以下、本発明についてその好ましい実施形態に基づき図面を参照しながら説明する。
本発明は、複数の開孔を有する開孔シートの該開孔の良否をインラインで検査する、すなわち該開孔シートの製造ラインで該開孔の良否を検査することに係るものである。開孔シートに形成された開孔は、該シートの厚み方向にわたる貫通孔である。開孔の良否の検査は、開孔シートに開孔が設計どおりに形成されているか否かを調べることであり、典型的には、面積が所定の設計範囲にある良品の開孔が開孔シートの所定位置に所定数形成されているか否かを調べることである。開孔シートの所定位置に開孔が形成されていない場合、あるいは所定位置に開孔が形成されていても、その数(開孔数)が所定範囲に収まっていない場合などは、開孔の形成不良と判定される。
検査の対象となるシート(後述する原料シート1、開孔シート2)の種類に特に制限はなく、これまで知られている各種のシートを検査の対象とすることができる。検査の対象となるシートとしては、例えばフィルムや不織布等が挙げられる。不織布としては、例えばスパンボンド不織布、エアスルー不織布、メルトブローン不織布、スパンレース不織布、レジンボンド不織布及びニードルパンチ不織布等が挙げられる。シートは、これらの材料を任意に組み合わせた多層構造のものであってもよく、あるいは単層構造のものであってもよい。更に、本発明における検査の対象となるシートは、不織布とフィルム等との積層体であってもよい。その場合、積層体には、該積層体における不織布部分及びフィルム部分の双方を貫通する開孔が形成されていることが必要である。
前述したように、検査の対象となるシートの種類によっては、搬送中のシートにかかるテンションや、シートと接触する搬送手段に対する滑りやすさなどが原因で、検査で取得したシートの画像データにおいて開孔の位置ずれが生じる場合があり、その場合は、画像データにおける境界及びその近傍に位置する開孔の処理を適切に行わないと、開孔の全数検査ができなくなるおそれがある。しかしながら、本発明によれば、このような画像データでの開孔の位置ずれが起こりやすいシートであっても、複雑な演算処理を要せずに、開孔の全数検査を安定して行うことができる。このような画像データでの開孔の位置ずれが起こりやすいシートとしては、例えば、不織布、フィルム、紙とフィルムとの複合材等を例示できる。
図1には、本発明の開孔シートの検査方法及び検査装置が適用される、開孔シートの製造ラインを構成する製造装置の一実施形態である製造装置50が示されている。製造装置50においては、図1に示すように、ロール状に巻回された長尺状の原料シート1を繰り出して開孔手段55へ搬送し、開孔手段55によって原料シート1に開孔3を形成することで開孔シート2を製造する。製造された長尺状の開孔シート2は、後述する検査工程を経た後、ロール状に巻回されて保管される。原料シート1としては、前述した各種不織布やフィルム等を用いることができる。
開孔手段55としては、原料シート1に貫通孔である開孔3を形成し得るものであればよく、原料シート1の材質等に応じ、公知の開孔手段を適宜利用することができ、接触式でも非接触式でもよい。接触式の開孔手段としては、例えば、例えば所定温度に加熱された穿孔ピンと、該ピンが挿入される受け部材とを備えた開孔手段が挙げられる。非接触式の開孔手段としては、例えば、レーザー光を照射するレーザー装置、ホットエアーを発射するホットエアー発射装置、赤外線を照射するハロゲンランプ照射装置が挙げられる。
製造装置50で実施される開孔シート2の製造方法は、長尺状の原料シート1を一方向に搬送させつつ、原料シート1に複数の開孔3を原料シート1の搬送方向MD(該一方向)に所定ピッチPyで間欠的に形成する開孔工程と、該開孔工程を経て製造された開孔シート2の開孔3をその搬送中に検査する検査工程とを有する。原料シート1ないし開孔シート2の搬送方向MDは、両シート1,2の長手方向Yに一致し、搬送方向MDと直交する方向である搬送直交方向CDは、両シート1,2の幅方向Xに一致する。
図2には、製造装置50によって製造された開孔シート2が示されている。図2に示す開孔シート2は、長手方向Yに延びる第1の開孔例31と第2の開孔列32とを有する。両開孔列31,32は、それぞれ、複数の開孔3が長手方向Y(搬送方向MD)に等しいピッチPyで直線状且つ列状に間欠配置されてなる。第1の開孔例31は、開孔シート2を幅方向X(搬送直交方向CD)に二等分した場合の一方側であるDR側(製造時の機械側)の幅方向Xの中央部に位置し、第2の開孔例32は、他方側であるOP側(製造時の操作側)の幅方向Xの中央部に位置している。幅方向Xに隣り合う2個の開孔3,3のピッチPyは均一である。複数の開孔3は互いに同形状同寸法であり、図示の形態では、平面視において円形状をなしている。
製造装置50には、本発明の開孔シートの検査装置の一実施形態である検査装置10が組み込まれている。検査装置10は、開孔手段55による開孔加工を経て製造された開孔シート2について、開孔3を開孔シート2の製造ラインで検査する装置であり、図1に示すように、搬送中の開孔シート2の一面(図示の形態では上面)を撮像する撮像手段11と、撮像手段11の制御や撮像した画像データの保存などを行う撮像処理部13と、該画像データを画像処理する画像処理部20とを有する。また、画像処理部20には画像モニタ等の表示部14が接続されており、表示部14に、画像処理部20で処理された画像データ(例えば後述するオーバーラップ処理された画像データ4)が表示されるようになされている。
図3には、検査装置10の機能構成を示す機能ブロック図が示されている。検査装置10は、典型的には、画像処理ソフトウェア等がインストールされたコンピュータや画像コントローラを基に構築した装置として構成されている。検査装置10は、各部(撮像処理部13、画像処理部20など)の動作を制御する制御部(図示せず)を有し、検査装置10の各部は該制御部の制御下で動作する。前記制御部は、CPU、ROM、RAMなどを含んで構成されている。
撮像手段11としては、走行する長尺状のシートの撮像に使用可能なものを特に制限無く用いることができ、例えば、CCD方式のエリアカメラ、ラインスキャンカメラが挙げられる。特に、画像処理しやすくするために、撮像素子を有する撮像装置を用いることが好ましく、ラインスキャンカメラを用いることがより好ましい。撮像素子としては、電荷結合素子(CCD)であってもCMOSセンサであってもよい。撮像素子は、カラー撮像素子であってもよい。
撮像手段11による開孔シート2の撮像方式は特に制限されず、透過光照明方式でもよく、反射光照明方式でもよい。すなわち、検査装置10は、検査対象物(開孔シート2)に対して光を照射する照明手段12を有しているところ、撮像手段11は、図4(a)に示す透過光照明方式のように、照明手段12から照射され検査対象物を透過した透過光を撮像できるように配置されていてもよく、あるいは図4(b)に示す反射光照明方式のように、照明手段12から照射され検査対象物を反射した反射光を撮像できるように配置されていてもよい。照明手段12としては、撮像手段11による撮像に十分な明るさを提供できるものを特に制限なく採用でき、例えばLED照明が挙げられる。
本実施形態では透過光照明方式が採用されており、したがって検査装置10においては、図1に示すように、搬送中の開孔シート2を挟んで撮像手段11とは反対側(開孔シート2の下面側)に照明手段12が配されている。本実施形態において、撮像方式として透過光照明方式を採用した主な理由は、前述した微小開孔3S(図8(b)及び図8(c)参照)の如き開孔不良の開孔の検出を容易にするためである。すなわち、前記開孔工程では加工不具合などが原因で、開孔の輪郭がぼんやりしていて、設計どおりの形状になっていない場合や、開孔内にシートの構成繊維が多数存在していて、完全な貫通孔が形成されていない場合や、開孔内にシートの構成繊維がフィルム化した薄片が存在していて、完全な貫通孔が形成されていない場合があり得る。また、貫通孔が形成されていたとしても、開孔内に多数の繊維が存在していたり、繊維がフィルム化した薄片が存在していたりして、開孔が設計どおりの形状になっていない場合があり得る。後述する検査工程での検査精度を高めるためには、このような開孔不良の開孔の検出が必要であるが、反射光照明方式では、照明手段12の設置条件がシビアで撮像条件の最適化が容易ではなく、照明手段12の設置如何によっては、照明手段12から開孔シート2に向けて照射された光が、該シート2の周辺の製造装置10の構成部品(例えば搬送ロール)に照射されて反射する場合があり、良品とするべきものを不良品と判定するなど、検査に悪影響を及ぼすおそれがある。これに対し、透過光照明方式は、照明手段12の設置条件が比較的緩く、撮像条件の最適化が容易であるというメリットがある。特に、本実施形態では後述するように、撮像手段11によって撮像された画像データに二値化処理を施したものを検査対象としており、透過光照明方式と画像データの二値化処理との組み合わせによって、開孔不良の開孔の検出、その面積測定などを高精度で行うことが可能である。また、反射光照明方式では、開孔シートに含まれる異物を検出するため、異物と開孔との区別が困難になって検査に悪影響を及ぼすことが懸念されるが、透過光照明方式ではこのような異物は検出されないので、斯かる懸念が払拭されている。
撮像処理部13は、撮像手段11が撮像した開孔シート2の画像データを保存する保存部(図示せず)と、撮像手段11及び該保存部を制御する撮像制御部(図示せず)とを含んで構成されている。斯かる構成により、搬送中の開孔シート2を連続的に撮像し、複数の画像データとして保存することができる。前記保存部は、撮像手段11で連続的に撮像された画像データを、その撮像サンプリング数及び撮像サンプリング時間とともに時系列で保存する。前記撮像制御部は、撮像手段11による撮像スピード、撮像開始及び停止の制御、画像データの前記保存部への書き込み及び該保存部からの読み出しの制御など、撮像処理及び画像データに関する制御を行う。
撮像手段11が1回の撮像動作で撮像する開孔シート2の画像データは、搬送中の開孔シート2の開孔箇所を含む幅方向のデータが捕捉可能な所定画素数のフレーム単位にまとめられている。搬送中の開孔シート2を撮像手段11で連続的に複数回撮像した場合には、そのようなフレーム単位の画像が搬送方向に連なる一連の複数の画像を取得できる。その一連の複数の画像を撮像した順番に並べると、開孔シート2の一面の開孔箇所の画像が得られる。1つの画像データ(フレーム単位)の大きさは特に制限されないが、例えば、長手方向Y(搬送方向MD)の長さは2000〜8000画素(ピクセル)程度、幅方向X(搬送直交方向CD)の長さは、2000〜8000画素(ピクセル)程度である。
検査装置10が有する画像処理部20は、撮像手段11で撮像した画像データを検査用に最適化するために画像処理する機能、及び画像処理したデータを検査する機能を有するもので、図3に示すように、オーバーラップ処理部21、検査エリア設定部22、開孔数測定部23、開孔面積測定部24、二値化処理部25、及びラベリング処理部26を有する。
オーバーラップ処理部21は、搬送中の開孔シート2を撮像手段11で撮像した複数の画像データにオーバーラップ処理を施す。すなわちオーバーラップ処理部21は、開孔シート2の搬送方向MDに連続する一連の複数の画像データにオーバーラップ処理を行って、搬送方向MDに隣り合う2つの画像データの少なくとも一方を該2つの画像データの境界に対してオーバーラップさせる。画像処理部20は、撮像手段11で撮像した開孔シート2の画像データをその搬送方向MDの下流側から上流側に向かって走査して開孔3を順次検出していくところ、搬送方向MDに連続する一連の複数の画像データ(フレーム単位)の境界に開孔3が位置する場合には、先行して走査される画像データ(該境界を挟んで搬送方向MDの下流側に位置する画像データ)では該開孔3の一部しか検出できず、該開孔3の検査が困難になる。これに対し、オーバーラップ処理された画像データであれば、画像データ(フレーム単位)の境界及びその近傍の領域が、オーバーラップ部として、次に走査される画像データ(該境界を挟んで搬送方向MDの上流側に位置する画像データ)に追加されるため、該境界に開孔3が位置する場合でも、該開孔3の全体形状を捉えることが可能となる。
図5には、オーバーラップ処理部21によってオーバーラップ処理された画像データの一例である画像データ4の一部が示されている。画像データ4は、搬送方向MDに連続する一連の複数の画像データ(フレーム単位)の集合体であり、搬送方向MDに所定間隔を置いてオーバーラップ部40が間欠配置されている。各オーバーラップ部40は、搬送方向MDに隣り合う2つの画像データ41,42の境界BR又はその近傍に位置している。前側画像データ41は、1つの境界BRよりも搬送方向MDの下流側すなわち前側に位置し、後側画像データ42は、該1つの境界BRよりも搬送方向MDの上流側すなわち後側に位置する。画像データ4は、両画像データ41,42の組み合わせが搬送方向MDに連結して構成されている。なお、図中符号410で示す領域は、前側画像データ41における境界BR及びその近傍の領域(以下、「前側境界領域」ともいう。)であり、図中符号420で示す領域は、後側画像データ42における境界BR及びその近傍の領域(以下、「後側境界領域」ともいう。)である。
検査エリア設定部22は、オーバーラップ処理部21でオーバーラップ処理された画像データ4に、開孔3に対応する検査エリア5を設定する。より具体的には、検査エリア設定部22は、図5に示す画像データ4において、開孔3を1個抽出し、その抽出した1個の開孔3及びその周辺部を含む検査エリア5Aを設定するとともに、該抽出した開孔3の位置を基準として、搬送方向MDに所定ピッチPyで所定面積の検査エリア5B,5Cを更に設定する。図5に示す画像データ4では、開孔シート2のDR側及びOP側それぞれに検査エリア5を搬送方向MDに間欠配置している。なお、本明細書では、複数の検査エリア5を区別するために、検査エリアを示す符号「5」の後ろにA、B、Cなどのアルファベットを付す場合があるが、それらは全て検査エリア5であり、特に断らない限り検査エリア5についての説明が適用される。
検査エリア5Aが、開孔3の存在を前提として設定されるのに対し、他の検査エリア5B,5C(検査エリア5Aよりも搬送方向MDの上流側に設定される検査エリア)は、開孔3の有無とは無関係に、検査エリア5A内の開孔3の位置を基準として予め設定されたピッチPyで設定される。こうした設定の違いから、以下では、検査エリア5Aの如き、開孔3の存在を前提として設定される検査エリアを「主検査エリア」、検査エリア5B,5Cの如き、主検査エリア5A内の開孔3の位置に基づいて自動的に設定され、開孔3の有無を問わない検査エリアを「従検査エリア」とも呼ぶ。
主検査エリア5Aを設定する際の基準となる開孔3としては、画像データ4において搬送方向MDの最下流側に位置するものを選択する。その選択される開孔3の大きさは特に制限されず、画像データ4において1画素以上の大きさを有していればよい。
複数の検査エリア5(5A〜5C)の搬送方向MDのピッチPyは、任意に設定することができ、典型的には、開孔シート2の製造時に前記開孔工程で原料シート1に開孔3を搬送方向MDに間欠的に形成する際のピッチと同じに設定される。すなわち典型的には、画像データ4における複数の検査エリア5の搬送方向MDのピッチは、開孔シート2における複数の開孔3の搬送方向MDのピッチの設計値と同じである。
複数の検査エリア5は互いに同形状同寸法である。本実施形態においては、検査エリア5A〜5Cは平面視において正方形形状をなしているが、複数の検査エリア5が互いに同形状同寸法であれば、検査エリア5の平面視形状は特に制限されず、長方形形状、円形形状などでもよい。
1個の検査エリア5の大きさは、開孔3(良品の開孔3)の大きさ、検査エリア5が設定される画像データ4の大きさなどを考慮して適宜設定すればよく、特に制限されない。1個の検査エリア5の大きさの一例として、長手方向Y(搬送方向MD)及び幅方向X(搬送直交方向CD)の長さは、それぞれ、好ましくは200画素(ピクセル)以上、より好ましくは300画素(ピクセル)以上、そして、好ましくは500画素(ピクセル)以下、より好ましくは400画素(ピクセル)以下である。
画像データ4における検査エリア5の数は特に制限されず、任意に設定することができる。本実施形態においては、開孔シート2のDR側の開孔列31、OP側の開孔列32それぞれに対し、1個の主検査エリア5Aと2個の従検査エリア5B,5Cとからなる検査エリアセットを搬送方向MDに沿って複数設定している。前記検査エリアセットを構成する検査エリア5(5A〜5C)の数は、画像データ4を構成する1つの画像データ(フレーム単位)に収まる検査エリア5の最大数、すなわち、開孔シート2における該フレーム単位に対応する領域に形成され得る開孔3の最大数に設定されている。
開孔数測定部23は、オーバーラップ処理された画像データ4を搬送方向MDの下流側(前側画像データ41側)から上流側(後側画像データ42側)に向かって順次検査して、搬送方向MDに間欠配置された複数の検査エリア5(5A〜5C)それぞれの内部の開孔数を順次測定する。また、開孔面積測定部24は、検査エリア5(5A〜5C)内の開孔3の面積を測定する。つまり、検査装置10による開孔シート2の開孔3の検査は、開孔シート2の一面全体を検査対象とするのではなく、開孔シート2の一面の一部に仮想的に設定した検査エリア5だけを検査対象とするものであり、検査装置10は、このような部分的な検査に関わる構成である検査エリア設定部22、開孔数測定部23及び開孔面積測定部24を有する点で特徴付けられる。
従来、開孔シートにおける開孔を全数検査する場合は、開孔シート全体を検査対象として、その検査対象から取りあえず開孔と判断されるもの(開孔候補)を全て抽出してその面積などを測定していたが、斯かる従来の検査方法では、前述したように、加工不具合により開孔シートに微小開孔が形成された場合に、その微小開孔も抽出されるという、いわゆる過検出が生じ、良品とすべきものが不良品と判定されるという問題があり、また、これを解決しようとすれば複雑な演算処理が必要となり、検査工程が複雑となって開孔シートの製造効率の低下を招くおそれがある。これに対し、検査装置10は、検査対象領域を開孔シート2の面方向の一部である検査エリア5に限定しているので、開孔シート2の一面全体を検査対象領域とする従来の検査方法に比して検査が簡単である。また、開孔シート2に異物が混入している場合、特に撮像手段11による撮像方式が反射光照明方式(図3(b)参照)の場合に、従来の検査方法のように、開孔シート2の一面全体を検査対象領域とすると、異物を開孔として誤検出するおそれがあるが、検査装置10によれば、検査対象領域を検査エリア5に限定しているので、斯かる誤検出が低減され、開孔の検査を安定して高精度で行い得る。
また、検査装置10は、開孔シート2の検査対象領域を検査エリア5に限定する点のみならず、検査エリア5に対し開孔数測定部23によって行われる開孔数の測定方法の点でも特徴付けられる。すなわち開孔数測定部23は、開孔面積測定部24で測定された検査エリア5内の各開孔3の面積に基づき算出された、測定対象の検査エリア5内の全ての開孔の面積を合算した面積合算値を基準とし、該面積合算値が所定の閾値範囲に収まる場合は、該測定対象の検査エリア5内の開孔数の実測値にかかわらず、該測定対象の検査エリア5内の開孔数は、開孔シート2の製造時の開孔工程で原料シート1の該測定対象の検査エリア5に対応する領域に形成されるべき開孔数(すなわち、設計どおりの開孔数)であると判定する。一方、測定対象の検査エリア5の前記面積合算値が所定の閾値範囲に収まらない場合は、該測定対象の検査エリア5内の開孔面積が設計通りでないと判定する。前記面積合算値を測定するに際して対象となる開孔は、その開孔状態の良否を問わず、開孔と判断され得るもの(開孔候補)の全てを含む。したがって、測定対象の検査エリア5内に前述した微小開孔が存在する場合は、その微小開孔を含めて前記面積合算値を測定する。
このように、開孔数測定部23では、測定対象の検査エリア5内の開孔数の実測値を常時そのまま測定結果として採用するのではなく、開孔面積測定部24と協働して、測定対象の検査エリア5内の開孔の面積合算値に基づいて該実測値を解析し、その結果次第で該実測値を測定結果として採用するか否かを判定する。これにより、前述した微小開孔の形成に起因する過検出の問題を解消することが可能となる。すなわち、例えば図8(c)に示す前側画像データ41、すなわち、搬送方向MDに間欠配置された3個の開孔3それぞれの近傍に微小開孔3Sが1個ずつ存在している画像データを従来の検査方法で検査した場合には、前述したとおり、開孔3のみならず微小開孔3Sも含めて開孔数が考慮されるので、該データ41における開孔数はその実測値である6個とされ、設計予定数(3個)を大幅に上回るため不良品と判定される。
これに対し、開孔数測定部23による開孔数測定方法によれば、図6(a)に示すように、前側画像データ41に3個の検査エリア5A〜5Cが設定され、各検査エリア5A〜5Cに開孔3及び微小開孔3Sがそれぞれ1個ずつ存在する場合に、測定対象の検査エリア5内の開孔数の実測値は2個となるが、その2個の開孔3,3Sの面積合算値が所定の閾値範囲(例えば、良品の1個の開孔3の面積の許容範囲)に収まる場合は、この2個という実測値を無視して、測定対象の検査エリア5内の開孔数は設計どおりの開孔数(この場合は1個)であるとされる。よって、開孔数測定部23による開孔数測定方法によれば、前側画像データ41における開孔数は3個となり、したがって、開孔シート2における前側画像データ41に対応する領域は良品と判定される。
二値化処理部25は、撮像手段11によって撮像された画像データの二値化処理を行い、二値化画像データを生成する。具体的には例えば、二値化処理対象の画像データが透過光照明方式の撮像手段11によって撮像されたものである場合には、二値化閾値を予め設定しておき、該二値化閾値よりも画像濃度(階調)の高い画素部分を「白」(階調の上限値:例えば256階調であれば256階調)に変換して開孔(開孔状態の良否を問わず、開孔と認識され得るものの全てを含む。以下、特に断らない限り同じ。)の領域を示す。一方、前記二値化閾値よりも画像濃度(階調)の低い画素部分を「黒」(階調の下限値:例えば256階調であれば0階調)に変換して、開孔以外の背景領域を示す。また、二値化処理対象の画像データが反射光照明方式の撮像手段11によって撮像されたものである場合には、二値化閾値よりも画像濃度(階調)の低い画素部分を「黒」に変換して開孔の領域を示し、二値化閾値よりも画像濃度(階調)の高い画素部分を「白」に変換して開孔以外の背景領域を示す。このようにして、二階調からなる二値化画像データが生成される。生成された二値化画像データは、対応する画像データが有する撮像サンプリング時間とともに、撮像処理部13の前記保存部に書き込まれ保存される。前記二値化閾値は、適宜任意に設定でき、撮像された開孔の画素(撮像面積)を的確に把握できる数値に設定することができる。二値化画像データを活用することで、仮に開孔3が開孔不良であってもその画素を的確に把握することが可能となり、前述した開孔数測定部23による開孔数測定をより高精度でスムーズに行うことが可能となる。
ラベリング処理部26は、画像データ4に対していわゆるラベリング(特徴量抽出)を行う。具体的には例えば、画像データ4から抽出された開孔3の座標及び検査エリア5の座標をそれぞれ取得する。本実施形態においては、図5に示すように、画像データ4における、前側画像データ41の下流側端のDR側の角部を原点(0,0)として、長手方向Y(搬送方向MD)の座標(Y座標)は、該原点から搬送方向MDの上流側に向かうに従って大きくなるものとし、また、幅方向X(搬送直交方向CD)の座標(X座標)は、該原点からOP側に向かうに従って大きくなるものとしている。画像データ4の境界BR及びその近傍に検査エリア5が位置する場合は、該検査エリア5内の開孔3のY座標BY、あるいは該検査エリア5の搬送方向MDの下流側端51のY座標ALYに基づいて、該検査エリア5の測定結果を採用するか否かを判定するところ、両Y座標BY,ALYはラベリング処理部26によって取得される。
次に、本発明の開孔シートの検査方法を、製造装置50を含む開孔シート2の製造ラインで検査装置10によりインライン検査する方法に基づいて説明する。
先ず、搬送中の長尺状の開孔シート2の一面(上面)を撮像手段11で連続的に撮像して、搬送方向MDに連続する複数の画像データを取得する。取得した複数の画像データは、その撮像サンプリング時間とともに時系列で撮像処理部13の前記保存部に保存される。これら複数の画像データは、それぞれ、開孔シート2の搬送直交方向CDの開孔箇所を含む幅方向のデータが捕捉可能な所定の画素数のフレーム単位でまとめられている。
次に、複数の前記画像データを画像処理部20に供給し、オーバーラップ処理部21においてオーバーラップ処理して、図5に示す画像データ4を生成する。
次に、画像データ4を検査エリア設定部22に供給し、画像データ4から開孔3を1個抽出し、その抽出した1個の開孔3及びその周辺部を含む検査エリア5A(主検査エリア)を設定するとともに、該抽出した開孔3の位置を基準として、搬送方向MDに所定ピッチPyで所定面積の検査エリア5B,5C(従検査エリア)を更に設定する。本実施形態においては前述したとおり、開孔シート2のDR側の開孔列31、OP側の開孔列32それぞれに対し、3個の検査エリア5A〜5C(1個の主検査エリア5Aと2個の従検査エリア5B,5C)を順次設定する処理を繰り返す。
また、検査エリア5の設定と同時に、又はその設定前若しくは設定後に、画像データ4を二値化処理部25に供給して二値化処理を行うとともに、ラベリング処理部26に供給してラベリング(特徴量抽出)を行う。二値化処理は、画像データ4の全体に対して行ってもよく、画像データの一部(例えば検査エリア5内)のみに行ってもよい。前記ラベリングにより、画像データ4に存在する各開孔3の位置(座標)、各検査エリア5の位置(座標)、各検査エリア5内の開孔数の実測値、各検査エリア5内の全ての開孔の面積を合算した面積合算値などを取得する。
次に、画像データ4を開孔数測定部23に供給し、画像データ4を搬送方向MDの下流側から上流側(図5の上側から下側)に向かって順次検査して、搬送方向MDに間欠配置された複数の検査エリア5(5A〜5C)内の開孔数を、開孔面積測定部24と協働して順次測定し、その測定結果を、開孔シート2の対応する領域の開孔数とする(開孔数測定工程)。ここで行う、各検査エリア5内の開孔数の測定は、前述したとおり、予め測定した当該検査エリア5内の開孔の面積合算値に基づいて、当該検査エリア5内の開孔数の実測値を解析し、該面積合算値が所定の閾値範囲に収まる場合は、該実測値を無視して、当該検査エリア5内の開孔数は設計どおりの開孔数(本実施形態では1個)であると判定する。一方、当該検査エリア5内の開孔の面積合算値が所定の閾値範囲に収まらない場合は、当該検査エリア5内の開孔面積が設計通りでないと判定する。例えば、検査対象の検査エリア5内に開孔3と微小開孔3Sとがそれぞれ1個ずつ存在する場合、該検査エリア5内の開孔数の実測値は2個であるが、それらの面積合算値が所定の閾値範囲(例えば、良品の1個の開孔3の面積の許容範囲)に収まる場合は、該検査エリア5内の開孔数は1個と判定され、該閾値範囲に収まらない場合は、開孔面積が設計通りでないと判定される。
このように、検査装置10を用いた開孔シート2のインライン検査によれば、開孔シート2の画像データ全体を検査対象領域とせずに、該画像データよりも面積の小さい検査エリア5を設定して検査対象領域をその検査エリア5に絞っているため、検査が簡単であり、また、開孔シート2に異物が混入していてもこれを開孔3として誤検出し難く、複雑な演算処理を要せずに、開孔シート2における開孔3の全数検査をインラインで安定して高精度に行うことができる。
特に本実施形態においては、前述したように、前記開孔数測定工程における検査エリア5内の開孔数の測定に際し、その実測値に加えて更に開孔の面積合算値を用い、該面積合算値に基づいて該実測値を測定結果として採用するか否かを判定するため、例えば図6(a)に示すように、本来形成されるべき開孔3の近傍に微小開孔3Sが形成された場合でも、この微小開孔3Sは開孔3の面積値に含まれるため、検査対象(開孔)の過検出の問題を起こし難い。したがって本実施形態によれば、開孔シート2における開孔3の全数検査をより一層高精度で行うことができ、良品を不良品と判定する不都合が顕著に低減され得る。
また本実施形態においては、撮像手段11による撮像方式が透過光照明方式であり、且つ透過光照明方式で取得した画像データを二値化処理し、その二値化画像データに基づいて、前記開孔数測定工程を含む各工程を実施しているため、検査エリア5内に開孔不良の開孔が存在しても、該開孔の画素を的確に把握することが可能であり、したがって、検査エリア5内の開孔数の測定をより一層高精度で行うことができる。
ところで、図7(a)及び図7(b)に示すように、オーバーラップ処理された画像データの境界BR又はその近傍に開孔3が位置する場合には、該開孔3に対して、前側画像データ41側(前側境界領域410)では検査エリア5Cが設定され、後側画像データ42側(後側境界領域420)では検査エリア5Aが設定される。このような画像データを、前述の如くに搬送方向MDの下流側から上流側(データ41側からデータ42側)に向かって走査した場合、先行して走査される前側境界領域410には検査エリア5Cの一部しか映っていないため、この検査エリア5Cの検査結果をそのまま該領域410に適用することはできない。そこで、検査エリア5Cの測定結果を一旦保留し、続いて走査される後側境界領域420の検査エリア5Aの測定結果次第で、保留していた検査エリア5Cの測定結果を前側境界領域410に適用するか否かを判定する処理(境界判定処理)が必要となる。
ここで仮に、開孔3(検査エリア5)が境界BRを基準として常時一定の位置に存在していれば、一定の周期で前記境界処理を機械的に実施するか、あるいは前記境界処理を実施せずに済むように画像データを作成するなどして、前記境界処理の負担を軽減することができる。しかしながら前述したように、種々の要因により、開孔3と境界BRとの位置関係は変動し、したがって検査エリア5と境界BRとの位置関係も変動し得る。よって前記境界判定処理をスムーズに行うためには、何らかの工夫が必要になる。
そこで、本実施形態においては、前記開孔数測定工程において開孔数の測定対象となる検査エリア5が、境界BR及びその近傍を含む境界領域、特に先行して走査される前側境界領域410に位置する場合は、該領域410に位置する検査エリア5内の開孔3の有無、該領域410に位置する検査エリア5内に開孔3が存在する場合はその位置(より具体的には、該開孔3のY座標BY)、及び該領域410に位置する検査エリア5の搬送方向MDの下流側端51の位置(より具体的には、該下流側端51のY座標ALY)に基づいて、下記[1]又は[2]を選択する。斯かる境界判定処理により、開孔シート2の画像データにおいて開孔3と境界BRとの位置関係が一定せずに変動した場合でも、前記境界判定処理をスムーズに行うことが可能となる。
[1]前側境界領域410に位置する検査エリア5の測定結果を、該領域410に適用する。
[2]前側境界領域410に位置する検査エリア5の次に走査される、別の検査エリア5の測定結果を、該領域410に適用する。
本実施形態においては、図5に示す画像データ4において、境界BRから搬送方向MDの下流側(前側画像データ41側)に所定距離離間した位置を通って搬送直交方向CDに延びる、判定ラインL1を設定し、該ラインL1から境界BRにわたる領域を前側境界領域410としている。そして、この画像データ4の前側境界領域410(判定ラインL1と境界BRとの間)には検査エリア5Cが位置しているので、前記開孔数測定工程においては、該検査エリア5C内の開孔3のY座標BY、該検査エリア5Cの下流側端51のY座標ALYに基づいて、該検査エリア5Cの測定結果を前側境界領域410に適用するか否かを判定する。一方、前側画像データ41における判定ラインL1よりも搬送方向MDの下流側の領域については、通常どおり、該領域に位置する検査エリア5の測定結果を該領域に適用する。例えば、図5に示す前側画像データ41においては、判定ラインL1よりも搬送方向MDの下流側の領域に検査エリア5A,5Bが位置しているので、該領域については両検査エリア5A,5Bの検査結果をそのまま適用する。
また、本実施形態においては、前記境界判定処理(前記[1]又は[2]の選択)をより一層スムーズに行うために、画像データ4に判定ラインL1とは異なる別のラインを設定している。すなわち、前側画像データ41に、境界BRと判定ラインL1との間を搬送直交方向CDに延びる、境界付近認識ラインL2を設定している。また、後側画像データ42に、境界BRから搬送方向MDの上流側に所定距離離間した位置を通って搬送直交方向CDに延びる、次回検査エリアチェックラインL3を設定している。つまり、本実施形態においては、先行して走査される前側画像データ41の境界BR及びその近傍の領域に、搬送直交方向CDすなわち走査方向と直交する方向に延びる2本のラインL1,L2を設定し、また、続いて走査される後側画像データ42の境界BR及びその近傍の領域に、ラインL1,L2と平行に延びる別のラインL3を設定している。前記前記境界判定処理では、これらのラインL1〜L3と、検査エリア5内の開孔3の位置(Y座標BY)及び検査エリア5の下流側端51の位置(Y座標ALY)との位置関係が特に考慮される。
前記の各ラインL1〜L3の設定位置は特に制限されず、任意に設定可能である。
例えば、判定ラインL1と境界BRとの離間距離(画素数)、すなわち前側境界領域410の搬送方向MDの長さ(画素数)は、該ラインL1が位置する前側画像データ41(画像データ4を構成する1つの画像データすなわちフレーム単位)の搬送方向MDの全長(画素数)に対して、好ましくは5〜15%、より好ましくは8〜12%である。
また、境界付近認識ラインL2と境界BRとの離間距離(画素数)は、該ラインL2が位置する前側画像データ41(画像データ4を構成する1つの画像データすなわちフレーム単位)の搬送方向MDの全長(画素数)に対して、好ましくは0.3〜1.5%、より好ましくは0.6〜1.2%である。
また、次回検査エリアチェックラインL3と境界BRとの離間距離(画素数)は、該ラインL3が位置する後側画像データ42(画像データ4を構成する1つの画像データすなわちフレーム単位)の搬送方向MDの全長(画素数)に対して、好ましくは26〜38%、より好ましくは29〜35%である。
図7(a)〜図7(g)には、それぞれ、前側境界領域410又はその近傍に検査エリア5が位置する場合が例示されている。前記境界判定処理が実施されるのは、前側境界領域410に検査エリア5が位置する場合、すなわち検査エリア5の少なくとも一部が該領域410と重複している場合である。この点、図7(g)の場合は、前側境界領域410に検査エリア5が位置していないので前記境界判定処理は実施せず、図7(g)の検査エリア5の測定結果は、通常どおり、該検査エリア5が位置する後側境界領域420に適用される。
前記境界判定処理においては通常、前側境界領域410に位置する検査エリア5について、1)該検査エリア5内の開孔3の有無、2)該検査エリア5内に開孔3が存在する場合はその位置、3)該検査エリア5の下流側端51の位置の順で、ラインL1,L2との位置関係をチェックする。図7(a)〜図7(f)は何れも前側境界領域410に位置する検査エリア5内に開孔3が存在するので、先ずは前記2)がチェック対象となる。
前記2)に関し、本実施形態においては、前側境界領域410に位置する検査エリア5内の開孔3のY座標BYに着目し、該開孔3がラインL2よりも搬送方向MDの下流側に位置する場合、すなわち「開孔3のY座標BY<ラインL2のY座標」の場合(図7(a)〜図7(c)の場合)には、該検査エリア5の測定結果(開孔数)を前側境界領域410に適用する。斯かる場合は、前側境界領域410に位置する検査エリア5内の開孔3が境界BRから比較的離れているので、該開孔3の全体形状の把握、該開孔3の近傍に前述した微小開孔が存在しているか否かなどの判断が可能で、該検査エリア5の測定結果に一定の信頼性があるとみなすことができるためである。
これに対し、前側境界領域410に位置する検査エリア5内の開孔3がラインL2と境界BRとの間に位置する場合、すなわち「ラインL2のY座標≦該開孔3のY座標BY≦境界BRのY座標」の場合(図7(d)及び図7(e)の場合)には、該検査エリア5の測定結果(開孔数)を保留し、続いて行われる後側境界領域420についての測定結果次第で、前記[1]又は[2]を選択する。斯かる場合は、前側境界領域410に位置する検査エリア5内の開孔3が境界BRと同位置か又は境界BRに極めて近接している場合であり、該開孔3の全体形状の把握、該開孔3の近傍に前述した微小開孔が存在しているか否かなどの判断が困難で、該検査エリア5の測定結果の信頼性に乏しいためである。
また、前側境界領域410に位置する検査エリア5内の開孔3が境界BRよりも搬送方向MDの上流側に位置する場合、すなわち「境界BR<該開孔3のY座標BY」の場合(図7(f)の場合)も、前記と同様の理由で、該検査エリア5の測定結果(開孔数)を保留し、続いて行われる後側境界領域420についての測定結果次第で、前記[1]又は[2]を選択する。
前側境界領域410に位置する検査エリア5の測定結果を保留した場合、続いて走査される後側境界領域420又はその近傍に検査エリア5の全体が映っているか否かをチェックする。具体的には、後側画像データ42における次回検査エリアチェックラインL3よりも搬送方向MDの下流側に検査エリア5の全体が映っているか否かをチェックし、それが映っている場合は、保留した測定結果を前側境界領域410に適用する。これは、後側画像データ42においてラインL3よりも下流側にて全体が映っている検査エリア5は、前側境界領域410では一部しか映っていなかった検査エリア5であり、後側画像データ42にてその全体を把握することで、保留した前側画像データ41での測定結果の信頼性が担保されるためである。一方、後側画像データ42における次回検査エリアチェックラインL3よりも搬送方向MDの下流側に検査エリア5の全体が映っていない場合は、前側境界領域410には開孔3が存在しない(開孔数ゼロ)と判定される。
なお、図7(a)〜図7(f)は何れも前側境界領域410に位置する検査エリア5内の開孔3の位置が、該検査エリア5の重心(中心)であったが、該位置が重心ではない場合もあり得る。特に、図5に示す画像データ4における検査エリア5B,5Cの如き従検査エリアは、前述したとおり、主検査エリア5A内の開孔3の位置に基づいて自動的に設定されるものであって、開孔3の有無を問わないものであるから、従検査エリア内の開孔がその重心に位置するとは限らない。しかしながら、前側境界領域410に位置する検査エリア5が、そのような内部の開孔が重心位置に無い開孔エリアであっても、前記境界判定処理(前記[1]又は[2]の選択)については、前述した要領で実施することができる。
図7(a)〜図7(f)は何れも前側境界領域410に位置する検査エリア5内に開孔3が存在する場合であるが、該検査エリア5内に開孔3が存在しない場合があり得る。その場合は、前記3)がチェック対象となる。すなわち、前側境界領域410に位置する検査エリア5の下流側端51の位置に着目し、該下流側端51の位置(Y座標ALY)と、ラインL1,L2及び境界BRそれぞれのY座標との位置関係に基づいて、前記[1]又は[2]を選択する。前記3)についてチェックする場合は、基本的に、前記2)についてチェックする場合と同様の考え方を適用することができる。
すなわち前記3)に関し、本実施形態においては、前側境界領域410に位置する検査エリア5の下流側端51のY座標ALYに着目し、該下流側端51がラインL1よりも搬送方向MDの下流側に位置する場合、すなわち「該下流側端51のY座標ALY<ラインL1のY座標」の場合には、該検査エリア5の測定結果(開孔数ゼロ)を前側境界領域410に適用する。
また、前側境界領域410に位置する検査エリア5の下流側端51がラインL1と境界BRとの間に位置する場合、すなわち「ラインL1のY座標≦該下流側端51のY座標ALY≦境界BRのY座標」の場合には、該検査エリア5の測定結果(開孔数ゼロ)を保留し、続いて行われる後側境界領域420についての測定結果次第で、前記[1]又は[2]を選択する。
以上、本発明の実施態様について説明したが、本発明は前記実施態様に制限されず、適宜変更可能である。