JP2020003093A - Heat pump water heater - Google Patents
Heat pump water heater Download PDFInfo
- Publication number
- JP2020003093A JP2020003093A JP2018120150A JP2018120150A JP2020003093A JP 2020003093 A JP2020003093 A JP 2020003093A JP 2018120150 A JP2018120150 A JP 2018120150A JP 2018120150 A JP2018120150 A JP 2018120150A JP 2020003093 A JP2020003093 A JP 2020003093A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- heat pump
- heat exchanger
- compressor
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/12—Hot water central heating systems using heat pumps
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
本発明は、ヒートポンプ給湯装置に関し、特に膨張弁をバイパスするバイパス通路に配設された除霜弁を使用して除霜運転を行うヒートポンプ給湯装置に関する。 The present invention relates to a heat pump water heater, and more particularly to a heat pump water heater that performs a defrosting operation using a defrost valve provided in a bypass passage that bypasses an expansion valve.
従来から、ヒートポンプ式熱源機で加熱した湯水を貯湯タンクに貯湯する貯湯運転を行い、この貯湯した湯水を給湯に使用するヒートポンプ給湯装置が広く利用されている。ヒートポンプ式熱源機は、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒回路により接続して構成されている。 BACKGROUND ART Conventionally, a heat pump hot water supply device that performs a hot water storage operation of storing hot water heated by a heat pump heat source device in a hot water storage tank and uses the stored hot water for hot water supply has been widely used. The heat pump type heat source device is configured by connecting a compressor, a condensation heat exchanger, expansion means, and an evaporation heat exchanger by a refrigerant circuit.
貯湯運転では、ヒートポンプ式熱源機の蒸発熱交換器において冷媒に外気から吸熱させ、この冷媒の熱を湯水の加熱に利用している。そのため、特に外気温が低いときに、吸熱されて温度が下がった外気に含まれる水分が凝縮して蒸発熱交換器に着霜し易くなっている。蒸発熱交換器の着霜は外気からの吸熱を妨げるので、貯湯運転中にある程度着霜が進行したら着霜を除去する除霜運転を行うように構成されている。 In the hot water storage operation, the refrigerant absorbs heat from the outside air in the evaporative heat exchanger of the heat pump heat source device, and the heat of the refrigerant is used for heating hot water. Therefore, particularly when the outside air temperature is low, moisture contained in the outside air whose temperature has been lowered due to heat absorption is easily condensed and frost is easily formed on the evaporative heat exchanger. Since the frost formation of the evaporative heat exchanger prevents heat absorption from the outside air, if the frost formation proceeds to some extent during the hot water storage operation, a defrosting operation for removing the frost formation is performed.
除霜運転は、蒸発熱交換器に高温の冷媒を流通させて行う。この除霜運転のために、冷媒回路には膨張手段をバイパスするバイパス通路と、このバイパス通路を開閉する除霜弁が設けられている。除霜弁は、貯湯運転中には閉止され、除霜運転時に開放制御されるので、除霜弁が故障すると除霜運転や貯湯運転が実行できなくなる。 The defrosting operation is performed by flowing a high-temperature refrigerant through the evaporative heat exchanger. For this defrosting operation, the refrigerant circuit is provided with a bypass passage for bypassing the expansion means and a defrost valve for opening and closing this bypass passage. The defrost valve is closed during the hot water storage operation and is opened during the defrost operation, so that if the defrost valve fails, the defrost operation and the hot water storage operation cannot be performed.
例えば、除霜弁に異物の噛み込み等の原因で閉止不良が発生すると、圧縮機に高温の冷媒が供給され続けてヒートポンプ式熱源機が故障する虞がある。そのため、例えば特許文献1のように、蒸発熱交換器出口側の温度スイッチが冷媒の異常高温を検知したときに、圧縮機を停止させる技術が知られている。 For example, if a failure in closing the defrost valve occurs due to, for example, biting of a foreign object, a high-temperature refrigerant is continuously supplied to the compressor, and the heat pump heat source device may be broken. Therefore, for example, as in Patent Literature 1, a technique is known in which a compressor is stopped when a temperature switch on the outlet side of an evaporative heat exchanger detects an abnormally high temperature of a refrigerant.
また、除霜弁に固着等によって開放不良が発生すると、除霜運転を開始しても蒸発熱交換器に高温の冷媒が供給されず除霜できない。そのため、例えば特許文献2のように、蒸発熱交換器入口側の温度センサによって検知される除霜運転の開始前後の冷媒の温度変化に基づいて、除霜弁の開放不良を検出する技術が知られている。 Further, when an opening failure occurs due to sticking to the defrost valve or the like, even if the defrost operation is started, high-temperature refrigerant is not supplied to the evaporative heat exchanger and defrost cannot be performed. Therefore, for example, as disclosed in Patent Document 2, there is known a technique for detecting a defective opening of the defrost valve based on a change in the temperature of the refrigerant before and after the start of the defrost operation detected by a temperature sensor on the inlet side of the evaporative heat exchanger. Have been.
ヒートポンプ式熱源機には外気温度センサや、出入りする湯水の温度を検知するために入水温度センサ、出湯温度センサが配設されている。また、冷媒回路には冷媒の温度を検知するために蒸発熱交換器の入口側温度センサ及び出口側温度センサ、圧縮機の吐出側温度センサ等が配設されているが、簡素な構成にするために蒸発熱交換器の入口側温度センサを廃止することが検討されている。 The heat pump type heat source unit is provided with an outside air temperature sensor, an incoming water temperature sensor, and an outgoing water temperature sensor for detecting the temperature of incoming and outgoing hot and cold water. The refrigerant circuit is provided with an inlet-side temperature sensor and an outlet-side temperature sensor of the evaporative heat exchanger for detecting the temperature of the refrigerant, and a discharge-side temperature sensor of the compressor. Therefore, it has been considered to eliminate the temperature sensor on the inlet side of the evaporative heat exchanger.
この場合、特許文献2のような冷媒の温度変化を、特許文献1のように蒸発熱交換器の出口側温度センサによって検知することは可能である。しかし、着霜した蒸発熱交換器を通過するので除霜弁から出口側温度センサまでの距離が長くなり、除霜運転を開始してから温度変化を検知するまでの時間が長くなると共に、温度変化も小さくなって検知し難くなるという課題がある。本発明の目的は、除霜弁の故障を早く判定可能なヒートポンプ給湯装置を提供することである。 In this case, it is possible to detect a change in the temperature of the refrigerant as in Patent Literature 2 using an outlet-side temperature sensor of the evaporative heat exchanger as in Patent Literature 1. However, since the gas passes through the frosted evaporative heat exchanger, the distance from the defrost valve to the outlet-side temperature sensor becomes longer, and the time from when the defrosting operation is started to when a temperature change is detected becomes longer, and the temperature increases. There is a problem that the change becomes small and the detection becomes difficult. An object of the present invention is to provide a heat pump water heater that can quickly determine a failure of a defrost valve.
請求項1の発明は、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒回路により接続して構成されたヒートポンプ式熱源機と、貯湯タンクと、前記ヒートポンプ式熱源機で加熱された湯水を前記貯湯タンクに貯湯する貯湯運転を制御する制御手段を備え、前記冷媒回路に前記膨張手段をバイパスするバイパス通路と、前記バイパス通路を開閉する除霜弁を有し、前記蒸発熱交換器の着霜が検知された場合に前記制御手段が前記除霜弁を開放し前記膨張手段を閉止して除霜運転を行うヒートポンプ給湯装置において、前記制御手段が前記除霜弁を開放制御したときに、前記圧縮機の電流値又は消費電力値の変化に基づいて前記除霜弁の故障判定を行う故障判定手段を備えたことを特徴としている。 The invention according to claim 1 is a heat pump type heat source device configured by connecting a compressor, a condensation heat exchanger, expansion means, and an evaporative heat exchanger by a refrigerant circuit, a hot water storage tank, and heating by the heat pump type heat source device. Control means for controlling a hot water storage operation for storing the supplied hot and cold water in the hot water storage tank; a bypass passage for bypassing the expansion means in the refrigerant circuit; and a defrost valve for opening and closing the bypass passage. In a heat pump water heater in which when the frost formation of the exchanger is detected, the control means opens the defrost valve and closes the expansion means to perform a defrost operation, wherein the control means controls the opening of the defrost valve. In this case, there is provided a failure determining means for performing a failure determination of the defrost valve based on a change in a current value or a power consumption value of the compressor.
上記構成によれば、ヒートポンプ給湯装置は、貯湯運転中に蒸発熱交換器の着霜が検知されると除霜運転を行う。除霜運転が開始されて除霜弁を開放制御したときに、圧縮機から吐出された高温の冷媒がバイパス通路を流通すれば、すぐに圧縮機の吐出側の圧力が下がって圧縮機の負荷が小さくなるので、圧縮機の電流値又は消費電力値が低下する。一方、除霜弁を開放制御したときに除霜弁の故障によってバイパス通路が閉塞していれば、圧縮機の吐出側の圧力は変化せず、圧縮機の負荷が変化しないので、圧縮機の電流値又は消費電力値は変化しない。従って、故障判定手段は、除霜弁を開放制御した後の圧縮機の電流値又は消費電力値の変化に基づいて、除霜弁の故障判定を早く行うことができる。 According to the above configuration, the heat pump hot water supply device performs a defrosting operation when frost formation on the evaporative heat exchanger is detected during the hot water storage operation. If the high-temperature refrigerant discharged from the compressor flows through the bypass passage when the defrosting operation is started and the defrost valve is controlled to open, the pressure on the discharge side of the compressor immediately decreases, and the load on the compressor decreases. , The current value or the power consumption value of the compressor decreases. On the other hand, if the bypass passage is closed due to the failure of the defrost valve when the defrost valve is opened, the pressure on the discharge side of the compressor does not change, and the load on the compressor does not change. The current value or the power consumption value does not change. Therefore, the failure determination means can quickly determine the failure of the defrost valve based on a change in the current value or the power consumption value of the compressor after the defrost valve is opened.
請求項2の発明は、請求項1の発明において、前記冷媒回路に前記除霜運転時の冷媒温度を検知する温度検知手段を備え、前記故障判定手段が前記除霜弁の故障判定で正常と判定した後で、前記制御手段が前記膨張手段を閉止制御したときに、前記故障判定手段は前記温度検知手段が検知した冷媒温度の変化に基づいて前記膨張手段の故障判定を行うことを特徴としている。 According to a second aspect of the present invention, in the first aspect of the present invention, the refrigerant circuit further includes a temperature detection unit for detecting a refrigerant temperature during the defrosting operation, and the failure determination unit determines that the failure of the defrost valve is normal. After the determination, when the control unit controls the closing of the expansion unit, the failure determination unit performs a failure determination of the expansion unit based on a change in refrigerant temperature detected by the temperature detection unit. I have.
上記構成によれば、除霜弁が正常に開放された後で膨張手段を閉止制御する。従って、バイパス通路が閉塞している場合でも圧縮機の吐出側が閉塞されず、圧縮機に過剰な負荷がかからないので、圧縮機の故障を予防できる。また、膨張手段が閉止されれば低温の冷媒が流通しなくなるので、冷媒温度の大きな変化を温度検知手段が検知する。一方、膨張手段が故障によって閉止されなければ低温の冷媒が高温の冷媒と混合して流通するので、除霜能力が低下すると共に温度検知手段が検知する冷媒温度の変化が小さくなる。従って、故障判定手段は、温度検知手段が検知した冷媒温度の変化に基づいて膨張手段の故障判定を行うことができる。 According to the above configuration, the expansion means is controlled to close after the defrost valve is normally opened. Therefore, even when the bypass passage is closed, the discharge side of the compressor is not closed, and an excessive load is not applied to the compressor, so that failure of the compressor can be prevented. Further, when the expansion means is closed, the low-temperature refrigerant does not flow, so that the temperature detection means detects a large change in the refrigerant temperature. On the other hand, if the expansion means is not closed due to a failure, the low-temperature refrigerant flows while being mixed with the high-temperature refrigerant, so that the defrosting ability decreases and the change in the refrigerant temperature detected by the temperature detection means decreases. Therefore, the failure determination unit can determine the failure of the expansion unit based on the change in the refrigerant temperature detected by the temperature detection unit.
請求項3の発明は、請求項2の発明において、前記温度検知手段は、前記蒸発熱交換器の冷媒出口側又は前記圧縮機の吐出側に配設されたことを特徴としている。 According to a third aspect of the present invention, in the second aspect, the temperature detecting means is disposed on a refrigerant outlet side of the evaporative heat exchanger or on a discharge side of the compressor.
上記構成によれば、故障判定手段は、既存の温度検知手段を利用して膨張手段の故障判定を行うことができる。 According to the above configuration, the failure determination unit can perform the failure determination of the expansion unit using the existing temperature detection unit.
本発明のヒートポンプ給湯装置によれば、除霜弁の故障を早く判定可能である。また、膨張手段の故障も判定可能である。 ADVANTAGE OF THE INVENTION According to the heat pump hot-water supply apparatus of this invention, failure of a defrost valve can be determined quickly. Further, it is possible to determine the failure of the expansion means.
以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, embodiments for carrying out the present invention will be described based on examples.
最初に、本発明のヒートポンプ給湯装置1の全体構成について説明する。
図1に示すように、ヒートポンプ給湯装置1は、湯水を貯留する貯湯タンク5を備えた貯湯給湯ユニット2、貯湯タンク5の湯水の加熱を行うヒートポンプ式熱源機3、ヒートポンプ給湯装置1を制御する制御手段4、貯湯給湯ユニット2とヒートポンプ式熱源機3との間に湯水を循環させる循環用配管8a,8b等から構成されている。
First, the overall configuration of the heat pump water heater 1 of the present invention will be described.
As shown in FIG. 1, a heat pump hot water supply device 1 controls a hot water storage / hot water supply unit 2 having a hot water storage tank 5 for storing hot water, a heat pump type heat source device 3 for heating the hot water in the hot water storage tank 5, and the heat pump hot water supply device 1. The control means 4 includes circulation pipes 8a and 8b for circulating hot water between the hot water supply unit 2 and the heat pump type heat source unit 3.
貯湯給湯ユニット2は、縦長筒状の外周面を有する貯湯タンク5、給水配管6、出湯配管7、循環用配管8a,8b、循環ポンプ11、開閉弁12、混合弁13、主制御ユニット16、外装ケース17等を備えている。貯湯タンク5は、ヒートポンプ式熱源機3で加熱された高温の湯水を貯留するものである。 The hot water supply unit 2 includes a hot water storage tank 5 having a vertically long cylindrical outer peripheral surface, a water supply pipe 6, a hot water supply pipe 7, a circulation pipe 8a, 8b, a circulation pump 11, an on-off valve 12, a mixing valve 13, a main control unit 16, An outer case 17 and the like are provided. The hot water storage tank 5 stores high-temperature hot water heated by the heat pump type heat source device 3.
貯湯タンク5の下端部には、給水配管6と循環用配管8aが接続されている。給水配管6には、貯湯タンク5へ低温の上水を供給するための開閉弁12が設けられている。貯湯タンク5の上端部には、循環用配管8bと出湯配管7が接続され、循環用配管8bから戻された高温の湯水を貯湯タンク5内に貯留し、給湯時には貯湯タンク5内の高温の湯水を出湯配管7に供給することができる。 A water supply pipe 6 and a circulation pipe 8 a are connected to a lower end of the hot water storage tank 5. The water supply pipe 6 is provided with an on-off valve 12 for supplying low-temperature water to the hot water storage tank 5. A circulation pipe 8b and a hot water supply pipe 7 are connected to the upper end of the hot water storage tank 5, and the high-temperature hot water returned from the circulation pipe 8b is stored in the hot water storage tank 5. Hot water can be supplied to the tapping pipe 7.
貯湯タンク5には、複数の温度センサ5a〜5dが高さ方向に所定の間隔を空けて配設され、温度センサ5a〜5dの温度検出信号が主制御ユニット16に送信される。外装ケース17は、薄鋼板製の箱状に形成され、貯湯タンク5、給水配管6、出湯配管7、循環用配管8a,8bの大部分、循環ポンプ11、開閉弁12、混合弁13、各種の温度センサ15a〜15d、主制御ユニット16等を収容している。 In the hot water storage tank 5, a plurality of temperature sensors 5a to 5d are arranged at predetermined intervals in the height direction, and the temperature detection signals of the temperature sensors 5a to 5d are transmitted to the main control unit 16. The outer case 17 is formed in a box shape made of a thin steel plate, and includes a hot water storage tank 5, a water supply pipe 6, a hot water supply pipe 7, most of the circulation pipes 8a and 8b, a circulation pump 11, an on-off valve 12, a mixing valve 13, and various types. Temperature sensors 15a to 15d, a main control unit 16, and the like.
次に、ヒートポンプ式熱源機3について説明する。
ヒートポンプ式熱源機3は、圧縮機21と凝縮熱交換器22と膨張弁23(膨張手段)と蒸発熱交換器24を冷媒が封入された冷媒回路25により接続して構成されている。また、ヒートポンプ式熱源機3は、蒸発熱交換器24に外気を送る送風ファン27、蒸発熱交換器24の着霜を除去する除霜運転のためのバイパス通路31と電磁弁からなる除霜弁32、主制御ユニット16に接続され且つヒートポンプ式熱源機3を制御する補助制御ユニット33、これらを収納する外装ケース35等を備えている。
Next, the heat pump type heat source device 3 will be described.
The heat pump type heat source unit 3 is configured by connecting a compressor 21, a condensation heat exchanger 22, an expansion valve 23 (expansion means), and an evaporation heat exchanger 24 by a refrigerant circuit 25 in which a refrigerant is sealed. The heat pump type heat source unit 3 includes a blower fan 27 for sending outside air to the evaporative heat exchanger 24, a bypass passage 31 for defrosting operation for removing frost from the evaporative heat exchanger 24, and a defrost valve including an electromagnetic valve. 32, an auxiliary control unit 33 connected to the main control unit 16 and controlling the heat pump type heat source unit 3, and an outer case 35 for accommodating them.
圧縮機21は、断熱圧縮して昇温させた高温高圧の冷媒を凝縮熱交換器22に供給する。凝縮熱交換器22は、循環用配管8a,8b間に配設された熱交換器通路部22aと冷媒回路25の一部となる内部通路22bとを有する二重管で構成されている。この凝縮熱交換器22において、内部通路22bを流れる高温高圧の冷媒と循環用配管8aから熱交換器通路部22aに供給される湯水との間で熱交換させて湯水が加熱され、冷媒は降温する。 The compressor 21 supplies the condensing heat exchanger 22 with the high-temperature and high-pressure refrigerant that has been adiabatically compressed and raised in temperature. The condensing heat exchanger 22 is constituted by a double pipe having a heat exchanger passage 22a provided between the circulation pipes 8a and 8b and an internal passage 22b which is a part of the refrigerant circuit 25. In the condensing heat exchanger 22, heat is exchanged between high-temperature and high-pressure refrigerant flowing through the internal passage 22b and hot water supplied from the circulation pipe 8a to the heat exchanger passage 22a to heat the hot water. I do.
膨張弁23は、電動モータの駆動により絞り量が可変な制御弁であり、熱交換によって降温した高圧の冷媒を急激に膨張させて、外気温よりも低温に冷媒温度を低下させる。蒸発熱交換器24は、冷媒回路25の一部となる内部通路24aを有し、内部通路24aは複数のフィンが装着された伝熱管で構成されている。この蒸発熱交換器24において、内部通路24aを流れる一部液化した冷媒と外気の間で熱交換させることにより、冷媒は外気から吸熱して温度が上がり、気化する。 The expansion valve 23 is a control valve whose throttle amount is variable by driving an electric motor, and rapidly expands a high-pressure refrigerant whose temperature has been lowered by heat exchange to lower the refrigerant temperature to a temperature lower than the outside air temperature. The evaporating heat exchanger 24 has an internal passage 24a that is a part of the refrigerant circuit 25, and the internal passage 24a is configured by a heat transfer tube on which a plurality of fins are mounted. In the evaporative heat exchanger 24, by exchanging heat between the partially liquefied refrigerant flowing through the internal passage 24a and the outside air, the refrigerant absorbs heat from the outside air, rises in temperature, and is vaporized.
貯湯運転は、ヒートポンプ式熱源機3において冷媒回路25に封入された冷媒を利用して湯水を加熱して、貯湯タンク5に貯湯する。圧縮機21から吐出された高温高圧の冷媒は、凝縮熱交換器22に供給されて湯水との熱交換により降温し、膨張弁23に送られて急膨張して外気温より低温になり、蒸発熱交換器24に送られて外気から吸熱して再び圧縮機21に向かう。凝縮熱交換器22では、循環ポンプ11の駆動により貯湯タンク5の下端部から循環用配管8aを通って供給された低温の湯水が加熱され、加熱された湯水が循環用配管8bを通って貯湯タンク5の上部から貯湯される。 In the hot water storage operation, the hot water is heated using the refrigerant sealed in the refrigerant circuit 25 in the heat pump type heat source device 3 and stored in the hot water storage tank 5. The high-temperature and high-pressure refrigerant discharged from the compressor 21 is supplied to the condensing heat exchanger 22 to be cooled by heat exchange with hot and cold water, sent to the expansion valve 23 and rapidly expanded to a temperature lower than the outside air temperature, and evaporated. The heat is sent to the heat exchanger 24, absorbs heat from the outside air, and returns to the compressor 21. In the condensation heat exchanger 22, the low-temperature hot water supplied from the lower end of the hot water storage tank 5 through the circulation pipe 8a is heated by the driving of the circulation pump 11, and the heated hot water is stored through the circulation pipe 8b. Hot water is stored from above the tank 5.
冷媒回路25は、圧縮機21の吐出側と凝縮熱交換器22の入口側を接続する冷媒通路25a,凝縮熱交換器22の出口側と膨張弁23の入口側を接続する冷媒通路25b,膨張弁23の出口側と蒸発熱交換器24の入口側を接続する冷媒通路25c,蒸発熱交換器24の出口側と圧縮機21の導入側を接続する冷媒通路25dを備えている。 The refrigerant circuit 25 includes a refrigerant passage 25a connecting the discharge side of the compressor 21 and the inlet side of the condensing heat exchanger 22, a refrigerant passage 25b connecting the outlet side of the condensing heat exchanger 22 and the inlet side of the expansion valve 23, and expansion. A refrigerant passage 25c connects the outlet side of the valve 23 and the inlet side of the evaporative heat exchanger 24, and a refrigerant passage 25d connects the outlet side of the evaporative heat exchanger 24 and the inlet side of the compressor 21.
冷媒通路25aには圧縮機21が吐出した冷媒の温度を検知する吐出温度センサ28が配設され、冷媒通路25dには蒸発熱交換器24の冷媒出口から供給される冷媒の温度を検知する出口温度センサ29が配設されている。吐出温度センサ28又は出口温度センサ29が除霜運転において冷媒温度を検知する温度検知手段である。 A discharge temperature sensor 28 for detecting the temperature of the refrigerant discharged from the compressor 21 is provided in the refrigerant passage 25a, and an outlet for detecting the temperature of the refrigerant supplied from the refrigerant outlet of the evaporative heat exchanger 24 is provided in the refrigerant passage 25d. A temperature sensor 29 is provided. The discharge temperature sensor 28 or the outlet temperature sensor 29 is a temperature detecting means for detecting the refrigerant temperature in the defrosting operation.
冷媒回路25には、凝縮熱交換器22と膨張弁23をバイパスするために、冷媒通路25aから分岐して冷媒通路25cに接続されたバイパス通路31が設けられている。バイパス通路31には、除霜運転時に補助制御ユニット33によって開閉制御される除霜弁32が配設されている。 In the refrigerant circuit 25, a bypass passage 31 branched from the refrigerant passage 25a and connected to the refrigerant passage 25c is provided in order to bypass the condensation heat exchanger 22 and the expansion valve 23. The bypass passage 31 is provided with a defrost valve 32 that is opened and closed by the auxiliary control unit 33 during the defrost operation.
蒸発熱交換器24の着霜は、例えば外気温度センサ30が検知する外気温が所定の外気温(例えば5℃)以下のときに、外気温と出口温度センサ29が検知する冷媒温度の差が所定の基準値(例えば10℃)以上になったことによって検知される。制御手段4は、蒸発熱交換器24の着霜を検知した場合には、除霜弁32を開放して除霜運転を行う。除霜弁32の開放により、圧縮機21から吐出された高温の冷媒がバイパス通路31を流通して蒸発熱交換器24に供給される。 The frost formation on the evaporative heat exchanger 24 is caused, for example, when the outside air temperature detected by the outside air temperature sensor 30 is equal to or lower than a predetermined outside air temperature (for example, 5 ° C.). It is detected when the temperature exceeds a predetermined reference value (for example, 10 ° C.). When detecting the frost formation on the evaporative heat exchanger 24, the control means 4 opens the defrost valve 32 to perform the defrost operation. By opening the defrost valve 32, the high-temperature refrigerant discharged from the compressor 21 flows through the bypass passage 31 and is supplied to the evaporative heat exchanger 24.
次に、制御手段4について説明する。
制御手段4は、貯湯給湯ユニット2に配設された主制御ユニット16と、ヒートポンプ式熱源機3に配設された補助制御ユニット33により構成され、ヒートポンプ給湯装置1の各部に配設された温度センサ等の検知信号に基づいて各種運転を制御する。即ち制御手段4は、循環ポンプ11や圧縮機21の駆動制御、混合弁13や膨張弁23の開度調整、除霜弁32の開閉制御等を行って、貯湯運転、給湯運転、除霜運転等を制御する。
Next, the control means 4 will be described.
The control means 4 includes a main control unit 16 provided in the hot water supply unit 2 and an auxiliary control unit 33 provided in the heat pump type heat source unit 3. Various operations are controlled based on detection signals from sensors and the like. That is, the control means 4 performs drive control of the circulation pump 11 and the compressor 21, adjustment of the opening degree of the mixing valve 13 and the expansion valve 23, and control of opening and closing of the defrost valve 32. And so on.
主制御ユニット16には、ユーザが操作可能な操作端末36が通信接続され、操作端末36の操作により例えば目標給湯温度が設定されると、その目標給湯温度が主制御ユニット16に送信される。補助制御ユニット33は、主制御ユニット16との間で通信可能であり、主制御ユニット16からの指令に従ってヒートポンプ式熱源機3の圧縮機21、膨張弁23、除霜弁32等の制御を行う。例えば、補助制御ユニット33は、圧縮機21に駆動回転数等を送信し、圧縮機21の駆動時の電流値又は消費電力値等を受信している。 An operation terminal 36 operable by a user is connected to the main control unit 16 via communication. When, for example, a target hot water supply temperature is set by operating the operation terminal 36, the target hot water supply temperature is transmitted to the main control unit 16. The auxiliary control unit 33 can communicate with the main control unit 16, and controls the compressor 21, the expansion valve 23, the defrost valve 32, and the like of the heat pump heat source unit 3 according to a command from the main control unit 16. . For example, the auxiliary control unit 33 transmits a driving speed and the like to the compressor 21 and receives a current value or a power consumption value when the compressor 21 is driven.
制御手段4は、貯湯運転中に蒸発熱交換器24の着霜を検知すると除霜運転を開始し、除霜運転中に除霜弁32及び膨張弁23の故障判定を行う故障判定手段を機能的に備えているが、制御手段4に通信接続された独立した故障判定手段を備えていてもよい。この除霜運転における故障判定制御について図2のフローチャートに基づいて説明する。図中のSi(i=1,2,・・・)はステップを表す。 The control means 4 starts the defrosting operation when the frost formation of the evaporative heat exchanger 24 is detected during the hot water storage operation, and functions as a failure determination means for performing a failure determination of the defrost valve 32 and the expansion valve 23 during the defrosting operation. However, an independent failure determination unit communicatively connected to the control unit 4 may be provided. The failure determination control in the defrosting operation will be described based on the flowchart of FIG. .. In the figure (i = 1, 2,...) Represent steps.
S1において、貯湯運転中に蒸発熱交換器24の着霜を検知したか否か判定する。着霜を検知して判定がYesの場合はS2に進み、判定がNoの場合はS1の判定に戻る。次にS2において、除霜弁32の開放制御を行ってS3に進む。除霜弁32は例えばノーマルクローズ式の電磁弁であり、通電制御により瞬時に開放、閉止が可能である。 In S1, it is determined whether frost formation on the evaporative heat exchanger 24 has been detected during the hot water storage operation. If frost formation is detected and the determination is Yes, the process proceeds to S2, and if the determination is No, the process returns to S1. Next, in S2, opening control of the defrost valve 32 is performed, and the process proceeds to S3. The defrost valve 32 is, for example, a normally-closed solenoid valve, and can be opened and closed instantaneously by energization control.
次にS3において、除霜弁32の開放制御をしてから所定時間内(例えば5秒以内)に、圧縮機21の電流値又は消費電力値の所定値以上(例えば1A以上又は100W以上)の低下を検知したか否か判定する。除霜弁32が正常に作動すれば開放後すぐに圧縮機21の負荷が小さくなって圧縮機21の電流値又は消費電力値が低下することを利用して、除霜弁32の故障判定を早く行うことができる。判定がYesの場合はS4に進み、判定がNoの場合はS12に進む。 Next, in S3, within a predetermined time (for example, within 5 seconds) after performing the opening control of the defrost valve 32, the current value or the power consumption value of the compressor 21 is not less than a predetermined value (for example, 1A or more or 100W or more). It is determined whether a drop has been detected. If the defrost valve 32 operates normally, the failure determination of the defrost valve 32 is performed by utilizing the fact that the load on the compressor 21 decreases immediately after opening and the current value or power consumption value of the compressor 21 decreases. Can be done quickly. When the determination is Yes, the process proceeds to S4, and when the determination is No, the process proceeds to S12.
次にS4において、除霜弁32が正常に作動したので膨張弁23の閉止制御を行ってS5に進む。除霜弁32が開放された状態で膨張弁23を閉止するので、圧縮機21の吐出側は閉塞しておらず圧縮機21に過剰な負荷がかからない。そしてS5において、膨張弁23の閉止制御をした後の所定時間内に(例えば40秒以内に)、冷媒温度の予め定められた温度(例えば40℃)以上の上昇を検知したか否か判定する。判定がYesの場合はS8に進み、判定がNoの場合はS6に進む。 Next, in S4, since the defrost valve 32 operates normally, the closing control of the expansion valve 23 is performed, and the process proceeds to S5. Since the expansion valve 23 is closed while the defrost valve 32 is open, the discharge side of the compressor 21 is not closed and an excessive load is not applied to the compressor 21. Then, in S5, it is determined whether or not a rise in the refrigerant temperature equal to or higher than a predetermined temperature (for example, 40 ° C.) is detected within a predetermined time (for example, within 40 seconds) after the closing control of the expansion valve 23 is performed. . When the determination is Yes, the process proceeds to S8, and when the determination is No, the process proceeds to S6.
S5の判定がNoの場合にはS6において、膨張弁23が故障していると判定してS7に進む。そしてS7において、膨張弁23の故障を報知してS8に進む。膨張弁23の故障の報知は、例えば操作端末36のランプ等による表示や操作端末36からの音声アラーム等の出力によって行われる。 If the determination in S5 is No, in S6, it is determined that the expansion valve 23 has failed, and the process proceeds to S7. Then, in S7, a failure of the expansion valve 23 is notified, and the process proceeds to S8. The notification of the failure of the expansion valve 23 is performed by, for example, displaying a lamp on the operation terminal 36 or outputting an audio alarm from the operation terminal 36.
次にS8において、除霜完了まで(例えば、所定時間経過するまで、又は出口温度センサ29の検知温度が所定の温度になるまで)除霜運転を継続した後、S9に進む。次にS9において膨張弁23を開放制御してS10に進み、S10において除霜弁32を閉止制御して除霜運転を終了し、貯湯運転に戻る。 Next, in S8, after the defrosting operation is continued until the defrosting is completed (for example, until a predetermined time elapses or the temperature detected by the outlet temperature sensor 29 reaches a predetermined temperature), the process proceeds to S9. Next, in S9, the expansion valve 23 is opened and the process proceeds to S10. In S10, the defrost valve 32 is closed and the defrosting operation is terminated, and the operation returns to the hot water storage operation.
一方、S3の判定がNoの場合にはS11において、除霜弁32が故障していると判定してS12に進む。そしてS12において、除霜弁32の故障を報知して除霜運転を終了し貯湯運転を停止させる。除霜弁32の故障の報知は、例えば操作端末36のランプ等による表示や操作端末36からの音声アラーム等の出力によって行われる。 On the other hand, if the determination in S3 is No, in S11, it is determined that the defrost valve 32 has failed, and the process proceeds to S12. Then, in S12, the failure of the defrost valve 32 is notified and the defrosting operation is ended to stop the hot water storage operation. The notification of the failure of the defrost valve 32 is performed, for example, by displaying the operation terminal 36 with a lamp or the like or outputting an audio alarm from the operation terminal 36.
次に、本発明のヒートポンプ給湯装置1の作用、効果について説明する。
貯湯運転中に蒸発熱交換器24の着霜が検知されると、除霜運転を行う。除霜運転が開始されて除霜弁32を開放制御したときに、バイパス通路31を圧縮機21から吐出された高温の冷媒が流通すれば、圧縮機21の吐出側の圧力が下がって圧縮機21の負荷が小さくなるので、圧縮機21の電流値又は消費電力値が低下する。一方、除霜弁32を開放制御したときに除霜弁32の故障によってバイパス通路31が閉塞していれば、圧縮機21の吐出側の圧力は変化せず、圧縮機21の負荷が変化しないので、圧縮機21の電流値又は消費電力は変化しない。従って、圧縮機21の電流値又は消費電力の変化に基づいて除霜弁32の故障判定を早く行うことができる。
Next, the operation and effect of the heat pump water heater 1 of the present invention will be described.
If frost formation on the evaporative heat exchanger 24 is detected during the hot water storage operation, the defrost operation is performed. If the high-temperature refrigerant discharged from the compressor 21 flows through the bypass passage 31 when the defrosting operation is started and the defrosting valve 32 is controlled to open, the pressure on the discharge side of the compressor 21 decreases and the compressor Since the load on the compressor 21 decreases, the current value or the power consumption value of the compressor 21 decreases. On the other hand, if the bypass passage 31 is closed due to the failure of the defrost valve 32 when the defrost valve 32 is controlled to open, the pressure on the discharge side of the compressor 21 does not change and the load on the compressor 21 does not change. Therefore, the current value or power consumption of the compressor 21 does not change. Therefore, it is possible to quickly determine the failure of the defrost valve 32 based on a change in the current value or the power consumption of the compressor 21.
また、除霜弁32が正常に開放されてから膨張弁23を閉止制御する。従って、バイパス通路31が閉塞している場合に圧縮機21の吐出側が閉塞されず、圧縮機21に過剰な負荷がかからないので、圧縮機21の故障を予防できる。また、膨張弁23が閉止されれば低温の冷媒が流通しないので除霜能力は低下せず、冷媒温度の大きな変化を温度検知手段である吐出温度センサ28又は出口温度センサ29が検知する。一方、膨張弁23が故障によって閉止されなければ低温の冷媒がバイパス通路31の高温の冷媒と混合して流通するので、温度検知手段が検知する冷媒温度の変化が小さくなる。従って、温度検知手段が検知した冷媒温度の変化に基づいて膨張弁23の故障判定を行うことができる。 After the defrost valve 32 is normally opened, the expansion valve 23 is controlled to close. Accordingly, when the bypass passage 31 is closed, the discharge side of the compressor 21 is not closed, and an excessive load is not applied to the compressor 21, so that the failure of the compressor 21 can be prevented. When the expansion valve 23 is closed, low-temperature refrigerant does not flow, so that the defrosting ability does not decrease, and a large change in the refrigerant temperature is detected by the discharge temperature sensor 28 or the outlet temperature sensor 29 as the temperature detecting means. On the other hand, if the expansion valve 23 is not closed due to a failure, the low-temperature refrigerant mixes with the high-temperature refrigerant in the bypass passage 31 and circulates, so that the change in the refrigerant temperature detected by the temperature detecting means is small. Therefore, the failure of the expansion valve 23 can be determined based on the change in the refrigerant temperature detected by the temperature detecting means.
その上、温度検知手段は、既存の吐出温度センサ28又は出口温度センサ29であり、既存の温度検知手段を利用して膨張弁23の故障判定を行うことができる。 In addition, the temperature detecting means is the existing discharge temperature sensor 28 or the outlet temperature sensor 29, and the failure of the expansion valve 23 can be determined using the existing temperature detecting means.
膨張弁23が故障と判定された後は、除霜運転を停止するようにしてもよい。除霜運転は貯湯が完了したときにも実行され、このとき除霜弁32及び膨張弁23の故障判定制御も行われるように構成することもできる。また、ヒートポンプ給湯装置は、例えば燃焼式の補助加熱装置を備えていてもよい。その他、当業者であれば、本発明の趣旨を逸脱することなく上記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 After it is determined that the expansion valve 23 has failed, the defrosting operation may be stopped. The defrosting operation is also executed when the hot water storage is completed, and at this time, the failure determination control of the defrosting valve 32 and the expansion valve 23 may be performed. Further, the heat pump hot water supply device may include, for example, a combustion type auxiliary heating device. In addition, those skilled in the art can implement the above-described embodiment in variously modified forms without departing from the gist of the present invention, and the present invention includes such modified forms.
1 :ヒートポンプ給湯装置
3 :ヒートポンプ式熱源機
4 :制御手段
5 :貯湯タンク
16 :主制御ユニット
21 :圧縮機
22 :凝縮熱交換器
23 :膨張弁(膨張手段)
24 :蒸発熱交換器
28 :吐出温度センサ
29 :出口温度センサ
30 :外気温度センサ
31 :バイパス通路
32 :除霜弁
33 :補助制御ユニット
1: Heat pump hot water supply device 3: Heat pump type heat source device 4: Control means 5: Hot water storage tank 16: Main control unit 21: Compressor 22: Condensing heat exchanger 23: Expansion valve (expansion means)
24: Evaporation heat exchanger 28: Discharge temperature sensor 29: Outlet temperature sensor 30: Outside air temperature sensor 31: Bypass passage 32: Defrost valve 33: Auxiliary control unit
Claims (3)
前記制御手段が前記除霜弁を開放制御したときに、前記圧縮機の電流値又は消費電力値の変化に基づいて前記除霜弁の故障判定を行う故障判定手段を備えたことを特徴とするヒートポンプ給湯装置。 A heat pump type heat source device configured by connecting a compressor, a condensation heat exchanger, an expansion means, and an evaporative heat exchanger by a refrigerant circuit; a hot water storage tank; and the hot water tank heated by the heat pump type heat source device. Control means for controlling a hot water storage operation for storing hot water in the refrigerant circuit, the refrigerant circuit has a bypass passage for bypassing the expansion means, and a defrost valve for opening and closing the bypass passage, and frost formation on the evaporative heat exchanger is detected. In the case of the heat pump hot water supply device in which the control means opens the defrost valve and closes the expansion means to perform a defrost operation when performed.
When the control unit controls the opening of the defrost valve, a failure determination unit that determines a failure of the defrost valve based on a change in a current value or a power consumption value of the compressor is provided. Heat pump water heater.
前記故障判定手段が前記除霜弁の故障判定で正常と判定した後で、前記制御手段が前記膨張手段を閉止制御したときに、前記故障判定手段は前記温度検知手段が検知した冷媒温度の変化に基づいて前記膨張手段の故障判定を行うことを特徴とする請求項1に記載のヒートポンプ給湯装置。 The refrigerant circuit includes a temperature detection unit that detects a refrigerant temperature during the defrosting operation,
After the failure determination unit determines that the defrost valve is normal in the failure determination, when the control unit controls the closing of the expansion unit, the failure determination unit determines a change in the refrigerant temperature detected by the temperature detection unit. The heat pump hot water supply apparatus according to claim 1, wherein a failure determination of the expansion unit is performed based on the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018120150A JP7135493B2 (en) | 2018-06-25 | 2018-06-25 | heat pump water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018120150A JP7135493B2 (en) | 2018-06-25 | 2018-06-25 | heat pump water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020003093A true JP2020003093A (en) | 2020-01-09 |
JP7135493B2 JP7135493B2 (en) | 2022-09-13 |
Family
ID=69099575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018120150A Active JP7135493B2 (en) | 2018-06-25 | 2018-06-25 | heat pump water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7135493B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113237227A (en) * | 2021-03-30 | 2021-08-10 | 浙江中广电器股份有限公司 | Heat pump water heater and defrosting operation control method thereof |
CN113654576A (en) * | 2021-07-02 | 2021-11-16 | 华人运通(江苏)技术有限公司 | Four-way valve position identification method and system based on water pump current |
CN114440451A (en) * | 2022-03-01 | 2022-05-06 | 浙江乾丰智能科技有限公司 | Intelligent air energy water heater and using method |
CN114440453A (en) * | 2022-03-01 | 2022-05-06 | 浙江乾丰智能科技有限公司 | Air energy water heater frosting degree judgment method based on fuzzy algorithm |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002147818A (en) * | 2000-11-14 | 2002-05-22 | Sharp Corp | Air conditioner and failure in operation deciding method |
JP2006052939A (en) * | 2004-07-16 | 2006-02-23 | Daikin Ind Ltd | Air conditioner |
JP2015001350A (en) * | 2013-06-17 | 2015-01-05 | 株式会社ノーリツ | Heat pump water heater |
JP2015224803A (en) * | 2014-05-26 | 2015-12-14 | 株式会社ノーリツ | Heat pump hot water supply device |
-
2018
- 2018-06-25 JP JP2018120150A patent/JP7135493B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002147818A (en) * | 2000-11-14 | 2002-05-22 | Sharp Corp | Air conditioner and failure in operation deciding method |
JP2006052939A (en) * | 2004-07-16 | 2006-02-23 | Daikin Ind Ltd | Air conditioner |
JP2015001350A (en) * | 2013-06-17 | 2015-01-05 | 株式会社ノーリツ | Heat pump water heater |
JP2015224803A (en) * | 2014-05-26 | 2015-12-14 | 株式会社ノーリツ | Heat pump hot water supply device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113237227A (en) * | 2021-03-30 | 2021-08-10 | 浙江中广电器股份有限公司 | Heat pump water heater and defrosting operation control method thereof |
CN113654576A (en) * | 2021-07-02 | 2021-11-16 | 华人运通(江苏)技术有限公司 | Four-way valve position identification method and system based on water pump current |
CN113654576B (en) * | 2021-07-02 | 2023-12-19 | 华人运通(江苏)技术有限公司 | Four-way valve position identification method and system based on water pump current |
CN114440451A (en) * | 2022-03-01 | 2022-05-06 | 浙江乾丰智能科技有限公司 | Intelligent air energy water heater and using method |
CN114440453A (en) * | 2022-03-01 | 2022-05-06 | 浙江乾丰智能科技有限公司 | Air energy water heater frosting degree judgment method based on fuzzy algorithm |
CN114440451B (en) * | 2022-03-01 | 2023-11-10 | 北溪特(浙江)科技有限公司 | Intelligent air energy water heater and use method thereof |
CN114440453B (en) * | 2022-03-01 | 2024-01-16 | 北溪特(浙江)科技有限公司 | Air energy water heater frosting degree judging method based on fuzzy algorithm |
Also Published As
Publication number | Publication date |
---|---|
JP7135493B2 (en) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020003093A (en) | Heat pump water heater | |
US10753645B2 (en) | Refrigeration cycle apparatus | |
JP6398324B2 (en) | Heat pump water heater | |
JP2009079813A (en) | Heat source-side unit, air conditioning device and air conditioning system | |
JP2009133543A (en) | Refrigerating device | |
JP5176474B2 (en) | Heat pump water heater | |
JP2002188860A (en) | Heat pump water heater | |
JP2012007751A (en) | Heat pump cycle device | |
JP2007333340A (en) | Heat pump type hot water supply apparatus | |
JP6465332B2 (en) | Heat pump hot water supply system | |
JP2002213821A (en) | Heat-pump water heater | |
WO2022038869A1 (en) | Battery temperature regulation system | |
JP6969223B2 (en) | Heat pump heat source machine | |
JPH0554022B2 (en) | ||
JP2005147622A (en) | Air conditioner | |
JPH062982A (en) | Absorption room cooling/heating system and controlling method therefor | |
JP6327499B2 (en) | Heat pump water heater | |
JP3448682B2 (en) | Absorption type cold heat generator | |
JP2002295899A (en) | Hot-water storage type water-heating heat source | |
JP2004278814A (en) | Freezing device and its controlling method | |
JP2003222416A (en) | Heat storage type air conditioner | |
JP2004239539A (en) | Heat pump type water heater | |
JP3546102B2 (en) | Engine driven air conditioner | |
JP2008170045A (en) | Air-conditioning system and its operation method | |
JP2002295908A (en) | Heating medium circulating type heating equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220815 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7135493 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |