる。また、消火栓装置20には消火器扉を設け、その中に消火器を収納している。   The fire hydrant device 20 houses a hose with a nozzle inside the fire hydrant door. In the event of a fire, the fire hydrant door is opened, the hose with the nozzle is pulled out, and the fire hydrant valve opening / closing lever is opened to discharge the water for fire extinguishing. Switch on and start fire pump. Moreover, the fire hydrant device 20 is provided with a fire extinguisher door, in which the fire extinguisher is housed.

また、消火栓装置20には消防隊が使用する給水栓が設けられ、これに合わせて消防隊員が操作するポンプ起動スイッチを設けている。更に、消火栓装置20には通報装置扉を設けており、通報装置扉には手動通報装置(発信機)を設けている。このため消火栓装置20は端末機器として、発信機、消火栓弁開閉検出スイッチ、及びポンプ起動スイッチを備えており、それぞれ接点手段として機能する無電圧a接点スイッチのオンにより火災通報信号、消火栓検出信号又はポンプ起動信号を出力する。   Further, the fire hydrant device 20 is provided with a water hydrant used by the fire brigade, and is provided with a pump start switch operated by the fire brigade. Furthermore, the fire hydrant device 20 is provided with a notification device door, and the notification device door is provided with a manual notification device (transmitter). For this reason, the fire hydrant device 20 includes a transmitter, a fire hydrant valve opening / closing detection switch, and a pump start switch as terminal devices, and a fire notification signal, a fire hydrant detection signal or Output pump start signal.

なお、消火栓弁開閉検出スイッチとポンプ起動スイッチは、同じポンプ起動信号を出力するシステム的には同一のスイッチであることから、以下、消火栓弁開閉検出スイッチ(ポンプ起動スイッチを含む)として説明する場合がある。また、手動通報装置は、消火栓装置20以外に、非常電話ボックス内にも設置しているが、以下の説明では、消火栓装置20に設けた手動通報装置を代表として説明する。   In addition, since the fire hydrant valve opening / closing detection switch and the pump start switch are the same switch in terms of system that outputs the same pump start signal, the following description will be given as a fire hydrant valve opening / closing detection switch (including a pump start switch). There is. Moreover, although the manual notification apparatus is installed in the emergency telephone box in addition to the fire hydrant apparatus 20, in the following description, the manual notification apparatus provided in the fire hydrant apparatus 20 will be described as a representative.

自動弁装置22は水噴霧設備を構成しており、作動用電動弁の遠隔開制御により主弁を開駆動し、トンネル壁面の上部の長手方向に設置した複数の水噴霧ヘッドから消火用水を放水してトンネル躯体を火災から防護する。このため自動弁装置22は端末機器として作動用電動弁を備えている。   The automatic valve device 22 constitutes a water spray facility. The main valve is driven to open by remote opening control of the motor-operated valve for operation, and water for fire extinguishing is discharged from a plurality of water spray heads installed in the longitudinal direction of the upper part of the tunnel wall surface. To protect the tunnel housing from fire. For this reason, the automatic valve device 22 includes a motor-operated valve for operation as a terminal device.

トンネル内に設置している火災検知器16、ダクト内温度検知器18、消火栓装置20、及び自動弁装置22などの端末機器を接続してトンネル内の異常を監視するため、監視センター等に防災受信盤10を設置している。   In order to monitor the abnormalities in the tunnel by connecting terminal equipment such as the fire detector 16, duct temperature detector 18, fire hydrant device 20, and automatic valve device 22 installed in the tunnel, disaster prevention in the monitoring center etc. A receiving board 10 is installed.

防災受信盤10からは上り線トンネル1aと下り線トンネル1b内に、トンネル長手方向に分割した所定の区画毎にP型の信号回線12を複数本引き出し、トンネル内に設置した火災検知器16を接続している。
The up line tunnel 1a and southbound tunnel 1b from disaster receiving plate 10, a plurality of pull the P-type signal line 12 of each predefined block divided into the tunnel longitudinal direction, the fire detectors 16 installed in the tunnel Connected.

また、防災受信盤10からは上り線トンネル1aと下り線トンネル1b内に、トンネル内を長手方向に分割した区画と、端末機器の種別とに分けて、P型の信号回線12を複数本引き出し、火災検知器16以外の端末機器として、消火栓装置20に設けた手動通報装置、消火栓弁開閉検出スイッチ(ポンプ起動スイッチを含む)、ダクト内温度検知器18等の端末機器を接続している。
In addition, a plurality of P-type signal lines 12 are drawn from the disaster prevention receiving board 10 into the upstream tunnel 1a and the downstream tunnel 1b, divided into sections in which the tunnel is divided in the longitudinal direction and the types of terminal equipment. As a terminal device other than the fire detector 16, a terminal device such as a manual notification device provided in the fire hydrant device 20, a fire hydrant valve opening / closing detection switch (including a pump activation switch), a duct temperature detector 18, and the like are connected.

P型の信号回線12は信号線とコモン線で構成し、消火栓装置20の手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、及びダクト内温度検知器18の各々に設けた無電圧a接点スイッチを接続した場合は、それぞれの操作又は検知動作により無電圧a接点スイッチをオンして回線電流を流すことで、火災通報信号、ポンプ起動信号、温度検知信号を防災受信盤10に送るようにしている。   The P-type signal line 12 is composed of a signal line and a common line, and is a non-voltage a contact provided in each of the manual notification device of the fire hydrant device 20, the fire hydrant valve opening / closing detection switch, the pump start switch, and the temperature detector 18 in the duct. When a switch is connected, a fire notification signal, a pump activation signal, and a temperature detection signal are sent to the disaster prevention receiving panel 10 by turning on the no-voltage a contact switch and flowing the line current by each operation or detection operation. ing.

またトンネルの非常用施設としては、火災検知器16、消火栓装置20及び自動弁装置22以外に、消火ポンプ設備24、ダクト用の冷却ポンプ設備25、IG子局設備26、換気設備28、警報表示板設備30、ラジオ再放送設備32、テレビ監視設備34及び照明設備36等を設けており、IG子局設備26をデータ伝送回線で接続する点を除き、それ以外の設備はP型信号回線12により防災受信盤10に個別に接続している。ここで、IG子局設備26は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備27とをネットワークを経由して結ぶ通信設備である。
In addition to the fire detector 16, the fire hydrant device 20, and the automatic valve device 22, the emergency facilities for the tunnel include a fire pump facility 24, a cooling pump facility 25 for the duct, an IG slave station facility 26, a ventilation facility 28, and an alarm display. plate equipment 30, radio rebroadcast equipment 32, provided with a TV monitor equipment 34 and the lighting equipment 36, etc., except for connecting the IG slave station equipment 26 in the data transmission line, and the other equipment P-type signal line 12 is individually connected to the disaster prevention receiving board 10. Here, the IG slave station facility 26 is a communication facility that connects the disaster prevention receiving board 10 and a remote monitoring control facility 27 that is a higher-level facility provided outside via a network.

換気設備28は、トンネル内の天井側に設置しているジェットファンの運転による高い吹き出し風速によってトンネル内の空気にエネルギーを与えて、トンネル長手方向に換気の流れを起こす設備である。
The ventilation facility 28 is a facility that gives energy to the air in the tunnel by a high blown air speed by the operation of a jet fan installed on the ceiling side in the tunnel and causes a flow of ventilation in the tunnel longitudinal direction.

また、警報表示板設備30は、トンネル内の利用者に対して、トンネル内の異常を、電光表示板に表示して知らせる設備である。ラジオ再放送設備32は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備34は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備36はトンネル内の照明機器を駆動して管理する設備である。   The alarm display board facility 30 is a facility for informing the user in the tunnel of the abnormality in the tunnel by displaying it on the electric display board. The radio rebroadcasting facility 32 is a facility that enables a driver or the like to receive information from a road manager in the tunnel. The television monitoring facility 34 is a facility for confirming the scale and position of the fire, grasping the situation in the tunnel when the water spray facility is operated, and evacuation guidance is performed. The lighting equipment 36 is equipment for driving and managing lighting equipment in the tunnel.

[防災受信機の構成]
図2はトンネル防災システムの機能構成の概略を示したブロック図である。図2に示すように、防災受信盤10は制御部40を備え、制御部40は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、AD変換ポートを含む各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Configuration of disaster prevention receiver]
FIG. 2 is a block diagram showing an outline of the functional configuration of the tunnel disaster prevention system. As shown in FIG. 2, the disaster prevention reception board 10 includes a control unit 40. The control unit 40 is a function realized by executing a program, for example, and various input devices including a CPU, a memory, and an AD conversion port as hardware. A computer circuit having an output port or the like is used.

制御部40に対しては、トンネル内に設置した各種の端末機器をP型の信号回線12により接続したP型伝送部42を設け、また、制御部40に対しスピーカ、ブザー、警報表示灯等を備えた警報部44、液晶ディスプレイ等を備えた表示部46、各種スイッチを備えた操作部48を設け、更に換気設備28、警報表示板設備30、ラジオ再放送設備32、テレビ監視設備34、照明設備36、消火ポンプ設備24及び冷却ポンプ設備25をP型の信号回線12により個別に接続したP型伝送部52を設けている。
For the control unit 40, a P-type transmission unit 42 in which various terminal devices installed in the tunnel are connected by the P-type signal line 12 is provided, and for the control unit 40, a speaker, a buzzer, an alarm indicator lamp, etc. Provided with an alarm unit 44, a display unit 46 provided with a liquid crystal display, etc., and an operation unit 48 provided with various switches. Further , ventilation equipment 28, alarm display board equipment 30, radio rebroadcast equipment 32, television monitoring equipment 34 In addition, a P-type transmission unit 52 in which the lighting equipment 36, the fire pump equipment 24, and the cooling pump equipment 25 are individually connected by the P-type signal line 12 is provided.

制御部40にはプログラムの実行により実現される機能として、監視制御手段70と回線電流監視手段72を設けている。監視制御手段70はトンネル内に設置した火災検知器16、ダクト内温度検知器18、消火栓装置20及び自動弁装置22等の端末機器からの検知信号や操作信号に基づき、所定の監視制御を行う。   The control unit 40 is provided with a monitoring control unit 70 and a line current monitoring unit 72 as functions realized by executing the program. The monitoring control means 70 performs predetermined monitoring control based on detection signals and operation signals from terminal devices such as the fire detector 16, the duct temperature detector 18, the fire hydrant device 20, and the automatic valve device 22 installed in the tunnel. .

監視制御手段70は、例えば消火栓装置20に設けた手動通報装置の操作による火災通報信号を受信した場合、警報部44により主音響鳴動を行うと共に表示部46に火災表示と手動通報区画表示を行い、また消火栓装置20に応答信号を送信して応答ランプを点灯し、更に、ポンプ起動信号を消火ポンプ設備24に出力して消火ポンプを起動する。更に、監視制御手段70は他設備に対する制御として、IG子局設備26を介して遠方監視制御設備27に火災通報信号を送信して警報させる制御、テレビ監視設備34により火災通報区画を表示する制御、警報表示板設備30により手動通報区画の火災通報を表示する制御、換気設備28により手動通報区画を換気する制御、照明設備36により手動通報区画を照明する制御等を行う。   For example, when the fire control signal is received by the operation of the manual notification device provided in the fire hydrant device 20, the monitoring control means 70 performs the main sound by the alarm unit 44 and displays the fire display and the manual notification zone on the display unit 46. In addition, a response signal is transmitted to the fire hydrant device 20 to turn on the response lamp, and a pump start signal is output to the fire pump facility 24 to start the fire pump. Furthermore, the monitoring control means 70 controls the other equipment as a control for transmitting a fire notification signal to the remote monitoring control equipment 27 via the IG slave station equipment 26 to give an alarm, and a control for displaying the fire notification section by the TV monitoring equipment 34. Control for displaying a fire report in the manual report section by the alarm display board equipment 30, control for ventilating the manual report section by the ventilation equipment 28, control for lighting the manual report section by the lighting equipment 36, and the like.

また、監視制御手段70は、ダクト内温度が上昇してダクト内温度検知器18から温度検知信号を受信した場合、冷却ポンプ設備25にポンプ起動信号を出力し、ダクト内に設置したヘッドから散水してダクト内を冷却する制御を行う。
Further, when the temperature in the duct rises and the monitoring control means 70 receives a temperature detection signal from the duct temperature detector 18, the monitoring control means 70 outputs a pump activation signal to the cooling pump equipment 25 and sprinkles water from the head installed in the duct. And control to cool the inside of the duct.

回線電流監視手段72は、手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、ダクト内温度検知器18を含む無電圧a接点スイッチを備えた端末機器を接続した信号回線12の電流値を所定周期毎、例えば1日1回の周期で測定してメモリに記憶し、測定した電流値が所定の閾値以上又は所定の閾値を超えた場合に電流値異常判定して警報すると共に電流値異常信号をIG子局設備26を介して外部の上位設備となる遠方監視制御設備27に送信して警報させる制御を行う。
The line current monitoring means 72 predetermines the current value of the signal line 12 to which a terminal device having a no-voltage a contact switch including a manual notification device, a fire hydrant valve opening / closing detection switch, a pump start switch, and a duct internal temperature detector 18 is connected. Measured every cycle, for example, once a day and stored in the memory, and when the measured current value exceeds the predetermined threshold or exceeds the predetermined threshold, it is determined that the current value is abnormal and an alarm is given. Control is performed to send a signal to a remote monitoring control facility 27 that is an external higher-level facility via the IG slave station facility 26 to give an alarm.

また、回線電流監視手段72は、信号回線12の電流値異常を判定して警報した状態で、操作部48による復旧操作又は遠方監視制御設備による復旧操作の通知信号を検出した場合に、電流値異常による警報を解除して所定周期毎の電流値測定を再開する制御を行う。この制御は、後の説明で明らかにする回線電流監視手段72による回線電流監視制御の第1実施形態となる。   Further, the line current monitoring means 72 determines the current value when the notification signal of the restoration operation by the operation unit 48 or the restoration operation by the remote monitoring control facility is detected in the state in which the abnormality of the current value of the signal line 12 is determined and alarmed. Control is performed to cancel the alarm due to abnormality and restart current value measurement at predetermined intervals. This control is the first embodiment of the line current monitoring control by the line current monitoring means 72, which will be clarified later.

[P型伝送部]
図3は防災受信盤に設けたP型伝送部の詳細を示したブロック図である。図3に示すように、P型伝送部42には、トンネル内に設置している端末機器の区画に対応して複数の区画モジュール60を設けており、例えば最初の区画モジュール60に対応したトンネル内の区画には、その右側に代表して示す消火栓装置20とダクト内温度検知器18を複数台配置している。
[P-type transmission unit]
FIG. 3 is a block diagram showing details of the P-type transmission unit provided in the disaster prevention receiver. As shown in FIG. 3, the P-type transmission unit 42 is provided with a plurality of partition modules 60 corresponding to the sections of the terminal equipment installed in the tunnel. For example, the tunnel corresponding to the first partition module 60 is provided. In the inner compartment, a plurality of fire hydrant devices 20 and duct internal temperature detectors 18 shown on the right side thereof are arranged.

消火栓装置20には無電圧a接点スイッチを備えた端末機器として、手動通報装置(発信機)54、消火栓弁開閉検出スイッチ56及びポンプ起動スイッチ58を設けている。   The fire hydrant device 20 is provided with a manual notification device (transmitter) 54, a fire hydrant valve opening / closing detection switch 56, and a pump activation switch 58 as terminal devices provided with a non-voltage a contact switch.

区画モジュール60には、手動通報装置54に対応して回線受信部62aを設け、消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58に対応して回線受信部62bを設け、ダクト内温度検知器18に対応して回線受信部62cを設けている。
The section module 60 is provided with a line receiving unit 62a corresponding to the manual notification device 54, and a line receiving unit 62b is provided corresponding to the fire hydrant valve opening / closing detection switch 56 and the pump activation switch 58. Correspondingly, a line receiver 62c is provided.

回線受信部62aから引き出した信号回線12aには、複数の消火栓装置20に設けた複数の手動通報装置54を並列接続している。このため同じ区画に属する複数の手動通報装置54の何れかの押し釦操作により無電圧a接点スイッチがオンすると、回線電流が流れることで回線受信部62aが火災通報信号を受信し、区画を特定した火災通報信号を制御部40に出力する。   A plurality of manual notification devices 54 provided in the plurality of fire hydrant devices 20 are connected in parallel to the signal line 12a drawn from the line receiving unit 62a. For this reason, when the no-voltage a contact switch is turned on by operating one of the push buttons of a plurality of manual notification devices 54 belonging to the same section, the line receiver 62a receives the fire notification signal by the line current flowing, and identifies the section. The fire notification signal is output to the control unit 40.

また、回線受信部62bから引き出した信号回線12bには、複数の消火栓装置20に設けた複数の消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58のそれぞれを並列接続している。ここで、消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58は、火災に関連する操作に基づきポンプ起動信号を出力するものであり、ポンプ起動操作手段として共通していることから同じ種別としており、このため同種の端末機器として同じ信号回線12bに並列接続している。   In addition, a plurality of fire hydrant valve opening / closing detection switches 56 and pump activation switches 58 provided in the plurality of fire hydrant apparatuses 20 are connected in parallel to the signal line 12b drawn from the line receiver 62b. Here, the fire hydrant valve opening / closing detection switch 56 and the pump start switch 58 output a pump start signal based on an operation related to a fire and are the same type because they are common as a pump start operation means. Therefore, the same type of terminal device is connected in parallel to the same signal line 12b.

このため利用者が消火栓装置20のノズル付きホースを引き出して消火栓弁開閉レバーを操作した場合に、消火栓弁開閉検出スイッチ56がオンして回線電流が流れることで回線受信部62bがポンプ起動信号を受信し、区画を特定したポンプ起動信号を制御部40に出力する。また、消防隊員が消火栓装置20の扉を開いて給水栓に消防ホースを接続し、ポンプ起動スイッチ58をオン操作した場合にも、回線電流が流れることで回線受信部62bがポンプ起動信号を受信し、区画を特定したポンプ起動信号を制御部40に出力する。   For this reason, when the user pulls out the hose with a nozzle of the fire hydrant device 20 and operates the fire hydrant valve opening / closing lever, the fire hydrant valve opening / closing detection switch 56 is turned on and the line current flows, so that the line receiver 62b sends a pump start signal. The pump starting signal which received and specified the division is output to the control part 40. Also, when the fire brigade opens the fire hydrant device 20 door, connects the fire hose to the water tap, and turns on the pump start switch 58, the line receiver 62b receives the pump start signal because the line current flows. Then, the pump activation signal specifying the section is output to the control unit 40.

更に、回線受信部62cから引き出した信号回線12cには、同一区画に設けたダクト内温度検知器18を並列接続している。このため同じ区画に属する複数のダクト内温度検知器18の何れかによりダクト内の検出温度が所定の閾値温度以上となった場合に無電圧a接点スイッチをオンし、回線電流が流れることで回線受信部62cが温度検知信号を受信し、区画を特定したダクト火災検知信号を制御部40に出力する。
Further, the in-duct temperature detector 18 provided in the same section is connected in parallel to the signal line 12c drawn from the line receiving unit 62c. For this reason, when the temperature detected in the duct exceeds a predetermined threshold temperature by any one of the plurality of duct temperature sensors 18 belonging to the same section, the no-voltage a contact switch is turned on, and the line current flows. The receiving unit 62c receives the temperature detection signal and outputs a duct fire detection signal specifying the section to the control unit 40.

区画モジュール60に設けた回線受信部62a〜62cに対しては電流測定部64a〜64cを設けている。電流測定部64a〜64cは信号回線12a〜12cの各々に流れる電流値を検出した電流値検出信号をセレクタ部65に入力している。セレクタ部65は図2の制御部40に設けた回線電流監視手段72により1日1回の周期となる所定の測定タイミングで制御信号を受け、区画モジュール60入力している信号回線に対応した電流値検出信号を順次選択して制御部40のAD変換ポートに出力し、回線電流監視手段72はAD変換ポートに入力したアナログ電流値をデジタル電流値に変換して読み込んでメモリに記憶することで、各信号回線の電流値を周期的に測定記録している。
Current measuring units 64 a to 64 c are provided for the line receiving units 62 a to 62 c provided in the partition module 60. The current measuring units 64 a to 64 c input a current value detection signal obtained by detecting the current value flowing through each of the signal lines 12 a to 12 c to the selector unit 65. The selector 65 receives a control signal at a predetermined measurement timing to be once every day by the line current monitoring means 72 provided in the control unit 40 of FIG. 2, corresponding to the signal lines that are input to the compartment module 60 The current value detection signal is sequentially selected and output to the AD conversion port of the control unit 40, and the line current monitoring means 72 converts the analog current value input to the AD conversion port into a digital current value, reads it, and stores it in the memory. Thus, the current value of each signal line is periodically measured and recorded.

図4は図3のP型伝送部に設けた電流測定部の詳細を示した回路ブロック図であり、1つの信号回線を例にとって示している。図4に示すように、防災受信盤10からは引き出された信号線Lとコモン線Cからなる信号回線12には、端末機器14に設けた無電圧a接点スイッチ68及び終端抵抗15を並列に接続しており、通常監視状態で無電圧a接点スイッチ68は図示のようにオフしている。   FIG. 4 is a circuit block diagram showing details of the current measuring unit provided in the P-type transmission unit of FIG. 3, and shows one signal line as an example. As shown in FIG. 4, a no-voltage a contact switch 68 and a termination resistor 15 provided in the terminal device 14 are connected in parallel to the signal line 12 including the signal line L and the common line C drawn from the disaster prevention receiving board 10. In the normal monitoring state, the no-voltage a contact switch 68 is turned off as shown in the figure.

信号回線12の信号線Lは抵抗66により電源電圧+Vcの電源ラインにプルアップ接続しており、コモン線Cは接地接続している。このため端末機器14の無電圧a接点スイッチ68がオフしている定常監視状態では、信号回線12の信号線Lとコモン線Cの間の回線電圧VLは電源電圧+Vcとなっており、この回線電圧VLが回線受信部62に入力している。
The signal line L of the signal line 12 is pull-up connected to the power supply line of the power supply voltage + Vc by the resistor 66, and the common line C is grounded. Therefore, in the steady monitoring state where the no-voltage a contact switch 68 of the terminal device 14 is off, the line voltage VL between the signal line L and the common line C of the signal line 12 is the power supply voltage + Vc. The voltage VL is input to the line receiver 62.

信号回線12に接続している端末機器14の何れかの無電圧a接点スイッチ68がオンすると、信号線Lとコモン線Cの間の回線電圧VLは略零ボルトに低下する。回線受信部62には回線電圧VLが零ボルト付近に低下した場合にオンするスイッチング回路を備えており、スイッチング回路のオンにより受信信号を制御部40に出力する。   When any non-voltage a contact switch 68 of the terminal device 14 connected to the signal line 12 is turned on, the line voltage VL between the signal line L and the common line C is reduced to substantially zero volts. The line receiving unit 62 is provided with a switching circuit that is turned on when the line voltage VL decreases to near zero volts, and outputs a received signal to the control unit 40 when the switching circuit is turned on.

電流測定部64は、抵抗66により電源ラインにプルアップした信号線Lとコモン線Cの間の回線電圧VLを電流検出信号VLとして検出する回路であり、抵抗値をR、終端抵抗15の抵抗値をRs、信号回線12の絶縁抵抗をZとすると、無電圧a接点スイッチ68がオフしているときに信号回線12に流れる電流Iは次式となる。
The current measuring unit 64 is a circuit that detects the line voltage VL between the signal line L and the common line C pulled up to the power supply line by the resistor 66 as a current detection signal VL. When the value is Rs and the insulation resistance of the signal line 12 is Z, the current I flowing through the signal line 12 when the no-voltage a-contact switch 68 is OFF is expressed by the following equation.

ここで、(RS//Z)は並列抵抗値   Where (RS // Z) is the parallel resistance value

を表す。 Represents.

このため電流検出信号(回線電圧)VLは
Therefore the current detection signal (the line voltage) VL is

となり、回線電流Iに比例して増加する電流検出信号(回線電圧)VLが得られる。 Thus, a current detection signal (line voltage) VL that increases in proportion to the line current I is obtained.

信号回線12の絶縁劣化が起きると、絶縁抵抗Zが低下し、これにより信号回線12を流れる電流Iが増加し、電流検出信号(回線電圧)VLも増加する
電流測定部64で検出された、回線電圧(電流検出信号)VLはセレクタ部65に入力され、所定の測定タイミングで他の電流検出信号と共にセレクタ部65から順次読み出され、AD変換ポートから読み込んだ電流検出値VLに基づき、制御部40の回線電流監視手段72は、
I=(Vc−VL)/R (式3)
として電流値Iを求めて記録すると共に、所定の閾値と比較して信号回線の絶縁劣化による電流値異常判定して警報することになる。
When the insulation deterioration of the signal line 12 occurs, the insulation resistance Z decreases, thereby increasing the current I flowing through the signal line 12 and increasing the current detection signal (line voltage) VL .
The line voltage (current detection signal) VL detected by the current measurement unit 64 is input to the selector unit 65, sequentially read from the selector unit 65 together with other current detection signals at a predetermined measurement timing, and read from the AD conversion port. Based on the detected current value VL, the line current monitoring means 72 of the control unit 40
I = (Vc−VL) / R (Formula 3)
As a result, the current value I is obtained and recorded, and compared with a predetermined threshold value, it is determined that the current value is abnormal due to signal line insulation deterioration, and an alarm is issued.

また、電流測定部64の他の実施例として、抵抗66によるプルアップ接続点に続く信号線L側に電流検出抵抗を挿入接続し、電流に比例した電流検出抵抗の両端に発生する電流検出電圧をセレクタ部65に入力し、所定の測定タイミングで他の電流検出信号と共にセレクタ部65から順次読み出し、制御部40の回線電流監視手段72により、AD変換ポートから電流検出値として読み込んで記録すると共に、所定の閾値と比較して信号回線の絶縁劣化による電流値異常を判定して警報するようにしても良い
As another embodiment of the current measuring unit 64, a current detection resistor is inserted and connected to the signal line L side following the pull-up connection point by the resistor 66, and a current detection voltage generated at both ends of the current detection resistor proportional to the current. To the selector unit 65, sequentially read from the selector unit 65 together with other current detection signals at a predetermined measurement timing, and read and recorded as a current detection value from the AD conversion port by the line current monitoring means 72 of the control unit 40. The current value abnormality due to the insulation deterioration of the signal line may be determined and alarmed as compared with a predetermined threshold value .

図5は電流値異常の警報を復旧操作により解除する回線電流監視制御の第1実施形態を示したフローチャートである。図2の制御部40に設けた回線電流監視手段72による回線電流監視制御の第1実施形態は、前述したように、電流値異常を判定して警報すると共に電流値異常信号を遠方監視制御設備27に送信して警報させ、警報中に防災受信盤10又は遠方監視制御設備27による復旧操作を検出した場合に、電流値異常による警報状態を解除して所定周期毎の電流値測定を再開するようにしたことを特徴とする。
FIG. 5 is a flowchart showing a first embodiment of line current monitoring control for canceling a current value abnormality alarm by a recovery operation. As described above, the first embodiment of the line current monitoring control by the line current monitoring means 72 provided in the control unit 40 of FIG. 27 to send an alarm, and when a recovery operation by the disaster prevention receiving board 10 or the remote monitoring control equipment 27 is detected during the alarm, the alarm state due to the current value abnormality is canceled and the current value measurement at a predetermined cycle is resumed. It is characterized by doing so.

図5に示すように、回線電流監視手段72は、ステップS1で例えば1日1回の所定時刻となる回線電流測定タイミングへの到達を判別すると、ステップS2に進んで回線番号NをN=1に初期化し、続いてステップS3で図3に示したセレクタ部65の制御によるN=1で決まる最初の信号回線の電流値を測定してメモリに記憶する記録を行う。   As shown in FIG. 5, when the line current monitoring means 72 determines in step S1 that the line current measurement timing reaches a predetermined time, for example, once a day, the process proceeds to step S2 where the line number N is set to N = 1. In step S3, the current value of the first signal line determined by N = 1 under the control of the selector unit 65 shown in FIG. 3 is measured and recorded in the memory.

続いてステップS4で測定した電流値が所定の閾値以上か否か(又は閾値を超えたか否か)を判定し、電流値が所定の閾値以上となることを判別した場合はステップS5に進んで信号回線の絶縁劣化による電流値異常と判定し、防災受信盤10の警報部44による音響警報と表示部46による警報表示を行い、更に、ステップS7に進み、IG子局設備26を介して外部の遠方監視制御設備27に電流値異常信号を送信して警報させる。ステップS4で電流値が閾値未満の場合はステップS5〜S7の処理はスキップする。
Subsequently, it is determined whether or not the current value measured in step S4 is equal to or greater than a predetermined threshold value (or whether or not the threshold value is exceeded). If it is determined that the current value is equal to or greater than the predetermined threshold value, the process proceeds to step S5. It is determined that the current value is abnormal due to insulation deterioration of the signal line, and an acoustic alarm is displayed by the alarm unit 44 of the disaster prevention reception board 10 and an alarm is displayed by the display unit 46. Further, the process proceeds to step S7, An abnormal current value signal is transmitted to the remote monitoring and control equipment 27 to alert. If the current value is less than the threshold value in step S4, the processes in steps S5 to S7 are skipped.

続いて、回線番号Nが最大値Nmaxに達するまでは、ステップS9で回線番号Nを1つ増加してステップS3からの処理を繰り返す。全ての信号回線の電流値の測定記録と電流値異常の判定が済むとステップS10に進み、現在、電流値異常を警報中か否か判別し、警報中を判別した場合はステップS11に進み、防災受信盤10による直接の異常復旧操作又は遠方監視制御設備27による遠方の異常復旧操作の有無を判別する。   Subsequently, until the line number N reaches the maximum value Nmax, the line number N is incremented by 1 in step S9 and the processing from step S3 is repeated. When the current value measurement record of all the signal lines and the determination of the current value abnormality are completed, the process proceeds to step S10. At the present time, it is determined whether or not the current value abnormality is being alarmed. If the alarm is being determined, the process proceeds to step S11. It is determined whether or not there is a direct abnormality recovery operation by the disaster prevention receiving board 10 or a remote abnormality recovery operation by the remote monitoring control equipment 27.

ステップS11で直接又は遠方による異常復旧操作を判別するとステップS12に進み、電流値異常の警報を復旧して警報状態を解除し、ステップS1に戻って次の回線電流の測定タイミングを待つ。
If it is determined in step S11 that the abnormality recovery operation is performed directly or remotely, the process proceeds to step S12, the current value abnormality alarm is recovered, the alarm state is canceled, and the process returns to step S1 to wait for the next line current measurement timing.

このような回線電流監視制御の第1実施形態によれば、一度、電流値異常が発生して警報が出されても、防災受信盤10又は遠方監視制御設備27により復旧操作作を行うことで警報状態が解除され、継続して電流値を測定記録することができ、記録した電流値の変化から信号回線の絶縁劣化の傾向を判断して適切に対処可能とする。   According to the first embodiment of such line current monitoring control, even if a current value abnormality occurs and an alarm is issued, the recovery operation is performed by the disaster prevention receiving board 10 or the remote monitoring control equipment 27. The alarm state is released and the current value can be continuously measured and recorded, and the tendency of the insulation deterioration of the signal line can be judged from the change in the recorded current value, so that it can be appropriately dealt with.

[回線電流監視制御の第2実施形態]
図6は閾値変更により電流値異常の警報を解除する回線電流監視制御の第2実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第2実施形態は、回線単位に電流値異常を判定する閾値を設定し、電流値異常判定した場合に、当該電流値異常判定しないように閾値を変更するようにしたことを特徴とする。
[Second Embodiment of Line Current Monitoring Control]
FIG. 6 is a flowchart showing a second embodiment of line current monitoring control for canceling a current value abnormality alarm by changing a threshold value. In the second embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2, a threshold value for determining a current value abnormality is set for each line, and when it is determined that the current value is abnormal , the current value abnormality is not determined. Thus, the threshold value is changed as described above.

図6に示すように、回線電流監視手段72によるステップS21〜S32の処理は、図5のステップS1〜S12の処理と同じになることから説明は省略する。
As shown in FIG. 6, the process of step S 21 ~S32 by line current monitoring means 72 is explained because it is the same as the steps S1~S12 in FIG. 5 is omitted.

回線電流監視手段72は、ステップS31で直接又は遠方による異常復旧操作を判別するとステップS32に進み、電流値異常の警報を復旧して警報状態を解除し、続いてステップS33に進み、電流値異常判定した信号回線に設定している閾値を読出して表示部46に表示し、ステップS34で操作部48による閾値変更操作を判別するとステップS35で現在の閾値を電流値異常判定しないように変更する。
The line current monitoring unit 72 proceeds to step S32 when the abnormality recovery operation by the direct or remote operation is discriminated in step S31, recovers the alarm of the current value abnormality and cancels the alarm state, and then proceeds to step S33 to detect the current value abnormality. the threshold value is set to the determined signal line reads and displays on the display unit 46 and the current threshold at the operation unit step S35 when determining threshold value changing operation by the 48 in step S34 so as not to determine the current value abnormality change.

この閾値の変更は、現在の閾値をそれより大きな閾値に変更する。この閾値を増加する変更は、現在の閾値に所定の閾値増加値を加算しても良いし、1以上の所定の係数を乗算しても良い。但し、閾値の増加に対し上限値を決めており、それ以上の増加は行わない。   This change in threshold value changes the current threshold value to a larger threshold value. The change to increase the threshold value may be performed by adding a predetermined threshold increase value to the current threshold value or multiplying by one or more predetermined coefficients. However, an upper limit is determined for the increase in threshold value, and no further increase is made.

続いてステップS36で全ての電流値異常の信号回線について閾値変更の処理を行うまではステップS33からの処理を繰り返し、これが終了するとステップS21に戻って次の回線電流の測定タイミングを待つ。   Subsequently, the process from step S33 is repeated until the threshold value changing process is performed for all signal lines with abnormal current values in step S36. When this process is completed, the process returns to step S21 to wait for the next line current measurement timing.

このような回線電流監視制御の第2実施形態によれば、一度、電流値異常が発生して警報が出されても、この電流値異常を判定しないように例えば閾値をそれより高い値に変更することで、変更した閾値により電流値異常が判定されるまでは電流値異常の警報が出されることはなく、電流値異常の警報に煩わされることなく継続して電流値を測定記録することができ、記録した電流値の変化から信号回線における絶縁劣化の傾向を判断して適切に対処可能とする。   According to the second embodiment of such line current monitoring control, for example, even if a current value abnormality occurs and an alarm is issued, the threshold value is changed to a higher value, for example, so as not to determine this current value abnormality. Thus, the current value abnormality alarm is not issued until the current value abnormality is determined by the changed threshold value, and the current value can be continuously measured and recorded without being bothered by the current value abnormality alarm. It is possible to determine the tendency of insulation deterioration in the signal line from the change in the recorded current value and to cope with it appropriately.

[回線電流監視制御の第3実施形態]
図7は電流値異常の回線の電流値測定をマスクする回線電流監視制御の第3実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第3実施形態は、複数の信号回線の何れかで電流値異常を判定した場合、電流値異常判定した信号回線の電流値の測定を抑止するマスク処理を行うことを特徴とする。
[Third embodiment of line current monitoring control]
FIG. 7 is a flowchart showing a third embodiment of the line current monitoring control for masking the current value measurement of the line having an abnormal current value. In the third embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2, when a current value abnormality is determined in any of a plurality of signal lines, the current value of the signal line determined as a current value abnormality is measured. It is characterized by performing a masking process to suppress.

図7に示すように、回線電流監視手段72によるステップS41,S42及びS44〜S53の処理は、図5のステップS1〜S12の処理と同じになり、新たにステップS43の処理が加わっている。   As shown in FIG. 7, the processing of steps S41, S42 and S44 to S53 by the line current monitoring means 72 is the same as the processing of steps S1 to S12 of FIG. 5, and the processing of step S43 is newly added.

回線電流監視手段72は、ステップS43において、前回までの処理で電流値異常判定した信号回線か否か判別しており、電流値異常判定していない信号回線の場合はステップS44〜S48の処理により、信号回線の電流値を測定して記録すると共に測定した電流値を閾値と比較して電流値異常の有無を判定し、電流値異常判定した場合は防災受信盤10及び遠方監視制御設備27で電流値異常の警報出力を行う。
Line current monitoring means 72, in step S43, and determines whether the signal line is determined as the current value abnormality in the processing up to the previous, in the case of the signal line which is not determined that the current value abnormality steps S44~S48 By processing, the current value of the signal line is measured and recorded, and the measured current value is compared with a threshold value to determine whether or not there is an abnormality in the current value. If it is determined that the current value is abnormal , the disaster prevention receiving board 10 and the remote monitoring control The equipment 27 outputs an alarm for an abnormal current value.

これに対しステップS43で電流値異常を判定済みの信号回線を判別するとステップS44〜S48の処理をスキップすることで、その信号回線に対する電流値の測定と記録は行わず、電流値異常判定した信号回線は監視対象から除外するマスク処理を行う。
On the other hand, when a signal line that has been determined to have an abnormal current value is determined in step S43, the process of steps S44 to S48 is skipped, so that the current value is not measured and recorded for that signal line, and the current value is determined to be abnormal. The signal line is masked to be excluded from monitoring.

このような回線電流監視制御の第3実施形態によれば、電流値異常判定された信号回線を測定対象から除外することで、特定の信号回線に絶縁劣化が起きても、他の信号回線の電流値の測定記録を継続できる。
According to the third embodiment of such a line current monitor control, by excluding the signal line is determined to a current value abnormal from the measurement object, even happening insulation deterioration on the particular signal channel, the other signal channel Can continue to record current values.

[回線電流監視制御の第4実施形態]
図8は環境条件に応じた閾値により電流値異常判定する回線電流監視制御の第4実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第4実施形態は、信号回線の電流値と共に所定の環境条件、例えば温度及び湿度を測定し、温度及び湿度に応じて電流値異常を判定する閾値を変更することを特徴とする。
[Fourth Embodiment of Line Current Monitoring Control]
FIG. 8 is a flowchart showing a fourth embodiment of line current monitoring control for determining a current value abnormality based on a threshold value according to environmental conditions. In the fourth embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2, a predetermined environmental condition such as temperature and humidity is measured together with the current value of the signal line, and an abnormal current value is determined according to the temperature and humidity. The threshold value to be changed is changed.

回線電流監視手段72による環境条件に応じた閾値の変更は、例えば、所定の基準閾値を予め設定し、温度及び湿度から高温多湿判定した場合に基準閾値をそれより高い閾値に変更し、温度及び湿度から低温乾燥判定した場合に基準閾値をそれより低い閾値に変更する。
For example, a predetermined reference threshold value is set in advance and the reference threshold value is changed to a higher threshold value when it is determined that the temperature and humidity are high and humid. If the humidity is determined to be low temperature drying, the reference threshold is changed to a lower threshold.

図8に示すように、回線電流監視手段72は、ステップS61で所定の回線電流測定タイミングへの到達を判別すると、ステップS62に進んでトンネル内に設置した温度検出器により温度を測定すると共に湿度検出器により湿度を測定して取り込む。   As shown in FIG. 8, when the line current monitoring means 72 determines that the predetermined line current measurement timing has been reached in step S61, the line current monitoring means 72 proceeds to step S62 and measures the temperature with the temperature detector installed in the tunnel and the humidity. Measure humidity with a detector and capture.

続いてステップS63に進み、ステップS62で測定して取り込んだ温度及び湿度に応じて電流値異常を判定する閾値を変更する。この閾値変更は、環境条件として夏場の高温多湿となる環境条件では、信号回線12の絶縁劣化が起きやすいことから、基準閾値をそれより高い閾値に変更し、環境条件に起因した一時的な絶縁劣化により電流値異常判定して警報しないようにできる。
Then, it progresses to step S63 and the threshold value which determines an electric current value abnormality is changed according to the temperature and humidity which were measured and taken in by step S62. This threshold value change is likely to cause insulation degradation of the signal line 12 in an environmental condition that is hot and humid in the summer as an environmental condition. Therefore, the reference threshold value is changed to a higher threshold value, and temporary insulation caused by the environmental condition is performed. possible so as not to alarm determines that the current value abnormality due to deterioration.

続いてステップS64〜S74の処理を行うが、この処理は図5のステップS2〜S12と同じになることから、その説明は省略する。   Subsequently, the processes of steps S64 to S74 are performed. Since this process is the same as steps S2 to S12 of FIG. 5, the description thereof is omitted.

なお、環境条件に応じて閾値を変更する回線電流監視制御の第4実施形態の変形例として、回線電流監視手段72は、記環境条件と電流値の時間的な測定結果に基づき、電流値異常を判定する閾値を時間的に変更するようにしても良い。
As a modification of the fourth embodiment of the line current monitoring control in which the threshold value is changed according to the environmental conditions, the line current monitoring means 72 uses a current value abnormality based on the environmental conditions and the temporal measurement result of the current value. You may make it change the threshold value which determines this with time.

この場合、回線電流監視手段72は、例えば温度又は湿度と電流値の測定結果となるログを人為的に確認し、例えば高温多湿となって電流値が増加する傾向にある例えば6月から9月は基準閾値を高い閾値に変更し、また、一日の時間帯で気温が高めとなる例えば10時から18時までの時間帯は基準閾値を高い閾値に変更し、このように環境条件の時間的な変化に応じて閾値を変更することで、電流値異常の判定を回避し、不要な警報出力を未然に抑止することを可能とする。   In this case, the line current monitoring means 72 artificially confirms, for example, a log that is a measurement result of temperature or humidity and current value, and the current value tends to increase due to high temperature and humidity, for example, from June to September. Changes the reference threshold value to a high threshold value, and changes the reference threshold value to a high threshold value in the time zone from 10:00 to 18:00, for example, when the temperature rises in the time zone of the day. By changing the threshold value according to the change, it is possible to avoid the determination of an abnormal current value and to suppress unnecessary alarm output in advance.

ここで、環境条件の時間的変化に対応した閾値の変更は、季節や一日の時間帯に対応して時間的に変化する閾値を予め記憶しておくことで、時間の経過に応じて自動的に閾値を変更設定しても良いし、手動操作により閾値を時間的に変更しても良い。   Here, the change of the threshold corresponding to the temporal change of the environmental condition is automatically stored according to the passage of time by storing in advance the threshold that changes temporally according to the season or the time zone of the day. Alternatively, the threshold value may be changed and set manually, or the threshold value may be changed with time by a manual operation.

[回線電流監視制御の第5実施形態]
図9は電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第5実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第5実施形態は信号回線の電流値異常を所定回数継続して判定した場合に前記上位設備に電流値異常信号を送信して警報させることを特徴とする。
[Fifth Embodiment of Line Current Monitoring Control]
FIG. 9 is a flowchart showing a fifth embodiment of line current monitoring control for notifying a higher-level facility when a current value abnormality exceeds a predetermined number of times. Fifth Embodiment of the line current monitoring control by the line current monitoring means 72 in FIG. 2 causes the alarm by sending a current abnormality signal to the upper equipment when determining the current value signal abnormality line a predetermined number of times continuously for It is characterized by that.

図9に示すように、回線電流監視手段72によるステップS81〜S86の処理は図5のステップS1〜Sの処理と同じになることから説明は省略する。
As shown in FIG. 9, it explained by the process of step S81~S 86 by line current monitoring means 72 is the same as the steps Sl to S 6 in FIG. 5 will be omitted.

S81〜S87の処理により全ての信号回線の電流値の測定記録と電流値異常の判定を行ってステップS89に進むと、同一の信号回線について電流値異常の判定が所定回数以上継続しているか否か判別し、継続回数が所定回数未満の場合はステップS90をスキップして遠方監視制御設備27への電流値異常信号の送信は行わず、ステップS89で電流値異常が所定回数以上継続したことを判別するとステップS90に進み、この段階で初めて遠方監視制御設備27に電流値異常信号の送信により通報して警報させる。   When the current value measurement record and current value abnormality determination are performed by the processing of S81 to S87 and the process proceeds to step S89, whether or not the current value abnormality determination continues for the same signal line more than a predetermined number of times. If the number of continuations is less than the predetermined number, step S90 is skipped and the current value abnormality signal is not transmitted to the remote monitoring and control facility 27, and the current value abnormality has continued for a predetermined number of times or more in step S89. If it discriminate | determines, it will progress to step S90 and will notify the remote monitoring control equipment 27 by transmission of an electric current value abnormal signal for the first time at this stage, and will be alarmed.

これに続くステップS91〜S93の処理は図5のステップS10〜S12と同じになることから説明を省略する。   Subsequent steps S91 to S93 are the same as steps S10 to S12 in FIG.

このような回線電流監視制御の第5実施形態によれば、環境条件の変化等により一時的な信号回線の絶縁劣化が起きても、絶縁劣化が継続しない限り、電流値異常判定しても遠方監視制御設備27等に電流値異常信号は送信されず、一過性の要因による電流値異常に対し不必要な警報を抑止することを可能とする。
According to the fifth embodiment of such line current monitoring control, even if a temporary signal line insulation deterioration occurs due to a change in environmental conditions or the like, even if the insulation deterioration does not continue, it is determined that the current value is abnormal. An abnormal current value signal is not transmitted to the distant monitoring control equipment 27 and the like, and it is possible to suppress an unnecessary alarm for an abnormal current value due to a temporary factor.

[回線電流監視制御の第6実施形態]
図10は電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第6実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第6実施形態は、電流値異常判定した場合に測定周期を短くして電流値を測定記録するようにしたことを特徴とする。
[Sixth embodiment of line current monitoring control]
FIG. 10 is a flowchart showing a sixth embodiment of line current monitoring control for notifying a higher-level facility when a current value abnormality exceeds a predetermined number of times. The sixth embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2 is characterized in that when it is determined that the current value is abnormal , the current value is measured and recorded by shortening the measurement cycle.

図10に示すように、回線電流監視手段72は、ステップS101で例えば1日1回の所定時刻となる回線電流測定の第1タイミングへの到達を判別すると、ステップS102で回線番号NをN=1に初期設定し、続いてステップS103〜S109の処理を行うが、この処理は図5のステップS3〜S9の処理と同じになることから説明は省略する。   As shown in FIG. 10, when the line current monitoring means 72 determines in step S101 that the first timing of the line current measurement at a predetermined time, for example, once a day is reached, the line number N is set to N = N in step S102. The process is initially set to 1 and then the processes of steps S103 to S109 are performed. Since this process is the same as the processes of steps S3 to S9 of FIG.

続いて、回線電流監視手段72は、信号回線12の電流値測定と電流値異常の判定結果から、ステップS110で電流値異常の信号回線がある場合はステップS111に進み、ステップS101と同様に1日1回の第1測定タイミングか否か判別し、そうでない場合はステップS112に進み、第1測定タイミングの周期より短い例えば1時間に1回の第2測定タイミングか否か判別し、第2測定タイミングへの到達を判別するとステップS113に進み、電流値異常を判定している信号回線の電流値を測定して記録し、ステップS114で全ての電流値異常を判定した信号回線の測定が済むまでステップS113の処理を繰り返す。
Subsequently, the line current monitoring unit 72 proceeds to step S111 if there is a signal line with an abnormal current value in step S110 based on the current value measurement of the signal line 12 and the determination result of the abnormal current value. It is determined whether or not it is the first measurement timing once a day. If not, the process proceeds to step S112 to determine whether or not the second measurement timing is shorter than the first measurement timing cycle, for example, once every hour. If it is determined that the measurement timing has been reached, the process proceeds to step S113, where the current value of the signal line for which the current value abnormality is determined is measured and recorded, and the measurement of the signal line for which all current value abnormality has been determined in step S114 is completed. Until the process of step S113 is repeated.

続いて、ステップS115,S116の処理を行うが、これは図5のステップS11,S12と同じになることから説明は省略する。   Subsequently, the processing of steps S115 and S116 is performed, which is the same as steps S11 and S12 of FIG.

このような回線電流監視制御の第6実施形態によれば、例えば1日1回の所定周期毎の電流値測定で電流値異常判定した場合、それより短い第2周期に変更することで、電流値異常を判定した信号回線の電流値を短い時間間隔で測定記録して、絶縁劣化による電流値の変化をより正確に把握して対処することを可能とする。
According to the sixth embodiment of such line current monitoring control, for example, when it is determined that the current value is abnormal in the current value measurement every predetermined cycle once a day, by changing to a shorter second cycle, It is possible to measure and record the current value of the signal line for which the current value abnormality has been determined at short time intervals, and to more accurately grasp and deal with the change in the current value due to insulation deterioration.

[回線電流監視制御の第7実施形態]
図11は電流値異常判定した場合に一定時間だけ上位設備に通報して警報させる回線電流監視制御の第7実施形態を示したフローチャートである。図11の回線電流監視手段72による回線電流監視制御の第7実施形態は、信号回線の電流値異常判定した場合に、信号回線情報を含めた電流値異常信号を遠方監視制御設備27に送信して警報させ、所定時間を経過した場合に電流値異常信号の送信を停止して遠方監視制御設備27での電流値異常の警報を解除させることを特徴とする。
[Seventh Embodiment of Line Current Monitoring Control]
FIG. 11 is a flowchart showing a seventh embodiment of line current monitoring control in which a higher-level facility is notified and alarmed for a predetermined time when it is determined that the current value is abnormal. In the seventh embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 11, when it is determined that the signal line current value is abnormal, the current value abnormality signal including the signal line information is transmitted to the remote monitoring control equipment 27. When the predetermined time has elapsed, the transmission of the current value abnormality signal is stopped, and the alarm of the current value abnormality in the remote monitoring control equipment 27 is released.

図11に示すように、回線電流監視手段72によるステップS121〜S126の処理は図5のステップS1〜Sの処理と基本的に同じになるが、図5のステップS6に対応した図11のステップS126の処理にあっては、電流値異常の警報を防災受信盤10では行うが、この段階では電流値異常信号を遠方監視制御設備27に送信せず、電流値異常の警報は行わない点で相違する。
As shown in FIG. 11, the processing of step S121~S 126 by line current monitoring means 72 becomes the processing basically the same as steps Sl to S 6 in FIG. 5, FIG corresponding to step S6 in FIG. 5 11 In the process of step S126, the current value abnormality alarm is issued in the disaster prevention receiving panel 10, but at this stage, the current value abnormality signal is not transmitted to the remote monitoring control equipment 27 and the current value abnormality alarm is not issued. It is different in point.

遠方監視制御設備27は、ステップS121〜S128の処理が済んでステップS129に進み、電流値異常の信号回線がある場合にはステップS130で遠方監視制御設備27に対し回線情報を含む電流値異常信号を送信し、遠方監視制御設備27で回線情報を含む電流値異常を警報出力させる。   The remote monitoring control facility 27 proceeds to step S129 after the processing of steps S121 to S128 is completed. If there is a signal line with an abnormal current value, the remote monitoring control facility 27 transmits an abnormal current value signal including line information to the remote monitoring control facility 27 in step S130. Is transmitted, and the remote monitoring control facility 27 outputs an alarm for abnormality in the current value including the line information.

続いてステップS131で遠方監視制御設備27側で電流値異常の警報に対し対応可能な所定時間の経過を判別するとステップS132に進み、遠方監視制御設備27への電流値異常信号の送信を停止し、警報出力を解除させる。   Subsequently, when it is determined in step S131 that the predetermined time that can be dealt with in response to the current value abnormality alarm is determined on the remote monitoring control facility 27 side, the process proceeds to step S132, and transmission of the current value abnormality signal to the remote monitoring control facility 27 is stopped. Release the alarm output.

続いて、ステップS133,S134の処理を行うが、これは図5のステップS11,S12と同じになることから説明は省略する。   Subsequently, the processes of steps S133 and S134 are performed, which are the same as steps S11 and S12 of FIG.

このような回線電流監視制御の第7実施形態によれば、防災受信盤10で信号回線について電流値異常判定されて警報が出力されても、外部の上位設備となる例えば遠方監視制御設備27では、所定時間の間のみ電流値異常の警報が出力されるだけであり、電流値異常の警報状態が継続して複数のトンネルを集中監視している遠方監視制御設備27での管理業務に支障を来たすことを回避可能とする。
According to the seventh embodiment of such line current monitoring control, even if it is determined that the current value is abnormal for the signal line in the disaster prevention receiving board 10 and an alarm is output, for example, the remote monitoring control equipment 27 that becomes an external higher-level equipment In this case, an alarm for abnormal current value is only output for a predetermined time, and the alarm status of the abnormal current value continues to hinder the management work in the remote monitoring and control facility 27 that centrally monitors a plurality of tunnels. It is possible to avoid coming.

[本発明の変形例]
(端末機器)
上記の実施形態は、絶縁劣化による電流値を測定して監視する信号回線に接続した端末機器として、手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、ダクト内温度検知器を例にとっているが、無電圧a接点スイッチを防災受信盤からの信号回線に接続している端末機器であれば、それ以外の適宜の端末機器が含まれる。
[Modification of the present invention]
(Terminal equipment)
In the above embodiment, as a terminal device connected to a signal line for measuring and monitoring a current value due to insulation deterioration, a manual notification device, a fire hydrant valve opening / closing detection switch, a pump start switch, and a temperature detector in a duct are taken as examples. As long as it is a terminal device connecting the no-voltage a contact switch to the signal line from the disaster prevention receiving board, other appropriate terminal devices are included.

(信号回線の断線監視)
また、上記の実施形態は、信号回線の測定電流値が絶縁劣化により所定の閾値以上又は上限の閾値を超えた場合に電流値異常と判定しているが、通常監視状態で信号回線に流れている消費電流に対し、それより低い所定の下限の閾値を設定し、測定電流値が下限の閾値以下又は下限の閾値を下回った場合に電流値異常判定して警報するようにしても良い。このように下限の閾値以下又は下回るような電流値異常は信号回線の断線障害を検出して警報することになる。
(Monitoring of signal line disconnection)
In the above embodiment, when the measured current value of the signal line exceeds the predetermined threshold value or exceeds the upper limit threshold value due to insulation deterioration, it is determined that the current value is abnormal. A predetermined lower limit threshold value may be set for the current consumption, and when the measured current value is equal to or lower than the lower limit threshold value or lower than the lower limit threshold value, it may be determined that the current value is abnormal and an alarm is issued. In this way, an abnormal current value that is below or below the lower limit threshold value will detect and alarm the disconnection failure of the signal line.

(その他)
また、本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
Further, the present invention includes appropriate modifications that do not impair the object and advantages thereof, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:信号回線
14:端末機器
16:火災検知器
18:ダクト内温度検知器
20:消火栓装置
22:自動弁装置
24:消火ポンプ設備
25:冷却ポンプ設備
26:IG子局設備
27:遠方監視制御設備
28:換気設備
30:警報表示板設備
32:ラジオ再放送設備
34:テレビ監視設備
36:照明設備
40:制御部
42,52:P型伝送部
44:警報部
46:表示部
48:操作部
54:手動通報装置
56:消火栓弁開閉検出スイッチ
58:ポンプ起動スイッチ
60:区画モジュール
62:回線受信部
64:電流測定部
65:セレクタ部
68:無電圧a接点スイッチ
70:監視制御手段
72:回線電流監視手段
DESCRIPTION OF SYMBOLS 1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiving board 12: Signal line 14: Terminal equipment 16: Fire detector 18: Duct temperature detector 20: Fire hydrant device 22: Automatic valve device 24: Fire pump equipment 25 : Cooling pump equipment 26: IG slave station equipment 27: Remote monitoring control equipment 28: Ventilation equipment 30: Alarm display board equipment 32: Radio rebroadcast equipment 34: Television monitoring equipment 36: Lighting equipment 40: Control units 42 and 52: P Type transmission unit 44: alarm unit 46: display unit 48: operation unit 54: manual notification device 56: fire hydrant valve opening / closing detection switch 58: pump start switch 60: partition module 62: line receiving unit 64: current measuring unit 65: selector unit 68: No-voltage a contact switch 70: Monitoring control means 72: Line current monitoring means

Claims (13)

防災受信盤からトンネル内に引き出した信号回線端末機器を接続して監視するトンネル防災システムに於いて、
前記防災受信盤に、前記信号回線に流れる電流値を測定、測定した電流値が所定の閾値以上であるか又は前記所定の閾値を超えた場合に電流値異常判定して電流値異常信号を外部設備に送信して警報させ、前記防災受信盤又は前記外部の設備による所定の復旧操作を検出した場合に、前記電流値異常の警報を解除する回線電流監視手段を設けたことを特徴とするトンネル防災システム。
In tunnel disaster prevention system for monitoring by connecting a terminal equipment from the disaster prevention receiving board the signal lines drawn in the tunnel,
The disaster prevention receiving panel, the signal measured value of the current flowing through the line, the measured current value is determined as the current value abnormality when exceeded or the predetermined threshold value is above a predetermined threshold current value abnormality signal was transmitted to the external equipment is alarm, in the case of detecting a predetermined recovery operation by the disaster prevention receiving board or the external equipment, characterized in that a line current monitoring means for releasing the alarm of the current abnormal Tunnel disaster prevention system.
防災受信盤からトンネル内に引き出した信号回線端末機器を接続して監視するトンネル防災システムに於いて、
前記防災受信盤に、前記信号回線に流れる電流値を測定、測定した電流値が所定の閾値以上であるか又は前記所定の閾値を超えた場合に電流値異常判定して電流値異常信号を外部設備に送信して警報させると共に前記電流値の測定を中断し、前記防災受信盤又は前記外部の設備による所定の復旧操作を検出した場合に、前記電流値異常の警報を解除すると共に前記電流値を測定する処理を再開する回線電流監視手段を設けたことを特徴とするトンネル防災システム。
In tunnel disaster prevention system for monitoring by connecting a terminal equipment from the disaster prevention receiving board the signal lines drawn in the tunnel,
The disaster prevention receiving panel, the signal measured value of the current flowing through the line, the measured current value is determined as the current value abnormality when exceeded or the predetermined threshold value is above a predetermined threshold current value abnormality signal the interrupt the measurement of the external and of the transmission to the equipment to alarm Rutotomoni the current value, when detecting the predetermined recovery operation by the disaster prevention receiving board or the external equipment, to release the alarm of the current abnormal A tunnel disaster prevention system comprising line current monitoring means for restarting the process of measuring the current value .
請求項1又は2に記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記信号回線単位に電流値異常を判定する閾値を設定し、前記電流値異常判定した場合に前記所定の閾値を変更して、変更前に比べて当該電流値異常と判定し難くなるようにすることを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 1 or 2, wherein the line current monitoring unit, when setting the threshold value for determining a current value abnormality, determines that the current value abnormality to the signal line unit, the predetermined A tunnel disaster prevention system, characterized in that it is difficult to determine that the current value is abnormal compared to before the change .
請求項1又は2に記載のトンネル防災システムに於いて、前記回線電流監視手段は、複数の信号回線の何れかで電流値異常判定した場合、当該電流値異常判定した信号回線電流値の測定対象から除外することを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 1 or 2, wherein the line current monitoring means, when it is determined that the current value abnormality in one of the plurality of signal lines, a current value signal line is determined with the current abnormalities Tunnel disaster prevention system, characterized in that it is excluded from the measurement target .
請求項1又は2に記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記信号回線の電流値と共に所定の環境条件を測定し、測定した前記信号回線の電流値及び前記環境条件に応じて前記電流値異常を判定することを特徴とするトンネル防災システム。
3. The tunnel disaster prevention system according to claim 1 , wherein the line current monitoring unit measures a predetermined environmental condition together with a current value of the signal line, and determines the measured current value of the signal line and the environmental condition. The tunnel disaster prevention system characterized by determining the current value abnormality in response .
請求項5記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記所定の環境条件の測定結果に基づき、前記電流値異常を判定する前記所定の閾値を変更することを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 5, wherein the line current monitoring means, based on said predetermined environmental condition measurements, and changes the predetermined threshold value determines the current anomaly Tunnel disaster prevention system.
請求項6に記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記所定の環境条件測定結果に基づき、前記電流値異常を判定する前記所定の閾値を所定の期間、変更することを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 6, wherein the line current monitoring means based on said predetermined environmental condition measurements, the predetermined predetermined period threshold value determines the current anomaly, changing A tunnel disaster prevention system characterized by
請求項7記載のトンネル防災システムに於いて、前記回線電流監視手段は、季節又は一日の時間帯における前記所定の環境条件の測定結果に基づき、前記電流値異常を判定する前記所定の閾値を前記季節又は一日の時間帯に応じて変更することを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 7, wherein the line current monitoring means, based on the measurement result of the predetermined environmental condition in the time zone of the season or day, the predetermined threshold value determining said current abnormalities Is changed according to the season or the time zone of the day .
請求項6又は8記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記所定の閾値を所定の基準閾値として予め設定し、前記所定の環境条件の測定結果から高温多湿判定した場合に前記基準閾値をそれより高い閾値に変更し、前記所定の環境条件の測定結果から低温乾燥判定した場合に前記基準閾値をそれより低い閾値に変更することを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 6 or 8, wherein the line current monitoring means, said predetermined threshold set in advance as a predetermined reference threshold, determines that the hot and humid from the measurements of the predetermined environmental condition In this case, the reference threshold value is changed to a higher threshold value, and the reference threshold value is changed to a lower threshold value when the low temperature drying is determined from the measurement result of the predetermined environmental condition .
請求項1又は2に記載のトンネル防災システムに於いて、前記回線電流監視手段は、同一の前記信号回線について所定回数継続して前記電流値異常と判定した場合に前記外部の設備に前記電流値異常信号を送信して警報させることを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 1 or 2, wherein the line current monitoring means, when it is determined that the current abnormalities for the same of the signal line continuously for a predetermined number of times, the current the outside of the equipment A tunnel disaster prevention system that sends an alarm by sending an abnormal value signal.
請求項1又は2に記載のトンネル防災システムに於いて、前記回線電流監視手段は、所定周期毎に前記信号回線の電流値を測定し、前記所定周期毎の前記信号回線の電流値測定で電流値異常判定した場合は、当該電流値異常と判定された前記信号回線について、前記所定周期より短い周期毎に、前記信号回線の電流値を測定することを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 1 or 2, wherein the line current monitoring means, a current value of the signal line is measured at predetermined intervals, the current in the current measurement of the signal line for each of the predetermined cycle abnormal and if it is determined, for the signal line is determined with the current value abnormality, the short period every than the predetermined period, the tunnel disaster prevention system, characterized by measuring the current value of the signal line.
請求項1又は2に記載のトンネル防災システムに於いて、前記回線電流監視手段は、前記電流値異常判定した場合に、前記電流値異常信号を前記外部の設備に送信して警報させ、その後、所定時間を経過した場合に、前記警報を解除させることを特徴とするトンネル防災システム。
In tunnel disaster prevention system according to claim 1 or 2, wherein the line current monitoring means, when it is determined that the current value abnormality, then the alarm by sending the current value abnormality signal to the external equipment, then tunnel disaster prevention system, characterized in that when a predetermined time elapses, to release the alarm.
請求項1乃至12の何れかに記載のトンネル防災システムに於いて、前記所定の閾値を前記信号回線に通常流れる電流値よりも低い所定の下限閾値とし、前記回線電流監視手段で測定した電流値が、前記下限閾値以下であるか又は前記下限閾値を下回る場合に、前記電流値異常と判定することを特徴とするトンネル防災システム。The tunnel disaster prevention system according to any one of claims 1 to 12, wherein the predetermined threshold value is a predetermined lower limit threshold value lower than a current value normally flowing through the signal line, and the current value measured by the line current monitoring means. Is determined to be abnormal in the current value when the value is less than or equal to the lower threshold or lower than the lower threshold.
JP2015153017A 2015-08-03 2015-08-03 Tunnel disaster prevention system Active JP6577780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015153017A JP6577780B2 (en) 2015-08-03 2015-08-03 Tunnel disaster prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015153017A JP6577780B2 (en) 2015-08-03 2015-08-03 Tunnel disaster prevention system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019152418A Division JP6885994B2 (en) 2019-08-23 2019-08-23 Tunnel disaster prevention system

Publications (2)

Publication Number Publication Date
JP2017034489A JP2017034489A (en) 2017-02-09
JP6577780B2 true JP6577780B2 (en) 2019-09-18

Family

ID=57988996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015153017A Active JP6577780B2 (en) 2015-08-03 2015-08-03 Tunnel disaster prevention system

Country Status (1)

Country Link
JP (1) JP6577780B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6900206B2 (en) * 2017-03-08 2021-07-07 ホーチキ株式会社 Tunnel disaster prevention system
JP6871096B2 (en) * 2017-07-21 2021-05-12 ホーチキ株式会社 Tunnel disaster prevention system
JP6910905B2 (en) * 2017-09-25 2021-07-28 ホーチキ株式会社 Tunnel disaster prevention system
JP6935295B2 (en) * 2017-10-16 2021-09-15 ホーチキ株式会社 Disaster prevention receiver
JP6946145B2 (en) * 2017-10-22 2021-10-06 ホーチキ株式会社 Tunnel disaster prevention system
JP6894824B2 (en) * 2017-10-26 2021-06-30 ホーチキ株式会社 Tunnel disaster prevention system
JP6935298B2 (en) * 2017-10-26 2021-09-15 ホーチキ株式会社 Disaster prevention receiver
JP6894823B2 (en) * 2017-10-26 2021-06-30 ホーチキ株式会社 Tunnel disaster prevention system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292600A (en) * 1988-05-20 1989-11-24 Yamatake Honeywell Co Ltd Alarm device
JPH05153243A (en) * 1991-12-02 1993-06-18 Nec Corp Alarm supervisory system
JPH06266990A (en) * 1993-03-16 1994-09-22 Hochiki Corp Disaster prevention monitor
JPH09161188A (en) * 1995-12-05 1997-06-20 Hochiki Corp Disaster prevention monitoring device
JP3736794B2 (en) * 2001-09-21 2006-01-18 ホーチキ株式会社 Fire alarm system, fire detector, fire receiver and repeater
JP2004312354A (en) * 2003-04-07 2004-11-04 Nippon Telegr & Teleph Corp <Ntt> Environmental monitor system, data logger used therein, and program thereof
JP4316428B2 (en) * 2004-06-07 2009-08-19 株式会社ジェイ・パワーシステムズ Non-destructive deterioration diagnosis method for cables
JP2006039964A (en) * 2004-07-27 2006-02-09 Sharp Corp Alarm system
JP2007328383A (en) * 2006-06-06 2007-12-20 Hioki Ee Corp Electronic equipment, monitoring device and monitoring system
JP5312149B2 (en) * 2009-03-30 2013-10-09 能美防災株式会社 Tunnel disaster prevention system

Also Published As

Publication number Publication date
JP2017034489A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6577780B2 (en) Tunnel disaster prevention system
KR20190051225A (en) Intelligent switchboard management system using integrated sensing module
JP7054749B2 (en) Disaster prevention system
JP6709146B2 (en) Tunnel disaster prevention system
JP6498917B2 (en) Tunnel disaster prevention system
JP6746444B2 (en) Tunnel disaster prevention system
KR102060467B1 (en) Method for monitoring the peaker line, and broadcasting system including the same
JP6804134B2 (en) Tunnel disaster prevention system
JP2018067032A (en) Tunnel disaster prevention system
JP6689711B2 (en) Tunnel disaster prevention system
KR20140017300A (en) Fires prevention system of smart type
JP7082156B2 (en) Disaster prevention system
JP6899177B2 (en) Tunnel disaster prevention system
JP6916926B2 (en) Disaster prevention system
JP3457229B2 (en) Signal transmission system for gas fire extinguishing equipment
JP6894824B2 (en) Tunnel disaster prevention system
JP7163451B2 (en) disaster prevention system
JP7137599B2 (en) disaster prevention system
JP6990746B2 (en) Disaster prevention system
JP6894823B2 (en) Tunnel disaster prevention system
JP2021176087A (en) Disaster prevention system
JP2022031856A (en) Disaster prevention system
JP2022122933A (en) disaster prevention system
JP2020205072A (en) Tunnel disaster prevention system
JP2022106939A (en) Disaster prevention system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190823

R150 Certificate of patent or registration of utility model

Ref document number: 6577780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150