JP2021122141A - Disaster prevention system - Google Patents

Disaster prevention system Download PDF

Info

Publication number
JP2021122141A
JP2021122141A JP2021081399A JP2021081399A JP2021122141A JP 2021122141 A JP2021122141 A JP 2021122141A JP 2021081399 A JP2021081399 A JP 2021081399A JP 2021081399 A JP2021081399 A JP 2021081399A JP 2021122141 A JP2021122141 A JP 2021122141A
Authority
JP
Japan
Prior art keywords
current value
line
current
disaster prevention
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021081399A
Other languages
Japanese (ja)
Other versions
JP7054749B2 (en
Inventor
泰周 杉山
Yasunori Sugiyama
泰周 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2021081399A priority Critical patent/JP7054749B2/en
Publication of JP2021122141A publication Critical patent/JP2021122141A/en
Application granted granted Critical
Publication of JP7054749B2 publication Critical patent/JP7054749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To enable the correct determination of an insulation deterioration state by continuing the measurement record of a line current without being troubled by a current value abnormality alarm, even when the current value abnormality alarm is issued through regular measurement of a signal link current connected to a terminal apparatus.SOLUTION: In a disaster prevention system, a terminal apparatus including a notification device and detectors 16, 18 is connected to a disaster prevention reception board 10 through a signal link, so as to monitor an abnormality in a monitor area. Line current monitor means 72 of the disaster prevention reception board 10 measures and records a current value which flows through the signal link, connected to the terminal apparatus, for each predetermined period. When the measured current value satisfies a predetermined determination condition, the line current monitor means 72 determines a current value abnormality to issue an alarm, and also notifies an outside remote monitor control facility 27 of a current value abnormality to make an alarm. When a current value abnormality is determined in one of a plurality of signal links, the predetermined determination condition of the signal link determined as current value abnormality is changed, so as to make the determination of current value abnormality more difficult than before the change.SELECTED DRAWING: Figure 2

Description

本発明は、トンネル内に設置した通報装置や検知器等の端末機器を防災受信盤に接続してトンネル内の異常を監視する防災システムに関する。 The present invention relates to a disaster prevention system that monitors abnormalities in a tunnel by connecting terminal devices such as a notification device and a detector installed in the tunnel to a disaster prevention receiver.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両を守るため、非常用施設が設置されている。 Conventionally, emergency facilities have been installed in tunnels such as motorways to protect people and vehicles from fire accidents that occur in the tunnels.

このような非常用施設としては、火災の監視と通報のため火災検知器、手動通報装置、非常電話が設けられ、また火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧などが設置され、これらの非常用施設の端末機器を監視制御する防災受信盤を設けることで、トンネル防災システムを構築している。 Such emergency facilities include fire detectors, manual notification devices, emergency telephones for fire monitoring and reporting, fire extinguishing plug devices for extinguishing fires and preventing the spread of fire, and tunnel skeletons. In order to protect the inside of the duct from fire, water spray that sprinkles fire extinguishing water from the water spray head is installed, and a disaster prevention receiver is installed to monitor and control the terminal equipment of these emergency facilities to build a tunnel disaster prevention system. doing.

防災受信盤と端末機器で構成するトンネル防災システムは、R型伝送方式とP型直送方式に大別される。R型伝送方式は、伝送回線にアドレスを設定した火災検知器等の端末機器を接続し、伝送制御により端末機器単位に検知と制御を行う個別管理を可能とする。P型直送方式は、端末機器の種別に応じて所定の区画単位に分け、区画単位に引き出した信号回線に同一区画に属する複数の端末機器を接続し、信号回線単位に検知と制御を行う。 The tunnel disaster prevention system consisting of a disaster prevention receiver and terminal equipment is roughly divided into an R-type transmission system and a P-type direct delivery system. The R-type transmission method connects a terminal device such as a fire detector whose address is set to a transmission line, and enables individual management in which detection and control are performed for each terminal device by transmission control. In the P-type direct delivery method, a plurality of terminal devices belonging to the same section are connected to a signal line drawn out in a predetermined section unit according to the type of the terminal device, and detection and control are performed for each signal line.

R型伝送方式のトンネル防災システムは、端末機器による検知や制御が個別にできるため、機能及び管理面で様々な利点がある。一方、P型直送方式のトンネル防災システムは、火災検知器に伝送制御機能を設ける必要がなく、また、伝送距離が長くなっても中継増幅盤を設ける必要がないことから、R型伝送方式と比較してシステム構成が簡単で安価である。 The R-type transmission type tunnel disaster prevention system has various advantages in terms of function and management because it can be individually detected and controlled by a terminal device. On the other hand, the P-type direct transmission type tunnel disaster prevention system does not need to provide a transmission control function in the fire detector, and it is not necessary to provide a relay amplification board even if the transmission distance becomes long. In comparison, the system configuration is simple and inexpensive.

トンネル防災システムとしては、R型伝送方式とP型直送方式のメリットとデメリット、トンネル長や車両の交通量等を考慮して、R型伝送方式又はP型直送方式のトンネル防災システムを構築するようにしている。 As a tunnel disaster prevention system, consider the advantages and disadvantages of the R-type transmission method and the P-type direct delivery method, the tunnel length, the traffic volume of vehicles, etc., and construct an R-type transmission method or a P-type direct delivery method tunnel disaster prevention system. I have to.

ところで、P型直送方式のトンネル防災システムにあっては、手動通報装置、消火栓起動装置、ダクト温度検知器等の端末機器は、操作又は検知による信号出力部を無電圧a接点スイッチとして構成し、防災受信盤から引き出された信号回線に無電圧a接点スイッチを接続している。無電圧a接点スイッチは通常監視状態でオフしており、操作や検知動作によりオンして無電圧接点信号を出力する。 By the way, in the P-type direct delivery type tunnel disaster prevention system, terminal devices such as a manual notification device, a fire extinguisher activation device, and a duct temperature detector have a signal output unit for operation or detection configured as a non-voltage a contact switch. A non-voltage a contact switch is connected to the signal line drawn from the disaster prevention receiver. The non-voltage a-contact switch is normally turned off in the monitoring state, and is turned on by an operation or detection operation to output a non-voltage contact signal.

具体的には、防災受信盤側から信号回線の一方にプルアップ抵抗を介して電源電圧を印加しており、無電圧a接点スイッチがオフした定常監視状態では、信号回線に消費電流は殆ど流れず、防災受信盤から見た信号回線間の電源電圧は略電源電圧に保たれている。無
電圧a接点スイッチがオンすると信号回線に電流が流れ、防災受信盤から見た信号回線間の電圧は略零ボルトに低下し、防災受信盤は信号回線の消費電流の増加又は信号回線間の電圧低下を検出して端末機器の操作又は検知を示す受信信号を制御部に出力する。
Specifically, the power supply voltage is applied to one of the signal lines from the disaster prevention receiver side via a pull-up resistor, and in the steady monitoring state when the non-voltage a contact switch is turned off, most of the current consumption flows through the signal line. However, the power supply voltage between the signal lines seen from the disaster prevention receiver is kept at approximately the power supply voltage. When the non-voltage a contact switch is turned on, a current flows through the signal line, the voltage between the signal lines as seen from the disaster prevention receiving board drops to almost zero volt, and the disaster prevention receiving board increases the current consumption of the signal line or between the signal lines. Detects a voltage drop and outputs a received signal indicating the operation or detection of the terminal device to the control unit.

例えば手動通報装置からの火災通報信号であれば、防災受信盤は、火災表示、端末側の応答ランプの点灯制御、手動通報区画表示、消火ポンプ起動信号の出力といった制御動作を行うと共に、遠方監視制御設備、テレビ監視設備、可変式道路情報板設備、トンネル換気設備、照明設備等の外部設備に火災通報信号を送信して所定の対処制御を行わせるようにしている For example, in the case of a fire report signal from a manual report device, the disaster prevention receiver performs control operations such as fire display, lighting control of the response lamp on the terminal side, manual report section display, and output of the fire extinguishing pump start signal, and also performs remote monitoring. A fire alarm signal is sent to external equipment such as control equipment, TV monitoring equipment, variable road information board equipment, tunnel ventilation equipment, and lighting equipment so that prescribed countermeasure control can be performed.

特開2002−246962号公報Japanese Unexamined Patent Publication No. 2002-246962 特開平11−128381号公報Japanese Unexamined Patent Publication No. 11-128381 特開平10−248951号公報Japanese Unexamined Patent Publication No. 10-248951

ところで、このような従来のP型直送方式のトンネル防災システムにあっては、端末機器を接続している信号回線(外線ケーブル)の経年劣化等により絶縁低下が進み、端末機器を接続している信号回線に通常監視状態で想定される以上の電流が流れ、防災受信盤は端末機器の操作又は検知動作による信号受信と判断して警報動作を行うと共に、遠方監視制御設備、テレビ監視設備、可変式道路情報板設備、トンネル換気設備、照明設備等の他設備を連動し、トンネルを通行止めにすることが度々生じている。 By the way, in such a conventional P-type direct tunnel disaster prevention system, the insulation deteriorates due to aged deterioration of the signal line (outside line cable) connecting the terminal equipment, and the terminal equipment is connected. More current than expected in the normal monitoring state flows through the signal line, and the disaster prevention receiver determines that signal reception is due to the operation or detection operation of the terminal equipment and performs an alarm operation, as well as remote monitoring control equipment, TV monitoring equipment, and variable. It often happens that tunnels are closed by linking other equipment such as road information board equipment, tunnel ventilation equipment, and lighting equipment.

この問題を解決するため、防災受信盤で無電圧a接点スイッチを設けた端末機器を接続した信号回線に流れる電流を、例えば1日1回というように定期的に測定して記録し、更に、測定した電流が所定の閾値を超えた場合に信号回線の電流値異常を判定して警報し、更に、防災受信盤から遠方監視制御設備へ信号回線の電流値異常信号を送信して警報することが考えられている。 In order to solve this problem, the current flowing through the signal line connected to the terminal device provided with the non-voltage a contact switch on the disaster prevention receiver is periodically measured and recorded, for example, once a day, and further. When the measured current exceeds a predetermined threshold, an abnormality in the current value of the signal line is determined and an alarm is given, and further, an abnormality signal in the current value of the signal line is transmitted from the disaster prevention receiver to the remote monitoring and control equipment to give an alarm. Is being considered.

このように防災受信盤に信号回線の電流値を測定記録して絶縁劣化を監視する機能を設けた場合、電流値異常が発生して警報が行われても、直ぐに電流値異常を起こした信号回線を交換して障害を復旧するような保守管理は行わず、電流値の測定記録を見て信号回線の絶縁劣化の進み具合を判断しながら信号回線の交換工事等を立案して対応することとなり、信号回線の交換による障害復旧にはある程度の期間を必要とする。 In this way, when the disaster prevention receiver is provided with a function to measure and record the current value of the signal line and monitor the insulation deterioration, even if a current value abnormality occurs and an alarm is issued, the signal that immediately caused the current value abnormality Do not perform maintenance management such as replacing the line to recover from the failure, and plan and respond to the signal line replacement work while judging the progress of insulation deterioration of the signal line by looking at the current value measurement record. Therefore, it takes a certain period of time to recover from the failure by exchanging the signal line.

しかしながら、電流値異常が判定されて警報が出されると、定期的に電流測定を行う毎に電流値異常が判定されて防災受信盤及び遠方監視制御設備で警報出力が繰り返し行われ、その都度、警報出力に対する対処が必要となり、トンネルの監視業務に支障を来たす問題がある。 However, when the current value abnormality is determined and an alarm is issued, the current value abnormality is determined every time the current measurement is performed periodically, and the alarm output is repeatedly performed by the disaster prevention receiver and the remote monitoring and control equipment, and each time. There is a problem that it is necessary to deal with the alarm output, which hinders the tunnel monitoring work.

本発明は、端末機器を接続した信号回線の電流を定期的に測定して電流値異常が警報されても、電流値異常の警報に煩わされることなく回線電流の測定記録を継続して絶縁劣化の状況を適確に判断可能とする防災システムを提供することを目的とする。 According to the present invention, even if the current of the signal line to which the terminal device is connected is periodically measured and an abnormality in the current value is warned, the measurement record of the line current is continuously deteriorated without being bothered by the alarm of the current value abnormality. The purpose is to provide a disaster prevention system that enables accurate judgment of the situation.

(防災システム)
本発明は、防災受信盤に、信号回線を介して端末機器を接続して監視エリアの異常を監視する防災システムであって、
信号回線に流れる電流値を測定可能に接続され、測定した電流値が所定の判定条件を充足した場合に、電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を備えたことを特徴とする。
(Disaster prevention system)
The present invention is a disaster prevention system that monitors an abnormality in a monitoring area by connecting a terminal device to a disaster prevention receiver via a signal line.
A line that is connected so that the current value flowing through the signal line can be measured, and when the measured current value satisfies a predetermined judgment condition, it is determined that the current value is abnormal and a current value abnormality signal is transmitted to an external facility to give an alarm. It is characterized by being equipped with a current monitoring means.

(閾値の変更)
回線電流監視手段は、信号回線単位に所定の判定条件を設定し、複数の信号回線の何れかで電流値異常と判定した場合に、当該電流値異常と判定した信号回線の前記所定の判定条件を変更して、変更前に比べて当該電流値異常と判定し難くなるようにする。
(Change of threshold)
The line current monitoring means sets a predetermined determination condition for each signal line, and when it determines that the current value is abnormal in any of a plurality of signal lines, the predetermined determination condition of the signal line determined to be the current value abnormality. To make it more difficult to determine that the current value is abnormal than before the change.

(電流値測定のマスク)
回線電流監視手段は、複数の信号回線の何れかで電流値異常と判定した場合、当該電流値異常と判定した信号回線を電流値の測定対象から除外する。
(Mask for current value measurement)
When the line current monitoring means determines that the current value is abnormal in any of the plurality of signal lines, the line current monitoring means excludes the signal line determined to be the current value abnormality from the current value measurement target.

(環境条件に関連した電流値異常の判定)
回線電流監視手段は、信号回線の電流値と共に所定の環境条件を測定し、測定した信号回線の電流値及び環境条件に応じて、所定の判定条件に基づく電流値異常を判定する。
(Judgment of current value abnormality related to environmental conditions)
The line current monitoring means measures a predetermined environmental condition together with the current value of the signal line, and determines a current value abnormality based on the predetermined determination condition according to the measured current value of the signal line and the environmental condition.

(環境条件による閾値変更)
回線電流監視手段は、所定の環境条件の測定結果に基づき、所定の判定条件を変更する。
(Threshold change due to environmental conditions)
The line current monitoring means changes a predetermined determination condition based on the measurement result of the predetermined environmental condition.

(環境条件の時間的変化に応じた閾値変更)
回線電流監視手段は、所定の環境条件の測定結果に基づき、所定の判定条件を所定の期間、変更する。
(Threshold change according to temporal changes in environmental conditions)
The line current monitoring means changes a predetermined determination condition for a predetermined period based on the measurement result of the predetermined environmental condition.

(季節や一日の時間帯に応じた閾値変更)
回線電流監視手段は、季節又は一日の時間帯における所定の環境条件の測定結果に基づき、所定の判定条件を季節又は一日の時間帯に応じて変更する。
(Change threshold according to season and time of day)
The line current monitoring means changes the predetermined determination condition according to the season or the time zone of the day based on the measurement result of the predetermined environmental condition in the time zone of the season or the day.

(高温多湿と低温乾燥に応じた閾値変更)
回線電流監視手段は、所定の判定条件を所定の基準電流閾値として予め設定し、所定の環境条件の測定結果から高温多湿と判定した場合に基準電流閾値をそれより高い値に変更し、所定の環境条件の測定結果から低温乾燥と判定した場合に基準電流閾値をそれより低い値に変更する。
(Threshold change according to high temperature and humidity and low temperature drying)
The line current monitoring means presets a predetermined determination condition as a predetermined reference current threshold value, changes the reference current threshold value to a higher value when it is determined to be hot and humid from the measurement result of the predetermined environmental condition, and determines the predetermined value. If it is determined that the product is dry at low temperature based on the measurement results of the environmental conditions, the reference current threshold value is changed to a lower value.

(電流値異常が所定回数継続したら外部通報)
回線電流監視手段は、同一の信号回線について所定回数継続して電流値異常と判定した場合に、外部の設備に電流値異常信号を送信して警報させる。
(External notification when current value abnormality continues a predetermined number of times)
When the line current monitoring means continuously determines that the current value is abnormal for the same signal line a predetermined number of times, the line current monitoring means transmits a current value abnormality signal to an external facility to give an alarm.

(電流値異常が出たら周期を短くして電流値を測定記録)
回線電流監視手段は、所定周期毎に信号回線の電流値を測定し、所定周期毎の信号回線の電流値測定で電流値異常と判定した場合は、該電流値異常と判定された信号回線について、所定周期より短い周期毎に、信号回線の電流値を測定する。
(If an abnormality occurs in the current value, shorten the cycle and measure and record the current value)
The line current monitoring means measures the current value of the signal line at predetermined intervals, and when the current value measurement of the signal line at predetermined cycles determines that the current value is abnormal, the signal line determined to have the current value abnormality , The current value of the signal line is measured every cycle shorter than a predetermined cycle.

(上位設備への通報と通報停止)
回線電流監視手段は、電流値異常と判定した場合に、電流値異常信号を外部の設備に送信して警報させ、その後、当該通報から所定時間を経過した場合に、警報を解除させる。
(Report to higher-level equipment and stop reporting)
When the line current monitoring means determines that the current value is abnormal, it transmits a current value abnormality signal to an external facility to give an alarm, and then cancels the alarm when a predetermined time has elapsed from the notification.

(電流値異常の復旧操作による効果)
本発明は、防災受信盤からトンネル内に引き出した信号回線に通報装置及び検知器を含む端末機器を接続して監視するトンネル防災システムに於いて、防災受信盤に、所定周期毎に端末機器を接続した信号回線に流れる電流値を測定して記録し、測定した電流値が所定の閾値以上又は閾値を超えた場合に電流値異常と判定して警報すると共に電流値異常信号を外部の上位設備に送信して警報させ、防災受信盤又は上位設備による復旧操作を検出した場合に、電流値異常を解除して所定周期毎の電流値測定を再開する回線電流監視手段を設けるようにしたため、一度、電流値異常が発生して警報が出されても、復旧操作を行うことで、継続して電流値の警報を測定記録することができ、記録した電流値の変化から信号回線の絶縁劣化の傾向を判断して適切に対処可能とする。
(Effect of recovery operation for abnormal current value)
The present invention relates to a tunnel disaster prevention system in which a terminal device including a notification device and a detector is connected to a signal line drawn from a disaster prevention receiver into a tunnel to monitor the terminal device. The current value flowing through the connected signal line is measured and recorded, and when the measured current value exceeds or exceeds a predetermined threshold value, it is determined that the current value is abnormal and an alarm is given, and the current value abnormal signal is sent to the external higher-level equipment. When a recovery operation by the disaster prevention receiver or higher-level equipment is detected, a line current monitoring means is provided to cancel the current value abnormality and restart the current value measurement at predetermined cycles. Even if an abnormal current value occurs and an alarm is issued, the current value alarm can be continuously measured and recorded by performing a recovery operation, and the insulation deterioration of the signal line can be seen from the change in the recorded current value. Judge the tendency and make it possible to deal with it appropriately.

(閾値の変更による効果)
また、回線電流監視手段は、回線単位に電流値異常を判定する閾値を設定し、電流値異常と判定した場合に、当該電流値異常と判定しないように閾値を変更するようにしたため、一度、電流値異常が発生して警報が出されても、この電流値異常と判定しないように例えば閾値をそれより高い値に変更することで、変更した閾値により電流値異常と判定されるまでは電流値異常の警報が出されることはなく、電流値異常の警報に煩わされることなく継続して電流値を測定記録することができ、記録した電流値の変化から信号回線における絶縁劣化の傾向を判断して適切に対処可能とする。
(Effect of changing the threshold)
Further, the line current monitoring means sets a threshold value for determining a current value abnormality for each line, and when it is determined that the current value abnormality is determined, the threshold value is changed so as not to determine the current value abnormality. Even if a current value abnormality occurs and an alarm is issued, for example, by changing the threshold value to a higher value so as not to determine this current value abnormality, the current until the current value abnormality is determined by the changed threshold value. No alarm for abnormal value is issued, and the current value can be continuously measured and recorded without being bothered by the alarm for abnormal current value, and the tendency of insulation deterioration in the signal line can be judged from the change in the recorded current value. And make it possible to deal with it appropriately.

(電流値測定のマスクによる効果)
また、回線電流監視手段は、複数の信号回線の何れかで電流値異常と判定した場合、電流値異常と判定した信号回線の電流値の測定を抑止するようにしたため、電流値異常が判定された信号回線を測定対象から除外することで、特定の信号回線に絶縁劣化が起きても、他の信号回線の電流値の測定記録を継続できる。
(Effect of mask for current value measurement)
Further, when the line current monitoring means determines that the current value is abnormal in any of a plurality of signal lines, the measurement of the current value of the signal line determined to be abnormal is suppressed, so that the current value abnormality is determined. By excluding the signal line from the measurement target, it is possible to continue the measurement recording of the current value of another signal line even if the insulation deteriorates in a specific signal line.

(環境条件に関連した電流値異常の判定による効果)
また、回線電流監視手段は、信号回線の電流値と共に所定の環境条件を測定し、測定した環境条件に関連して電流値異常を判定し、例えば、回線電流監視手段は、環境条件として温度と湿度の何れか一方又は両方を測定し、温度と湿度の何れか一方又は両方に応じて電流値異常を判定する閾値を変更し、具体的には、回線電流監視手段は、所定の基準閾値を予め設定し、温度及び湿度から高温多湿と判定した場合に基準閾値をそれより高い閾値に変更し、温度及び湿度から低温乾燥と判定した場合に基準閾値をそれより低い閾値に変更するようにしたため、例えば高温多湿といった環境条件により一時的に絶縁劣化が発生した場合、環境条件の変化に応じて閾値を変更することで、電流値異常と判定されることが回避され、不要な警報出力を未然に抑止することを可能とする。
(Effect of determining current value abnormality related to environmental conditions)
Further, the line current monitoring means measures a predetermined environmental condition together with the current value of the signal line, and determines a current value abnormality in relation to the measured environmental condition. For example, the line current monitoring means sets the temperature as the environmental condition. The threshold value for measuring one or both of the humidity and determining the current value abnormality according to the one or both of the temperature and the humidity is changed. Specifically, the line current monitoring means sets a predetermined reference threshold value. Because it was set in advance, the reference threshold was changed to a higher threshold when it was judged to be hot and humid from the temperature and humidity, and the reference threshold was changed to a lower threshold when it was judged to be low temperature dry from the temperature and humidity. For example, when insulation deterioration occurs temporarily due to environmental conditions such as high temperature and humidity, by changing the threshold value according to changes in the environmental conditions, it is possible to avoid being judged as an abnormal current value, and unnecessary alarm output is generated. It is possible to deter.

(環境条件の時間的変化に応じた閾値変更による効果)
また、回線電流監視手段は、記環境条件と電流値の時間的な測定結果に基づき、電流値異常を判定する記閾値を時間的に変更、例えば温度と湿度の何れか一方又は両方と電流値の時間的な測定結果に基づき、電流値異常を判定する閾値を時間的に変更するようにしたため、温度又は湿度と電流値の測定結果となるログを人為的に確認し、例えば高温多湿となって電流値が増加する傾向にある6月から9月は閾値を高い値に変更し、また、一日の時間帯で気温が高めとなる例えば10時から18時までの時間帯は閾値を高めに変更し、環境条件の時間的な変化に応じて閾値を変更することで、電流値異常と判定されることが回避され、不要な警報出力を未然に抑止することを可能とする。
(Effect of changing the threshold value according to the temporal change of environmental conditions)
Further, the line current monitoring means temporally changes the writing threshold for determining a current value abnormality based on the environmental conditions and the temporal measurement result of the current value, for example, one or both of temperature and humidity and the current value. Based on the temporal measurement result of, the threshold for determining the current value abnormality is changed temporally, so the log that is the measurement result of the temperature or humidity and the current value is artificially checked, for example, it becomes hot and humid. From June to September, when the current value tends to increase, the threshold value is changed to a higher value, and the threshold value is raised during the time period from 10:00 to 18:00, when the temperature is high during the day. By changing the value to and changing the threshold value according to the temporal change of the environmental conditions, it is possible to prevent the current value from being judged to be abnormal and to suppress unnecessary alarm output in advance.

(電流値異常が所定回数継続した場合の上位通報による効果)
また、回線電流監視手段は、電流値異常と所定回数継続して判定した場合に上位設備に電流値異常信号を送信して警報させるようにしたため、環境条件の変化等により一時的な信号回線の絶縁劣化が起きても、絶縁劣化が継続しない限り、電流値異常と判定しても上位設備として例えば遠方監視制御設備等に電流値異常信号は送信されず、一過性の要因による電流値異常に対し不必要な警報を抑止することを可能とする。
(Effect of high-level notification when current value abnormality continues a predetermined number of times)
In addition, the line current monitoring means sends a current value abnormality signal to the host equipment to give an alarm when it continuously determines that the current value is abnormal a predetermined number of times. Even if insulation deterioration occurs, as long as insulation deterioration does not continue, even if it is determined that the current value is abnormal, the current value abnormality signal is not transmitted to, for example, remote monitoring and control equipment as higher-level equipment, and the current value abnormality is caused by a transient factor. It is possible to suppress unnecessary alarms.

(電流値異常が発生した場合に周期を短くして電流値を測定記録する効果)
また、回線電流監視手段は、所定周期毎の信号回線の電流値測定で電流値異常と判定した場合、所定周期より短い所定の第2周期毎に、信号回線の電流値を測定して記録するようしたため、例えば1日1回の所定周期毎の電流値測定で電流値異常と判定した場合、それより短い例えば1時間毎の第2周期に変更することで、電流値異常と判定した信号回線の電流値を短い時間間隔で測定記録して、絶縁劣化による電流値の変化をより正確に把握して対処することを可能とする。
(Effect of measuring and recording the current value by shortening the cycle when an abnormal current value occurs)
Further, when the line current monitoring means determines that the current value is abnormal by measuring the current value of the signal line at each predetermined cycle, the line current monitoring means measures and records the current value of the signal line at each predetermined second cycle shorter than the predetermined cycle. Therefore, for example, when the current value is determined to be abnormal by measuring the current value once a day at predetermined intervals, the signal line determined to be abnormal by changing to the second cycle, which is shorter than that, for example, every hour. By measuring and recording the current value of the current value at short time intervals, it is possible to more accurately grasp and deal with the change in the current value due to insulation deterioration.

(上位設備への通報と通報停止による効果)
また、回線電流監視手段は、電流値異常と判定した場合に、信号回線情報を含めた電流値異常信号を上位設備に送信して警報させ、当該通報から所定時間を経過した場合に電流値異常信号の送信を停止して警報を解除させるようにしたため、防災受信盤で信号回線の電流値異常と判定されて警報が出力されても、外部の上位設備となる例えば遠方監視制御設備では、所定時間の間のみ電流値異常の警報が出力されるだけであり、電流値異常の警報状態が継続して管理業務に支障を来たすことを回避可能とする。
(Effects of reporting to higher-level equipment and stopping reporting)
In addition, the line current monitoring means transmits a current value abnormality signal including signal line information to a higher-level facility to give an alarm when it determines that the current value is abnormal, and when a predetermined time has elapsed from the notification, the current value abnormality occurs. Since the signal transmission is stopped and the alarm is canceled, even if the disaster prevention receiver determines that the current value of the signal line is abnormal and an alarm is output, it is specified for the remote monitoring and control equipment, which is an external higher-level facility. Only the alarm of the current value abnormality is output only during the time, and it is possible to avoid that the alarm state of the current value abnormality continues to interfere with the management work.

トンネル防災システムの概要を示した説明図Explanatory diagram showing the outline of the tunnel disaster prevention system トンネル防災システムの機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the tunnel disaster prevention system P型伝送部の詳細を示したブロック図Block diagram showing details of P-type transmission unit 電流測定部の詳細を示した回路ブロック図Circuit block diagram showing the details of the current measuring unit 電流値異常の警報を復旧操作により解除する回線電流監視制御の第1実施形態を示したフローチャートA flowchart showing the first embodiment of the line current monitoring control for canceling the current value abnormality alarm by the recovery operation. 閾値変更により電流値異常の警報を解除する回線電流監視制御の第2実施形態を示したフローチャートA flowchart showing a second embodiment of line current monitoring control for canceling a current value abnormality alarm by changing a threshold value. 電流値異常の回線の電流値測定をマスクする回線電流監視制御の第3実施形態を示したフローチャートA flowchart showing a third embodiment of line current monitoring control that masks the current value measurement of a line with an abnormal current value. 環境条件に応じた閾値により電流値異常を判定する回線電流監視制御の第4実施形態を示したフローチャートA flowchart showing a fourth embodiment of line current monitoring control for determining a current value abnormality based on a threshold value according to environmental conditions. 電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第5実施形態を示したフローチャートA flowchart showing a fifth embodiment of line current monitoring control for notifying higher-level equipment when a current value abnormality exceeds a predetermined number of times. 電流値異常と判定した場合に測定周期を短くして電流値を測定記録する回線電流監視制御の第6実施形態を示したフローチャートA flowchart showing a sixth embodiment of line current monitoring control in which the measurement cycle is shortened and the current value is measured and recorded when it is determined that the current value is abnormal. 電流値異常と判定した場合に一定時間だけ上位設備に通報して警報させる回線電流監視制御の第7実施形態を示したフローチャートA flowchart showing a seventh embodiment of line current monitoring control that notifies higher-level equipment for a certain period of time to give an alarm when it is determined that the current value is abnormal.

[トンネル防災システムの概要]
図1はトンネル防災システムの概要を示した説明図である。図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築され、上り線トンネル1aと下り線トンネル1bは避難連絡坑2でつながっている。
[Overview of tunnel disaster prevention system]
FIG. 1 is an explanatory diagram showing an outline of a tunnel disaster prevention system. As shown in FIG. 1, an up line tunnel 1a and a down line tunnel 1b are constructed as a tunnel for a motorway, and the up line tunnel 1a and the down line tunnel 1b are connected by an evacuation connecting pit 2.

上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器16を設置している。火災検知
器16は左右25メートル又は50メートルとなる両側に監視エリアを設定し、火災による炎を検出して火災発報する。
Inside the up line tunnel 1a and the down line tunnel 1b, fire detectors 16 are installed at intervals of, for example, 25 meters or 50 meters along the wall surface in the longitudinal direction of the tunnel. The fire detector 16 sets monitoring areas on both sides of 25 meters or 50 meters on the left and right, detects a flame caused by a fire, and issues a fire.

また、上り線トンネル1aと下り線トンネル1b内のトンネル長手方向の監視員通路の内部にはダクトを形成して配管やケーブルを敷設しており、このダクト内に所定間隔でダクト内温度検知器18を設置している。ダクト内温度検知器18はケーブル火災等によるダクト内の温度上昇を検出し、接点手段として機能する無電圧a接点スイッチのオンにより温度検知信号を出力する。 Further, a duct is formed inside the observer passage in the longitudinal direction of the tunnel in the up line tunnel 1a and the down line tunnel 1b, and pipes and cables are laid in the duct, and the temperature detector in the duct is laid in the duct at predetermined intervals. 18 is installed. The temperature detector 18 in the duct detects a temperature rise in the duct due to a cable fire or the like, and outputs a temperature detection signal by turning on the non-voltage a contact switch that functions as a contact means.

また、上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の監視員通路の壁面に沿って例えば50メートル間隔で消火栓装置20と自動弁装置22を設置している。 Further, inside the up line tunnel 1a and the down line tunnel 1b, a fire hydrant device 20 and an automatic valve device 22 are installed along the wall surface of the observer passage in the longitudinal direction of the tunnel, for example, at intervals of 50 meters.

消火栓装置20は消火栓扉内にノズル付きホースを収納しており、火災時には消火栓扉を開いてノズル付きホースを引き出し、消火栓弁開閉レバーを開操作すると消火用水が放水され、また、消火栓弁開閉検出スイッチがオンして消火ポンプを起動させる。また、消火栓装置20には消火器扉を設け、その中に消火器を収納している。 The fire hydrant device 20 houses a hose with a nozzle inside the fire hydrant door. In the event of a fire, the fire hydrant door is opened to pull out the hose with a nozzle, and when the fire hydrant valve open / close lever is opened, fire hydrant water is discharged and the fire hydrant valve open / close detection is detected. The switch turns on to start the fire extinguishing pump. Further, the fire hydrant device 20 is provided with a fire extinguisher door, and the fire extinguisher is housed in the door.

また、消火栓装置20には消防隊が使用する給水栓が設けられ、これに合わせて消防隊員が操作するポンプ起動スイッチを設けている。更に、消火栓装置20には通報装置扉を設けており、通報装置扉には手動通報装置(発信機)を設けている。このため消火栓装置20は端末機器として、発信機、消火栓弁開閉検出スイッチ、及びポンプ起動スイッチを備えており、それぞれ接点手段として機能する無電圧a接点スイッチのオンにより火災通報信号、消火栓検出信号又はポンプ起動信号を出力する。 Further, the fire hydrant device 20 is provided with a water tap used by the fire brigade, and is provided with a pump start switch operated by the fire brigade member in accordance with the water tap. Further, the fire hydrant device 20 is provided with a notification device door, and the notification device door is provided with a manual notification device (transmitter). Therefore, the fire hydrant device 20 includes a transmitter, a fire hydrant valve open / close detection switch, and a pump start switch as terminal devices, and a fire alarm signal, a fire hydrant detection signal, or a fire hydrant detection signal or a fire hydrant detection signal or Outputs a pump start signal.

なお、消火栓弁開閉検出スイッチとポンプ起動スイッチは、同じポンプ起動信号を出力するシステム的には同一のスイッチであることから、以下、消火栓弁開閉検出スイッチ(ポンプ起動スイッチを含む)として説明する場合がある。また、手動通報装置は、消火栓装置20以外に、非常電話ボックス内にも設置しているが、以下の説明では、消火栓装置20に設けた手動通報装置を代表として説明する。 Since the fire hydrant valve open / close detection switch and the pump start switch are systematically the same switch that outputs the same pump start signal, they will be described below as the fire hydrant valve open / close detection switch (including the pump start switch). There is. Further, the manual notification device is installed in the emergency telephone box in addition to the fire hydrant device 20, but in the following description, the manual notification device provided in the fire hydrant device 20 will be described as a representative.

自動弁装置22は水噴霧設備を構成しており、作動用電動弁の遠隔開制御により主弁を開駆動し、トンネル壁面の上部の長手方向に設置した複数の水噴霧ヘッドから消火用水を放水してトンネル躯体を火災から防護する。このため自動弁装置22は端末機器として作動用電動弁を備えている。 The automatic valve device 22 constitutes a water spray facility, opens and drives the main valve by remote opening control of an electric valve for operation, and discharges fire extinguishing water from a plurality of water spray heads installed in the longitudinal direction at the upper part of the tunnel wall surface. And protect the tunnel frame from fire. Therefore, the automatic valve device 22 includes an operating electric valve as a terminal device.

トンネル内に設置している火災検知器16、ダクト内温度検知器18、消火栓装置20、及び自動弁装置22などの端末機器を接続してトンネル内の異常を監視するため、監視センター等に防災受信盤10を設置している。 Disaster prevention at a monitoring center, etc. to monitor abnormalities in the tunnel by connecting terminal devices such as a fire detector 16, a duct temperature detector 18, a fire hydrant device 20, and an automatic valve device 22 installed in the tunnel. The receiving board 10 is installed.

防災受信盤10からは上り線トンネル1aと下り線トンネル1b内に、トンネル長手方向に分割した所定の区画毎にP型の信号回線12を複数本引き出し、トンネル内に設置した火災検知器16を接続している。 From the disaster prevention receiver panel 10, a plurality of P-type signal lines 12 are pulled out from the disaster prevention receiver 10 into the up line tunnel 1a and the down line tunnel 1b for each predetermined section divided in the longitudinal direction of the tunnel, and the fire detector 16 installed in the tunnel is installed. You are connected.

また、防災受信盤10からは上り線トンネル1aと下り線トンネル1b内に、トンネル内を長手方向に分割した区画と、端末機器の種別とに分けて、P型の信号回線12を複数本引き出し、火災検知器16以外の端末機器として、消火栓装置20に設けた手動通報装置、消火栓弁開閉検出スイッチ(ポンプ起動スイッチを含む)、ダクト内温度検知器18等の端末機器を接続している。 Further, from the disaster prevention receiving panel 10, a plurality of P-type signal lines 12 are pulled out from the disaster prevention receiving panel 10 into the up line tunnel 1a and the down line tunnel 1b by dividing the inside of the tunnel into a section divided in the longitudinal direction and a type of terminal device. As terminal devices other than the fire detector 16, terminal devices such as a manual notification device provided in the fire hydrant device 20, a fire hydrant valve open / close detection switch (including a pump start switch), and a temperature detector 18 in a tunnel are connected.

P型の信号回線12は信号線とコモン線で構成し、消火栓装置20の手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、及びダクト内温度検知器18の各々に設けた無電圧a接点スイッチを接続した場合は、それぞれの操作又は検知動作により無電圧a接点スイッチをオンして回線電流を流すことで、火災通報信号、ポンプ起動信号、温度検知信号を防災受信盤10に送るようにしている。 The P-type signal line 12 is composed of a signal line and a common line, and is a non-voltage a contact provided in each of the manual notification device of the fire extinguisher device 20, the fire extinguishing valve open / close detection switch, the pump start switch, and the temperature detector 18 in the duct. When a switch is connected, a fire alarm signal, a pump start signal, and a temperature detection signal are sent to the disaster prevention receiver 10 by turning on the non-voltage a contact switch and passing a line current by each operation or detection operation. ing.

またトンネルの非常用施設としては、火災検知器16、消火栓装置20及び自動弁装置22以外に、消火ポンプ設備24、ダクト用の冷却ポンプ設備25、IG子局設備26、換気設備28、警報表示板設備30、ラジオ再放送設備32、テレビ監視設備34及び照明設備36等を設けており、IG子局設備26をデータ伝送回線で接続する点を除き、それ以外の設備はP型の信号回線12により防災受信盤10に個別に接続している。ここで、IG子局設備26は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備27とをネットワークを経由して結ぶ通信設備である。 In addition to the fire detector 16, fire extinguisher device 20, and automatic valve device 22, the emergency facilities of the tunnel include fire extinguishing pump equipment 24, cooling pump equipment 25 for ducts, IG slave station equipment 26, ventilation equipment 28, and alarm display. Board equipment 30, radio rebroadcasting equipment 32, TV monitoring equipment 34, lighting equipment 36, etc. are provided, and except that the IG slave station equipment 26 is connected by a data transmission line, the other equipment is a P-type signal line. 12 is individually connected to the disaster prevention receiver 10. Here, the IG slave station equipment 26 is a communication equipment that connects the disaster prevention receiver 10 and the remote monitoring and control equipment 27, which is a higher-level equipment provided outside, via a network.

換気設備28は、トンネル内の天井側に設置しているジェットファンの運転による高い吹き出し風速によってトンネル内の空気にエネルギーを与えて、トンネル長手方向に換気の流れを起こす設備である。 The ventilation equipment 28 is equipment that gives energy to the air in the tunnel by the high blowing wind speed operated by the jet fan installed on the ceiling side in the tunnel to generate a ventilation flow in the longitudinal direction of the tunnel.

また、警報表示板設備30は、トンネル内の利用者に対して、トンネル内の異常を、電光表示板に表示して知らせる設備である。ラジオ再放送設備32は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備34は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備36はトンネル内の照明機器を駆動して管理する設備である。 Further, the alarm display board equipment 30 is equipment for displaying an abnormality in the tunnel on an electric display board to notify the user in the tunnel. The radio rebroadcasting facility 32 is a facility for allowing a driver or the like to receive information from a road administrator in a tunnel. The TV monitoring equipment 34 is equipment for confirming the scale and position of a fire, operating a water spraying equipment, and grasping the situation in a tunnel when evacuation guidance is performed. The lighting equipment 36 is equipment for driving and managing the lighting equipment in the tunnel.

[防災受信機の構成]
図2はトンネル防災システムの機能構成の概略を示したブロック図である。図2に示すように、防災受信盤10は制御部40を備え、制御部40は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、AD変換ポートを含む各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention receiver configuration]
FIG. 2 is a block diagram showing an outline of the functional configuration of the tunnel disaster prevention system. As shown in FIG. 2, the disaster prevention receiving panel 10 includes a control unit 40, and the control unit 40 is a function realized by executing a program, for example, and the hardware includes various inputs including a CPU, a memory, and an AD conversion port. Use a computer circuit or the like equipped with an output port or the like.

制御部40に対しては、トンネル内に設置した各種の端末機器をP型の信号回線12により接続したP型伝送部42を設け、また、制御部40に対しスピーカ、ブザー、警報表示灯等を備えた警報部44、液晶ディスプレイ等を備えた表示部46、各種スイッチを備えた操作部48を設け、更に、換気設備28、警報表示板設備30、ラジオ再放送設備32、テレビ監視設備34、照明設備36、消火ポンプ設備24及び冷却ポンプ設備25をP型の信号回線12により個別に接続したP型伝送部52を設けている。 The control unit 40 is provided with a P-type transmission unit 42 in which various terminal devices installed in the tunnel are connected by a P-type signal line 12, and the control unit 40 is provided with a speaker, a buzzer, an alarm indicator, etc. An alarm unit 44 equipped with, a display unit 46 equipped with a liquid crystal display, and an operation unit 48 equipped with various switches are provided, and further, a ventilation facility 28, an alarm display board facility 30, a radio rebroadcasting facility 32, and a television monitoring facility 34 are provided. A P-type transmission unit 52 is provided in which the lighting equipment 36, the fire extinguishing pump equipment 24, and the cooling pump equipment 25 are individually connected by a P-type signal line 12.

制御部40にはプログラムの実行により実現される機能として、監視制御手段70と回線電流監視手段72を設けている。監視制御手段70はトンネル内に設置した火災検知器16、ダクト内温度検知器18、消火栓装置20及び自動弁装置22等の端末機器からの検知信号や操作信号に基づき、所定の監視制御を行う。 The control unit 40 is provided with a monitoring control means 70 and a line current monitoring means 72 as functions realized by executing a program. The monitoring control means 70 performs predetermined monitoring control based on detection signals and operation signals from terminal devices such as a fire detector 16, a duct temperature detector 18, a fire hydrant device 20, and an automatic valve device 22 installed in a tunnel. ..

監視制御手段70は、例えば消火栓装置20に設けた手動通報装置の操作による火災通報信号を受信した場合、警報部44により主音響鳴動を行うと共に表示部46に火災表示と手動通報区画表示を行い、また消火栓装置20に応答信号を送信して応答ランプを点灯し、更に、ポンプ起動信号を消火ポンプ設備24に出力して消火ポンプを起動する。更に、監視制御手段70は他設備に対する制御として、IG子局設備26を介して遠方監視制御設備27に火災通報信号を送信して警報させる制御、テレビ監視設備34により火災通報区画を表示する制御、警報表示板設備30により手動通報区画の火災通報を表示する制
御、換気設備28により手動通報区画を換気する制御、照明設備36により手動通報区画を照明する制御等を行う。
When the monitoring control means 70 receives a fire notification signal by operating the manual notification device provided in the fire hydrant device 20, for example, the alarm unit 44 sounds the main sound and the display unit 46 displays the fire and the manual notification area. Further, a response signal is transmitted to the fire hydrant device 20 to light the response lamp, and further, a pump start signal is output to the fire extinguishing pump equipment 24 to start the fire extinguishing pump. Further, as control for other equipment, the monitoring control means 70 transmits a fire notification signal to the remote monitoring control equipment 27 via the IG slave station equipment 26 to give an alarm, and the TV monitoring equipment 34 displays the fire notification section. , The alarm display board equipment 30 controls to display a fire report in the manual notification section, the ventilation equipment 28 controls to ventilate the manual notification section, and the lighting equipment 36 controls to illuminate the manual notification section.

また、監視制御手段70は、ダクト内温度が上昇してダクト内温度検知器18から温度検知信号を受信した場合、冷却ポンプ設備25にポンプ起動信号を出力し、ダクト内に設置したヘッドから散水してダクト内を冷却する制御を行う。 Further, when the temperature inside the duct rises and the temperature detection signal is received from the temperature detector 18 inside the duct, the monitoring control means 70 outputs a pump start signal to the cooling pump equipment 25 and sprinkles water from the head installed in the duct. Then, the inside of the duct is controlled to be cooled.

回線電流監視手段72は、手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、ダクト内温度検知器18を含む無電圧a接点スイッチを備えた端末機器を接続した信号回線12の電流値を所定周期毎、例えば1日1回の周期で測定してメモリに記憶し、測定した電流値が所定の閾値以上又は所定の閾値を超えた場合に電流値異常を判定して警報すると共に電流値異常信号をIG子局設備26を介して外部の上位設備となる遠方監視制御設備27に送信して警報させる制御を行う。 The line current monitoring means 72 determines the current value of the signal line 12 connected to the terminal device provided with the non-voltage a contact switch including the manual notification device, the fire extinguishing valve open / close detection switch, the pump start switch, and the temperature detector 18 in the duct. It is measured every cycle, for example, once a day, and stored in the memory. Control is performed by transmitting a signal to the remote monitoring and control equipment 27, which is an external higher-level equipment, via the IG slave station equipment 26 to give an alarm.

また、回線電流監視手段72は、信号回線12の電流値異常を判定して警報した状態で、操作部48による復旧操作又は遠方監視制御設備による復旧操作の通知信号を検出した場合に、電流値異常による警報を解除して所定周期毎の電流値測定を再開する制御を行う。この制御は、後の説明で明らかにする回線電流監視手段72による回線電流監視制御の第1実施形態となる。 Further, when the line current monitoring means 72 detects a notification signal of the restoration operation by the operation unit 48 or the restoration operation by the remote monitoring and control equipment in a state where the current value abnormality of the signal line 12 is determined and an alarm is given, the current value is detected. Control is performed to cancel the alarm due to an abnormality and restart the current value measurement at predetermined intervals. This control is the first embodiment of the line current monitoring control by the line current monitoring means 72, which will be clarified later.

[P型伝送部]
図3は防災受信盤に設けたP型伝送部の詳細を示したブロック図である。図3に示すように、P型伝送部42には、トンネル内に設置している端末機器の区画に対応して複数の区画モジュール60を設けており、例えば最初の区画モジュール60に対応したトンネル内の区画には、その右側に代表して示す消火栓装置20とダクト内温度検知器18を複数台配置している。
[P-type transmission unit]
FIG. 3 is a block diagram showing details of a P-type transmission unit provided on the disaster prevention receiver. As shown in FIG. 3, the P-type transmission unit 42 is provided with a plurality of compartment modules 60 corresponding to the compartments of the terminal equipment installed in the tunnel. For example, the tunnel corresponding to the first compartment module 60. In the inner section, a plurality of fire hydrant devices 20 and a duct in-duct temperature detector 18 shown on the right side thereof are arranged.

消火栓装置20には無電圧a接点スイッチを備えた端末機器として、手動通報装置(発信機)54、消火栓弁開閉検出スイッチ56及びポンプ起動スイッチ58を設けている。 The fire hydrant device 20 is provided with a manual notification device (transmitter) 54, a fire hydrant valve open / close detection switch 56, and a pump start switch 58 as terminal devices provided with a non-voltage a contact switch.

区画モジュール60には、手動通報装置54に対応して回線受信部62aを設け、消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58に対応して回線受信部62bを設け、ダクト内温度検知器18に対応して回線受信部62cを設けている。 The partition module 60 is provided with a line receiving unit 62a corresponding to the manual notification device 54, a line receiving unit 62b corresponding to the fire hydrant valve open / close detection switch 56 and the pump start switch 58, and the duct temperature detector 18 is provided. Correspondingly, a line receiving unit 62c is provided.

回線受信部62aから引き出した信号回線12aには、複数の消火栓装置20に設けた複数の手動通報装置54を並列接続している。このため同じ区画に属する複数の手動通報装置54の何れかの押し釦操作により無電圧a接点スイッチがオンすると、回線電流が流れることで回線受信部62aが火災通報信号を受信し、区画を特定した火災通報信号を制御部40に出力する。 A plurality of manual notification devices 54 provided in the plurality of fire hydrant devices 20 are connected in parallel to the signal line 12a drawn from the line receiving unit 62a. Therefore, when the non-voltage a contact switch is turned on by operating any of the push buttons of the plurality of manual notification devices 54 belonging to the same section, the line current flows and the line receiving unit 62a receives the fire report signal to specify the section. The fire alarm signal is output to the control unit 40.

また、回線受信部62bから引き出した信号回線12bには、複数の消火栓装置20に設けた複数の消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58のそれぞれを並列接続している。ここで、消火栓弁開閉検出スイッチ56とポンプ起動スイッチ58は、火災に関連する操作に基づきポンプ起動信号を出力するものであり、ポンプ起動操作手段として共通していることから同じ種別としており、このため同種の端末機器として同じ信号回線12bに並列接続している。 Further, a plurality of fire hydrant valve open / close detection switches 56 and a pump start switch 58 provided in the plurality of fire hydrant devices 20 are connected in parallel to the signal line 12b drawn from the line receiving unit 62b. Here, the fire hydrant valve open / close detection switch 56 and the pump start switch 58 output a pump start signal based on an operation related to fire, and are of the same type because they are common as a pump start operation means. Therefore, they are connected in parallel to the same signal line 12b as the same type of terminal equipment.

このため利用者が消火栓装置20のノズル付きホースを引き出して消火栓弁開閉レバーを操作した場合に、消火栓弁開閉検出スイッチ56がオンして回線電流が流れることで回線受信部62bがポンプ起動信号を受信し、区画を特定したポンプ起動信号を制御部40
に出力する。また、消防隊員が消火栓装置20の扉を開いて給水栓に消防ホースを接続し、ポンプ起動スイッチ58をオン操作した場合にも、回線電流が流れることで回線受信部62bがポンプ起動信号を受信し、区画を特定したポンプ起動信号を制御部40に出力する。
Therefore, when the user pulls out the hose with a nozzle of the fire hydrant device 20 and operates the fire hydrant valve open / close lever, the fire hydrant valve open / close detection switch 56 is turned on and the line current flows, so that the line receiver 62b sends a pump start signal. The control unit 40 receives the pump start signal that identifies the section.
Output to. Also, when a firefighter opens the door of the fire hydrant device 20, connects the fire hose to the water tap, and turns on the pump start switch 58, the line current flows and the line receiver 62b receives the pump start signal. Then, the pump start signal that identifies the section is output to the control unit 40.

更に、回線受信部62cから引き出した信号回線12cには、同一区画に設けたダクト内温度検知器18を並列接続している。このため同じ区画に属する複数のダクト内温度検知器18の何れかによりダクト内の検出温度が所定の閾値温度以上となった場合に無電圧a接点スイッチをオンし、回線電流が流れることで回線受信部62cが温度検知信号を受信し、区画を特定したダクト火災検知信号を制御部40に出力する。 Further, the temperature detector 18 in the duct provided in the same section is connected in parallel to the signal line 12c drawn from the line receiving unit 62c. Therefore, when the detected temperature in the duct becomes equal to or higher than a predetermined threshold temperature by any of the plurality of duct temperature detectors 18 belonging to the same section, the non-voltage a contact switch is turned on and the line current flows to form the line. The receiving unit 62c receives the temperature detection signal and outputs the duct fire detection signal specifying the section to the control unit 40.

区画モジュール60に設けた回線受信部62a〜62cに対しては電流測定部64a〜64cを設けている。電流測定部64a〜64cは信号回線12a〜12cの各々に流れる電流値を検出した電流値検出信号をセレクタ部65に入力している。セレクタ部65は図2の制御部40に設けた回線電流監視手段72により1日1回の周期となる所定の測定タイミングで制御信号を受け、区画モジュール60に入力している信号回線に対応した電流値検出信号を順次選択して制御部40のAD変換ポートに出力し、回線電流監視手段72はAD変換ポートに入力したアナログ電流値をデジタル電流値に変換して読み込んでメモリに記憶することで、各信号回線の電流値を周期的に測定記録している。 Current measuring units 64a to 64c are provided for the line receiving units 62a to 62c provided in the partition module 60. The current measuring units 64a to 64c input the current value detection signal for detecting the current value flowing through each of the signal lines 12a to 12c to the selector unit 65. The selector unit 65 receives a control signal at a predetermined measurement timing having a cycle of once a day by the line current monitoring means 72 provided in the control unit 40 of FIG. 2, and corresponds to the signal line input to the partition module 60. The current value detection signals are sequentially selected and output to the AD conversion port of the control unit 40, and the line current monitoring means 72 converts the analog current value input to the AD conversion port into a digital current value, reads it, and stores it in the memory. Then, the current value of each signal line is measured and recorded periodically.

図4は図3のP型伝送部に設けた電流測定部の詳細を示した回路ブロック図であり、1つの信号回線を例にとって示している。図4に示すように、防災受信盤10からは引き出された信号線Lとコモン線Cからなる信号回線12には、端末機器14に設けた無電圧a接点スイッチ68及び終端抵抗15を並列に接続しており、通常監視状態で無電圧a接点スイッチ68は図示のようにオフしている。 FIG. 4 is a circuit block diagram showing details of the current measuring unit provided in the P-type transmission unit of FIG. 3, and shows one signal line as an example. As shown in FIG. 4, a non-voltage a contact switch 68 and a terminating resistor 15 provided in the terminal device 14 are arranged in parallel on the signal line 12 composed of the signal line L and the common line C drawn from the disaster prevention receiving panel 10. It is connected, and the non-voltage a contact switch 68 is turned off as shown in the normal monitoring state.

信号回線12の信号線Lは抵抗66により電源電圧+Vcの電源ラインにプルアップ接続しており、コモン線Cは接地接続している。このため端末機器14の無電圧a接点スイッチ68がオフしている定常監視状態では、信号回線12の信号線Lとコモン線Cの間の回線電圧VLは電源電圧+Vcとなっており、この回線電圧VLが回線受信部62に入力している。 The signal line L of the signal line 12 is pull-up connected to the power supply line of the power supply voltage + Vc by the resistor 66, and the common line C is connected to the ground. Therefore, in the steady monitoring state in which the non-voltage a contact switch 68 of the terminal device 14 is off, the line voltage VL between the signal line L and the common line C of the signal line 12 is the power supply voltage + Vc, and this line. The voltage VL is input to the line receiving unit 62.

信号回線12に接続している端末機器14の何れかの無電圧a接点スイッチ68がオンすると、信号線Lとコモン線Cの間の回線電圧VLは略零ボルトに低下する。回線受信部62には回線電圧VLが零ボルト付近に低下した場合にオンするスイッチング回路を備えており、スイッチング回路のオンにより受信信号を制御部40に出力する。 When any non-voltage a contact switch 68 of the terminal device 14 connected to the signal line 12 is turned on, the line voltage VL between the signal line L and the common line C drops to substantially zero volt. The line receiving unit 62 includes a switching circuit that turns on when the line voltage VL drops to near zero volt, and outputs a received signal to the control unit 40 when the switching circuit is turned on.

電流測定部64は、抵抗66により電源ラインにプルアップした信号線Lとコモン線Cの間の回線電圧VLを電流検出信号VLとして検出する回路であり、抵抗値をR、終端抵抗15の抵抗値をRs、信号回線12の絶縁抵抗をZとすると、無電圧a接点スイッチ68がオフしているときに信号回線12に流れる電流Iは次式となる。 The current measuring unit 64 is a circuit that detects the line voltage VL between the signal line L and the common line C pulled up to the power supply line by the resistor 66 as the current detection signal VL, and has a resistance value of R and a resistance of the terminal resistance 15. Assuming that the value is Rs and the insulation resistance of the signal line 12 is Z, the current I flowing through the signal line 12 when the non-voltage a contact switch 68 is off is given by the following equation.

Figure 2021122141
Figure 2021122141

ここで、(RS//Z)は、並列抵抗値 Here, (RS // Z) is the parallel resistance value.

Figure 2021122141
Figure 2021122141

を表す。このため電流検出信号(回線電圧)VLは、 Represents. Therefore, the current detection signal (line voltage) VL is

Figure 2021122141
Figure 2021122141

となり、回線電流Iに比例して増加する電流検出信号(回線電圧)VLが得られる。 Therefore, a current detection signal (line voltage) VL that increases in proportion to the line current I is obtained.

信号回線12の絶縁劣化が起きると、絶縁抵抗Zが低下し、これにより信号回線12を流れる電流Iが増加し、電流検出信号(回線電圧)VLも増加する。 When the insulation deterioration of the signal line 12 occurs, the insulation resistance Z decreases, which increases the current I flowing through the signal line 12 and also increases the current detection signal (line voltage) VL.

電流測定部64で検出された、回線電圧(電流検出信号)VLはセレクタ部65に入力され、所定の測定タイミングで他の電流検出信号と共にセレクタ部65から順次読み出され、AD変換ポートから読み込んだ電流検出値VLに基づき、制御部40の回線電流監視手段72は、
I=(Vc−VL)/R (式3)
として電流値Iを求めて記録すると共に、所定の閾値と比較して信号回線の絶縁劣化による電流値異常と判定して警報することになる。
The line voltage (current detection signal) VL detected by the current measurement unit 64 is input to the selector unit 65, sequentially read from the selector unit 65 together with other current detection signals at a predetermined measurement timing, and read from the AD conversion port. However, based on the current detection value VL, the line current monitoring means 72 of the control unit 40
I = (Vc-VL) / R (Equation 3)
As a result, the current value I is obtained and recorded, and it is determined that the current value is abnormal due to the deterioration of the insulation of the signal line as compared with a predetermined threshold value, and an alarm is given.

また、電流測定部64の他の実施例として、抵抗66によるプルアップ接続点に続く信号線L側に電流検出抵抗を挿入接続し、電流に比例した電流検出抵抗の両端に発生する電流検出電圧をセレクタ部65に入力し、所定の測定タイミングで他の電流検出信号と共にセレクタ部65から順次読み出し、制御部40の回線電流監視手段72により、AD変換ポートから電流検出値として読み込んで記録すると共に、所定の閾値と比較して信号回線の絶縁劣化による電流値異常を判定して警報するようにしても良い。 Further, as another embodiment of the current measuring unit 64, a current detection resistor is inserted and connected to the signal line L side following the pull-up connection point by the resistor 66, and the current detection voltage generated at both ends of the current detection resistor proportional to the current. Is sequentially read from the selector unit 65 together with other current detection signals at a predetermined measurement timing, and is read and recorded as a current detection value from the AD conversion port by the line current monitoring means 72 of the control unit 40. , A current value abnormality due to insulation deterioration of the signal line may be determined and an alarm may be given in comparison with a predetermined threshold value.

[回線電流監視制御の第1実施形態]
図5は電流値異常の警報を復旧操作により解除する回線電流監視制御の第1実施形態を示したフローチャートである。図2の制御部40に設けた回線電流監視手段72による回線電流監視制御の第1実施形態は、前述したように、電流値異常を判定して警報すると共に電流値異常信号を遠方監視制御設備27に送信して警報させ、警報中に防災受信盤10又は遠方監視制御設備27による復旧操作を検出した場合に、電流値異常による警報状態を解除
して所定周期毎の電流値測定を再開するようにしたことを特徴とする。
[First Embodiment of Line Current Monitoring Control]
FIG. 5 is a flowchart showing the first embodiment of the line current monitoring control for canceling the current value abnormality alarm by the recovery operation. In the first embodiment of the line current monitoring control by the line current monitoring means 72 provided in the control unit 40 of FIG. 2, as described above, the current value abnormality is determined and warned, and the current value abnormality signal is sent to the remote monitoring control equipment. It is transmitted to 27 to give an alarm, and when a recovery operation by the disaster prevention receiver 10 or the remote monitoring control equipment 27 is detected during the alarm, the alarm state due to the current value abnormality is canceled and the current value measurement is restarted at predetermined intervals. It is characterized by doing so.

図5に示すように、回線電流監視手段72は、ステップS1で例えば1日1回の所定刻となる回線電流測定タイミングへの到達を判別すると、ステップS2に進んで回線番号NをN=1に初期化し、続いてステップS3で図3に示したセレクタ部65の制御によるN=1で決まる最初の信号回線の電流値を測定してメモリに記憶する記録を行う。 As shown in FIG. 5, when the line current monitoring means 72 determines in step S1 that the line current measurement timing has reached a predetermined time, for example, once a day, the line current monitoring means 72 proceeds to step S2 and sets the line number N to N = 1. Then, in step S3, the current value of the first signal line determined by N = 1 under the control of the selector unit 65 shown in FIG. 3 is measured and recorded in the memory.

続いてステップS4で測定した電流値が所定の閾値以上か否か(又は閾値を超えたか否か)を判定し、電流値が所定の閾値以上となることを判別した場合はステップS5に進んで信号回線の絶縁劣化による電流値異常と判定し、防災受信盤10の警報部44による音響警報と表示部46による警報表示を行い、更に、ステップS7に進み、IG子局設備26を介して外部の遠方監視制御設備27に電流値異常信号を送信して警報させる。ステップS4で電流値が閾値未満の場合はステップS5〜S7の処理はスキップする。 Subsequently, it is determined whether or not the current value measured in step S4 is equal to or greater than a predetermined threshold value (or whether or not the threshold value is exceeded), and if it is determined that the current value is equal to or greater than a predetermined threshold value, the process proceeds to step S5. It is determined that the current value is abnormal due to the deterioration of the insulation of the signal line, an acoustic alarm is displayed by the alarm unit 44 of the disaster prevention receiver 10 and an alarm is displayed by the display unit 46. A current value abnormality signal is transmitted to the remote monitoring and control equipment 27 of the above to give an alarm. If the current value is less than the threshold value in step S4, the processes of steps S5 to S7 are skipped.

続いて、回線番号Nが最大値Nmaxに達するまでは、ステップS9で回線番号Nを1つ増加してステップS3からの処理を繰り返す。全ての信号回線の電流値の測定記録と電流値異常の判定が済むとステップS10に進み、現在、電流値異常を警報中か否か判別し、警報中を判別した場合はステップS11に進み、防災受信盤10による直接の異常復旧操作又は遠方監視制御設備27による遠方の異常復旧操作の有無を判別する。 Subsequently, until the line number N reaches the maximum value Nmax, the line number N is increased by one in step S9, and the process from step S3 is repeated. When the measurement and recording of the current values of all the signal lines and the determination of the current value abnormality are completed, the process proceeds to step S10, and it is determined whether or not the current value abnormality is currently being alarmed. It is determined whether or not there is a direct abnormality recovery operation by the disaster prevention receiver 10 or a distant abnormality recovery operation by the distant monitoring and control equipment 27.

ステップS11で直接又は遠方による異常復旧操作を判別するとステップS12に進み、電流値異常の警報を復旧して警報状態を解除し、ステップS1に戻って次の回線電流の測定タイミングを待つ。 When the abnormality recovery operation by direct or distant is determined in step S11, the process proceeds to step S12, the current value abnormality alarm is restored, the alarm state is released, and the process returns to step S1 to wait for the next line current measurement timing.

このような回線電流監視制御の第1実施形態によれば、一度、電流値異常が発生して警報が出されても、防災受信盤10又は遠方監視制御設備27により復旧操作作を行うことで警報状態が解除され、継続して電流値を測定記録することができ、記録した電流値の変化から信号回線の絶縁劣化の傾向を判断して適切に対処可能とする。 According to the first embodiment of such line current monitoring control, even if a current value abnormality occurs once and an alarm is issued, the disaster prevention receiving panel 10 or the distant monitoring control equipment 27 performs a recovery operation operation. The alarm state is canceled, the current value can be continuously measured and recorded, and the tendency of insulation deterioration of the signal line can be judged from the change in the recorded current value and appropriately dealt with.

[回線電流監視制御の第2実施形態]
図6は閾値変更により電流値異常の警報を解除する回線電流監視制御の第2実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第2実施形態は、回線単位に電流値異常を判定する閾値を設定し、電流値異常と判定した場合に、当該電流値異常と判定しないように閾値を変更するようにしたことを特徴とする。
[Second Embodiment of Line Current Monitoring Control]
FIG. 6 is a flowchart showing a second embodiment of the line current monitoring control that cancels the alarm of the current value abnormality by changing the threshold value. In the second embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2, a threshold value for determining a current value abnormality is set for each line, and when the current value abnormality is determined, the current value abnormality is not determined. It is characterized in that the threshold value is changed as described above.

図6に示すように、回線電流監視手段72によるステップS21〜S32の処理は、図5のステップS1〜S12の処理と同じになることから説明は省略する。 As shown in FIG. 6, the processing of steps S21 to S32 by the line current monitoring means 72 is the same as the processing of steps S1 to S12 of FIG. 5, and thus the description thereof will be omitted.

回線電流監視手段72は、ステップS31で直接又は遠方による異常復旧操作を判別するとステップS32に進み、電流値異常の警報を復旧して警報状態を解除し、続いてステップS33に進み、電流値異常と判定した信号回線に設定している閾値を読出して表示部46に表示し、ステップS34で操作部48による閾値変更操作を判別するとステップS35で現在の閾値を電流値異常と判定しないように変更する。 When the line current monitoring means 72 determines the abnormality recovery operation by direct or distant in step S31, the line current monitoring means 72 proceeds to step S32, recovers the current value abnormality alarm and cancels the alarm state, and then proceeds to step S33 to proceed to the current value abnormality. The threshold value set in the signal line determined to be is read and displayed on the display unit 46, and when the threshold value change operation by the operation unit 48 is determined in step S34, the current threshold value is changed so as not to be determined as a current value abnormality in step S35. do.

この閾値の変更は、現在の閾値をそれより大きな閾値に変更する。この閾値を増加する変更は、現在の閾値に所定の閾値増加値を加算しても良いし、1以上の所定の係数を乗算しても良い。但し、閾値の増加に対し上限値を決めており、それ以上の増加は行わない。 This threshold change changes the current threshold to a higher threshold. To change the threshold value, a predetermined threshold value increase value may be added to the current threshold value, or a predetermined coefficient of 1 or more may be multiplied. However, the upper limit is set for the increase in the threshold value, and no further increase is made.

続いてステップS36で全ての電流値異常の信号回線について閾値変更の処理を行うまではステップS33からの処理を繰り返し、これが終了するとステップS21に戻って次
の回線電流の測定タイミングを待つ。
Subsequently, the processing from step S33 is repeated until the processing for changing the threshold value is performed for all the signal lines having abnormal current values in step S36, and when this is completed, the process returns to step S21 and waits for the next line current measurement timing.

このような回線電流監視制御の第2実施形態によれば、一度、電流値異常が発生して警報が出されても、この電流値異常を判定しないように例えば閾値をそれより高い値に変更することで、変更した閾値により電流値異常が判定されるまでは電流値異常の警報が出されることはなく、電流値異常の警報に煩わされることなく継続して電流値を測定記録することができ、記録した電流値の変化から信号回線における絶縁劣化の傾向を判断して適切に対処可能とする。 According to the second embodiment of such line current monitoring control, even if a current value abnormality occurs once and an alarm is issued, for example, the threshold value is changed to a higher value so as not to determine this current value abnormality. By doing so, the current value abnormality alarm is not issued until the current value abnormality is determined by the changed threshold value, and the current value can be continuously measured and recorded without being bothered by the current value abnormality alarm. It is possible to judge the tendency of insulation deterioration in the signal line from the change in the recorded current value and take appropriate measures.

[回線電流監視制御の第3実施形態]
図7は電流値異常の回線の電流値測定をマスクする回線電流監視制御の第3実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第3実施形態は、複数の信号回線の何れかで電流値異常を判定した場合、電流値異常と判定した信号回線の電流値の測定を抑止するマスク処理を行うことを特徴とする。
[Third Embodiment of line current monitoring control]
FIG. 7 is a flowchart showing a third embodiment of line current monitoring control that masks the current value measurement of the line having an abnormal current value. In the third embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2, when the current value abnormality is determined in any of the plurality of signal lines, the current value of the signal line determined to be the current value abnormality is measured. It is characterized by performing mask processing to suppress.

図7に示すように、回線電流監視手段72によるステップS41,S42及びS44〜S53の処理は、図5のステップS1〜S12の処理と同じになり、新たにステップS43の処理が加わっている。 As shown in FIG. 7, the processes of steps S41, S42 and S44 to S53 by the line current monitoring means 72 are the same as the processes of steps S1 to S12 of FIG. 5, and the process of step S43 is newly added.

回線電流監視手段72は、ステップS43において、前回までの処理で電流値異常と判定した信号回線か否か判別しており、電流値異常と判定していない信号回線の場合はステップS44〜S48の処理により、信号回線の電流値を測定して記録すると共に測定した電流値を閾値と比較して電流値異常の有無を判定し、電流値異常と判定した場合は防災受信盤10及び遠方監視制御設備27で電流値異常の警報出力を行う。 In step S43, the line current monitoring means 72 determines whether or not the signal line is determined to have an abnormal current value in the previous processing, and in the case of a signal line not determined to be abnormal in current value, in steps S44 to S48. By processing, the current value of the signal line is measured and recorded, and the measured current value is compared with the threshold value to determine the presence or absence of current value abnormality. The equipment 27 outputs an alarm for abnormal current value.

これに対しステップS43で電流値異常を判定済みの信号回線を判別するとステップS44〜S48の処理をスキップすることで、その信号回線に対する電流値の測定と記録は行わず、電流値異常と判定した信号回線は監視対象から除外するマスク処理を行う。 On the other hand, when the signal line for which the current value abnormality has been determined is determined in step S43, the processing of steps S44 to S48 is skipped, so that the current value for the signal line is not measured and recorded, and the current value abnormality is determined. The signal line is masked to be excluded from the monitoring target.

このような回線電流監視制御の第3実施形態によれば、電流値異常と判定された信号回線を測定対象から除外することで、特定の信号回線に絶縁劣化が起きても、他の信号回線の電流値の測定記録を継続できる。 According to the third embodiment of such line current monitoring control, by excluding the signal line determined to have an abnormal current value from the measurement target, even if insulation deterioration occurs in a specific signal line, another signal line is used. It is possible to continue the measurement recording of the current value of.

[回線電流監視制御の第4実施形態]
図8は環境条件に応じた閾値により電流値異常を判定する回線電流監視制御の第4実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第4実施形態は、信号回線の電流値と共に所定の環境条件、例えば温度及び湿度を測定し、温度及び湿度に応じて電流値異常を判定する閾値を変更することを特徴とする。
[Fourth Embodiment of Line Current Monitoring Control]
FIG. 8 is a flowchart showing a fourth embodiment of line current monitoring control for determining a current value abnormality based on a threshold value according to environmental conditions. In the fourth embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2, a predetermined environmental condition such as temperature and humidity is measured together with the current value of the signal line, and an abnormality of the current value is determined according to the temperature and humidity. It is characterized in that the threshold value to be changed is changed.

回線電流監視手段72による環境条件に応じた閾値の変更は、例えば、所定の基準閾値を予め設定し、温度及び湿度から高温多湿と判定した場合に基準閾値をそれより高い閾値に変更し、温度及び湿度から低温乾燥と判定した場合に基準閾値をそれより低い閾値に変更する。 To change the threshold value according to the environmental conditions by the line current monitoring means 72, for example, a predetermined reference threshold value is set in advance, and when it is determined from the temperature and humidity that the temperature and humidity are high and high humidity, the reference threshold value is changed to a higher threshold value and the temperature is changed. And when it is judged that the temperature is low temperature drying from the humidity, the reference threshold value is changed to a lower threshold value.

図8に示すように、回線電流監視手段72は、ステップS61で所定の回線電流測定タイミングへの到達を判別すると、ステップS62に進んでトンネル内に設置した温度検出器により温度を測定すると共に湿度検出器により湿度を測定して取り込む。 As shown in FIG. 8, when the line current monitoring means 72 determines that the predetermined line current measurement timing has been reached in step S61, the line current monitoring means 72 proceeds to step S62 to measure the temperature by the temperature detector installed in the tunnel and the humidity. Humidity is measured by a detector and captured.

続いてステップS63に進み、ステップS62で測定して取り込んだ温度及び湿度に応じて電流値異常を判定する閾値を変更する。この閾値変更は、環境条件として夏場の高温
多湿となる環境条件では、信号回線12の絶縁劣化が起きやすいことから、基準閾値をそれより高い閾値に変更し、環境条件に起因した一時的な絶縁劣化により電流値異常と判定して警報しないようにできる。
Subsequently, the process proceeds to step S63, and the threshold value for determining the current value abnormality is changed according to the temperature and humidity measured and taken in in step S62. Since this threshold change tends to cause insulation deterioration of the signal line 12 under the environmental conditions of high temperature and humidity in summer, the reference threshold is changed to a higher threshold and temporary insulation is caused by the environmental conditions. It is possible to determine that the current value is abnormal due to deterioration and prevent an alarm.

続いてステップS64〜S74の処理を行うが、この処理は図5のステップS2〜S12と同じになることから、その説明は省略する。 Subsequently, the processes of steps S64 to S74 are performed, but since this process is the same as steps S2 to S12 of FIG. 5, the description thereof will be omitted.

なお、環境条件に応じて閾値を変更する回線電流監視制御の第4実施形態の変形例として、回線電流監視手段72は、記環境条件と電流値の時間的な測定結果に基づき、電流値異常を判定する閾値を時間的に変更するようにしても良い。 As a modification of the fourth embodiment of the line current monitoring control that changes the threshold value according to the environmental conditions, the line current monitoring means 72 has an abnormality in the current value based on the environmental conditions and the temporal measurement result of the current value. The threshold value for determining the above may be changed with time.

この場合、回線電流監視手段72は、例えば温度又は湿度と電流値の測定結果となるログを人為的に確認し、例えば高温多湿となって電流値が増加する傾向にある例えば6月から9月は基準閾値を高い閾値に変更し、また、一日の時間帯で気温が高めとなる例えば10時から18時までの時間帯は基準閾値を高い閾値に変更し、このように環境条件の時間的な変化に応じて閾値を変更することで、電流値異常の判定を回避し、不要な警報出力を未然に抑止することを可能とする。 In this case, the line current monitoring means 72 artificially confirms the log which is the measurement result of the temperature or humidity and the current value, for example, and the current value tends to increase due to high temperature and humidity, for example, from June to September. Changes the reference threshold to a high threshold, and changes the reference threshold to a high threshold during the time zone from 10:00 to 18:00 when the temperature is high in the time zone of the day, and thus the time of the environmental condition. By changing the threshold value according to a specific change, it is possible to avoid the determination of the current value abnormality and suppress unnecessary alarm output in advance.

ここで、環境条件の時間的変化に対応した閾値の変更は、季節や一日の時間帯に対応して時間的に変化する閾値を予め記憶しておくことで、時間の経過に応じて自動的に閾値を変更設定しても良いし、手動操作により閾値を時間的に変更しても良い。 Here, the change of the threshold value corresponding to the temporal change of the environmental condition is automatically performed according to the passage of time by storing the threshold value that changes with time according to the season or the time zone of the day in advance. The threshold value may be changed and set manually, or the threshold value may be changed temporally by manual operation.

[回線電流監視制御の第5実施形態]
図9は電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第5実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第5実施形態は、信号回線の電流値異常を所定回数継続して判定した場合に前記上位設備に電流値異常信号を送信して警報させることを特徴とする。
[Fifth Embodiment of line current monitoring control]
FIG. 9 is a flowchart showing a fifth embodiment of line current monitoring control for notifying higher-level equipment when a current value abnormality exceeds a predetermined number of times. In the fifth embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2, when the current value abnormality of the signal line is continuously determined a predetermined number of times, the current value abnormality signal is transmitted to the higher-level equipment to give an alarm. It is characterized by that.

図9に示すように、回線電流監視手段72によるステップS81〜S87の処理は図5のステップS1〜S6の処理と同じになることから説明は省略する。 As shown in FIG. 9, the processing of steps S81 to S87 by the line current monitoring means 72 is the same as the processing of steps S1 to S6 of FIG. 5, and thus the description thereof will be omitted.

S81〜S87の処理により全ての信号回線の電流値の測定記録と電流値異常の判定を行ってステップS89に進むと、同一の信号回線について電流値異常の判定が所定回数以上継続しているか否か判別し、継続回数が所定回数未満の場合はステップS90をスキップして遠方監視制御設備27への電流値異常信号の送信は行わず、ステップS89で電流値異常が所定回数以上継続したことを判別するとステップS90に進み、この段階で初めて遠方監視制御設備27に電流値異常信号の送信により通報して警報させる。 When the measurement and recording of the current values of all the signal lines and the determination of the current value abnormality are performed by the processing of S81 to S87 and the process proceeds to step S89, whether or not the determination of the current value abnormality continues for the same signal line more than a predetermined number of times. If the number of continuations is less than the predetermined number of times, step S90 is skipped and the current value abnormality signal is not transmitted to the remote monitoring control equipment 27, and the current value abnormality continues for the predetermined number of times or more in step S89. When the determination is made, the process proceeds to step S90, and at this stage, the remote monitoring and control equipment 27 is notified by transmitting a current value abnormality signal for the first time to give an alarm.

これに続くステップS91〜S93の処理は図5のステップS10〜S12と同じになることから説明を省略する。 Since the processing of steps S91 to S93 following this is the same as that of steps S10 to S12 of FIG. 5, the description thereof will be omitted.

このような回線電流監視制御の第5実施形態によれば、環境条件の変化等により一時的な信号回線の絶縁劣化が起きても、絶縁劣化が継続しない限り、電流値異常と判定しても遠方監視制御設備27等に電流値異常信号は送信されず、一過性の要因による電流値異常に対し不必要な警報を抑止することを可能とする。 According to the fifth embodiment of such line current monitoring control, even if the insulation deterioration of the signal line occurs temporarily due to a change in environmental conditions or the like, even if it is determined that the current value is abnormal unless the insulation deterioration continues. The current value abnormality signal is not transmitted to the remote monitoring and control equipment 27 and the like, and it is possible to suppress an unnecessary alarm for the current value abnormality due to a transient factor.

[回線電流監視制御の第6実施形態]
図10は電流値異常が所定回数を超えた場合に上位設備に通報する回線電流監視制御の第6実施形態を示したフローチャートである。図2の回線電流監視手段72による回線電流監視制御の第6実施形態は、電流値異常と判定した場合に測定周期を短くして電流値を
測定記録するようにしたことを特徴とする。
[Sixth Embodiment of Line Current Monitoring Control]
FIG. 10 is a flowchart showing a sixth embodiment of line current monitoring control for notifying higher-level equipment when a current value abnormality exceeds a predetermined number of times. The sixth embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 2 is characterized in that when it is determined that the current value is abnormal, the measurement cycle is shortened and the current value is measured and recorded.

図10に示すように、回線電流監視手段72は、ステップS101で例えば1日1回の所定時刻となる回線電流測定の第1タイミングへの到達を判別すると、ステップS102で回線番号NをN=1に初期設定し、続いてステップS103〜S109の処理を行うが、この処理は図5のステップS3〜S9の処理と同じになることから説明は省略する。 As shown in FIG. 10, when the line current monitoring means 72 determines in step S101 that the first timing of the line current measurement at a predetermined time, for example, once a day is reached, the line number N is set to N = in step S102. The initial setting is set to 1, and the processes of steps S103 to S109 are subsequently performed. However, since this process is the same as the process of steps S3 to S9 of FIG. 5, the description thereof will be omitted.

続いて、回線電流監視手段72は、信号回線12の電流値測定と電流値異常の判定結果から、ステップS110で電流値異常の信号回線がある場合はステップS111に進み、ステップS101と同様に1日1回の第1測定タイミングか否か判別し、そうでない場合はステップS112に進み、第1測定タイミングの周期より短い例えば1時間に1回の第2測定タイミングか否か判別し、第2測定タイミングへの到達を判別するとステップS113に進み、電流値異常を判定している信号回線の電流値を測定して記録し、ステップS114で全ての電流値異常を判定した信号回線の測定が済むまでステップS113の処理を繰り返す。 Subsequently, the line current monitoring means 72 proceeds to step S111 if there is a signal line having a current value abnormality in step S110 based on the current value measurement of the signal line 12 and the determination result of the current value abnormality. It is determined whether or not the first measurement timing is once a day, and if not, the process proceeds to step S112, and it is determined whether or not the second measurement timing is shorter than the cycle of the first measurement timing, for example, once an hour. When it is determined that the measurement timing has been reached, the process proceeds to step S113, the current value of the signal line for determining the current value abnormality is measured and recorded, and the measurement of all the signal lines for which the current value abnormality is determined is completed in step S114. The process of step S113 is repeated until.

続いて、ステップS115,S116の処理を行うが、これは図5のステップS11,S12と同じになることから説明は省略する。 Subsequently, the processes of steps S115 and S116 are performed, but since this is the same as steps S11 and S12 of FIG. 5, the description thereof will be omitted.

このような回線電流監視制御の第6実施形態によれば、例えば1日1回の所定周期毎の電流値測定で電流値異常と判定した場合、それより短い第2周期に変更することで、電流値異常を判定した信号回線の電流値を短い時間間隔で測定記録して、絶縁劣化による電流値の変化をより正確に把握して対処することを可能とする。 According to the sixth embodiment of such line current monitoring control, for example, when it is determined that the current value is abnormal by measuring the current value once a day at predetermined cycles, the current value is changed to a shorter second cycle. By measuring and recording the current value of the signal line that determines the current value abnormality at short time intervals, it is possible to more accurately grasp and deal with the change in the current value due to insulation deterioration.

[回線電流監視制御の第7実施形態]
図11は電流値異常と判定した場合に一定時間だけ上位設備に通報して警報させる回線電流監視制御の第7実施形態を示したフローチャートである。図11の回線電流監視手段72による回線電流監視制御の第7実施形態は、信号回線の電流値異常と判定した場合に、信号回線情報を含めた電流値異常信号を遠方監視制御設備27に送信して警報させ、所定時間を経過した場合に電流値異常信号の送信を停止して遠方監視制御設備27での電流値異常の警報を解除させることを特徴とする。
[Seventh Embodiment of Line Current Monitoring Control]
FIG. 11 is a flowchart showing a seventh embodiment of line current monitoring control that notifies higher-level equipment for a certain period of time to give an alarm when it is determined that the current value is abnormal. In the seventh embodiment of the line current monitoring control by the line current monitoring means 72 of FIG. 11, when it is determined that the current value of the signal line is abnormal, the current value abnormality signal including the signal line information is transmitted to the remote monitoring control equipment 27. When a predetermined time elapses, the transmission of the current value abnormality signal is stopped to cancel the current value abnormality alarm in the remote monitoring and control equipment 27.

図11に示すように、回線電流監視手段72によるステップS121〜S126の処理は図5のステップS1〜S6の処理と基本的に同じになるが、図5のステップS6に対応した図11のステップS126の処理にあっては、電流値異常の警報を防災受信盤10では行うが、この段階では電流値異常信号を遠方監視制御設備27に送信せず、電流値異常の警報は行わない点で相違する。 As shown in FIG. 11, the processing of steps S121 to S126 by the line current monitoring means 72 is basically the same as the processing of steps S1 to S6 of FIG. 5, but the step of FIG. 11 corresponding to step S6 of FIG. In the processing of S126, the disaster prevention receiver 10 issues a current value abnormality alarm, but at this stage, the current value abnormality signal is not transmitted to the remote monitoring and control equipment 27, and the current value abnormality alarm is not performed. It's different.

遠方監視制御設備27は、ステップS121〜S128の処理が済んでステップS129に進み、電流値異常の信号回線がある場合にはステップS130で遠方監視制御設備27に対し回線情報を含む電流値異常信号を送信し、遠方監視制御設備27で回線情報を含む電流値異常を警報出力させる。 The remote monitoring and control equipment 27 proceeds to step S129 after the processes of steps S121 to S128 are completed, and if there is a signal line with an abnormal current value, the current value abnormal signal including line information is sent to the remote monitoring and control equipment 27 in step S130. Is transmitted, and the remote monitoring and control equipment 27 causes an alarm output of a current value abnormality including line information.

続いてステップS131で遠方監視制御設備27側で電流値異常の警報に対し対応可能な所定時間の経過を判別するとステップS132に進み、遠方監視制御設備27への電流値異常信号の送信を停止し、警報出力を解除させる。 Subsequently, in step S131, when the distant monitoring and control equipment 27 determines the elapse of a predetermined time that can respond to the current value abnormality alarm, the process proceeds to step S132, and the transmission of the current value abnormality signal to the distant monitoring and control equipment 27 is stopped. , Cancel the alarm output.

続いて、ステップS133,S134の処理を行うが、これは図5のステップS11,S12と同じになることから説明は省略する。 Subsequently, the processes of steps S133 and S134 are performed, but since this is the same as steps S11 and S12 of FIG. 5, the description thereof will be omitted.

このような回線電流監視制御の第7実施形態によれば、防災受信盤10で信号回線について電流値異常と判定されて警報が出力されても、外部の上位設備となる例えば遠方監視制御設備27では、所定時間の間のみ電流値異常の警報が出力されるだけであり、電流値異常の警報状態が継続して複数のトンネルを集中監視している遠方監視制御設備27での管理業務に支障を来たすことを回避可能とする。 According to the seventh embodiment of such line current monitoring and control, even if the disaster prevention receiver 10 determines that the current value is abnormal for the signal line and outputs an alarm, it is an external higher-level equipment, for example, a remote monitoring and control equipment 27. Then, only the alarm of the current value abnormality is output only for a predetermined time, and the alarm state of the current value abnormality continuously interferes with the management work in the remote monitoring control equipment 27 that centrally monitors a plurality of tunnels. It is possible to avoid coming.

[本発明の変形例]
(端末機器)
上記の実施形態は、絶縁劣化による電流値を測定して監視する信号回線に接続した端末機器として、手動通報装置、消火栓弁開閉検出スイッチ、ポンプ起動スイッチ、ダクト内温度検知器を例にとっているが、無電圧a接点スイッチを防災受信盤からの信号回線に接続している端末機器であれば、それ以外の適宜の端末機器が含まれる。
[Modification of the present invention]
(Terminal device)
In the above embodiment, as a terminal device connected to a signal line that measures and monitors the current value due to insulation deterioration, a manual notification device, a fire extinguisher valve open / close detection switch, a pump start switch, and a temperature detector in a duct are taken as examples. If the terminal device has the non-voltage a contact switch connected to the signal line from the disaster prevention receiver, other appropriate terminal devices are included.

(信号回線の断線監視)
また、上記の実施形態は、信号回線の測定電流値が絶縁劣化により所定の閾値以上又は上限の閾値を超えた場合に電流値異常と判定しているが、通常監視状態で信号回線に流れている消費電流に対し、それより低い所定の下限の閾値を設定し、測定電流値が下限の閾値以下又は下限の閾値を下回った場合に電流値異常と判定して警報するようにしても良い。このように下限の閾値以下又は下回るような電流値異常は信号回線の断線障害を検出して警報することになる。
(Monitoring the disconnection of the signal line)
Further, in the above embodiment, when the measured current value of the signal line exceeds a predetermined threshold value or exceeds the upper limit threshold value due to insulation deterioration, it is determined that the current value is abnormal, but the current value flows to the signal line in the normal monitoring state. A predetermined lower limit threshold value lower than the current consumption may be set, and when the measured current value is equal to or lower than the lower limit threshold value or lower than the lower limit threshold value, it may be determined that the current value is abnormal and an alarm may be given. Such a current value abnormality that is below or below the lower limit threshold value detects and warns of a disconnection failure of the signal line.

(その他)
また、本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(others)
In addition, the present invention includes appropriate modifications that do not impair its purpose and advantages, and is not further limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:信号回線
14:端末機器
16:火災検知器
18:ダクト内温度検知器
20:消火栓装置
22:自動弁装置
24:消火ポンプ設備
25:冷却ポンプ設備
26:IG子局設備
27:遠方監視制御設備
28:換気設備
30:警報表示板設備
32:ラジオ再放送設備
34:テレビ監視設備
36:照明設備
40:制御部
42,52:P型伝送部
44:警報部
46:表示部
48:操作部
54:手動通報装置
56:消火栓弁開閉検出スイッチ
58:ポンプ起動スイッチ
60:区画モジュール
62:回線受信部
64:電流測定部
65:セレクタ部
68:無電圧a接点スイッチ
70:監視制御手段
72:回線電流監視手段
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiver 12: Signal line 14: Terminal equipment 16: Fire detector 18: Duct temperature detector 20: Fire hydrant device 22: Automatic valve device 24: Fire extinguishing pump equipment 25 : Cooling pump equipment 26: IG slave station equipment 27: Remote monitoring and control equipment 28: Ventilation equipment 30: Alarm display board equipment 32: Radio rebroadcasting equipment 34: TV monitoring equipment 36: Lighting equipment 40: Control units 42, 52: P Type transmission unit 44: Alarm unit 46: Display unit 48: Operation unit 54: Manual notification device 56: Fire hydrant valve open / close detection switch 58: Pump start switch 60: Partition module 62: Line receiver 64: Current measurement unit 65: Selector unit 68: Non-voltage a contact switch 70: Monitoring control means 72: Line current monitoring means

Claims (10)

防災受信盤に、信号回線を介して端末機器を接続して監視エリアの異常を監視する防災システムであって、
前記信号回線に流れる電流値を測定可能に接続され、測定した電流値が所定の判定条件を充足した場合に、電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を備え、
前記回線電流監視手段は、前記信号回線単位に前記所定の判定条件を設定し、複数の信号回線の何れかで前記電流値異常と判定した場合に、当該電流値異常と判定した信号回線の前記所定の判定条件を変更して、変更前に比べて当該電流値異常と判定し難くなるようにすることを特徴とする防災システム。
It is a disaster prevention system that monitors abnormalities in the monitoring area by connecting terminal equipment to the disaster prevention receiver via a signal line.
When the current value flowing through the signal line is measurable and the measured current value satisfies a predetermined determination condition, it is determined that the current value is abnormal and a current value abnormality signal is transmitted to an external facility to give an alarm. Equipped with line current monitoring means
When the line current monitoring means sets the predetermined determination condition for each signal line and determines that the current value is abnormal in any of a plurality of signal lines, the line current monitoring means of the signal line determined to be the current value abnormality. A disaster prevention system characterized in that a predetermined judgment condition is changed so that it is difficult to judge that the current value is abnormal as compared with before the change.
防災受信盤に、信号回線を介して端末機器を接続して監視エリアの異常を監視する防災システムであって、
前記信号回線に流れる電流値を測定可能に接続され、測定した電流値が所定の判定条件を充足した場合に、電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を備え、
前記回線電流監視手段は、複数の信号回線の何れかで前記電流値異常と判定した場合、当該電流値異常と判定した信号回線を電流値の測定対象から除外することを特徴とする防災システム。
It is a disaster prevention system that monitors abnormalities in the monitoring area by connecting terminal equipment to the disaster prevention receiver via a signal line.
When the current value flowing through the signal line is measurable and the measured current value satisfies a predetermined determination condition, it is determined that the current value is abnormal and a current value abnormality signal is transmitted to an external facility to give an alarm. Equipped with line current monitoring means
The line current monitoring means is a disaster prevention system characterized in that, when it is determined that the current value is abnormal in any of a plurality of signal lines, the signal line determined to be the current value abnormality is excluded from the current value measurement target.
防災受信盤に、信号回線を介して端末機器を接続して監視エリアの異常を監視する防災システムであって、
前記信号回線に流れる電流値を測定可能に接続され、測定した電流値が所定の判定条件を充足した場合に、電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を備え、
前記回線電流監視手段は、前記信号回線の電流値と共に所定の環境条件を測定し、測定した前記信号回線の電流値及び前記環境条件に応じて、前記所定の判定条件に基づく前記電流値異常を判定することを特徴とする防災システム。
It is a disaster prevention system that monitors abnormalities in the monitoring area by connecting terminal equipment to the disaster prevention receiver via a signal line.
When the current value flowing through the signal line is measurable and the measured current value satisfies a predetermined determination condition, it is determined that the current value is abnormal and a current value abnormality signal is transmitted to an external facility to give an alarm. Equipped with line current monitoring means
The line current monitoring means measures a predetermined environmental condition together with the current value of the signal line, and determines the current value abnormality based on the predetermined determination condition according to the measured current value of the signal line and the environmental condition. A disaster prevention system characterized by making judgments.
請求項3記載の防災システムに於いて、前記回線電流監視手段は、前記所定の環境条件の測定結果に基づき、前記所定の判定条件を変更することを特徴とする防災システム。
The disaster prevention system according to claim 3, wherein the line current monitoring means changes the predetermined determination condition based on the measurement result of the predetermined environmental condition.
請求項4記載の防災システムに於いて、前記回線電流監視手段は、前記所定の環境条件の測定結果に基づき、前記所定の判定条件を所定の期間、変更することを特徴とする防災システム。
The disaster prevention system according to claim 4, wherein the line current monitoring means changes the predetermined determination condition for a predetermined period based on the measurement result of the predetermined environmental condition.
請求項5記載の防災システムに於いて、前記回線電流監視手段は、季節又は一日の時間帯における前記所定の環境条件の測定結果に基づき、前記所定の判定条件を前記季節又は一日の時間帯に応じて変更することを特徴とする防災システム。
In the disaster prevention system according to claim 5, the line current monitoring means determines the predetermined determination condition for the season or the time of the day based on the measurement result of the predetermined environmental condition in the time zone of the season or the day. A disaster prevention system characterized by changing according to the belt.
請求項4又は6記載の防災システムに於いて、前記回線電流監視手段は、前記所定の判定条件を所定の基準電流閾値として予め設定し、前記所定の環境条件の測定結果から高温多湿と判定した場合に前記基準電流閾値をそれより高い値に変更し、前記所定の環境条件の測定結果から低温乾燥と判定した場合に前記基準電流閾値をそれより低い値に変更することを特徴とする防災システム。
In the disaster prevention system according to claim 4 or 6, the line current monitoring means presets the predetermined determination condition as a predetermined reference current threshold value, and determines that the temperature and humidity are high from the measurement results of the predetermined environmental condition. A disaster prevention system characterized in that the reference current threshold value is changed to a higher value in some cases, and the reference current threshold value is changed to a lower value when it is determined from the measurement results of the predetermined environmental conditions that the temperature is dry. ..
防災受信盤に、信号回線を介して端末機器を接続して監視エリアの異常を監視する防災システムであって、
前記信号回線に流れる電流値を測定可能に接続され、測定した電流値が所定の判定条件を充足した場合に、電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を備え、
前記回線電流監視手段は、同一の前記信号回線について所定回数継続して前記電流値異常と判定した場合に、前記外部の設備に前記電流値異常信号を送信して警報させることを特徴とする防災システム。
It is a disaster prevention system that monitors abnormalities in the monitoring area by connecting terminal equipment to the disaster prevention receiver via a signal line.
When the current value flowing through the signal line is measurable and the measured current value satisfies a predetermined determination condition, it is determined that the current value is abnormal and a current value abnormality signal is transmitted to an external facility to give an alarm. Equipped with line current monitoring means
The line current monitoring means is characterized by transmitting the current value abnormality signal to the external equipment to give an alarm when it is determined that the current value abnormality is continuously performed for the same signal line a predetermined number of times. system.
防災受信盤に、信号回線を介して端末機器を接続して監視エリアの異常を監視する防災システムであって、
前記信号回線に流れる電流値を測定可能に接続され、測定した電流値が所定の判定条件を充足した場合に、電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を備え、
前記回線電流監視手段は、所定周期毎に前記信号回線の電流値を測定し、前記所定周期毎の前記信号回線の電流値測定で電流値異常と判定した場合は、当該電流値異常と判定された前記信号回線について、前記所定周期より短い周期毎に、前記信号回線の電流値を測定することを特徴とする防災システム。
It is a disaster prevention system that monitors abnormalities in the monitoring area by connecting terminal equipment to the disaster prevention receiver via a signal line.
When the current value flowing through the signal line is measurable and the measured current value satisfies a predetermined determination condition, it is determined that the current value is abnormal and a current value abnormality signal is transmitted to an external facility to give an alarm. Equipped with line current monitoring means
The line current monitoring means measures the current value of the signal line at predetermined intervals, and when the current value measurement of the signal line at each predetermined cycle determines that the current value is abnormal, it is determined that the current value is abnormal. A disaster prevention system, characterized in that the current value of the signal line is measured at intervals shorter than the predetermined cycle of the signal line.
防災受信盤に、信号回線を介して端末機器を接続して監視エリアの異常を監視する防災システムであって、
前記信号回線に流れる電流値を測定可能に接続され、測定した電流値が所定の判定条件を充足した場合に、電流値異常と判定して電流値異常信号を外部の設備に送信して警報させる回線電流監視手段を備え、
前記回線電流監視手段は、前記電流値異常と判定した場合に、前記電流値異常信号を前記外部の設備に送信して警報させ、その後、所定時間を経過した場合に、前記警報を解除させることを特徴とする防災システム。
It is a disaster prevention system that monitors abnormalities in the monitoring area by connecting terminal equipment to the disaster prevention receiver via a signal line.
When the current value flowing through the signal line is measurable and the measured current value satisfies a predetermined determination condition, it is determined that the current value is abnormal and a current value abnormality signal is transmitted to an external facility to give an alarm. Equipped with line current monitoring means
When the line current monitoring means determines that the current value is abnormal, the line current monitoring means transmits the current value abnormality signal to the external equipment to give an alarm, and then cancels the alarm when a predetermined time elapses. A disaster prevention system featuring.
JP2021081399A 2019-08-23 2021-05-13 Disaster prevention system Active JP7054749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021081399A JP7054749B2 (en) 2019-08-23 2021-05-13 Disaster prevention system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019152418A JP6885994B2 (en) 2019-08-23 2019-08-23 Tunnel disaster prevention system
JP2021081399A JP7054749B2 (en) 2019-08-23 2021-05-13 Disaster prevention system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019152418A Division JP6885994B2 (en) 2019-08-23 2019-08-23 Tunnel disaster prevention system

Publications (2)

Publication Number Publication Date
JP2021122141A true JP2021122141A (en) 2021-08-26
JP7054749B2 JP7054749B2 (en) 2022-04-14

Family

ID=69152471

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019152418A Active JP6885994B2 (en) 2019-08-23 2019-08-23 Tunnel disaster prevention system
JP2021081399A Active JP7054749B2 (en) 2019-08-23 2021-05-13 Disaster prevention system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019152418A Active JP6885994B2 (en) 2019-08-23 2019-08-23 Tunnel disaster prevention system

Country Status (1)

Country Link
JP (2) JP6885994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008181A1 (en) 2021-07-27 2023-02-02 Nok株式会社 Sealing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111951509A (en) * 2020-08-17 2020-11-17 江苏建筑职业技术学院 Real-time monitoring and alarming system for electrical fire of old apartment
JP2022118309A (en) 2021-02-02 2022-08-15 三菱電機株式会社 fire alarm system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221347A (en) * 1985-07-19 1987-01-29 Hochiki Corp Fault supervisory equipment
JPH05166076A (en) * 1991-12-12 1993-07-02 Hochiki Corp Analog fire alarm
JPH0863691A (en) * 1994-08-18 1996-03-08 Nohmi Bosai Ltd Monitoring device for transmission line of fire alarm equipment
JPH09319984A (en) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd Disaster prevention system equipped with isolator incorporated type integrated board
JP2003281639A (en) * 2002-03-25 2003-10-03 Matsushita Electric Works Ltd Fire and abnormality discrimination method for sensor line and fire reporting system
JP2003299241A (en) * 2002-04-05 2003-10-17 Tempearl Ind Co Ltd Overcurrent detection device
JP2007280005A (en) * 2006-04-06 2007-10-25 Hochiki Corp Fire alarm facility
JP2014013538A (en) * 2012-07-05 2014-01-23 Hochiki Corp Distribution type fire monitoring system
JP2015026322A (en) * 2013-07-29 2015-02-05 能美防災株式会社 Fire sensor and fire alarm facility using the same
JP2015132978A (en) * 2014-01-14 2015-07-23 ホーチキ株式会社 Crime prevention system, receiver, ringing sound control device, and warning signal receiver

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578722Y2 (en) * 1991-03-27 1998-08-13 綜合警備保障株式会社 Mechanical security equipment
JPH05153243A (en) * 1991-12-02 1993-06-18 Nec Corp Alarm supervisory system
JPH06266990A (en) * 1993-03-16 1994-09-22 Hochiki Corp Disaster prevention monitor
JPH10248951A (en) * 1997-03-12 1998-09-22 Hochiki Corp Disaster preventive system for tunnel
JP3883286B2 (en) * 1998-03-31 2007-02-21 能美防災株式会社 Tunnel disaster prevention system
JP2002042263A (en) * 2000-07-28 2002-02-08 Hochiki Corp Fire detector
JP2004312354A (en) * 2003-04-07 2004-11-04 Nippon Telegr & Teleph Corp <Ntt> Environmental monitor system, data logger used therein, and program thereof
JP5705556B2 (en) * 2011-01-11 2015-04-22 ラピスセミコンダクタ株式会社 Semiconductor circuit, semiconductor device, disconnection detection method, and disconnection detection program
JP2012242330A (en) * 2011-05-23 2012-12-10 Omron Automotive Electronics Co Ltd Electric leakage detection device
JP6126860B2 (en) * 2013-02-15 2017-05-10 能美防災株式会社 Fire alarm system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221347A (en) * 1985-07-19 1987-01-29 Hochiki Corp Fault supervisory equipment
US4752698A (en) * 1985-07-19 1988-06-21 Hochiki Corp. Emergency supervisory system
JPH05166076A (en) * 1991-12-12 1993-07-02 Hochiki Corp Analog fire alarm
JPH0863691A (en) * 1994-08-18 1996-03-08 Nohmi Bosai Ltd Monitoring device for transmission line of fire alarm equipment
CN1118488A (en) * 1994-08-18 1996-03-13 能美防灾株式会社 Transmission line-monitoring apparatus for use in fire alarm system
JPH09319984A (en) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd Disaster prevention system equipped with isolator incorporated type integrated board
JP2003281639A (en) * 2002-03-25 2003-10-03 Matsushita Electric Works Ltd Fire and abnormality discrimination method for sensor line and fire reporting system
JP2003299241A (en) * 2002-04-05 2003-10-17 Tempearl Ind Co Ltd Overcurrent detection device
JP2007280005A (en) * 2006-04-06 2007-10-25 Hochiki Corp Fire alarm facility
JP2014013538A (en) * 2012-07-05 2014-01-23 Hochiki Corp Distribution type fire monitoring system
JP2015026322A (en) * 2013-07-29 2015-02-05 能美防災株式会社 Fire sensor and fire alarm facility using the same
JP2015132978A (en) * 2014-01-14 2015-07-23 ホーチキ株式会社 Crime prevention system, receiver, ringing sound control device, and warning signal receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008181A1 (en) 2021-07-27 2023-02-02 Nok株式会社 Sealing device

Also Published As

Publication number Publication date
JP2020010359A (en) 2020-01-16
JP6885994B2 (en) 2021-06-16
JP7054749B2 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
JP6577780B2 (en) Tunnel disaster prevention system
JP7054749B2 (en) Disaster prevention system
JP6770867B2 (en) Tunnel disaster prevention system
JP6804134B2 (en) Tunnel disaster prevention system
JP6709146B2 (en) Tunnel disaster prevention system
JP7441919B2 (en) disaster prevention system
JP2018045541A (en) Tunnel disaster prevention system
JP6689711B2 (en) Tunnel disaster prevention system
JP6990746B2 (en) Disaster prevention system
JP7181039B2 (en) disaster prevention system
JP7082156B2 (en) Disaster prevention system
JP6916926B2 (en) Disaster prevention system
JP6899177B2 (en) Tunnel disaster prevention system
JP7207907B2 (en) disaster prevention system
JP7304325B2 (en) disaster prevention system
JP7379621B2 (en) disaster prevention system
JP2022031856A (en) Disaster prevention system
JP2023089167A (en) disaster prevention system
JP7203152B2 (en) disaster prevention system
JP6894823B2 (en) Tunnel disaster prevention system
JP7207925B2 (en) disaster prevention system
JP7475114B2 (en) Monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R150 Certificate of patent or registration of utility model

Ref document number: 7054749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150