本発明のタイヤ用ゴム組成物は、セチルトリメチルアンモニウムブロマイド吸着比表面積(CTAB)が150〜160m2/g、窒素吸着比表面積が175〜185m2/g、ヨウ素吸着量(IA)が170〜180mg/g、IAに対するCTABの比率(CTAB/IA)が0.89以上、圧縮ジブチルフタレート吸油量が110〜120ml/100g、ジブチルフタレート吸油量が133〜143ml/100gであるカーボンブラック(1)を含む。これにより、良好な加工性能を維持しつつ、耐摩耗性能及び耐破壊性能を改善できる。
カーボンブラック(1)は、通常のカーボンブラックよりも高ストラクチャー化されているため、ゴム成分とカーボンブラックとの相互作用が強くなり、耐摩耗性能、耐破壊性能が改善され、また、良好な加工性能が維持されると考えられる。
(ゴム組成物)
上記ゴム組成物は、カーボンブラック(1)を含む。
カーボンブラック(1)のセチルトリメチルアンモニウムブロマイド吸着比表面積(CTAB)は、150〜160m2/gであればよいが、好ましくは153m2/g以上であり、また、好ましくは157m2/g以下である。上記範囲内であると、効果が好適に得られる。
なお、本明細書において、カーボンブラックのCTABは、JIS K6217−3:2001に準拠して測定される値である。
カーボンブラック(1)の窒素吸着比表面積(N2SA)は、175〜185m2/gであればよいが、好ましくは178m2/g以上であり、また、好ましくは182m2/g以下である。上記範囲内であると、効果が好適に得られる。
なお、本明細書において、カーボンブラックのN2SAは、JIS K6217−2:2001に準拠して測定される値である。
カーボンブラック(1)のヨウ素吸着量(IA)は、170〜180mg/gであればよいが、好ましくは173mg/g以上であり、また、好ましくは177mg/g以下である。上記範囲内であると、効果が好適に得られる。
なお、本明細書において、カーボンブラックのIAは、JIS K6217−1:2008に準拠して測定される値である。
カーボンブラック(1)のIAに対するCTABの比率(CTAB/IA)は、0.89m2/mg以上であればよいが、好ましくは0.94m2/mg以上であり、また、好ましくは0.99m2/mg以下である。上記範囲内であると、効果が好適に得られる。
CTAB/IAで表される表面活性指標は、カーボンブラックの結晶化度(グラファイト化率)の指標と考えることができる。すなわち、CTAB/IAが高いほど結晶化が進んでいないことを示し、カーボンブラックとゴム成分との相互作用が大きくなる傾向にある。
また、CTAB/IAは、カーボンブラック表面に存在する酸性官能基の量を評価するパラメーターとしても位置づけられる。カーボンブラック表面の酸性官能基は、ゴム成分との相互作用に寄与するが、CTAB/IAが高いほどカーボンブラックの表面に酸性官能基が多く存在していることを示す。したがって、CTAB/IAが上記範囲内であると、ゴム成分に対してより顕著な補強効果を奏することができ、効果が好適に得られる。
カーボンブラック(1)の圧縮ジブチルフタレート吸油量(24M4DBP)は、110〜120ml/100gであればよいが、好ましくは113ml/100g以上であり、また、好ましくは117ml/100g以下である。上記範囲内であると、効果が好適に得られる。
なお、本明細書において、カーボンブラックの24M4DBPは、ASTM D3493−85aに準拠して測定される値である。
カーボンブラック(1)のジブチルフタレート吸油量(DBP)は、133〜143ml/100gであればよいが、好ましくは136ml/100g以上であり、また、好ましくは140ml/100g以下である。上記範囲内であると、効果が好適に得られる。
なお、本明細書において、カーボンブラックのDBPは、JIS K6217−4:2001に準拠して測定される値である。
カーボンブラック(1)は、当業者であれば、上記目標特性が定まれば公知の製造方法により製造できる。その製造方式は特に限定されないが、具体的には、燃焼ガス中に原料油を噴霧してカーボンブラックを製造する方法が採用されることが好ましく、例えば、ファーネス法やチャンネル法等の従来から公知の方法が用いられる。なかでも、以下に示すファーネス法が好ましい。
ファーネス法(オイルファーネス法)は、例えば特開2004−43598号公報、特開2004−277443号公報などのように、反応炉内に高温燃焼ガス流を発生させる燃焼帯域、高温燃焼ガス流に原料炭化水素を導入して原料炭化水素を熱分解反応によりカーボンブラックに転化させる反応帯域、及び反応ガスを急冷して反応を停止する反応停止帯域を有する装置を用いるプロセスであって、燃焼条件、高温燃焼ガス流速、反応炉内への原料油の導入条件、カーボンブラック転化から該反応停止までの時間等の諸条件を制御することによって種々の特性のカーボンブラックを製造することができる。
燃焼帯域では、高温燃焼ガスを形成させるため、酸素含有ガスとして空気、酸素またはそれらの混合物とガス状または液体の燃料炭化水素を混合燃焼させる。燃料炭化水素としては、一酸化炭素、天然ガス、石炭ガス、石油ガス、重油等の石油系液体燃料、クレオソート油等の石炭系液体燃料が使用される。燃焼は、燃焼温度が1400℃〜2000℃の範囲となるように制御されるのが好ましい。
反応帯域では、燃焼帯域で得られた高温燃焼ガス流に並流又は横方向に設けたバーナーから原料炭化水素を噴霧導入し、原料炭化水素を熱分解させてカーボンブラックに転化させる。好ましくは、ガス流速が100〜1000m/sの範囲の高温燃焼ガス流に、原料油を1本以上のバーナーにより導入する。原料油は、2本以上のバーナーにより分割し導入することが好ましい。また、反応効率を向上させる為に反応ゾーンに絞り部を設けることが好ましい。絞り部の絞り部径/絞り部上流域径の比は、0.1〜0.8が好ましい。
反応停止帯域では、高温反応ガスを1000〜800℃以下に冷却する為、水スプレー等が行われる。原料油を導入してからの反応停止までの時間は2〜100m秒が好ましい。冷却されたカーボンブラックは、ガスから分離回収された後、造粒、乾燥等の公知のプロセスをとることができる。
原料油の具体例としては、例えば、(1)アントラセン等の芳香族炭化水素;クレオソート油等の石炭系炭化水素;EHEオイル(エチレン製造時の複製油)、FCCオイル(流動接触分解残渣油)等の石油系重質油からなる群より選択される少なくとも1種と、(2)脂肪族炭化水素との混合原料油が挙げられる。なお、これらは、改質されていてもよい。なかでも、石炭系炭化水素と脂肪族炭化水素との混合原料油が好ましい。
脂肪族炭化水素としては、例えば、プロセスオイルなどに代表される石油系脂肪族炭化水素、及び大豆油、なたね油、パーム油などの脂肪酸に代表される動植物油等を使用することができる。
ここで動植物油とは、魚類肝臓から得られる脂肪油(肝油)やクジラからとれる海獣油のような水産動物油及び牛脂、豚脂などのような陸産動物油のほか、植物の種子、果実、核などから採取される脂肪酸グリセリドを成分とする油脂等を含有する。
カーボンブラック(1)の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上、特に好ましくは30質量部以上、最も好ましくは35質量部以上である。また該カーボンブラックの含有量は、好ましくは150質量部以下、より好ましくは100質量部以下、更に好ましくは70質量部以下、特に好ましくは60質量部以下、最も好ましくは50質量部以下である。上記範囲内であると、効果がより好適に得られる。
上記ゴム組成物は、カーボンブラック(1)と共に、カーボンブラック(1)以外のカーボンブラック(以下においては、カーボンブラック(2)ともいう)を配合することが好ましい。これにより、効果がより好適に得られる。
カーボンブラック(2)としては、カーボンブラック(1)以外のカーボンブラックであれば特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
カーボンブラック(2)の窒素吸着比表面積(N2SA)は、好ましくは5m2/g以上、より好ましくは50m2/g以上、更に好ましくは80m2/g以上、特に好ましくは100m2/g以上であり、また、好ましくは175m2/g未満、より好ましくは130m2/g以下、更に好ましくは120m2/g以下である。上記範囲内であると、効果がより好適に得られる。
カーボンブラック(2)のジブチルフタレート吸油量(DBP)は、好ましくは100ml/100g以上、より好ましくは107ml/100gであり、また、好ましくは130ml/100g以下、更に好ましくは123ml/100g以下である。上記範囲内であると、効果がより好適に得られる。
カーボンブラック(2)としては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。
カーボンブラック(2)を含有する場合、カーボンブラック(2)の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは7質量部以上、更に好ましくは15質量部以上であり、また、好ましくは100質量部以下、より好ましくは40質量部以下、更に好ましくは25質量部以下である。上記範囲内であると、効果がより好適に得られる。
カーボンブラック(1)及びカーボンブラック(2)の合計含有量は、ゴム成分100質量部に対して、好ましくは6質量部以上、より好ましくは35質量部以上、更に好ましくは50質量部以上であり、また、好ましくは250質量部以下、より好ましくは100質量部以下、更に好ましくは60質量部以下である。上記範囲内であると、効果がより好適に得られる。
カーボンブラック100質量%中のカーボンブラック(1)の含有量は、好ましくは10質量%以上、より好ましくは40質量%以上、更に好ましくは60質量%以上であり、また、好ましくは90質量%以下、より好ましくは80質量%以下である。上記範囲内であると、効果がより好適に得られる。
本発明で使用できるゴム成分としては、例えば、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)等のジエン系ゴムが挙げられる。ゴム成分は、単独で用いてもよく、2種以上を併用してもよい。なかでも、効果がより好適に得られるという理由から、イソプレン系ゴム、BRが好ましく、イソプレン系ゴム及びBRの併用がより好ましい。
BRは特に限定されず、例えば、高シス含量のBR、シンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、耐摩耗性能が良好であるという理由から、BRのシス含量は90質量%以上が好ましい。
BRは、非変性BRでもよいし、変性BRでもよい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
変性BRとしては、シリカ等の充填剤と相互作用する官能基を有するBRであればよく、例えば、BRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性BR(末端に上記官能基を有する末端変性BR)や、主鎖に上記官能基を有する主鎖変性BRや、主鎖及び末端に上記官能基を有する主鎖末端変性BR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性BR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性BR等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、効果がより好適に得られるという理由から、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1〜6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1〜6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1〜6のアルコキシシリル基)が好ましい。
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
BRを含有する場合、ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。また、該含有量は、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質天然ゴム、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質天然ゴムとしては、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、天然ゴム(NR)、改質天然ゴム(高純度天然ゴム(UPNR))が好ましく、改質天然ゴム(高純度天然ゴム(UPNR))がより好ましい。非ゴム成分が除去された改質天然ゴム(高純度天然ゴム(UPNR))はカーボンブラック(特に、カーボンブラック(1))との親和性が良好であり、改質天然ゴム(高純度天然ゴム(UPNR))とカーボンブラック(1)とを併用することにより、耐摩耗性能及び耐破壊性能を相乗的に改善できる。
改質天然ゴム(高純度天然ゴム(UPNR))は、タンパク質、リン脂質などの非ゴム成分が除去されることにより高純度化された天然ゴムであれば特に限定されない。なかでも、高純度化され、かつpHが2〜7に調整された改質天然ゴムがより好ましい。改質天然ゴムは、単独で用いてもよいし、2種以上を併用してもよい。なお、本明細書において、非ゴム成分が除去されとは、非ゴム成分が少しでも除去されていればよく、全ての非ゴム成分が除去されていることを意味するものではない。
タンパク質、リン脂質などの非ゴム成分を除去して高純度化するとともに、ゴムのpHを適切な値にコントロールした改質天然ゴムは、加工性能、耐摩耗性能、耐破壊性能が改善される。また、非ゴム成分の除去やゴムが塩基性又は強酸性となることでゴムの劣化が進行し易くなるが、ゴムのpHを所定範囲に調整することで、保存中の分子量の低下が抑制されるので、良好な耐熱老化性が得られる。その結果、混練工程でのゴム物性の低下防止、充填剤の分散性向上が実現し、加工性能、耐摩耗性能、耐破壊性能の性能バランスが改善される。
ここで、高純度化とは、天然ポリイソプレノイド成分以外のリン脂質、タンパク質等の不純物を取り除くことである。天然ゴムは、イソプレノイド成分が、前記不純物成分に被覆されているような構造となっており、前記成分を取り除くことにより、イソプレノイド成分の構造が変化して、配合剤との相互作用が変わってエネルギーロスが減ったり、耐久性が向上したり、より良いゴム組成物を得ることができると推察される。
高純度化され、かつpHが2〜7に調整された改質天然ゴムとしては、非ゴム成分量を低減して高純度化され、かつゴムのpHが2〜7の改質天然ゴムであれば特に限定されず、具体的には、(a)天然ゴムの非ゴム成分を除去した後、酸性化合物で処理して得られ、pHが2〜7である改質天然ゴム、(b)ケン化天然ゴムラテックスを洗浄し、更に酸性化合物で処理して得られ、pHが2〜7である改質天然ゴム、(c)脱蛋白天然ゴムラテックスを洗浄し、更に酸性化合物で処理して得られ、pHが2〜7である改質天然ゴム、(d)天然ゴムラテックスを凝集(凝固)させ、凝集(凝固)したゴムを粉砕し、水で洗浄を繰り返して得られ、pHが2〜7である改質天然ゴム、等が挙げられる。
このように、上記改質天然ゴムは、ケン化天然ゴムラテックスや脱蛋白天然ゴムラテックスを、蒸留水などで水洗し、更に酸性化合物で処理する製法等により調製できるが、水洗に用いた蒸留水のpHに比べて、酸性化合物の処理により酸性側にシフトさせ、pHの値を下げることが重要である。通常、蒸留水のpHが7.00ということはなく、5〜6程度であるが、この場合は、酸性化合物の処理によりpHの値を5〜6よりも酸性側に低下させることが重要となる。具体的には、水洗に用いる水のpH値より、酸性化合物の処理でpH値を0.2〜2低下させることが好ましい。
上記改質天然ゴムのpHは2〜7であり、好ましくは3〜6、より好ましくは4〜6である。上記範囲内に調整することで、耐熱老化性の低下が防止され、前記各種性能を顕著に改善できる。
なお、改質天然ゴムのpHは、ゴムを各辺2mm角以内の大きさに切って蒸留水に浸漬し、マイクロ波を照射しながら90℃で15分間抽出し、浸漬水をpHメーターを用いて測定された値であり、具体的には後述の実施例に記載の方法で測定する。ここで、抽出については、超音波洗浄器などで1時間抽出してもゴム内部から完全に水溶性成分を抽出することはできないため、正確に内部のpHを知ることはできないが、本手法で抽出することでゴムの実体を知ることが可能になる。
上記改質天然ゴムは、上記(a)〜(d)等、各種方法により高純度化したものであり、例えば、該改質天然ゴム中のリン含有量は、好ましくは500ppm以下、より好ましくは400ppm以下、更に好ましくは300ppm以下、特に好ましくは200ppm以下、最も好ましくは150ppm以下である。これにより、効果がより好適に得られる。
なお、上記リン含有量は、ICP発光分析等、従来の方法で測定できる。リンは、天然ゴムに含まれるリン脂質に由来するものと考えられる。
上記改質天然ゴムは、人工の老化防止剤を含んでいる場合、アセトン中に室温(25℃)下で48時間浸漬した後の窒素含有量が、0.15質量%以下であることが好ましく、0.10質量%以下であることがより好ましい。これにより、効果がより好適に得られる。
高純度化した天然ゴムは天然ゴムが元々有しているといわれる天然の老化防止剤成分が除去されているため、長期の保存で劣化するおそれがある。そのため、人工の老化防止剤が添加されることがある。上記窒素含有量は、アセトン抽出によりゴム中の人工の老化防止剤を除去した後の測定値である。上記窒素含有量は、ケルダール法、微量窒素量計等、従来の方法で測定できる。窒素は、タンパク質やアミノ酸に由来するものである。
上記改質天然ゴムは、JIS K6300:2001−1に準拠して測定したムーニー粘度ML(1+4)130℃が75以下であることが好ましく、より好ましくは40〜75、更に好ましくは45〜75、特に好ましくは50〜70、最も好ましくは55〜65である。75以下であることにより、ゴム混練前に通常必要な素練りが不要となる。従って、素練りする工程を経ずに作製された上記改質天然ゴムをゴム組成物の配合材料として好適に使用できる。
上記改質天然ゴムは、上記ムーニー粘度ML(1+4)130℃について、下記式で表される耐熱老化性指数が75〜120%のゴムであることが好ましい。
上記式で示される耐熱老化性指数は、より好ましくは80〜115%、更に好ましくは85〜110%である。ゴムの耐熱老化性の評価として種々の方法が報告されているが、上記ムーニー粘度ML(1+4)130℃の80℃で18時間熱処理した前後の変化率で評価する方法を用いることで、タイヤ製造時やタイヤ使用時などの耐熱老化性を正確に評価できる。ここで、前記範囲内であれば優れた耐熱老化性が得られ、また、前記各種性能の性能バランスを顕著に改善できる。
上記(a)〜(d)などの高純度化され、かつpHが2〜7に調整された上記改質天然ゴムは、(製法1)天然ゴムラテックスをケン化処理する工程1−1と、ケン化天然ゴムラテックスを洗浄する工程1−2と、酸性化合物で処理する工程1−3とを含む製造方法、(製法2)天然ゴムラテックスを脱蛋白処理する工程2−1と、脱蛋白天然ゴムラテックスを洗浄する工程2−2と、酸性化合物で処理する工程2−3とを含む製造方法、等により調製できる。
〔製法1〕
(工程1−1)
工程1−1では、天然ゴムラテックスをケン化処理する。これにより、ゴム中のリン脂質やタンパク質が分解され、非ゴム成分が低減されたケン化天然ゴムラテックスが調製される。
天然ゴムラテックスはヘベア樹などの天然ゴムの樹木の樹液として採取され、ゴム分のほか水、タンパク質、脂質、無機塩類などを含み、ゴム中のゲル分は種々の不純物の複合的な存在に基づくものと考えられている。本発明では、天然ゴムラテックスとして、ヘベア樹をタッピングして出てくる生ラテックス(フィールドラテックス)、あるいは遠心分離法やクリーミング法によって濃縮した濃縮ラテックス(精製ラテックス、常法によりアンモニアを添加したハイアンモニアラテックス、亜鉛華とTMTDとアンモニアによって安定化させたLATZラテックスなど)を使用できる。
ケン化処理の方法としては、例えば、特開2010−138359号公報、特開2010−174169号公報に記載の方法により好適に行うことができ、具体的には下記方法などで実施できる。
ケン化処理は、天然ゴムラテックスに、アルカリと、必要に応じて界面活性剤を添加して所定温度で一定時間、静置することで実施でき、必要に応じて撹拌などを行っても良い。
ケン化処理に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウムなどが好ましいが、これらに限定されない。界面活性剤としては特に限定されず、ポリオキシエチレンアルキルエーテル硫酸エステル塩などの公知のアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤が挙げられるが、ゴムを凝固させず良好にケン化できるという点から、ポリオキシエチレンアルキルエーテル硫酸エステル塩などのアニオン系界面活性剤が好適である。ケン化処理において、アルカリ及び界面活性剤の添加量、ケン化処理の温度及び時間は、適宜設定すればよい。
(工程1−2)
工程1−2では、上記工程1−1で得られたケン化天然ゴムラテックスを洗浄する。該洗浄により、タンパク質などの非ゴム成分を除去する。
工程1−2は、例えば、上記工程1−1で得られたケン化天然ゴムラテックスを凝集させて凝集ゴムを作製した後、得られた凝集ゴムを塩基性化合物で処理し、更に洗浄することにより実施できる。具体的には、凝集ゴムの作製後に、水で希釈して水溶性成分を水層に移して、水を除去することで非ゴム成分を除去でき、更に凝集後に塩基性化合物で処理することで凝集時にゴム内に閉じ込められた非ゴム成分を再溶解させることができる。これにより、凝集ゴム中に強く付着したタンパク質などの非ゴム成分を除去できる。
凝集方法としては、ギ酸、酢酸、硫酸などの酸を添加してpHを調整し、必要に応じて更に高分子凝集剤を添加する方法などが挙げられる。これにより、大きな凝集塊ではなく、直径数mm〜1mm以下から、20mm程度の粒状ゴムが形成され、塩基性化合物処理によりタンパク質などが充分に除去される。上記pHは、好ましくは3.0〜5.0、より好ましくは3.5〜4.5の範囲に調整される。
高分子凝集剤としては、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩の重合体などのカチオン性高分子凝集剤、アクリル酸塩の重合体などのアニオン系高分子凝集剤、アクリルアミド重合体などのノニオン性高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩−アクリル酸塩の共重合体などの両性高分子凝集剤などが挙げられる。高分子凝集剤の添加量は、適宜選択できる。
次いで、得られた凝集ゴムに対して、塩基性化合物による処理が施される。ここで、塩基性化合物としては特に限定されないが、タンパク質などの除去性能の点から、塩基性無機化合物が好適である。
塩基性無機化合物としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物などの金属水酸化物;アルカリ金属炭酸塩、アルカリ土類金属炭酸塩などの金属炭酸塩;アルカリ金属炭酸水素塩などの金属炭酸水素塩;アルカリ金属リン酸塩などの金属リン酸塩;アルカリ金属酢酸塩などの金属酢酸塩;アルカリ金属水素化物などの金属水素化物;アンモニアなどが挙げられる。
アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。アルカリ土類金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム、水酸化バリウムなどが挙げられる。アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。アルカリ土類金属炭酸塩としては、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムなどが挙げられる。アルカリ金属炭酸水素塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどが挙げられる。アルカリ金属リン酸塩としては、リン酸ナトリウム、リン酸水素ナトリウムなどが挙げられる。アルカリ金属酢酸塩としては、酢酸ナトリウム、酢酸カリウムなどが挙げられる。アルカリ金属水素化物としては、水素化ナトリウム、水素化カリウムなどが挙げられる。
なかでも、金属水酸化物、金属炭酸塩、金属炭酸水素塩、金属リン酸塩、アンモニアが好ましく、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アンモニアがより好ましく、炭酸ナトリウム、炭酸水素ナトリウムが更に好ましい。上記塩基性化合物は、単独で用いてもよく、2種以上を併用してもよい。
凝集ゴムを塩基性化合物で処理する方法は、凝集ゴムを上記塩基性化合物に接触させる方法であれば特に限定されず、例えば、凝集ゴムを塩基性化合物の水溶液に浸漬する方法、凝集ゴムに塩基性化合物の水溶液を噴霧する方法などが挙げられる。塩基性化合物の水溶液は、各塩基性化合物を水で希釈、溶解することで調製できる。
上記水溶液100質量%中の塩基性化合物の含有量は、好ましくは0.1質量%以上、より好ましくは0.3質量%以上である。0.1質量%以上であると、タンパク質を充分に除去できる傾向がある。該含有量は、好ましくは10質量%以下、より好ましくは5質量%以下である。10質量%以下であると、不必要に多量の塩基性化合物を使用することなく効率的に処理を行うことが可能となる。
上記塩基性化合物の水溶液のpHとしては、9〜13が好ましく、処理効率の点から、10〜12がより好ましい。
上記処理温度は適宜選択すればよいが、好ましくは10〜50℃、より好ましくは15〜35℃である。また、処理時間は、通常、1分以上であり、好ましくは10分以上、より好ましくは30分以上である。1分以上であると、効果がより好適に得られる傾向がある。上限に制限はないが、生産性の点から、好ましくは48時間以下、より好ましくは24時間以下、更に好ましくは16時間以下である。
塩基性化合物の処理後、洗浄処理が行われる。該洗浄処理により、凝集時にゴム内に閉じ込められたタンパク質などの非ゴム成分を充分除去すると同時に、凝集ゴムの表面だけでなく、内部に存在する塩基性化合物も充分に除去することが可能となる。特に、当該洗浄工程でゴム全体に残存する塩基性化合物を除去することにより、後述の酸性化合物による処理をゴム全体に充分に施すことが可能となり、ゴムの表面だけでなく、内部のpHも2〜7に調整できる。
洗浄方法としては、ゴム全体に含まれる非ゴム成分、塩基性化合物を充分に除去可能な手段を好適に用いることができ、例えば、ゴム分を水で希釈して洗浄後、遠心分離する方法、静置してゴムを浮かせ、水相のみを排出してゴム分を取り出す方法が挙げられる。洗浄回数は、タンパク質などの非ゴム成分、塩基性化合物を所望量に低減することが可能な任意の回数を採用できるが、乾燥ゴム300gに対して水1000mLを加えて撹拌した後に脱水するという洗浄サイクルを繰り返す手法なら、3回(3サイクル)以上が好ましく、5回(5サイクル)以上がより好ましく、7回(7サイクル)以上が更に好ましい。
洗浄処理は、ゴム中のリン含有量が500ppm以下(好ましくは200ppm以下)及び/又は窒素含有量が0.15質量%以下になるまで洗浄するものであることが好ましい。洗浄処理でリン脂質やタンパク質が充分に除去されることで、前記各種性能が改善される。
(工程1−3)
工程1−3では、工程1−2で得られた洗浄後のゴムに酸性化合物による処理が施される。前記のとおり、当該処理を施すことでゴム全体のpHが2〜7に調整され、前記各種性能に優れた改質天然ゴムを提供できる。なお、塩基性化合物の処理などに起因して耐熱老化性が低下する傾向があるが、更に酸性化合物で処理することで、そのような問題を防止し、良好な耐熱老化性が得られる。
酸性化合物としては特に限定されず、塩酸、硝酸、硫酸、リン酸、ポリリン酸、メタリン酸、ほう酸、ボロン酸、スルファニル酸、スルファミン酸などの無機酸;ギ酸、酢酸、グリコール酸、シュウ酸、プロピオン酸、マロン酸、コハク酸、アジピン酸、マレイン酸、リンゴ酸、酒石酸、クエン酸、安息香酸、フタル酸、イソフタル酸、グルタル酸、グルコン酸、乳酸、アスパラギン酸、グルタミン酸、サリチル酸、メタンスルホン酸、イタコン酸、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンジスルホン酸、トリフルオロメタンスルホン酸、スチレンスルホン酸、トリフルオロ酢酸、バルビツール酸、アクリル酸、メタクリル酸、桂皮酸、4−ヒドロキシ安息香酸、アミノ安息香酸、ナフタレンジスルホン酸、ヒドロキシベンゼンスルホン酸、トルエンスルフィン酸、ベンゼンスルフィン酸、α−レゾルシン酸、β−レゾルシン酸、γ−レゾルシン酸、没食子酸、フロログリシン、スルホサリチル酸、アスコルビン酸、エリソルビン酸、ビスフェノール酸などの有機酸などが挙げられる。なかでも、酢酸、硫酸、ギ酸などが好ましい。上記酸性化合物は、単独で用いてもよく、2種以上を併用してもよい。
凝集ゴムを酸で処理する方法は、凝集ゴムを上記酸性化合物に接触させる方法であれば特に限定されず、例えば、凝集ゴムを酸性化合物の水溶液に浸漬する方法、凝集ゴムに酸性化合物の水溶液を噴霧する方法などが挙げられる。酸性化合物の水溶液は、各酸性化合物を水で希釈、溶解することで調製できる。
上記水溶液100質量%中の酸性化合物の含有量は特に限定されないが、下限は好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、上限は好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。該含有量が上記範囲内であると、良好な耐熱老化性が得られる。
上記処理温度は適宜選択すればよいが、好ましくは10〜50℃、より好ましくは15〜35℃である。また、処理時間は、通常、好ましくは3秒以上であり、より好ましくは10秒以上、更に好ましくは30秒以上である。3秒以上であると、充分に中和でき、効果が好適に得られる傾向がある。上限に制限はないが、生産性の点から、好ましくは24時間以下、より好ましくは10時間以下、更に好ましくは5時間以下である。
酸性化合物の水溶液への浸漬などの処理では、pHを6以下に調整することが好ましい。
このような中和により、優れた耐熱老化性が得られる。該pHの上限は、より好ましくは5以下、更に好ましくは4.5以下である。下限は特に限定されず、浸漬時間にもよるが、酸が強すぎるとゴムが劣化したり、廃水処理が面倒になったりするため、好ましくは1以上、より好ましくは2以上である。なお、浸漬処理は、酸性化合物の水溶液中に凝集ゴムを放置しておくこと等で実施できる。
処理後に、酸性化合物の処理に使用した該化合物を除去した後、処理後の凝集ゴムの洗浄処理を適宜実施してもよい。洗浄処理としては、上記と同様の方法が挙げられ、例えば、洗浄を繰り返すことで非ゴム成分を更に低減し、所望の含有量に調整すればよい。また、酸性化合物の処理後の凝集ゴムをロール式の絞り機等で絞ってシート状などにしてもよい。凝集ゴムを絞る工程を追加することで、凝集ゴムの表面と内部のpHを均一にすることができ、所望の性能を持つゴムが得られる。必要に応じて、洗浄や絞り工程を実施した後、クレーパーに通して裁断し、乾燥することにより、前記改質天然ゴムが得られる。なお、乾燥は特に限定されず、例えば、TSRを乾燥させるために使用されるトロリー式ドライヤー、真空乾燥機、エアドライヤー、ドラムドライヤー等の通常の乾燥機を用いて実施できる。
〔製法2〕
(工程2−1)
工程2−1では、天然ゴムラテックスを脱蛋白処理する。これにより、タンパク質などの非ゴム成分が除去された脱蛋白天然ゴムラテックスが調製できる。工程2−1で使用する天然ゴムラテックスとしては、前記と同様のものが挙げられる。
脱蛋白処理の方法としては、タンパク質の除去が可能な公知の方法を特に制限なく採用でき、例えば、天然ゴムラテックスに蛋白質分解酵素を添加して蛋白質を分解させる方法などが挙げられる。
脱蛋白処理に使用される蛋白質分解酵素としては特に限定されず、細菌由来のもの、糸状菌由来のもの、酵母由来のもののいずれでも構わない。具体的には、プロテアーゼ、ペプチターゼ、セルラーゼ、ペクチナーゼ、リパーゼ、エステラーゼ、アミラーゼ等を単独又は組み合わせて使用できる。
蛋白質分解酵素の添加量は、天然ゴムラテックス中の固形分100質量部に対して、好ましくは0.005質量部以上、より好ましくは0.01質量部以上、更に好ましくは0.05質量部以上である。下限以上であると、蛋白質の分解反応が十分になる傾向がある。
なお、脱蛋白処理において、蛋白質分解酵素と共に界面活性剤を添加してもよい。界面活性剤としては、アニオン系、カチオン系、ノニオン系、両性界面活性剤等が挙げられる。
(工程2−2)
工程2−2では、上記工程2−1で得られた脱蛋白天然ゴムラテックスを洗浄する。該洗浄により、タンパク質などの非ゴム成分を除去する。
工程2−2は、例えば、上記工程2−1で得られた脱蛋白天然ゴムラテックスを凝集させて凝集ゴムを作製した後、得られた凝集ゴムを洗浄することにより実施できる。これにより、凝集ゴム中に強く付着したタンパク質などの非ゴム成分を除去できる。
凝集方法は、上記工程1−2と同様の方法で実施できる。更に必要に応じて、前述したような塩基性化合物で処理しても良い。凝集ゴムの作製後、洗浄処理が行われる。該洗浄処理は、上記工程1−2と同様の方法で実施でき、これにより、タンパク質などの非ゴム成分、塩基性化合物を除去できる。なお、洗浄処理は、前記と同様の理由により、ゴム中のリン含有量が500ppm以下(好ましくは200ppm以下)及び/又は窒素含有量が0.15質量%以下になるまで洗浄するものであることが好ましい。
(工程2−3)
工程2−3では、工程2−2で得られた洗浄後のゴムに酸性化合物による処理が施される。塩基性化合物での処理はもちろん、酸凝集においても酸量が少ない場合、最終的に得られたゴムを水で抽出した際、アルカリ性〜中性になることに起因して耐熱老化性が低下する傾向がある。一般的に、好適に脱蛋白できるという理由から、蛋白質分解酵素として、アルカリ領域に至適pHを有する酵素が使用されており、当該酵素反応は、至適pHに合わせてアルカリ条件下で行われることが多く、最終的なゴムのpHを2〜7に調整するために、工程2−1における天然ゴムラテックスの脱蛋白処理は、pH8〜11で実施することが好ましく、pH8.5〜11がより好ましい。その後、凝集の時に酸性下で凝固されるが、そのゴムを水洗しただけでは、後述する抽出でpHが抽出液よりも上がり、この場合に特に耐熱老化性の低下が大きかった。これに対して、凝固後、必要に応じて塩基性化合物で処理後に、酸性化合物で処理することで、そのような問題を防止し、良好な耐熱老化性が得られる。
酸性化合物としては、上記工程1−3と同様のものが挙げられる。また、凝集ゴムを酸で処理する方法は、凝集ゴムを上記酸性化合物に接触させる方法であれば特に限定されず、例えば、凝集ゴムを酸性化合物の水溶液に浸漬する方法、凝集ゴムに酸性化合物の水溶液を噴霧する方法などが挙げられる。酸性化合物の水溶液は、各酸性化合物を水で希釈、溶解することで調製できる。
上記水溶液100質量%中の酸性化合物の含有量は特に限定されないが、下限は好ましくは0.01質量%以上、より好ましくは0.03質量%以上であり、上限は好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。該含有量が上記範囲内であると、良好な耐熱老化性が得られる。
上記処理温度、処理時間は適宜選択すればよく、上記工程1−3と同様の温度を採用すればよい。また、酸性化合物の水溶液への浸漬などの処理では、pHを上記工程1−3と同様の値に調整することが好ましい。
処理後に、酸性化合物の処理に使用した該化合物を除去した後、処理後の凝集ゴムの洗浄処理を適宜実施しても良い。洗浄処理としては、上記と同様の方法が挙げられ、例えば、洗浄を繰り返すことで非ゴム成分を更に低減し、所望の含有量に調整すればよい。洗浄処理終了後、乾燥することにより、前記改質天然ゴムが得られる。なお、乾燥は特に限定されず、前述の手法などを採用できる。
イソプレン系ゴムを含有する場合、ゴム成分100質量%中のイソプレン系ゴム(好ましくは改質天然ゴム)の含有量は、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上である。また、該含有量は、好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
ゴム成分100質量%中のイソプレン系ゴム及びBRの合計含有量は、好ましくは60質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上であり、100質量%であってもよい。
上記ゴム組成物は樹脂を含んでもよい。
本発明において樹脂とは、高分子化合物、より具体的にはモノマー単位を重合して得られる重合体を意味し、固体状であっても液体状であってもよい。
樹脂としては、タイヤ工業において一般的に用いられているものであれば特に限定されないが、例えば、ポリアルキレン樹脂、クマロンインデン樹脂、αメチルスチレン系樹脂、テルペン系樹脂、アクリル系樹脂、C5系樹脂、C9系樹脂等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、ゴムを可塑化し、フィラーの分散を促進でき、効果がより好適に得られるという理由から、ポリアルキレン樹脂、テルペン系樹脂が好ましい。
ポリアルキレン樹脂としては、アルキレンに由来する単位を有する樹脂であれば特に限定されず、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂、エチレンプロピレン樹脂、エチレンプロピレンスチレン樹脂、エチレンスチレン樹脂、プロピレンスチレン樹脂などが挙げられる。なかでも、エチレンプロピレン樹脂、エチレンプロピレンスチレン樹脂が好ましい。
テルペン系樹脂としては、テルペン化合物に由来する単位を有する樹脂であれば特に限定されず、例えば、ポリテルペン(テルペン化合物を重合して得られる樹脂)、テルペン芳香族樹脂(テルペン化合物と芳香族化合物とを共重合して得られる樹脂)、芳香族変性テルペン樹脂(テルペン樹脂を芳香族化合物で変性して得られる樹脂)などが挙げられる。
上記テルペン化合物は、(C5H8)nの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C10H16)、セスキテルペン(C15H24)、ジテルペン(C20H32)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α−ピネン、β−ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α−フェランドレン、α−テルピネン、γ−テルピネン、テルピノレン、1,8−シネオール、1,4−シネオール、α−テルピネオール、β−テルピネオール、γ−テルピネオールなどが挙げられる。上記テルペン化合物としてはまた、アビエチン酸、ネオアビエチン酸、パラストリン酸、レボピマール酸、ピマール酸、イソピマール酸などの樹脂酸(ロジン酸)なども挙げられる。すなわち、上記テルペン系樹脂には、松脂を加工することにより得られるロジン酸を主成分とするロジン系樹脂も含まれる。なお、ロジン系樹脂としては、ガムロジン、ウッドロジン、トール油ロジンなどの天然産のロジン樹脂(重合ロジン)の他、マレイン酸変性ロジン樹脂、ロジン変性フェノール樹脂などの変性ロジン樹脂、ロジングリセリンエステルなどのロジンエステル、ロジン樹脂を不均化することによって得られる不均化ロジン樹脂などが挙げられる。
上記芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体などが挙げられる。これらのなかでも、スチレンが好ましい。
樹脂の軟化点は、0℃以上が好ましく、10℃以上がより好ましく、40℃以上が更に好ましい。また、上記軟化点は、160℃以下が好ましく、140℃以下がより好ましく、100℃以下が更に好ましい。上記範囲内であると、効果がより好適に得られる。
なお、本発明において、上記樹脂の軟化点は、JIS K 6220−1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
樹脂は、水素添加されたものであってもよく、効果がより好適に得られるという理由から、樹脂は、水素添加された水素添加樹脂であることが好ましい。該水素添加は、公知の方法により行うことができ、例えば、金属触媒による接触水素添加、ヒドラジンを用いる方法などをいずれも好適に使用することができる(特開昭59−161415号公報など)。例えば、金属触媒による接触水素添加は、有機溶媒中、金属触媒の存在下、水素を加圧添加することにより実施することができ、該有機溶媒としては、テトラヒドロフラン、メタノール、エタノール等をいずれも好適に使用することができる。これら有機溶媒は、1種単独でまたは2種以上を混合して用いることができる。また、金属触媒としては、例えば、パラジウム、白金、ロジウム、ルテニウム、ニッケルなどをいずれも好適に使用することができる、これら金属触媒は1種単独でまたは2種以上を混合して用いることができる。加圧する際の圧力としては、例えば、1〜300kg重/cm2であることが好ましい。
上記樹脂において、二重結合の水素添加率は、1〜100%であり、とりわけ、2%以上であることが好ましく、5%以上であることがより好ましく、8%以上であることが更に好ましい。また、二重結合の水素添加率の上限は、水素添加反応における、加圧加熱条件、触媒等の製造技術の進歩や、生産性の向上などによりその好ましい範囲が変更され得る可能性があり、現時点では正確には確認できていないが、現状では、例えば、80%以下であることが好ましく、60%以下であることがより好ましく、40%以下が更に好ましく、30%以下がより更に好ましく、25%以下が特に好ましい。
なお、該水素添加率(水添率)は、1H−NMR(プロトンNMR)による二重結合由来ピークの各積分値から、下記式により、算出される値である。本明細書において、水素添加率(水添率)とは、二重結合の水素添加率を意味する。
(水添率〔%〕)={(A−B)/A}×100
A:水素添加前の二重結合のピークの積分値
B:水素添加後の二重結合のピークの積分値
樹脂としては、例えば、三井化学(株)、ストラクトール社、ヤスハラケミカル(株)、アリゾナケミカル社、日塗化学(株)、Rutgers Chemicals社、荒川化学工業(株)、丸善石油化学(株)、住友ベークライト(株)、東ソー(株)、(株)日本触媒、JXエネルギー(株)、東亞合成(株)等の製品を使用できる。
樹脂を含有する場合、樹脂の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上である。また、上記含有量は、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは15質量部以下である。これにより、効果がより好適に得られる。
上記ゴム組成物は、シリカを含んでもよい。
シリカとしては、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
シリカの窒素吸着比表面積(N2SA)は、70m2/g以上が好ましく、150m2/g以上がより好ましい。70m2/g以上にすることで、耐摩耗性能等がより改善される傾向がある。該シリカのN2SAは、500m2/g以下が好ましく、200m2/g以下がより好ましい。500m2/g以下にすることで、加工性能がより改善される傾向がある。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
シリカを含有する場合、シリカの含有量は、ゴム成分100質量部に対して、好ましくは30質量部以上、より好ましくは50質量部以上、更に好ましくは70質量部以上である。30質量部以上であると、耐摩耗性能等がより改善される傾向がある。また、該含有量は、好ましくは200質量部以下、より好ましくは150質量部以下、更に好ましくは100質量部以下である。200質量部以下であると、加工性能と低燃費性能のバランスがより改善される傾向がある。
シリカ及びカーボンブラックの合計100質量%中のカーボンブラックの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上、特に好ましくは40質量%以上、最も好ましくは60質量%以上、より最も好ましくは70質量%以上、更に最も好ましくは80質量%以上であり、100質量%であってもよい。これにより、効果がより好適に得られる。
上記ゴム組成物がシリカを含有する場合、更にシランカップリング剤を含有することが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(4−トリエトキシシリルブチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)トリスルフィド、ビス(4−トリメトキシシリルブチル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)ジスルフィド、ビス(4−トリエトキシシリルブチル)ジスルフィド、ビス(3−トリメトキシシリルプロピル)ジスルフィド、ビス(2−トリメトキシシリルエチル)ジスルフィド、ビス(4−トリメトキシシリルブチル)ジスルフィド、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3−メルカプトプロピルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT−Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシランなどのアミノ系、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3−ニトロプロピルトリメトキシシラン、3−ニトロプロピルトリエトキシシランなどのニトロ系、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、効果がより好適に得られる傾向がある点から、メルカプト系シランカップリング剤が好ましい。
シランカップリング剤としては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
シランカップリング剤を含有する場合、シランカップリング剤の含有量は、シリカ100質量部に対して、3質量部以上が好ましく、5質量部以上がより好ましい。3質量部以上であると、添加による効果が好適に得られる傾向がある。また、上記含有量は、20質量部以下が好ましく、15質量部以下がより好ましい。20質量部以下であると、配合量に見合った効果が得られ、良好な混練時の加工性が得られる傾向がある。
上記ゴム組成物は、オイルを含んでもよい。
オイルとしては、例えば、プロセスオイル、植物油脂、又はその混合物が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどを用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、効果が好適に得られるという理由から、プロセスオイルが好ましく、アロマ系プロセスオイルがより好ましい。
オイルを含有する場合、オイルの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上である。また、上記含有量は、好ましくは30質量部以下、より好ましくは20質量部以下である。上記範囲内であると、効果が好適に得られる傾向がある。
上記ゴム組成物は、ワックスを含んでもよい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、石油系ワックスが好ましく、パラフィンワックスがより好ましい。
ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。
ワックスを含有する場合、ワックスの含有量は、前記性能バランスの観点から、ゴム成分100質量部に対して、好ましくは0.3質量部以上、より好ましくは0.5質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下である。上記範囲内であると、効果が好適に得られる傾向がある。
上記ゴム組成物は、老化防止剤を含んでもよい。
老化防止剤としては、例えば、フェニル−α−ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′−ビス(α,α′−ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N−イソプロピル−N′−フェニル−p−フェニレンジアミン、N−(1,3−ジメチルブチル)−N′−フェニル−p−フェニレンジアミン、N,N′−ジ−2−ナフチル−p−フェニレンジアミン等のp−フェニレンジアミン系老化防止剤;2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス−[メチレン−3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なかでも、p−フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましい。
老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
老化防止剤を含有する場合、老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下である。上記範囲内であると、効果が好適に得られる傾向がある。
上記ゴム組成物は、ステアリン酸を含有することが好ましい。
ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
ステアリン酸を含有する場合、ステアリン酸の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下である。上記範囲内であると、効果が好適に得られる傾向がある。
上記ゴム組成物は、酸化亜鉛を含有することが好ましい。
酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
酸化亜鉛を含有する場合、酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
上記ゴム組成物は硫黄を含有することが好ましい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
硫黄を含有する場合、硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは3質量部以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
上記ゴム組成物は、加硫促進剤を含有することが好ましい。
加硫促進剤としては、2−メルカプトベンゾチアゾール、ジ−2−ベンゾチアゾリルジスルフィド、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2−エチルヘキシル)チウラムジスルフィド(TOT−N)等のチウラム系加硫促進剤;N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾリルスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N,N′−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、効果がより好適に得られるという理由から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましい。
加硫促進剤を含有する場合、加硫促進剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは7質量部以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
上記ゴム組成物には、上記成分の他、タイヤ工業において一般的に用いられている添加剤例えば、有機過酸化物;炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等の充填剤;等を更に配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、0.1〜200質量部が好ましい。
上記ゴム組成物は、例えば、前記各成分をオープンロール、バンバリーミキサー等のゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常100〜180℃、好ましくは120〜170℃である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常120℃以下、好ましくは85〜110℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫等の加硫処理が施される。加硫温度としては、通常140〜190℃、好ましくは150〜185℃である。加硫時間は、通常5〜15分である。
上記ゴム組成物は、トレッド(キャップトレッド)に好適に用いられるが、トレッド以外の部材、例えば、サイドウォール、ベーストレッド、アンダートレッド、クリンチエイペックス、ビードエイペックス、ブレーカークッションゴム、カーカスコード被覆用ゴム、インスレーション、チェーファー、インナーライナー等や、ランフラットタイヤのサイド補強層に用いてもよい。
(空気入りタイヤ)
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法で製造される。
すなわち、前記成分を配合したゴム組成物を、未加硫の段階でトレッドなどの各タイヤ部材の形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。
上記空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤ等に使用可能であり、特に、トラック・バス用タイヤとして好適に使用できる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、製造例で使用した各種薬品について、まとめて説明する。
フィールドラテックス:ムヒバラテックス社から入手したフィールドラテックス
エマールE−27C(界面活性剤):花王(株)製のエマールE−27C(ポリオキシエチレンラウリルエーテル硫酸ナトリウム、有効成分27質量%)
NaOH:富士フイルム和光純薬工業(株)製のNaOH
Wingstay L(老化防止剤):ELIOKEM社製のWingstay L(ρ−クレゾールとジシクロペンタジエンとの縮合物をブチル化した化合物)
エマルビンW(界面活性剤):LANXESS社製のエマルビンW(芳香族ポリグリコールエーテル)
タモールNN9104(界面活性剤):BASF社製のタモールNN9104(ナフタレンスルホン酸/ホルムアルデヒドのナトリウム塩)
Van gel B(界面活性剤):Vanderbilt社製のVan gel B(マグネシウムアルミニウムシリケートの水和物)
(老化防止剤分散体の調製)
水 462.5gにエマルビンW 12.5g、タモールNN9104 12.5g、Van gel B 12.5g、Wingstay L 500g(合計1000g)をボールミルで16時間混合し、老化防止剤分散体を調製した。
(製造例1)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温(23℃)で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。次いで、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整した後、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は0.5〜5mm程度であった。得られた凝集物を取り出し、2質量%の炭酸ナトリウム水溶液1000mlに、常温(23℃)で4時間浸漬した後、ゴムを取出した。これに、水2000mlを加えて2分間撹拌し、極力水を取り除く作業を7回繰り返した。その後、水500mlを添加し、pH4になるまで2質量%ギ酸を添加し、15分間放置した。更に、水を極力取り除き、再度水を添加して2分間撹拌する作業を3回繰返した後、水しぼりロールで水を絞ってシート状にした後、90℃で4時間乾燥して固形ゴム(改質天然ゴムA)を得た。
(製造例2)
市販のハイアンモニアラテックス〔マレイシアのムヒバラテックス社製、固形ゴム分62.0%〕を、0.12%のナフテン酸ソーダ水溶液で希釈して、固形ゴム分を10%にし、更にリン酸二水素ナトリウムを添加してpHを9.2に調整した。そしてゴム分10gに対して、蛋白質分解酵素(アルカラーゼ2.0M)を0.87gの割合で添加し、更にpHを9.2に再調整した後、37℃で24時間維持した。
次に、酵素処理を完了したラテックスに、ノニオン系界面活性剤〔花王社製の商品名エマルゲン810〕の1%水溶液を加えてゴム分濃度を8%に調整し、11,000rpmの回転速度で30分間遠心分離した。次に、遠心分離により生じたクリーム状留分を、上記エマルゲン810の1%水溶液に分散して、ゴム分濃度が8%になるように調整した後、再度、11,000rpmの回転速度で30分間遠心分離した。この操作を2回繰り返した後、得られたクリーム状留分を蒸留水に分散して、固形ゴム分60%の脱蛋白天然ゴムラテックスを調製した。
このラテックスに2質量%ギ酸をpH4になるまで添加し、更にカチオン系高分子凝集剤を添加して0.5〜5mmのゴム粒を得た。これの水を極力取り除き、水をゴム分10gに対して50g添加の上、2質量%ギ酸をpH3になるまで添加した。30分後ゴムを引き上げ、クレーパーでシート化した後、90℃で4時間乾燥し、固形ゴム(改質天然ゴムB)を得た。
(製造例3)
フィールドラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり撹拌しながらギ酸を添加してpHを4.0〜4.5に調整し、凝集した。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、その後、110℃で120分間乾燥して固形ゴム(改質天然ゴムC)を得た。
前記で得られた改質天然ゴムについて、下記により、評価し、結果を表1に示した。pH、窒素含有量、ゲル含有率は、改質天然ゴムA、Bのみ測定した。
<ゴムのpHの測定>
得られたゴム5gを3辺の合計が5mm以下(約1〜2×約1〜2×約1〜2(mm))に切断して100mlビーカーに入れ、常温(23℃)の蒸留水50mlを加えて2分間で90℃に昇温し、その後90℃に保つように調整しながらマイクロ波(300W)を13分(合計15分)照射した。次いで、浸漬水をアイスバスで冷却して25℃とした後、pHメーターを用いて、浸漬水のpHを測定した。
<窒素含有量の測定>
(アセトン抽出(試験片の作製))
各固形ゴムを1mm角に細断したサンプルを約0.5g用意した。サンプルをアセトン50g中に浸漬して、室温(25℃)で48時間後にゴムを取出し、乾燥させ、各試験片(老化防止剤抽出済み)を得た。
(測定)
得られた試験片の窒素含有量を以下の方法で測定した。
窒素含有量は、微量窒素炭素測定装置「SUMIGRAPH NC95A((株)住化分析センター製)」を用いて、上記で得られたアセトン抽出処理済みの各試験片を分解、ガス化し、そのガスをガスクロマトグラフ「GC−8A((株)島津製作所製)」で分析して窒素含有量を定量した。
<リン含有量の測定>
ICP発光分析装置(P−4010、(株)日立製作所製)を使用してリン含有量を求めた。
<ゲル含有率の測定>
1mm×1mmに切断した生ゴムのサンプル約70mgを正確に計り、これに35mLのトルエンを加え1週間冷暗所に静置した。次いで、遠心分離に付してトルエンに不溶のゲル分を沈殿させ上澄みの可溶分を除去し、ゲル分のみをメタノールで固めた後、乾燥し質量を測定した。次の式によりゲル含有率(質量%)を求めた。
ゲル含有率(質量%)=[乾燥後の質量mg/最初のサンプル質量mg]×100
実施例及び比較例で使用した各種薬品について、まとめて説明する。
NR:TSR20(リン含有量:572ppm)
改質天然ゴムA:製造例1で得られた改質天然ゴムA
改質天然ゴムB:製造例2で得られた改質天然ゴムB
改質天然ゴムC:製造例3で得られた改質天然ゴムC
BR:宇部興産(株)製のBR150B(シス含量:98質量%)
カーボンブラックN220:三菱化学(株)製のダイヤブラックN220(N2SA:114m2 /g、DBP:114ml/100g)
カーボンブラック1〜6:下記表2に示す特性を有するカーボンブラック1〜6
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄(5%オイル含有)
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
(実施例及び比較例)
表3に示す配合内容に従い、(株)神戸製鋼所製のバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃の条件下で10分間プレス加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。得られた未加硫ゴム組成物、試験用タイヤを用いて下記に示す評価を行い、結果を表3に示した。
(加工性能)
各未加硫ゴム組成物について、JIS K 6300−1の「未加硫ゴム−物理特性−第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」に準じたムーニー粘度の測定方法に従い、130℃の温度条件にて、ムーニー粘度(ML1+4)を測定した。結果は比較例1のムーニー粘度を100として指数表示した(加工性能指数)。指数が大きいほどムーニー粘度が低く、加工性能に優れることを示す。95以上の場合に良好であると判断した。
(耐摩耗性能)
各試験用タイヤを国産FF車に装着し、走行距離8000km後のタイヤトレッド部の溝深さを測定し、タイヤ溝深さが1mm減るときの走行距離を算出し、比較例1を100とした時の指数で表示した(耐摩耗性能指数)。指数が大きいほど、タイヤ溝深さが1mm減るときの走行距離が長く、耐摩耗性能に優れることを示す。
(耐破壊性能)
各試験用タイヤのトレッドから切り出したゴムからなる3号ダンベル型試験片を用いて、JIS K 6251「加硫ゴムおよび熱可塑性ゴム−引張特性の求め方」に準じて、室温にて引張試験を実施し、破断時伸びEB(%)を測定し、比較例1を100とした時の指数で表示した(耐破壊性能指数)。指数が大きいほど、耐破壊性能に優れることを示す。
表3より、特定のカーボンブラックを含む実施例では、良好な加工性能を維持しつつ、耐摩耗性能及び耐破壊性能を改善できた。
また、実施例1、4、比較例1、2の比較により、非ゴム成分が除去された改質天然ゴム(高純度天然ゴム(UPNR))とカーボンブラック(1)とを併用することにより、耐摩耗性能及び耐破壊性能を相乗的に改善できることが分かった。