JP2020009998A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2020009998A
JP2020009998A JP2018132522A JP2018132522A JP2020009998A JP 2020009998 A JP2020009998 A JP 2020009998A JP 2018132522 A JP2018132522 A JP 2018132522A JP 2018132522 A JP2018132522 A JP 2018132522A JP 2020009998 A JP2020009998 A JP 2020009998A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
material layer
negative electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018132522A
Other languages
Japanese (ja)
Inventor
紘太郎 水間
Kotaro Mizuma
紘太郎 水間
謝 剛
Takeshi Sha
剛 謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2018132522A priority Critical patent/JP2020009998A/en
Publication of JP2020009998A publication Critical patent/JP2020009998A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To increase the volume of a positive electrode active material layer making contribution to the rise in capacity and suppress the worsening of a low temperature rate characteristic without the need for increasing the thickness of a positive electrode active material layer.SOLUTION: A power storage device comprises an electrode body including a positive electrode, a negative electrode, an electrolyte solution and a separator. The electrode body includes one or more laminate structure units; in the laminate structure unit, a negative electrode current collector, a negative electrode active material layer, a positive electrode collection layer, a separator, and a negative electrode active material layer are laminated in this order. The positive electrode collection layer is arranged by repeatedly laminating two or more positive electrode laminate structure units, provided that in the positive electrode laminate structure unit, a separator and a positive electrode are laminated in this order.SELECTED DRAWING: Figure 2

Description

本発明は、正極、負極及び電解液を備えた蓄電デバイスに関する。   The present invention relates to a power storage device including a positive electrode, a negative electrode, and an electrolyte.

電気化学キャパシタ等の蓄電デバイスは、例えば、ハイブリッド自動車及び電気自動車等の電源に使用される。蓄電デバイスの特性を向上するために、その構成要素である電極、電解液及びセパレータ等の開発が、活発に進められている   BACKGROUND ART Electric storage devices such as electrochemical capacitors are used, for example, as power sources for hybrid vehicles and electric vehicles. In order to improve the characteristics of the electricity storage device, the development of electrodes, electrolytes, separators, and the like, which are components thereof, is being actively promoted.

近年では、蓄電デバイスの更なる高容量化が求められている。例えば、蓄電デバイスの電極の正極活物質層の厚さを厚くすることにより、容量(エネルギー密度)を向上することができる。ところが、この場合、正極活物質層内に存在する電解液中の電解液イオン(電解液の構成成分のイオン)の拡散距離が大きくなることにより、電解液イオンの移動によるイオン拡散抵抗(以下、「電解液イオン拡散抵抗」と称呼される。)が増大してしまう。これにより、低温レート特性が低下する問題があった。   In recent years, a further increase in the capacity of the power storage device has been demanded. For example, by increasing the thickness of the positive electrode active material layer of the electrode of the power storage device, the capacity (energy density) can be improved. However, in this case, the diffusion distance of the electrolyte solution ions (ion of the constituents of the electrolyte solution) in the electrolyte solution present in the positive electrode active material layer is increased, so that the ion diffusion resistance due to the movement of the electrolyte solution ions (hereinafter, referred to as “ion diffusion resistance”). (Referred to as "electrolyte ion diffusion resistance")). As a result, there is a problem that the low-temperature rate characteristics are reduced.

これに対して、特許文献1は、電極(集電体及び集電体上に形成された活物質層)に、電極を貫通する切れ目等の透過孔(貫通孔)を形成する技術を開示している。これにより、電解液の正極物質層への浸透性を向上させることによって、電解液イオン拡散抵抗の増大による電池特性の低下を補填する。   On the other hand, Patent Literature 1 discloses a technique of forming a transmission hole (through hole) such as a cut through the electrode in an electrode (a current collector and an active material layer formed on the current collector). ing. This improves the permeability of the electrolytic solution into the positive electrode material layer, thereby compensating for a decrease in battery characteristics due to an increase in electrolytic solution ion diffusion resistance.

特開2001−236945号公報JP 2001-236945 A

しかしながら、容量を向上するために正極活物質層を厚くした場合、電極に透過孔を形成するだけでは、電解液イオンの拡散距離が厚さ増大分大きくなることに起因する電解液イオン拡散抵抗の増大を、抑制することができない。電解液イオン拡散抵抗が増大すると、低温レート特性の低下が生じてしまうので好ましくない。   However, when the thickness of the positive electrode active material layer is increased in order to improve the capacity, simply forming a permeation hole in the electrode increases the diffusion distance of the electrolyte ions by the increased thickness, thereby reducing the electrolyte ion diffusion resistance. The increase cannot be suppressed. If the electrolyte ion diffusion resistance increases, the low-temperature rate characteristics deteriorate, which is not preferable.

本発明は上述した課題に対処するためになされた。即ち、本発明の目的の一つは、正極活物質層の厚さを厚くしなくても、容量の向上に寄与する正極活物質層の体積を増大することができると共に、低温レート特性が低下することを抑制できる蓄電デバイス(以下、「本発明蓄電デバイス」と称呼される場合がある。)を提供することにある。   The present invention has been made to address the above problems. That is, one of the objects of the present invention is that, without increasing the thickness of the positive electrode active material layer, the volume of the positive electrode active material layer contributing to the improvement of the capacity can be increased, and the low-temperature rate characteristics deteriorate. Another object of the present invention is to provide a power storage device (hereinafter, may be referred to as “the power storage device of the present invention”) that can suppress the occurrence of the power storage device.

上述の課題を解決するために、
本発明蓄電デバイスは、
正極集電体層の両面に正極活物質層が形成された正極層と、
負極集電体層の両面に負極活物質層が形成された負極層と、
電解液と、
前記電解液を保持する電解液保持層と、
を含む電極体を備え、
前記電極体は、
前記負極集電体層と、
前記負極活物質層と、
前記電解液保持層と前記正極層とがこの順で積層された正極積層構造単位が2つ以上繰り返し積層された積層構造を有する正極集合層と、
電解液保持層と、
負極活物質層と、
がこの順で積層された積層構造単位を1つ以上含む。
In order to solve the above problems,
The electricity storage device of the present invention
A positive electrode layer in which a positive electrode active material layer is formed on both surfaces of a positive electrode current collector layer,
A negative electrode layer in which a negative electrode active material layer is formed on both surfaces of the negative electrode current collector layer,
An electrolyte,
An electrolyte holding layer that holds the electrolyte,
Comprising an electrode body including
The electrode body is
The negative electrode current collector layer,
The negative electrode active material layer,
A positive electrode assembly layer having a stacked structure in which two or more positive electrode stacked structural units in which the electrolyte holding layer and the positive electrode layer are stacked in this order are repeatedly stacked;
An electrolyte holding layer,
A negative electrode active material layer,
Contains one or more laminated structural units laminated in this order.

本発明蓄電デバイスの一態様において、
前記正極集合層は、前記正極積層構造単位が2つ繰り返し積層された前記積層構造を有する。
In one embodiment of the power storage device of the present invention,
The positive electrode assembly layer has the laminated structure in which two positive electrode laminated structural units are repeatedly laminated.

本発明蓄電デバイスの一態様において、
前記電極体は、2つ以上の前記積層構造単位が複数繰り返し積層された積層構造を含む。
In one embodiment of the power storage device of the present invention,
The electrode body includes a stacked structure in which two or more of the stacked structural units are repeatedly stacked.

本発明蓄電デバイスの一態様において、
前記電解液保持層は、セパレータである。
In one embodiment of the power storage device of the present invention,
The electrolyte holding layer is a separator.

本発明によれば、正極活物質層の厚さを厚くしなくても、容量の向上に寄与する正極活物質層の体積を増大することができると共に、低温レート特性が低下することを抑制できる。   According to the present invention, even if the thickness of the positive electrode active material layer is not increased, the volume of the positive electrode active material layer contributing to the improvement of the capacity can be increased, and the lowering of the low-temperature rate characteristic can be suppressed. .

図1は、本発明の実施形態に係る蓄電デバイスの構成例を示す斜視図である。FIG. 1 is a perspective view illustrating a configuration example of a power storage device according to an embodiment of the present invention. 図2は、本発明の実施形態に係る蓄電デバイスの構成例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating a configuration example of the power storage device according to the embodiment of the present invention. 図3は、正極の構成例を示す平面図である。FIG. 3 is a plan view showing a configuration example of the positive electrode. 図4は、図3のI−I’線に沿った断面図である。FIG. 4 is a sectional view taken along the line I-I 'of FIG. 図5は、負極の構成例を示す平面図である。FIG. 5 is a plan view showing a configuration example of the negative electrode. 図6は、図5のII−II’線に沿った断面図である。FIG. 6 is a sectional view taken along line II-II 'of FIG. 図7は、積層体の構成例を説明するための概略断面図である。FIG. 7 is a schematic cross-sectional view for explaining a configuration example of the laminate. 図8は、参考例1及び参考例2の構成を示す概略断面図である。FIG. 8 is a schematic cross-sectional view illustrating the configuration of Reference Example 1 and Reference Example 2. 図9は、正極の厚さと抵抗との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the thickness of the positive electrode and the resistance. 図10は、実施例1−1及び実施例1−2の蓄電デバイスの構成例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view illustrating a configuration example of the power storage device of Example 1-1 and Example 1-2. 図11は、比較例1−1〜比較例1−3の蓄電デバイスの構成例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view illustrating a configuration example of a power storage device of Comparative Examples 1-1 to 1-3. 図12は、比較例2の蓄電デバイスの構成例を示す概略断面図である。FIG. 12 is a schematic cross-sectional view illustrating a configuration example of a power storage device of Comparative Example 2. 図13は、実施例及び比較例の測定結果をまとめたグラフである。FIG. 13 is a graph summarizing the measurement results of the example and the comparative example. 図14は、実施例及び比較例の測定結果をまとめたグラフである。FIG. 14 is a graph summarizing the measurement results of the example and the comparative example.

以下、本発明の実施形態(以下、「本実施形態」と称呼される。)に係る蓄電デバイスについて図面を参照しながら説明する。本例において、蓄電デバイスは、電気化学キャパシタ(具体的に述べると、リチウムイオンキャパシタ)である。なお、本明細書において、吸脱着可能とは、可逆的に吸蔵(吸着、挿入)及び脱離(放出)が可能であることを意味する。   Hereinafter, an electric storage device according to an embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described with reference to the drawings. In this example, the power storage device is an electrochemical capacitor (specifically, a lithium ion capacitor). Note that, in this specification, “adsorbable and desorbable” means that reversible occlusion (adsorption and insertion) and desorption (release) are possible.

図1及び図2は、本実施形態に係る蓄電デバイスの構成を示す。図1及び図2に示されるように、蓄電デバイスは、内部空間を有する外装ケース11と、外装ケース11の内部に収容された電解液12と、積層体13とを有する。外装ケース11は、例えば、アルミニウムとポリプロピレンとが積層された袋状のラミネートフィルムである。   1 and 2 show the configuration of the power storage device according to the present embodiment. As shown in FIGS. 1 and 2, the power storage device includes an outer case 11 having an internal space, an electrolytic solution 12 housed inside the outer case 11, and a laminate 13. The outer case 11 is, for example, a bag-shaped laminated film in which aluminum and polypropylene are laminated.

(電解液)
電解液12は、非水電解液であり、電解質塩と非水溶媒とを含む。電解質塩は、非水溶媒に溶解されている。電解液12は、必要に応じて、電解液12の特性を向上させるための添加剤を含んでいてもよい。
(Electrolyte)
The electrolytic solution 12 is a non-aqueous electrolytic solution and includes an electrolyte salt and a non-aqueous solvent. The electrolyte salt is dissolved in a non-aqueous solvent. The electrolyte solution 12 may include an additive for improving the characteristics of the electrolyte solution 12 as needed.

(電解質塩)
電解質塩としては、例えば、LiPF、LiBF、Li(CFSON、LiClO、及び、その他のリチウム塩等から選ばれた1種又は2種以上を用いることができる。
(Electrolyte salt)
As the electrolyte salt, for example, one or more kinds selected from LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N, LiClO 4 , and other lithium salts can be used.

(非水溶媒)
非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン(THF)、アセトニトリル(AN)、γ―ブチルラクトン(GBL)、エチルイソプロピルスルホン(EiPS)、及び、1,1,2,2−テトラフルオロエチル2,2,3,3−テトラフルオロプロピルエーテル(HFE)等から選ばれた1種又は2種以上を用いることができる。
(Non-aqueous solvent)
Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane (DME), and tetrahydrofuran. (THF), acetonitrile (AN), γ-butyl lactone (GBL), ethyl isopropyl sulfone (EiPS), and 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether ( One or more selected from HFE) can be used.

(積層体)
積層体13は、矩形の平面形状を有する正極21と、矩形の平面形状を有する負極22とが、矩形の平面形状を有するセパレータ23を介して複数積層された構造を有する。更に、積層体13は、プレドープ用金属リチウム25を含んでいてもよい。積層体13は、便宜上、「電極体」とも称呼される。
(Laminate)
The laminate 13 has a structure in which a plurality of positive electrodes 21 having a rectangular planar shape and a plurality of negative electrodes 22 having a rectangular planar shape are laminated via a separator 23 having a rectangular planar shape. Further, the laminate 13 may include pre-doped metal lithium 25. The laminate 13 is also referred to as an “electrode body” for convenience.

積層体13は、電解液12に含浸され、電解液12を含む。なお、この積層体13を構成する電極部材等の積層構造については、後に詳述する。   The laminate 13 is impregnated with the electrolyte 12 and includes the electrolyte 12. The laminated structure of the electrode member and the like constituting the laminated body 13 will be described later in detail.

(正極)
図3及び図4に示されるように、正極21は、矩形の平面形状を有する正極集電体21Aと、正極集電体21Aの両主面上に積層された正極活物質層21Bとを備える。
(Positive electrode)
As shown in FIGS. 3 and 4, the positive electrode 21 includes a positive electrode current collector 21A having a rectangular planar shape, and a positive electrode active material layer 21B stacked on both main surfaces of the positive electrode current collector 21A. .

正極活物質層21Bは、正極集電体21Aの一部が露出するように正極集電体21A上に形成されている。正極集電体21Aの露出部21Cは、外部に電流を取り出す端子部として機能する。露出部21Cは、正極端子タブ31に導電性接続部材33を介して電気的に接続されている。正極端子タブ31は、蓄電デバイスの正極端子として機能する。   The positive electrode active material layer 21B is formed on the positive electrode current collector 21A such that a part of the positive electrode current collector 21A is exposed. The exposed part 21C of the positive electrode current collector 21A functions as a terminal part that extracts a current to the outside. The exposed portion 21C is electrically connected to the positive electrode terminal tab 31 via a conductive connection member 33. The positive terminal tab 31 functions as a positive terminal of the power storage device.

正極集電体21Aは、良好な導電性を有する材料(良導体)によって形成される。本例においては、正極集電体21Aとして、例えば、多孔質状のアルミニウム箔を用いることができる。   The positive electrode current collector 21A is formed of a material having good conductivity (good conductor). In the present example, for example, a porous aluminum foil can be used as the positive electrode current collector 21A.

正極活物質層21Bは、正極活物質を含む。なお、正極活物質層21Bは、必要に応じてバインダ(例えば、SBR(スチレンブタジエンゴム))を含んでいてもよい。   The positive electrode active material layer 21B contains a positive electrode active material. The positive electrode active material layer 21B may include a binder (for example, SBR (styrene butadiene rubber)) as necessary.

正極活物質としては、電解質塩アニオンを吸脱着可能(可逆的に吸蔵(吸着)及び脱離(放出)が可能)な材料によって構成される。正極活物質としては、例えば、カーボンナノチューブ、又は、活性炭を用いることができる。なお、正極活物質は、1種で用いてもよく、2種以上を混合して用いてもよい。   The positive electrode active material is composed of a material capable of absorbing and desorbing (reversibly occluding (adsorbing) and desorbing (releasing) the electrolyte salt anion). As the positive electrode active material, for example, carbon nanotubes or activated carbon can be used. The positive electrode active material may be used alone, or two or more kinds may be used in combination.

(負極)
図5及び図6に示されるように、負極22は、矩形の平面形状を有する負極集電体22Aと、負極集電体22Aの両主面上に積層された形成された負極活物質層22Bとを備える。なお、負極集電体22Aの一主面上のみに負極活物質層22Bを形成するようにしてもよい。
(Negative electrode)
As shown in FIGS. 5 and 6, the negative electrode 22 includes a negative electrode current collector 22A having a rectangular planar shape, and a formed negative electrode active material layer 22B laminated on both main surfaces of the negative electrode current collector 22A. And Note that the negative electrode active material layer 22B may be formed only on one main surface of the negative electrode current collector 22A.

負極活物質層22Bは、負極集電体22Aの一部が露出するように負極集電体22A上に形成されている。負極集電体22Aの露出部22Cは、外部に電流を取り出す端子部として機能する。露出部22Cは、導電性接続部材34を介して、負極端子タブ32に電気的に接続されている。負極端子タブ32は、蓄電デバイスの負極端子として機能する。   The negative electrode active material layer 22B is formed on the negative electrode current collector 22A such that a part of the negative electrode current collector 22A is exposed. The exposed part 22C of the negative electrode current collector 22A functions as a terminal part that extracts a current to the outside. The exposed portion 22 </ b> C is electrically connected to the negative terminal tab 32 via the conductive connection member 34. The negative terminal tab 32 functions as a negative terminal of the power storage device.

負極集電体22Aは、良好な導電性を有する材料(良導体)によって形成される。本例においては、負極集電体22Aとして、例えば、多孔質状の銅箔を用いることができる。   The negative electrode current collector 22A is formed of a material (good conductor) having good conductivity. In this example, for example, a porous copper foil can be used as the negative electrode current collector 22A.

負極活物質層22Bは、リチウムイオンを吸脱着可能(可逆的に吸蔵(吸着)及び脱離(放出)が可能)な炭素材料と、バインダ(例えば、SBR(スチレンブタジエンゴム)等)とを含む。なお、バインダを省略してもよい。炭素材料としては、例えば、カーボンナノチューブ、又は、黒鉛を用いることができる。なお、負極活物質は、1種で用いてもよく、2種以上を混合して用いてもよい。   The negative electrode active material layer 22B includes a carbon material capable of absorbing and desorbing lithium ions (capable of reversibly occluding (adsorbing) and desorbing (releasing)) and a binder (for example, SBR (styrene butadiene rubber) or the like). . Note that the binder may be omitted. As the carbon material, for example, carbon nanotube or graphite can be used. The negative electrode active material may be used alone, or two or more kinds may be used in combination.

なお、エネルギー密度を向上させるために、炭素材料中に、リチウムイオンが予め吸蔵(プレドープ)されていてもよい。プレドープを行う場合、積層体13を組み立て後、積層体13が電解液12に浸漬されると、負極22と短絡したプレドープ用の金属リチウム25からリチウムイオンが電解液12中に放出される。そして、プレドープ用の金属リチウム25が、正極集電体21A及び負極集電体22Aの貫通孔を通り、積層体13の全体に拡散し、リチウムイオンが炭素材料にドープ(吸蔵)される。なお、プレドープ後は、プレドープ用の金属リチウム25は消失している。   In order to improve the energy density, lithium ions may be previously stored (pre-doped) in the carbon material. In the case of performing pre-doping, when the laminated body 13 is immersed in the electrolytic solution 12 after assembling the laminated body 13, lithium ions are released into the electrolytic solution 12 from the pre-doped metal lithium 25 short-circuited with the negative electrode 22. Then, the pre-doped metal lithium 25 passes through the through-holes of the positive electrode current collector 21A and the negative electrode current collector 22A and diffuses throughout the stacked body 13, and lithium ions are doped (occluded) in the carbon material. After the pre-doping, the metal lithium 25 for pre-doping has disappeared.

(セパレータ)
セパレータ23は、正極21及び負極22の短絡を防止するために設けられた絶縁性の多孔質膜である。セパレータ23は、電解液12を保持する電解液保持部(「電解液保持層」とも称呼される。)である。セパレータ23としては、例えば、ポリエチレン、ポリプロピレン若しくはその他の絶縁性の多孔質フィルム、又は、不織布を用いることができる。
(Separator)
The separator 23 is an insulating porous film provided to prevent a short circuit between the positive electrode 21 and the negative electrode 22. The separator 23 is an electrolyte holding unit (also referred to as an “electrolyte holding layer”) that holds the electrolyte 12. As the separator 23, for example, polyethylene, polypropylene, other insulating porous films, or nonwoven fabric can be used.

(積層体の構造)
図7を参照しながら、積層体13の積層構造について詳述する。図7は、積層体13の概略断面図である。なお、説明の便宜上、導電性接続部材33及び34の図示は省略している。
(Structure of laminate)
The laminated structure of the laminate 13 will be described in detail with reference to FIG. FIG. 7 is a schematic sectional view of the laminate 13. In addition, illustration of the conductive connection members 33 and 34 is omitted for convenience of explanation.

図7に示されるように、積層体13は、負極集電体22Aと、プレドープ用金属リチウム25と、セパレータ23と、負極22とセパレータ23と正極21とセパレータ23と正極21とセパレータ23とがこの順で積層された複数の積層単位と、負極活物質層22Bと、負極集電体22Aと、負極活物質層22Bとが、この順で積層された積層構造を有する。なお、図7において、ドープ処理用の負極集電体22Aとプレドープ用金属リチウム25を、紙面左側に配置させているが、紙面の右側あるいは紙面の左右両側に配置させてもよい。また、積層体13は、図7の紙面に対して最も右側に配置した負極活物質層22Bを積層しない構成にしてもよい。   As shown in FIG. 7, the laminate 13 includes a negative electrode current collector 22A, a pre-doped metal lithium 25, a separator 23, a negative electrode 22, a separator 23, a positive electrode 21, a separator 23, a positive electrode 21, and a separator 23. A plurality of stacked units stacked in this order, a negative electrode active material layer 22B, a negative electrode current collector 22A, and a negative electrode active material layer 22B have a stacked structure in which the stacked units are stacked in this order. In FIG. 7, the doping negative electrode current collector 22A and the pre-doping metal lithium 25 are arranged on the left side of the drawing, but they may be arranged on the right side of the drawing or on both left and right sides of the drawing. Further, the stacked body 13 may have a configuration in which the negative electrode active material layer 22B disposed on the rightmost side with respect to the paper surface of FIG. 7 is not stacked.

この積層体13は、積層構造単位Sを1つ以上(本例においては、6つ)含む。積層構造単位Sは、負極集電体22A(負極集電体層)と、負極活物質層22Bと、セパレータ23(電解液保持層)と正極21(正極層)とがこの順で積層された正極積層構造単位が2つ繰り返し積層された層(「正極集合層」とも称呼される。)と、セパレータ23と、負極活物質層22Bとが、この順で積層された積層構造からなる。   This laminate 13 includes one or more (six in this example) laminate structural units S. In the laminated structural unit S, a negative electrode current collector 22A (a negative electrode current collector layer), a negative electrode active material layer 22B, a separator 23 (an electrolytic solution holding layer), and a positive electrode 21 (a positive electrode layer) are laminated in this order. It has a laminated structure in which a layer in which two positive electrode laminated structural units are repeatedly laminated (also referred to as a “positive electrode assembly layer”), a separator 23, and a negative electrode active material layer 22B are laminated in this order.

換言すると、積層構造単位Sは、負極集電体22Aと負極活物質層22Bとセパレータ23と正極21とセパレータ23と正極21とセパレータ23と負極活物質層22Bとが、この順で積層された積層構造からなる。本例において、積層体13は、積層構造単位Sが6つ繰り返し積層された積層構造を含む。   In other words, the laminated structural unit S includes the negative electrode current collector 22A, the negative electrode active material layer 22B, the separator 23, the positive electrode 21, the separator 23, the positive electrode 21, the separator 23, and the negative electrode active material layer 22B laminated in this order. It has a laminated structure. In this example, the laminate 13 includes a laminate structure in which six laminate structure units S are repeatedly laminated.

ところで、本願発明者は、例えば、図8に示される参考例1のように、一対の正極21と負極22とがセパレータ23を介して積層された単電池単位を含む蓄電デバイスの高容量化を図るために、参考例2のように正極活物質層21Bを参考例1に比べて厚くすることを検討した。   By the way, the present inventor has attempted to increase the capacity of a power storage device including a unit cell in which a pair of a positive electrode 21 and a negative electrode 22 are stacked with a separator 23 interposed therebetween, as in Reference Example 1 shown in FIG. In order to achieve this, it was studied to make the positive electrode active material layer 21B thicker than in Reference Example 1 as in Reference Example 2.

この場合、図9の線p1に示されるように、正極活物質層21B内に存在する電解液中の電解液イオン(電解液12の構成成分のイオン)の拡散距離が増大することにより、正極活物質層21B中の電解液イオン拡散抵抗が増加してしまうことが分かった。このため、参考例2のように正極活物質層21Bを参考例1に比べて厚くした場合、低温レート特性(特にハイレート低温レート特性)が低下してしまうことが分かった。   In this case, as shown by the line p1 in FIG. 9, the diffusion distance of the electrolyte solution ions (ion of the component of the electrolyte solution 12) in the electrolyte solution present in the cathode active material layer 21B is increased, so that the positive electrode is increased. It was found that the ion diffusion resistance of the electrolyte in the active material layer 21B increased. For this reason, it was found that when the positive electrode active material layer 21B was made thicker than in Reference Example 1 as in Reference Example 2, low-temperature rate characteristics (particularly, high-rate low-temperature rate characteristics) deteriorated.

なお、図9は、−40℃の環境下で蓄電デバイスを交流インピーダンス法で測定した場合に、電解液イオン拡散抵抗に対応すると考えられるCole−Coleプロットに現れる左から3番目の第3円弧の大きさ(直径)を、正極活物質層(正極活物質層21Bの2つ分の厚み)に対してプロットしたグラフである。   FIG. 9 shows the third arc from the left in the Cole-Cole plot considered to correspond to the electrolyte ion diffusion resistance when the power storage device is measured by the AC impedance method in an environment of −40 ° C. It is the graph which plotted the magnitude | size (diameter) with respect to the positive electrode active material layer (thickness for two positive electrode active material layers 21B).

これに対して、本蓄電デバイスの積層体13の積層構造単位Sは、一対の負極活物質層22Bの間に、2つの対向する正極21(4つの正極活物質層21B)を備え、更に、この2つの対向する正極21の間にセパレータ23(電解液保持部)を備える。   On the other hand, the laminated structural unit S of the laminated body 13 of the present power storage device includes two opposed positive electrodes 21 (four positive electrode active material layers 21B) between a pair of negative electrode active material layers 22B. A separator 23 (electrolyte holding unit) is provided between the two opposed positive electrodes 21.

従って、正極活物質層21Bの厚さを増大しないで、4つの正極活物質層21Bの厚さd1〜d4の合計(厚さD1)が、一対の正極21及び負極22を含む単電池単位の正極活物質層21Bの総厚さになり得る。換言すると、正極活物質層21Bの厚さを増大しなくても、単電池単位の容量向上に寄与する正極活物質層21Bの体積を増大することができる。これにより、正極活物質層21Bの厚さを増大しないで、参考例2のように、正極活物質層21Bを厚くした場合と同様に蓄電デバイスを高容量化できる。   Therefore, without increasing the thickness of the positive electrode active material layer 21B, the total (thickness D1) of the thicknesses d1 to d4 of the four positive electrode active material layers 21B becomes the unit cell unit including the pair of the positive electrode 21 and the negative electrode 22. It can be the total thickness of the positive electrode active material layer 21B. In other words, even if the thickness of the positive electrode active material layer 21B is not increased, the volume of the positive electrode active material layer 21B contributing to the improvement of the capacity per unit cell can be increased. Thus, the capacity of the power storage device can be increased as in the case of increasing the thickness of the positive electrode active material layer 21B as in Reference Example 2 without increasing the thickness of the positive electrode active material layer 21B.

更に、正極活物質層21Bの厚さが増大しないので、正極活物質層21B内に存在する電解液12中の電解液イオンの拡散距離が増大することを抑制できる。これにより、参考例2で生じる正極活物質層21Bを厚くした場合の低温レート特性の低下(ハイレート低温レート特性)の低下を抑制することができる。   Further, since the thickness of the positive electrode active material layer 21B does not increase, it is possible to suppress an increase in the diffusion distance of electrolyte ions in the electrolyte solution 12 existing in the positive electrode active material layer 21B. Accordingly, it is possible to suppress a decrease in the low-temperature rate characteristic (high-rate low-temperature rate characteristic) when the thickness of the positive electrode active material layer 21B generated in Reference Example 2 is increased.

更に、この積層構造単位Sでは、対向する1対の正極21間に電解液12を保持したセパレータ23(電解液保持部)が介在している。従って、電気化学反応に伴い対向する一対の正極21(セパレータ23を挟む1対の正極21)間のセパレータ23から電解質塩アニオンが泳動することにより、電解質塩アニオンがセパレータ23を挟む1対の正極21の各正極活物質層21Bに供給される。これにより、電解液12から正極活物質層21Bへの電解質塩アニオンの供給が不十分になり抵抗が増大することを抑制できる。   Further, in the laminated structure unit S, a separator 23 (electrolyte holding portion) holding the electrolyte 12 is interposed between a pair of positive electrodes 21 facing each other. Accordingly, the electrolyte salt anion migrates from the separator 23 between the pair of positive electrodes 21 (a pair of positive electrodes 21 sandwiching the separator 23) due to the electrochemical reaction, whereby the electrolyte salt anion migrates between the pair of positive electrodes 21 sandwiching the separator 23. 21 is supplied to each positive electrode active material layer 21B. Thereby, it can be suppressed that the supply of the electrolyte salt anion from the electrolyte solution 12 to the positive electrode active material layer 21B becomes insufficient and the resistance increases.

更に、6つの積層構造単位Sを含む積層体13は、セパレータ23が介在された一対の正極21及び負極22(負極集電体22Aの片面のみに負極活物質層22Bが形成された負極22も含む。)からなる単セル単位CLが繰り返し積層された構造を含む。従って、セパレータ23を挟む1対の正極21が有する容量をより有効に活用することができる。   Further, the laminate 13 including the six laminate structural units S includes a pair of the positive electrode 21 and the negative electrode 22 with the separator 23 interposed therebetween (the negative electrode 22 in which the negative electrode active material layer 22B is formed only on one surface of the negative electrode current collector 22A). ) Is repeatedly laminated. Therefore, the capacity of the pair of positive electrodes 21 sandwiching the separator 23 can be more effectively utilized.

更に、6つの積層構造単位Sを含む積層体13は、負極集電体22Aの数を正極集電体21Aの数より少ない数で構成することができる。従って、例えば、孔開け加工等を施す必要がある比較的高価な負極集電体22Aを用いる場合には、コストが高くなることを抑えることができる。   Furthermore, the stacked body 13 including the six stacked structural units S can be configured such that the number of the negative electrode current collectors 22A is smaller than the number of the positive electrode current collectors 21A. Therefore, for example, in the case of using a relatively expensive negative electrode current collector 22A that needs to be subjected to a drilling process or the like, it is possible to suppress an increase in cost.

(蓄電デバイス(リチウムイオンキャパシタ)の動作)
上記した構成の蓄電デバイスは、負極22にて、リチウムの電気化学反応(ファラデー反応)によって電気エネルギーの充放電が行われ、正極21にて、電解質塩アニオンの吸着及び放出によって電気エネルギーの充放電が行われる。
(Operation of power storage device (lithium ion capacitor))
In the electric storage device having the above-described configuration, charging and discharging of electric energy is performed at the negative electrode 22 by an electrochemical reaction (Faraday reaction) of lithium, and charging and discharging of electric energy at the positive electrode 21 by adsorption and release of an electrolyte salt anion. Is performed.

上記した構成の蓄電デバイスの正極集電体21Aと負極集電体22Aとの間に所定の電圧を印加した場合、電解液12中の電解質塩アニオンが正極21側に吸着(吸蔵)される。一方、負極22側には、リチウムイオンが吸着(吸蔵)される。これらにより、蓄電デバイスが充電される。   When a predetermined voltage is applied between the positive electrode current collector 21A and the negative electrode current collector 22A of the power storage device having the above-described configuration, the electrolyte salt anion in the electrolytic solution 12 is adsorbed (occluded) on the positive electrode 21 side. On the other hand, lithium ions are adsorbed (occluded) on the negative electrode 22 side. Thus, the power storage device is charged.

上記した構成の蓄電デバイスの正極集電体21Aと負極集電体22Aとの間に電力負荷(電気抵抗)を接続した場合、正極活物質から電解液12内へ電解質塩アニオンが放出されると共に、負極22(炭素材料)から電解液12内へリチウムイオンが放出される。これにより、蓄電デバイスが放電される。   When a power load (electric resistance) is connected between the positive electrode current collector 21A and the negative electrode current collector 22A of the power storage device having the above-described configuration, an electrolyte salt anion is released from the positive electrode active material into the electrolyte solution 12 and Then, lithium ions are released from the negative electrode 22 (carbon material) into the electrolytic solution 12. Thereby, the power storage device is discharged.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されない。   Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.

<実施例1−1>
次のようにして、実施例1−1の蓄電デバイス(リチウムイオンキャパシタ)を作製した。
<Example 1-1>
The power storage device (lithium ion capacitor) of Example 1-1 was manufactured as follows.

(正極の作製)
カルボキシルメチルセルロース(CMC)を分散した水溶液に対して、正極活物質としての活性炭と、導電助剤としてのアセチレンブラックと、バインダとしてのSBRとを混合した正極合剤のスラリー溶液(負極合剤スラリー)を調製した。なお、配合比は、活性炭89重量%、アセチレンブラック5重量%、CMC2重量%及びSBR4重量%となるように調整した。
(Preparation of positive electrode)
A slurry solution of a positive electrode mixture obtained by mixing activated carbon as a positive electrode active material, acetylene black as a conductive additive, and SBR as a binder in an aqueous solution in which carboxymethyl cellulose (CMC) is dispersed (negative electrode mixture slurry) Was prepared. The mixing ratio was adjusted so that activated carbon was 89% by weight, acetylene black was 5% by weight, CMC was 2% by weight, and SBR was 4% by weight.

次に、調製した正極合剤スラリー溶液を、正極集電体21Aとしての矩形の一辺の一部から突き出た矩形部分(露出部21C)を有するアルミニウム箔(多孔を有する構造(透気度40秒/100mL)、厚さ30μm)の両面(露出部21Cを除く矩形の領域)に塗布した。   Next, the prepared positive electrode mixture slurry solution was applied to an aluminum foil (a structure having a porosity (air permeability of 40 seconds) having a rectangular portion (exposed portion 21C) projecting from a part of one side of the rectangular shape as the positive electrode current collector 21A. / 100 mL) and a thickness of 30 μm) (a rectangular area excluding the exposed part 21C).

その後、乾燥することにより正極合剤スラリーから水を除去したのち、ロールプレスで圧延することにより、露出部21C(未塗布部分)を正極端子部とする正極活物質層21B付きのアルミニウム箔(即ち、図3及び図4に示した正極21(165mm×95mm))を得た。   After that, water is removed from the positive electrode material mixture slurry by drying, and then rolled by a roll press to obtain an aluminum foil with a positive electrode active material layer 21B having an exposed portion 21C (uncoated portion) as a positive electrode terminal portion (ie, The positive electrode 21 (165 mm × 95 mm) shown in FIGS. 3 and 4 was obtained.

(負極の作製)
カルボキシルメチルセルロース(CMC)を分散した水溶液に対して、負極活物質としての黒鉛と、導電助剤としてのアセチレンブラックと、バインダとしてのSBRとを混合した負極合剤のスラリー溶液(負極合剤スラリー)を調製した。なお、配合比は、黒鉛94重量%、アセチレンブラック2重量%、CMC2重量%及びSBR2重量%となるように調整した。
(Preparation of negative electrode)
A slurry solution of a negative electrode mixture obtained by mixing graphite as an anode active material, acetylene black as a conductive additive, and SBR as a binder in an aqueous solution in which carboxymethyl cellulose (CMC) is dispersed (negative electrode mixture slurry) Was prepared. The mixing ratio was adjusted so as to be 94% by weight of graphite, 2% by weight of acetylene black, 2% by weight of CMC and 2% by weight of SBR.

次に、調製した負極合剤スラリー溶液を、負極集電体22Aとしての矩形の一辺の一部から突き出た矩形部分(露出部22C)を有する銅箔(多孔を有する構造(開口率10%)、厚さ18μm)の両面(凸部を除く矩形の領域)に塗布した。   Next, the prepared negative electrode mixture slurry solution is applied to a copper foil having a rectangular portion (exposed portion 22C) protruding from a part of one side of the rectangular shape as the negative electrode current collector 22A (a structure having porosity (opening ratio: 10%)). , A thickness of 18 μm) on both surfaces (a rectangular region excluding the convex portion).

その後、負極合剤スラリー溶液を乾燥することにより水を除去したのち、ロールプレスで圧延することにより、露出部22C(未塗布部分)を負極端子部とする厚さ85μmの負極活物質層22B付きの銅箔(即ち、図5及び図6に示した負極22(175mm×100mm))を得た。   Then, after removing the water by drying the negative electrode mixture slurry solution, the negative electrode active material layer 22B having a thickness of 85 μm and having the exposed portion 22C (uncoated portion) as a negative electrode terminal portion is formed by rolling with a roll press. (That is, the negative electrode 22 (175 mm × 100 mm) shown in FIGS. 5 and 6).

(電解液の調製)
次のようにして、電解液を調製した。まず、非水溶媒として、エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、エチルメチルカーボネート(EMC)と、ジエチルカーボネート(DEC)とを、体積比EC:PC:EMC:DEC=30:10:46.7:23.3で、混合することにより、混合溶媒を調製した。次に、電解質塩として六フッ化リン酸リチウム(LiPF)を用いて、電解質塩濃度が1.0mol/Lになるように、調製した混合溶媒に溶解させた。以上により、電解液を得た。
(Preparation of electrolyte solution)
The electrolyte was prepared as follows. First, as a non-aqueous solvent, ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a volume ratio of EC: PC: EMC: DEC = 30: 10. : 46.7: 23.3 to prepare a mixed solvent. Next, lithium hexafluorophosphate (LiPF 6 ) was used as an electrolyte salt and dissolved in the prepared mixed solvent such that the electrolyte salt concentration became 1.0 mol / L. Thus, an electrolytic solution was obtained.

(蓄電デバイスの組み立て)
次に、作製した2枚の正極21、1枚の負極22及びポリプロピレン製の厚さ20μmのセパレータ23を、図10に示されるように、負極22/セパレータ23/正極21/セパレータ23/正極21/セパレータ23/負極22の順で重ねた積層体を作製した。なお、この積層体は、1つの積層構造単位S(負極集電体22B/負極活物質層22B/セパレータ23/正極21/セパレータ23/正極21/セパレータ23/負極活物質層22B)を含む。
(Assembly of power storage device)
Next, as shown in FIG. 10, the prepared two positive electrodes 21, one negative electrode 22, and a polypropylene-made separator 23 having a thickness of 20 μm were combined with the negative electrode 22 / separator 23 / positive electrode 21 / separator 23 / positive electrode 21. A stacked body was formed by stacking in the order of / separator 23 / negative electrode 22. This laminate includes one laminated structural unit S (negative electrode current collector 22B / negative electrode active material layer 22B / separator 23 / positive electrode 21 / separator 23 / positive electrode 21 / separator 23 / negative electrode active material layer 22B).

この積層体の正極活物質層21Bの厚さ(合計厚さ)D1は、正極活物質層21Bの厚さd1、正極活物質層21Bの厚さd2、正極活物質層21Bの厚さd3及び正極活物質層21Bの厚さd4の和である。即ち、正極活物質層21Bの厚さ(合計厚さ)D1=正極活物質層21Bの厚さd1+正極活物質層21Bの厚さd2+正極活物質層21Bの厚さd3+正極活物質層21Bの厚さd4である。   The thickness (total thickness) D1 of the positive electrode active material layer 21B of the laminate is the thickness d1 of the positive electrode active material layer 21B, the thickness d2 of the positive electrode active material layer 21B, the thickness d3 of the positive electrode active material layer 21B, and This is the sum of the thickness d4 of the positive electrode active material layers 21B. That is, the thickness (total thickness) D1 of the cathode active material layer 21B = the thickness d1 of the cathode active material layer 21B + the thickness d2 of the cathode active material layer 21B + the thickness d3 of the cathode active material layer 21B + the thickness of the cathode active material layer 21B. The thickness is d4.

なお、実施例1−1では、正極合剤スラリー溶液の塗布量等を調整することにより、正極活物質層21Bの厚さ(合計厚さ)D1が195μmとなるように、正極活物質層21Bの厚さを調整した。   In Example 1-1, by adjusting the coating amount of the positive electrode mixture slurry solution and the like, the positive electrode active material layer 21B was adjusted so that the thickness (total thickness) D1 of the positive electrode active material layer 21B became 195 μm. Was adjusted in thickness.

次に、積層体をアルミラミネートフィルムからなる外装体に入れ、その後、電解液を外装体に注入し、積層体を電解液に浸漬した。その後、外装体を封止することにより、実施例1の蓄電デバイス(リチウムイオンキャパシタ)を得た。なお、積層体を外装体に入れる際には、積層体の最外層に負極集電体層22A(図10において不図示)と、プレドープ用の金属リチウム25(図10において不図示)と、セパレータ23(図10において不図示)とを積層させた状態で積層体を挿入した。その後、負極22と金属リチウム25とを短絡させることにより、プレドープ処理を行った。   Next, the laminate was placed in an exterior body made of an aluminum laminate film, and then an electrolyte was injected into the exterior body, and the laminate was immersed in the electrolyte. Thereafter, the exterior body was sealed to obtain the power storage device (lithium ion capacitor) of Example 1. When the laminate is placed in the package, a negative electrode current collector layer 22A (not shown in FIG. 10), metal lithium 25 for pre-doping (not shown in FIG. 10), a separator 23 (not shown in FIG. 10) was inserted into the laminated body. Thereafter, a pre-doping process was performed by short-circuiting the negative electrode 22 and the metal lithium 25.

<実施例2>
正極活物質層21Bの厚さ(合計厚さ)D1を198μmに変えたこと以外は、実施例1と同様にして、実施例2の蓄電デバイスを作製した。
<Example 2>
A power storage device of Example 2 was manufactured in the same manner as in Example 1, except that the thickness (total thickness) D1 of the positive electrode active material layer 21B was changed to 198 μm.

<比較例1−1>
正極活物質層21Bの厚さ(合計厚さ)D1が80μmになるように、正極活物質層21Bの厚さを変えたこと以外は、実施例1と同様にして、正極21を作製した。
<Comparative Example 1-1>
A positive electrode 21 was produced in the same manner as in Example 1, except that the thickness of the positive electrode active material layer 21B was changed so that the thickness (total thickness) D1 of the positive electrode active material layer 21B was 80 μm.

蓄電デバイスの組み立て工程において、作製した1枚の正極21、2枚の負極22及び2枚のセパレータ23を、図11に示されるように、負極22/セパレータ23/正極21/セパレータ23/負極22で重ねた積層体を作製した。この積層体は、積層構造単位Sを含まない。   In the process of assembling the electricity storage device, one produced positive electrode 21, two negative electrodes 22 and two separators 23 were divided into negative electrode 22 / separator 23 / positive electrode 21 / separator 23 / negative electrode 22 as shown in FIG. 11. To produce a laminated body. This laminated body does not include the laminated structural unit S.

なお、この積層体の正極活物質層21Bの厚さ(合計厚さ)D1は、正極活物質層21Bの厚さd11及び正極活物質層21Bの厚さd12の和である。即ち、正極活物質層21Bの厚さ(合計厚さ)D1=正極活物質層21Bの厚さd11+正極活物質層21Bの厚さd12である。以上のこと以外は、実施例1と同様にして蓄電デバイスを作製した。   Note that the thickness (total thickness) D1 of the positive electrode active material layer 21B of this laminate is the sum of the thickness d11 of the positive electrode active material layer 21B and the thickness d12 of the positive electrode active material layer 21B. That is, the thickness (total thickness) D1 of the positive electrode active material layer 21B = the thickness d11 of the positive electrode active material layer 21B + the thickness d12 of the positive electrode active material layer 21B. Except for the above, an electricity storage device was manufactured in the same manner as in Example 1.

<比較例1−2>
正極活物質層21Bの厚さ(合計厚さ)D1が149μmになるように、正極活物質層21Bの厚さを変えたこと以外は、比較例1−1と同様にして、比較例1−2の蓄電デバイスを作製した。
<Comparative Example 1-2>
Comparative Example 1 was performed in the same manner as in Comparative Example 1-1, except that the thickness of the positive electrode active material layer 21B was changed so that the thickness (total thickness) D1 of the positive electrode active material layer 21B was 149 μm. 2 power storage devices were produced.

<比較例1−3>
正極活物質層21Bの厚さ(合計厚さ)D1が243μmになるように、正極活物質層21Bの厚さを変えたこと以外は、比較例1−1と同様にして、比較例1−3の蓄電デバイスを作製した。
<Comparative Example 1-3>
Comparative Example 1 was performed in the same manner as in Comparative Example 1-1, except that the thickness of the positive electrode active material layer 21B was changed so that the thickness (total thickness) D1 of the positive electrode active material layer 21B was 243 μm. 3 power storage devices were produced.

<比較例2>
正極活物質層21Bの厚さ(合計厚さ)D1が198μmになるように、正極活物質層21Bの厚さを変えたこと以外は、実施例1と同様にして、正極21を作製した。蓄電デバイスの組み立て工程において、作製した2枚の正極21、1枚の負極22及びセパレータ23を、図12に示されるように、負極22/セパレータ23/正極21/正極21/セパレータ23/負極22の順で重ねた積層体を作製した。この積層体は、積層構造単位Sを含まない。
<Comparative Example 2>
The positive electrode 21 was produced in the same manner as in Example 1 except that the thickness of the positive electrode active material layer 21B was changed so that the thickness (total thickness) D1 of the positive electrode active material layer 21B was 198 μm. In the process of assembling the electricity storage device, the two produced positive electrodes 21, one negative electrode 22, and the separator 23 are divided into the negative electrode 22 / separator 23 / positive electrode 21 / positive electrode 21 / separator 23 / negative electrode 22 as shown in FIG. Were produced in this order. This laminated body does not include the laminated structural unit S.

この積層体の正極活物質層21Bの厚さ(合計厚さ)D1は、正極活物質層21Bの厚さd21、正極活物質層21Bの厚さd22、正極活物質層21Bの厚さd23及び正極活物質層21Bの厚さd24の和である。即ち、正極活物質層21Bの厚さ(合計厚さ)D1=正極活物質層21Bの厚さd21+正極活物質層21Bの厚さd22+正極活物質層21Bの厚さd23+正極活物質層21Bの厚さd24である。以上のこと以外は、実施例1と同様にして、比較例2の蓄電デバイスを作製した。   The thickness (total thickness) D1 of the positive electrode active material layer 21B of the laminate is a thickness d21 of the positive electrode active material layer 21B, a thickness d22 of the positive electrode active material layer 21B, a thickness d23 of the positive electrode active material layer 21B, and This is the sum of the thickness d24 of the positive electrode active material layer 21B. That is, the thickness (total thickness) D1 of the cathode active material layer 21B = the thickness d21 of the cathode active material layer 21B + the thickness d22 of the cathode active material layer 21B + the thickness d23 of the cathode active material layer 21B + the thickness of the cathode active material layer 21B. The thickness is d24. Except for the above, an electricity storage device of Comparative Example 2 was manufactured in the same manner as in Example 1.

(評価)
作製した各実施例及び各比較例の蓄電デバイスについて、以下に説明する評価を行った。
(Evaluation)
Evaluations described below were performed on the manufactured power storage devices of the examples and the comparative examples.

(容量測定)
(容量1の測定)
蓄電デバイスを25℃の温度にて、充電電圧3.8V、1Cの定電流で、CC−CV充電(定電流定電圧充電)を30分間行った。その後、1Cの放電電流で2.2Vの電圧まで、CC放電(定電流放電)を行った。これにより、放電容量(以下、「1C容量(25℃)」とも称呼される。)を測定した
(Capacity measurement)
(Measurement of capacity 1)
CC-CV charging (constant current constant voltage charging) was performed for 30 minutes at a temperature of 25 ° C. and a charging voltage of 3.8 V and a constant current of 1 C at a temperature of 25 ° C. Thereafter, CC discharge (constant current discharge) was performed at a discharge current of 1 C to a voltage of 2.2 V. Thereby, the discharge capacity (hereinafter, also referred to as “1 C capacity (25 ° C.)”) was measured.

そして、比較例1−1の容量に対する容量比率(=「各実施例又は各比較例の1C容量(25℃)」÷「比較例1−1の1C容量(25℃))を容量1として算出した。   Then, the capacity ratio to the capacity of Comparative Example 1-1 (= “1 C capacity (25 ° C.) of each example or each comparative example) ÷“ 1 C capacity (25 ° C.) of Comparative Example 1-1) is calculated as capacity 1. did.

(容量2の測定)
蓄電デバイスを−10℃の温度にて、充電電圧3.8V、1Cの定電流で、CC−CV充電(定電流定電圧充電)を30分間行った。その後、5Cの放電電流で2.2Vの電圧まで、CC放電(定電流放電)を行った。これにより、放電容量(以下、「5C容量(−10℃)」とも称呼される。)を測定した。
(Measurement of capacity 2)
CC-CV charging (constant current constant voltage charging) was performed for 30 minutes at a temperature of −10 ° C. and a charging current of 3.8 V and a constant current of 1 C. Thereafter, CC discharge (constant current discharge) was performed with a discharge current of 5 C to a voltage of 2.2 V. Thereby, the discharge capacity (hereinafter, also referred to as “5C capacity (−10 ° C.)”) was measured.

そして、比較例1−1の容量に対する容量比率(=「各実施例又は各比較例の5C容量(−10℃)」÷「比較例1−1の5C容量(−10℃)」)を容量2として算出した。   Then, the capacity ratio to the capacity of Comparative Example 1-1 (= “5C capacity (−10 ° C.) of each example or each comparative example) ÷“ 5C capacity (−10 ° C.) of Comparative Example 1-1 ”) Calculated as 2.

なお、1Cは、理論容量を1時間で放電(または充電しきる)電流値である。5Cは、理論容量を0.2時間で放電(または充電しきる)電流値である。   Note that 1C is a current value at which the theoretical capacity is discharged (or charged) in one hour. 5C is a current value at which the theoretical capacity is discharged (or charged) in 0.2 hours.

(容量保持率)
(容量保持率1の測定)
蓄電デバイスを−10℃の温度にて、充電電圧3.8V、1Cの定電流で、CC−CV充電(定電流定電圧充電)を30分間行った。その後、1Cの放電電流で2.2Vの電圧まで、CC放電(定電流放電)を行った。これにより、放電容量(以下、「1C容量(−10℃)」と称呼される。)を測定した。
(Capacity retention rate)
(Measurement of capacity retention ratio 1)
CC-CV charging (constant current constant voltage charging) was performed for 30 minutes at a temperature of −10 ° C. and a charging current of 3.8 V and a constant current of 1 C. Thereafter, CC discharge (constant current discharge) was performed at a discharge current of 1 C to a voltage of 2.2 V. Thereby, the discharge capacity (hereinafter, referred to as “1 C capacity (−10 ° C.)”) was measured.

そして、各実施例及び各比較例について、下記式(1)により、上述のように測定した「1C容量(25℃)」に対する「1C容量(−10℃)」の百分率を容量保持率1として算出した。

容量保持率1={「実施例(比較例)Xの1C容量(−10℃)」÷「前記と同じ実施例(比較例)Xの1C容量(25℃)」}×100%・・・(1)
Then, for each example and each comparative example, the percentage of “1C capacity (−10 ° C.)” to “1C capacity (25 ° C.)” measured as described above was defined as the capacity retention ratio 1 according to the following equation (1). Calculated.

Capacity retention 1 = {“1C capacity of example (comparative example) X (−10 ° C.)” ”“ 1C capacity of example (comparative example) X same as above (25 ° C.) ”} × 100% (1)

(容量保持率2の測定)
各実施例及び各比較例について、下記式(2)により、上述のように測定した「1C容量(25℃)」に対する「5C容量(−10℃)」の百分率を容量保持率2として算出した。

容量保持率2={「実施例(比較例)Xの5C容量(−10℃)」÷「前記と同じ実施例(比較例)Xの1C容量(25℃)」}×100%・・・(2)
(Measurement of capacity retention ratio 2)
For each example and each comparative example, the percentage of “5C capacity (−10 ° C.)” to “1C capacity (25 ° C.)” measured as described above was calculated as the capacity retention ratio 2 by the following equation (2). .

Capacity retention ratio 2 = {“5C capacity of Example (Comparative Example) X (−10 ° C.)” ”“ 1 C capacity of Example (Comparative Example) X same as above (25 ° C.) ”} × 100% (2)

測定結果を表1並びに図13及び図14に示す。   The measurement results are shown in Table 1 and FIGS.

Figure 2020009998
Figure 2020009998

表1、及び図13及び図14に示すように、実施例1及び実施例2は、正極活物質層21Bの厚さを増大しなくても、正極活物質層21Bの総体積を増大でき、その結果、容量を向上できた。   As shown in Table 1, and FIGS. 13 and 14, Examples 1 and 2 can increase the total volume of the positive electrode active material layer 21B without increasing the thickness of the positive electrode active material layer 21B, As a result, the capacity could be improved.

更に、表1及び図13及び図14に示されるように、実施例1及び実施例2は、正極活物質層21Bの厚さ(合計厚さ)D1が厚い場合でも、低温レート特性(ハイレート低温特性)の低下を抑制できることが確認できた。なお、図13及び図14には、参考値として、比較例のデータに基づき図11のセル構成であって正極活物質層21Bの厚さ(合計厚さ)D1が200μmである場合の予測値(計算値)を示している。   Further, as shown in Table 1, FIG. 13 and FIG. 14, in Example 1 and Example 2, even when the thickness (total thickness) D1 of the cathode active material layer 21B is large, the low-temperature rate characteristics (high-rate It was confirmed that the deterioration of (characteristics) could be suppressed. 13 and 14 show, as reference values, the predicted values based on the data of the comparative example in the case of the cell configuration of FIG. 11 and the thickness (total thickness) D1 of the positive electrode active material layer 21B of 200 μm. (Calculated value).

<変形例>
以上、本発明の実施形態及び各実施例について具体的に説明したが、本発明は、上述の実施形態及び各実施例に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
<Modification>
As mentioned above, although embodiment and each Example of this invention were described concretely, this invention is not limited to said Embodiment and each Example, Various deformation | transformation based on the technical idea of this invention are carried out. Is possible.

例えば、上述の実施形態及び各実施例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。   For example, the configurations, methods, steps, shapes, materials, numerical values, and the like described in the above-described embodiment and each example are merely examples, and different configurations, methods, steps, shapes, materials, and numerical values may be used as necessary. Etc. may be used.

また、上述の実施形態及び各実施例の構成、方法、工程、形状、材料および数値等は、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。   Further, the configurations, methods, steps, shapes, materials, numerical values, and the like of the above-described embodiment and each example can be combined with each other without departing from the gist of the present invention.

上述の実施形態において、セパレータ23に代えて、電解液保持部として、電解液12を保持したマトリックス高分子化合物(いわゆるゲル状の電解質)を用いてもよい。   In the above-described embodiment, a matrix polymer compound (so-called gel electrolyte) holding the electrolyte solution 12 may be used as the electrolyte solution holding unit instead of the separator 23.

これに対して、上述の実施形態において、積層構造単位Sは、正極積層構造単位(セパレータ23/正極21)を3つ以上含んだ構造であってもよい。例えば、積層構造単位Sは、対向する一対の負極活物質層22Bとの間に、正極積層構造単位が3つ繰り返し積層された積層構造であってもよい。即ち、積層構造単位Sは、負極集電体層21A/負極活物質層22B/セパレータ23/正極21/セパレータ23/正極21/セパレータ23/正極21/セパレータ23/負極活物質層22Bであってもよい。   On the other hand, in the above-described embodiment, the stacked structural unit S may have a structure including three or more positive electrode stacked structural units (separator 23 / positive electrode 21). For example, the laminated structural unit S may have a laminated structure in which three positive electrode laminated structural units are repeatedly laminated between a pair of opposed negative electrode active material layers 22B. That is, the laminated structural unit S is the negative electrode current collector layer 21A / the negative electrode active material layer 22B / the separator 23 / the positive electrode 21 / the separator 23 / the positive electrode 21 / the separator 23 / the positive electrode 21 / the separator 23 / the negative electrode active material layer 22B. Is also good.

また、例えば、積層構造単位Sは、対向する一対の負極活物質層22Bとの間に、正極積層構造単位が4つ以上繰り返し積層された積層構造であってもよい。なお、2つ以上の正極積層構造単位は、便宜上、「正極集合層」とも称呼される。   Further, for example, the stacked structural unit S may have a stacked structure in which four or more positive electrode stacked structural units are repeatedly stacked between a pair of opposed negative electrode active material layers 22B. In addition, two or more positive electrode laminated structural units are also referred to as “positive electrode assembly layers” for convenience.

上述の実施形態において、積層体13に代えて、例えば、2つの長尺状の正極21と1つの長尺状の負極22とを長尺状のセパレータ23と共に積層(例えば、正極21/セパレータ23/負極22/セパレータ23/正極21/セパレータ23の順に積層)して、巻回した巻回体(電極体)を用いてもよい。この場合、巻回体は、積層構造単位Sを巻回体の径方向の内周側から外周側に向かって1又は複数含むようにしてもよい。   In the above embodiment, for example, instead of the laminate 13, for example, two long positive electrodes 21 and one long negative electrode 22 are stacked together with the long separator 23 (for example, the positive electrode 21 / separator 23 / Negative electrode 22 / separator 23 / positive electrode 21 / separator 23 in that order), and a wound body (electrode body) may be used. In this case, the wound body may include one or more laminated structural units S from the radially inner circumferential side to the outer circumferential side of the wound body.

上述の実施形態において、積層体13の電極部材の積層構造は、積層構造単位Sを含んでいる限り、種々の積層構造を採用し得る。   In the above-described embodiment, various laminated structures can be adopted as the laminated structure of the electrode member of the laminated body 13 as long as the laminated structure unit S is included.

上述の実施形態において、積層体13は、積層構造単位Sに代えて他の積層構造単位を1つ以上(例えば、6つ)含んでいてもよい。他の積層構造単位は、負極22(負極層)と、セパレータ23(電解液保持層)と正極21(正極層)とがこの順で積層された正極積層構造単位が2つ繰り返し積層された層(正極集合層)とが、この順で積層された積層構造からなる。積層体13の電極部材の積層構造は、この他の積層構造単位を1つ以上含んでいる限り、種々の積層構造を採用し得る。なお、他の積層構造単位は、正極積層構造単位(セパレータ23/正極21)を3つ以上含んだ構造であってもよい。更に、巻回体においても、他の積層構造単位を巻回体の径方向の内周側から外周側に向かって1又は複数含むようにしてもよい。   In the above-described embodiment, the stacked body 13 may include one or more (for example, six) other stacked structural units instead of the stacked structural unit S. Another laminated structural unit is a layer in which two positive electrode laminated structural units in which a negative electrode 22 (a negative electrode layer), a separator 23 (an electrolytic solution holding layer), and a positive electrode 21 (a positive electrode layer) are laminated in this order are repeatedly laminated. (Positive electrode assembly layer) has a laminated structure laminated in this order. As for the laminated structure of the electrode member of the laminated body 13, various laminated structures can be adopted as long as the laminated member includes one or more other laminated structural units. In addition, another laminated structural unit may have a structure including three or more positive electrode laminated structural units (separator 23 / positive electrode 21). Further, the wound body may include one or more other laminated structural units from the radially inner circumferential side to the outer circumferential side of the wound body.

上述の実施形態において、蓄電デバイスは、正極活物質に、電解質塩アニオンを吸脱着可能(可逆的に吸蔵(吸着)及び脱離(放出)が可能)な材料を用いている蓄電デバイスであれば、リチウムイオンキャパシタ以外の他の蓄電デバイスであってもよい。蓄電デバイスを複数接続して蓄電モジュールを構成してもよい。   In the above embodiment, the power storage device is a power storage device using a material capable of absorbing and desorbing an electrolyte salt anion (capable of reversible storage (adsorption) and desorption (release)) as a positive electrode active material. Alternatively, another power storage device other than the lithium ion capacitor may be used. A power storage module may be configured by connecting a plurality of power storage devices.

11…外装ケース、12…電解液、13…積層体、21…正極、21A…正極集電体層、21B…正極活物質層、22…負極、22A…負極集電体層、22B…負極活物質層、23…セパレータ   DESCRIPTION OF SYMBOLS 11 ... exterior case, 12 ... electrolyte solution, 13 ... laminated body, 21 ... positive electrode, 21A ... positive electrode current collector layer, 21B ... positive electrode active material layer, 22 ... negative electrode, 22A ... negative electrode current collector layer, 22B ... negative electrode active Material layer, 23 ... separator

Claims (4)

正極集電体層の両面に正極活物質層が形成された正極層と、
負極集電体層の両面に負極活物質層が形成された負極層と、
電解液と、
前記電解液を保持する電解液保持層と、
を含む電極体を備え、
前記電極体は、
前記負極集電体層と、
前記負極活物質層と、
前記電解液保持層と前記正極層とがこの順で積層された正極積層構造単位が2つ以上繰り返し積層された積層構造を有する正極集合層と、
電解液保持層と、
負極活物質層と、
がこの順で積層された積層構造単位を1つ以上含む、
蓄電デバイス。
A positive electrode layer in which a positive electrode active material layer is formed on both surfaces of a positive electrode current collector layer,
A negative electrode layer in which a negative electrode active material layer is formed on both surfaces of the negative electrode current collector layer,
An electrolyte,
An electrolyte holding layer that holds the electrolyte,
Comprising an electrode body including
The electrode body is
The negative electrode current collector layer,
The negative electrode active material layer,
A positive electrode assembly layer having a stacked structure in which two or more positive electrode stacked structural units in which the electrolyte holding layer and the positive electrode layer are stacked in this order are repeatedly stacked;
An electrolyte holding layer,
A negative electrode active material layer,
Contains one or more laminated structural units laminated in this order,
Power storage device.
請求項1に記載の蓄電デバイスにおいて、
前記正極集合層は、前記正極積層構造単位が2つ繰り返し積層された積層構造を有する、
蓄電デバイス。
The power storage device according to claim 1,
The positive electrode assembly layer has a stacked structure in which the two positive electrode stacked structural units are repeatedly stacked.
Power storage device.
請求項1又は請求項2に記載の蓄電デバイスにおいて、
前記電極体は、2つ以上の前記積層構造単位が繰り返し積層された積層構造を含む、
蓄電デバイス。
The power storage device according to claim 1 or 2,
The electrode body includes a laminated structure in which two or more of the laminated structural units are repeatedly laminated.
Power storage device.
請求項1乃至請求項3の何れか一項に記載の蓄電デバイスにおいて、
前記電解液保持層は、セパレータである、
蓄電デバイス。
The power storage device according to any one of claims 1 to 3,
The electrolyte holding layer is a separator,
Power storage device.
JP2018132522A 2018-07-12 2018-07-12 Power storage device Pending JP2020009998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018132522A JP2020009998A (en) 2018-07-12 2018-07-12 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018132522A JP2020009998A (en) 2018-07-12 2018-07-12 Power storage device

Publications (1)

Publication Number Publication Date
JP2020009998A true JP2020009998A (en) 2020-01-16

Family

ID=69152391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018132522A Pending JP2020009998A (en) 2018-07-12 2018-07-12 Power storage device

Country Status (1)

Country Link
JP (1) JP2020009998A (en)

Similar Documents

Publication Publication Date Title
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
US9972446B2 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
KR101138594B1 (en) lithium ion capacitor
US20120212879A1 (en) High energy hybrid supercapacitors using lithium metal powders
JP2009141181A (en) Power storage device cell and its control method
JP5855893B2 (en) Method for producing non-aqueous lithium storage element
JP2014232666A (en) Nonaqueous electrolyte secondary battery
JP2012004491A (en) Power storage device
JP5429678B1 (en) Method for manufacturing power storage device
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JP2013140825A (en) Laminate type electrical storage element
JPWO2012127991A1 (en) Power storage device
JP2010287641A (en) Energy storage device
JP2010062299A (en) Electricity storage device
US20220165511A1 (en) Advanced lithium-ion energy storage device
JP6254360B2 (en) Power storage device
JP2012028366A (en) Power storage device
JP5840429B2 (en) Lithium ion capacitor
JP2012089823A (en) Lithium ion capacitor and manufacturing method for the same
KR20120020894A (en) Lithium ion capacitor and method of manufacturing the same
JP2013138096A (en) Electricity storage device
JP2014204069A (en) Electrode for power storage device and lithium ion capacitor
JP2020009998A (en) Power storage device
JP2012043940A (en) Electrode, storage element, and lithium ion capacitor
KR102028677B1 (en) Multilayer lithium-ion capacitor comprising graphene electrode