JP2019522377A - 短又は超短光パルスを生成するシステム - Google Patents

短又は超短光パルスを生成するシステム Download PDF

Info

Publication number
JP2019522377A
JP2019522377A JP2019503473A JP2019503473A JP2019522377A JP 2019522377 A JP2019522377 A JP 2019522377A JP 2019503473 A JP2019503473 A JP 2019503473A JP 2019503473 A JP2019503473 A JP 2019503473A JP 2019522377 A JP2019522377 A JP 2019522377A
Authority
JP
Japan
Prior art keywords
pulse
duration
optical
modulation signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019503473A
Other languages
English (en)
Inventor
ロイオン,ロマン
ドブラスクエット,ロマン
Original Assignee
イリシオメ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イリシオメ filed Critical イリシオメ
Publication of JP2019522377A publication Critical patent/JP2019522377A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2252Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/26Pulse shaping; Apparatus or methods therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/54Optical pulse train (comb) synthesizer

Abstract

本発明は、短又は超短光パルスを生成するシステムに関する。本発明によれば、システムは、時間連続波光放射(20)を発するように構成された光源(2)と、5GHz〜100GHzの通過帯域における調整可能な周波数において動作し、10ps〜100psの持続時間の少なくとも1つの電気パルスを含むアナログ変調電気信号(50)を発するように構成された電力生成器(5)と、電極及びアナログ変調電気信号(50)を受け取るのに適した電気通過帯域を有する電子光学変調器(4)であって、アナログ変調電気信号に応じて連続波光放射(40)を光学的に振幅変調し、10ps〜100psの持続時間の少なくとも1つの光パルスを含む変調光放射を生成するように構成された電子光学変調器(4)とを備える。

Description

発明が関連する技術分野
本発明は、一般的には、光パルス生成システム及びレーザの分野に関する。
本発明は、より詳細には、短又は超短光パルスを生成するシステム及び方法に関し、これらの光パルスはレート又は繰り返し周波数において調整可能である。
本発明は、特に、持続時間及び/又は波長において更に調整可能な超短光パルスを生成するシステム及び方法に関する。
技術背景
短から超短の光パルスの使用は、科学、産業、又は医療の分野で多く応用される。本明細書では、短光パルスとは、数ピコ秒〜2、3ピコ秒の持続時間を有する光パルスを意味する。超短光パルスとは、約1フェムト秒(fs)〜約10ピコ秒(ps)の持続時間を有する光パルスを意味する。本明細書では、繰り返し周波数及びレートなる用語は同義で使用される。
光ファイバレーザは現在、短〜超短光パルスの生成に一般的に使用されている。特に、希土類元素、特に、イッテルビウムがドープされた光ファイバは一般に、1μm前後(一般に976nmから1200nm)の赤外線範囲において広い利得帯域を有する。広利得帯域ドープファイバを能動又は受動モードロックデバイスと組み合わせると、短(ps)又は超短(fs)光パルスを生成することができるようになる。さらに、これらのドープファイバは一般に、高利得を有する。この高利得により、そのようなファイバレーザの動作を損なうことなくフィルタ等の光学要素を導入することができる。
光ファイバレーザシステムには、コンパクト性及び統合性という利点がある。さらに、ダブルクラッド及び大コア光ファイバの開発により、高平均電力及び/又は高エネルギー光パルスの生成が可能になった。光ファイバレーザシステムは現在、ダイオード励起固体状態レーザの手強い競争相手である。
実際に、塊状結晶に基づく光学発振器は、特に薄型円盤レーザ技術を用いて、高平均電力を示して、フェムト秒領域で数ジュールのパルスエネルギーに達することができた。
しかしながら、これらの固体状態レーザシステムのアーキテクチャは非常に複雑である。これらの結晶レーザシステムは、外部環境の変化の影響を受けやすいという欠点を有する。これらの欠点は、固体状態レーザを産業デバイスに統合することへの障害である。
ファイバレーザは、固体状態レーザと比較して特定の利点を有するが、それでもなお多くの欠点を有する。ファイバレーザでは、光パルスは、小容量の光ファイバに空間的に閉じ込められる。この閉じ込めに起因して、光パルスは、モードロックファイバレーザのエネルギー(又はピーク電力)を制限しがちである非線形光学効果の原因であることがある。他方、特に波長調整可能レーザの場合、光ファイバの色分散も機能障害を生じさせることがある。
それにも関わらず、ファイバレーザは、光パルス波長及び光パルス持続時間又はエネルギーの両方の視点から、非常に広範囲をカバーする。しかしながら、実際には、この多大な選択肢には、十分な数の異なるファイバレーザアーキテクチャを実装することによってのみ到達可能である。
一般に、共振レーザキャビティでのモードロックプロセスは、超短光パルス(fs又はps)を生成するために選ばれるメカニズムである。このモードロックプロセスは、キャビティ内で振動する十分な数の縦モードを位相整列させなければならないため、依然として複雑である。
そのために、異なる能動又は受動モードロック技法が存在している。
能動モードロックは、音響光学又は電子光学変調器をレーザキャビティに配置し、時間の関数としてキャビティの損失を能動的に変調することを含む。能動モードロックでは、光学変調器を制御するために、外部電源を使用する必要がある。さらに、能動モードロックにより生成されるパルスの持続時間は、約数十ピコ秒又は約数百ピコ秒である。
受動モードロックは、外部光学変調器を使用せずにパルスを生成するために、非線形光学効果を利用することに依拠する。例えば、非線形半導体ミラー(SESAM)、非線形光学ループミラー(NOLM)、非線形増幅ループミラー(NALM)、又は非線形偏光回転(RNLP)のような、強度の関数としての損失変動(可飽和吸収効果)に基づく幾つかの方法が使用される。それらの非線形光学技法は精密な条件で動作する。
しかしながら、これらの非線形光学方法は、波長、パルス持続時間、及び/又は繰り返し周波数調整可能なレーザシステムでは使用が容易ではない。
実際には、SESAM技術により、動作がイッテルビウムイオンの放射スペクトルの各波長に個々に適合された多種多様な要素を設計し製作することが可能であるが、スペクトル帯域は本質的に、数十nmのみに制限される。したがって、広波長調整可能範囲にわたり1つのみのSESAMを使用することはできない。
動作が利得及びキャビティの全分散に基づくNALM技法でも同じである。さらに、モードロックを得る自由度は極めて下がり、かつこの技術の高レベルの熟達が必要とされる。
最後に、RNLPは、位相板等の自由空間光学構成要素を使用する。これらの光学構成要素はファイバ技術では利用できないため、その使用は、ビームをファイバ外の自由空間内で伝播させることを含む。したがって、この技術により全ファイバレーザ源を製作することはできない。さらに、熱又は機械的な影響によるファイバ複屈折の変動は、モードロックを低下させる。その結果、安定したパルス列を得るために、位相板の向きを頻繁に調整しなければならない。
さらに、これらにシステムは本質的に、送られるパルスの繰り返し率及び持続時間に関して固定されたままである。実際には、パルス持続時間及び繰り返し率は、レーザキャビティの特性、特にキャビティの長さにより課される。
したがって、広い周波数範囲にわたり繰り返し周波数を調整可能な短又は超短光パルスを生成するシステム及び方法が必要とされている。
広い時間範囲にわたり持続時間を調整可能であり、かつ/又は広いスペクトル範囲にわたり波長を調整可能な短又は超短光パルスを生成するシステム及び方法も必要とされている。
発明の目的
現行技術水準の上記欠点を修復するために、本発明は、短又は超短光パルスを生成するシステムを提案する。
より詳細には、本発明によれば、時間連続光放射を発するように構成された光源と、少なくとも1GHzまで広がる帯域幅にわたり調整可能な周波数において動作し、1ピコ秒〜数ナノ秒の持続時間の少なくとも1つの電気パルスを含むアナログ電気変調信号を発するように構成された電力生成器と、アナログ電気変調信号を受信するように適合された電気帯域幅を有する電気又は電子光学変調手段であって、アナログ電気変調信号の関数として光放射の振幅を変調し、10ps〜数ナノ秒の持続時間の少なくとも1つの光パルスを含む変調光放射を生成するように構成された電気又は電子光学変調手段とを備えるシステムが提案される。
好ましくは、電力生成器の帯域幅は、連続から5GHz又は更には100GHzまで広がる。
本システムは、共振レーザキャビティもモードロックも使用しないため、短又は超短パルス光源の分野での技術革新を示す。この光パルス生成システムは、コンパクト性、使用しやすさ、及び動作範囲という多くの利点を有する。この光パルス生成システムは、光パルス持続時間、繰り返し率、及び/又は波長において容易に調整可能である。
個々に又は技術的に可能な全ての組合せに従って解釈される、本発明による短又は超短光パルスを生成するシステムの他の非限定的で有利な特徴は以下である:
−電力生成器は、10ps〜数ナノ秒の持続時間の前記少なくとも1つの電気パルスを含むアナログ電気変調信号を発するように構成され、光源は、電極を有するレーザダイオードを含み、前記変調手段は、前記アナログ電気変調信号をレーザダイオードの電極に印加するように構成され、
−電力生成器は、少なくとも10GHzまで広がる帯域幅にわたり調整可能な周波数において動作し、10ps〜50psの持続時間の前記少なくとも1つの電気パルスを含むアナログ電気変調信号を発するように構成され、レーザダイオードは利得切り替えされ、それにより、レーザダイオードは、少なくとも10GHzまで広がるレートで10ps〜50psの持続時間の少なくとも1つの光パルスを含む変調光放射を生成する。
特定の有利な実施形態によれば、光源は、時間連続光放射を発するように適合され、電力生成器は、1GHz〜100GHzの帯域幅にわたり調整可能な周波数において動作し、10ピコ秒〜100ピコ秒の持続時間の前記少なくとも1つの電気パルスを含むアナログ電気変調信号を生成するように構成され、本システムは、電極と、アナログ電気変調信号を受信するように適合された電気帯域幅とを有する電子光学変調器を更に備え、電子光学変調器は、アナログ電気変調信号の関数として、連続光放射の振幅を光学的に変調し、10ピコ秒〜100ピコ秒の持続時間の少なくとも1つの光パルスを含む変調光放射を生成するように構成される。
他の特定の有利な態様によれば、電気パルス生成器は、10kHz〜20GHzの周波数範囲にわたり調整可能なレートで10ps〜10nsの持続時間の電気パルス列を含むアナログ電気変調信号を発するように構成され、電子光学変調器は、アナログ電気変調信号の関数として連続光放射を変調し、10ps〜10nsの持続時間の光パルス列を含む変調光放射を生成するよう構成され、前記光パルスは前記調整可能なレートを有し、
−本システムは、10ピコ秒〜100ピコ秒の持続時間の前記少なくとも1つの光パルスを受信し、1ピコ秒以下の持続時間の圧縮光パルスを生成するように構成された光学パルス圧縮器を更に備え、
−本システムは、光源と圧縮器との間に配置された少なくとも1つの光学デバイスを更に備え、光学デバイスは、スペクトル分散光学デバイス、偏光光学デバイス、自己位相変調非線形光学デバイス、及び/又はカー効果非線形光学デバイスの中から選ばれ、
−光源は、単色又は多色性連続光放射を発するように構成され、
−本システムは、連続光放射の波長を調整するデバイスを備え、
−光源は、レーザダイオード、又はエルビウム、イッテルビウム、ツリウム、又はネオジムドープ光ファイバレーザ源の中から選ばれた希土類ドープ光ファイバレーザ源を含み、
−本システムは、変調光放射を受け取り、増幅パルス光放射を生成するように構成された光学増幅デバイスを備え、
−本システムは、電気又は電子光学変調手段の出口に配置され、変調光放射の一部を捕捉するように構成された光学結合器と、少なくとも1GHzまで、好ましくは5GHzまで、更には100GHzまで広がる帯域幅の変調光放射の部分の強度を測定するように構成された検出システムと、測定された強度の関数として、変調信号にバイアス信号を印加するように構成された帰還ループとを備え、
−本システムは、変調光放射を受け取り、拡大された変調光ビームを分析されるゾーンに向けるように配置されたビーム拡大光学システムと、前記ゾーンの画像を形成するように構成された画像検出システムとを備える。
本発明は、以下のステップを含む、短又は超短光パルスを生成する方法も提案する:
−例えば時間的に連続した光放射を発すること、
−10kHz〜20GHzのマイクロ波帯域幅の周波数を有するアナログ電気変調信号を生成することであって、アナログ電気変調信号は、10ps〜100psの持続時間の少なくとも1つの電気パルスを含む、生成すること、及び
−アナログ電気変調信号を電子光学変調器又はレーザダイオードの電極に印加することであって、電子光学変調器又はレーザダイオードは、アナログ電気変調信号の関数として連続光放射の振幅を光学的に変調し、10ps〜100psの持続時間の少なくとも1つの光パルスを含む変調光放射を生成するように構成される、印加すること。
本方法の有利な一変形では、レーザダイオードは利得切り替えされ、それにより、レーザダイオードは、少なくとも10GHzまで広がるレートで10ps〜50psの持続時間の少なくとも1つの光パルスを含む変調光放射を生成する。
例示的な実施形態の詳細な説明
非限定的な例として与えられる、添付図面に関した以下の説明により、本発明の本質が何であるか及び本発明をいかに実施することができるかを良好に理解することができる。
一実施形態による短又は超短光パルスを生成するシステムを概略的に示す。 電力生成器により生成される、電気パルスを含むアナログ電気変調信号の一例を示す。 図2のアナログ電気変調信号が印加される電子光学変調器の出口において生成される変調光放射の一例を示す。 図3の変調光放射の圧縮後に得られる超短光パルスの一例を示す。 帰還ループを有する光パルス生成システムの一変形を概略的に示す。 1つ又は幾つかのパルス増幅、分散、及び/又は圧縮デバイスを使用する光パルス生成システムの異なる変形を概略的に示す。 非線形偏光回転デバイスを概略的に示す。 広いスペクトル範囲にわたり波長を調整可能な光パルスの生成の一例を示す。
デバイス
図1に、光源2、電力生成器5、制御ユニット6、及び電子光学変調器4を備える、光パルス100を生成するシステム1を示す。一変形では、光パルス生成システム1は、光パルス分散モジュール7及び/又は圧縮モジュール8を更に含む。図1では、電気信号は単純な線で表され、光線は二重線で表されている。
光源2は、時間的に連続した光放射20を発する。光源2は、例えば、好ましくは、ファイバ出口を有するレーザ源を含む。特に有利なことには、光源2は、波長調整可能な単色性光放射20を発する。好ましくは、光源2は、単一横モードTM00光放射を生成する。
例示的な一実施形態として、光源2は、レーザダイオードの温度の関数として、数nmにわたり調整することができる、決定された波長における光放射20を発するレーザダイオードを備える。別の例では、光源2は、例えば、光学発振器及び波長調整可能フィルタを含む。光源2は、例えば、希土類ドープファイバレーザ源を含む。したがって、例えば、イッテルビウムドープファイバレーザ源の波長は、974nmから1200nmまで広がるイッテルビウムのスペクトル放射範囲にわたり連続調整可能であり得る。この調整可能性は、区別要素(例えば、フィルタ又は偏光要素等)をレーザキャビティに挿入して、非所望波長に損失を導入することにより得られ得る。別の例では、エルビウムドープファイバレーザ源が、1.5μm前後のエルビウムのスペクトル放射範囲にわたり連続調整可能であり得る。更に別の例によれば、ツリウムドープファイバレーザ源が、2マイクロメートル(μm)前後のツリウムのスペクトル放射範囲にわたり連続調整可能であり得る。同様に、ネオジムドープファイバレーザ源が、900nmの放射波長前後のスペクトル範囲にわたり連続して波長調整可能であり得る。希土類ドープファイバレーザ源は、数百ミリワットの電力を有し、可視領域及び/又は近赤外線領域において数十nm〜数百nmの広いスペクトル範囲にわたり波長調整可能である時間連続光放射20を発する。
代替として、光源2は、数百nmにわたり広がるスペクトル範囲の幾つかの離散した波長を含む多色性光放射20を発し、各離散波長は、約10kHz〜約300GHzのスペクトル幅を有する。
時間連続光放射20は、電子光学変調器4の入口において注入される。電子光学変調器4は、好ましくは、マッハ−ツェンダー型の振幅変調器である。10GHzから20GHz又は50GHzから100GHzまで広がる電子帯域幅を有する電子光学変調器4が選ばれる。例えば、マッハ−ツェンダー電子光学変調器4は、光学集積回路変調器であり、光導波路及び電極を備える。有利なことに、電子光学変調器4は、少なくとも1つの光ファイバ入口及び1つの光ファイバ出口を含む。マッハ−ツェンダー電子光学変調器4の電極は、電力生成器5に接続される。
電力生成器5は、制御ユニットにより生成された外部アナログ制御信号60を受信し、アナログ電気変調信号50を電子光学変調器4の電極に印加する。より詳細に後述する一変形では、アナログ電気変調信号50は、ソースレーザダイオード2の電極に直接印加される。
より正確には、電力生成器5は、10ps〜10nsの持続時間の少なくとも1つの電気信号を含むアナログ電気変調信号50を生成するように構成された高速電子基板を含む。有利なことに、この電気パルスは振幅を有し、電子光学変調器4を制御するように適合された2V〜4Vを含む。非限定的な例として、電子基板は、28Gbps〜32Gbps又は100Gbps領域で動作するデジタルマイクロ波電子構成要素を含む。そのようなマイクロ波電子構成要素は、低振幅高速電気通信信号の論理電子回路に使用されるが、アナログ信号を提供するように構成されない。非限定的な例として、互いに反転し、電子遅延線により接続された2つの論理ゲートを使用して、10ps〜10nsの持続時間のアナログ電気パルスを生成する。電子遅延線は、アナログ電気パルスの持続時間を決める。有利な一実施形態では、10ps〜10nsの可変持続時間のアナログ電気パルスを生成するために、電子遅延線は可変遅延型である。しかしながら、マイクロ波論理電子構成要素は、マッハ−ツェンダー型の電子光学変調器を直接制御することができない。実際には、そのような変調器は、数ボルトの切り替え電圧を必要とする。広帯域幅(約20GHz)のオペアンプシステムは、数kHzから、少なくとも5GHz、好ましくは10GHz、20GHz、更には100GHzまで広がる帯域幅にわたり、例えば約2V〜約4Vの振幅を有するアナログ電気変調信号を生成することができる。
有利なことには、アナログ電気変調信号50は、50kHzから少なくとも5GHzまで調整可能な繰り返し周波数を有する周期信号である。したがって、電力生成器5は、50kHzから少なくとも5GHzまで調整可能なレートを有する電気パルス列を生成する。電気パルス列は、10ps〜10nsの一定の持続時間又は可変持続時間の電気パルスを含み得る。
例えば、コンピュータ又はクロック6は、数kHzから数GHz又は更には数十GHzまで広がる周波数領域で時間変調されるアナログ電気変調信号50を生成することについて上述したように、アナログ制御信号60をマイクロ波電子基板に送信する。
この電力生成器5により、50kHzから少なくとも5GHz、10GHz、20GHz、又は更には50GHzまで調整可能なレートを有し、可変持続時間(10ps〜10ns)の、オンデマンドで生成されるアナログ電気パルス又はアナログ電気パルス(2V〜4V)の列を含むアナログ電気変調信号50を有することができる。さらに、そのような電力生成器5は、低消費及び制御されたコストという利点を有する。
図2は、上述したように、電力生成器5の出口に配置された増幅器の出口におけるアナログ電気変調信号50の一例を示す。電力生成器5は、200MHzの周波数finにおける制御信号60を受信し、振幅がここでは−0.5V〜0Vで変化するアナログ電気信号を生成する。しかしながら、フォトニック用途では、アナログ電気変調信号50の特性を精密に制御することが重要である。特に、アナログ電気変調信号50のコントラスト、すなわち、電気パルスのピークレベルと外乱レベルとの比率は、優れていなければならない。図2における差し込み図として、対数尺度のアナログ電気変調信号50を示す。はね返りの振幅が4%未満に留まることが観測され、これは、マッハ−ツェンダー型の電子光学変調器に非常に適する。
このアナログ電気変調信号50は、10kHzから少なくとも5GHz、又は更には20GHz若しくは50GHzまでの繰り返し周波数で1つのアナログ電気パルス及び/又はアナログ電気パルスの周期列を送出し得る。
光パルスの生成は、上述したように、10ps〜10nsの持続時間の電気パルスを送出する電力生成器5及び広帯域電子光学変調器4により行われる。
アナログ電気変調信号50は、電子光学変調器4の電極間に印加される。電子光学変調器4は、時間連続光放射20を受信し、アナログ電気変調信号50の関数としてこの光放射20の振幅を変調して、変調光放射40を生成する。電子光学変調器4は、少なくとも5GHzまで、例えば、10GHzまで、20GHzまで、又は100GHzまで広がる電子帯域幅を有する。アナログ電気変調信号50は、10ps〜10nsの持続時間の少なくとも1つのアナログ電気パルスを含む。したがって、アナログ電気変調信号50は、10ps〜10nsの持続時間の少なくとも1つの光パルスを含む変調光放射40を誘導する。換言すれば、電子光学変調器4は、10ps〜10nsの持続時間の少なくとも1つの光パルスを含む変調光放射40にアナログ電気変調信号50を光学的に変換する。
図3は、図2のアナログ電気変調信号が印加された電子光学変調器4の出口における変調光放射40の強度の測定値の一例を示す。高コントラスト及びここでは印加される電気パルスの持続時間に等しい約25psの持続時間を有する光パルスを観測する。したがって、電子光学変調器4は、100ps未満の持続時間の光パルスを直接生成する。
したがって、電子光学変調器4は、アナログ電気変調信号50の関数として、10ps〜10nsの持続時間の1つの光パルス又は10kHzから5GHz、20GHz、又は更には50GHzまでに広がることができる繰り返し周波数で光パルス列を送出することができる。
したがって、上述したような光源2、電力生成器5、及び電子光学変調器4からなるシステムは、光パルス2の連続光放射を時間的に切断して、非常に高い信号対雑音比及び上手く制御された時間的形状を有するピコ秒光パルスを生成することができる。これらの光パルスは、安定した振幅を有しながら、調整可能なレートを有し得る。
まず、システムは、広範囲の持続時間にわたり光パルスの持続時間を容易に電子的に調整できるようにする。その後、そのようなシステムは、不安定性を生み出すことなく、広範囲の周波数にわたり光パルスの繰り返し周波数を容易に電子的に調整できるようにする。したがって、このシステムは、高繰り返し周波数領域に到達可能にする。さらに、このシステムはまた、低繰り返し周波数領域に到達可能にもし、低繰り返し周波数領域は、従来の光パルス選択デバイス(又はパルスピッカー)を用いては到達することが難しい。
特に有利なことには、光パルス生成システムは、圧縮器8、例えば、回折格子及び/又はプリズムに基づく従来のスペクトル圧縮器を更に含む。圧縮器8は、10ps〜100psの持続時間の先にチャープ又は整形された光パルスを時間的に圧縮して、フェムト秒持続時間、すなわち、1ps未満の持続時間の光パルスへの異なるスペクトル成分間の位相関係を有するスペクトルを生成できるようにする。したがって、フェムト秒ソースが生成され、これは、コンパクトであり、持続時間、レート、及び/又は波長において容易に調整可能である。
図4は、図1に概略的に示され、圧縮器8を備えるシステムの出口における時間連続光パルスの測定値を示す。圧縮器は、図3に示されるように、約50psの持続時間の光パルスを受信し、超短光パルス100を生成する。図4には、光パルス100の時間プロファイルのガウス調整の曲線を示す。したがって、ここでは自己相関器持続時間での約460fsに等しく、すなわち、実際の持続時間における約326fsに等しい光パルスの持続時間が決定される。
一変形によれば、電力生成器5は、電気パルスを光源2の電極に直接印加し、光源2は、例えば、電流を供給する電極を有する信号レーザダイオードである。この変形では、電子光学変調器4は省かれる。その方法では、ダイオードは、50ps〜数nsの持続時間を有し、0GHzから1GHzの範囲に含まれるレートを有する光パルスを含む変調光放射40を出力として直接生成する。パルス持続時間を低減するために、信号ダイオードは、電極への電極制御パルスの直接印加により利得切り替えして、0GHz〜10Ghzに含まれるレートで5ps〜50psに含まれる持続時間の光パルスを取得し得る。代替として、レーザダイオードの電極に印加される電流の振幅は、0GHz〜10GHZに含まれるレートで5ps〜50psに含まれる持続時間の光パルスを直接生成するように変調される。
図5に関連して説明される特定の態様によれば、システムは、変調光放射の信号対雑音比を制御するために、帰還ループを更に含む。光学結合器19は、電子光学変調器の出口に配置され、変調光放射40の小さな部分(例えば、1%)を捕捉するように構成される。検出システム9は、数十ギガヘルツまでの帯域幅の変調光放射の部分の強度を測定するように構成される。マイクロ波電子基板は、この測定値を分析し、変調光信号40のコントラスト、信号対雑音比、又は消光レベル測定値の関数としてバイアス信号を生成できるようにする。したがって、アナログ電子帰還信号により、バイアス信号の関数として、バイアス電圧を電子光学変調器4に印加することができる。この帰還デバイスは、例えば、変調光線の消光の関数として、電子光学変調器に印加される電圧を適合できるようにする。この帰還デバイスは、全範囲のパルス持続時間及びレートにわたり電子光学変調器4の優れた信号対雑音比及び高コントラストを維持できるようにする。
図6に関連して説明される特定の実施形態では、短又は超短光パルスを生成するシステムは、電子光学変調器4の出口に配置される光学増幅デバイスを更に含む。光学増幅デバイスは、変調光放射40を受信し、増幅パルス光放射を生成する1つの光学増幅器又は直列に配置された幾つかの光学増幅器を含む。例えば、光学増幅デバイスは、値の光学プリアンプ10、別の光学プリアンプ11、及び光学電力増幅器12を含む。ドープ光ファイバ(Yb、Er、Th、及び/又はNd)及び/又は結晶及び/又はドープガラス増幅器(例えば、Yb:YLF、Yb:YAG、Yb:CALGO、Yb:CaF2、Yb:LUAG、Nd:YAG、Er:YAG、又はHo:YAG)に基づく光学増幅器が、例えば、使用される。有利なことには、異なる増幅段階間に、互い間で剛毅される、固定波長又は調整可能な波長の複数の光学フィルタが配置され、光学増幅器で生成された増幅自然放射をなくせるようにする。
時間圧縮技法により、10ps未満、例えばピコ秒又はフェムト秒の持続時間を有する光パルスを生成する光源を生成することができる。
有利なことには、スペクトル拡大デバイスが、電力増幅段の前に使用されて、増幅前に光パルスのスペクトルを拡大する。したがって、光学増幅デバイスは、時間的にチャープされたスペクトルを有する増幅光パルスを生成し、これは次に、分散圧縮器により時間的に再圧縮し得る。それにより、既知のように、増幅後、増幅光パルスを時間的に再圧縮して、ピコ秒又はフェムト秒持続時間に達することができる。圧縮器8は、回折格子、プリズム、分散ミラー、及び/又は特定の分散を有する光ファイバに基づき得る。
第一の例示的な実施形態は、分散モジュール7の使用に依拠する。非限定的な例として、分散モジュール7は、長い(30m〜300m)定偏波PMファイバ及び/又はフォトニック結晶ファイバ(PCF)又はステップインデックス光ファイバを含む。自己位相変調(PSM)等の非線形効果により、そのような光ファイバは、光パルスのスペクトル拡大を生み出す。実際には、光ファイバ内の光ファイバの伝播中にSPMにより蓄積される位相変動は、振幅を変更せずにパルスの時間的エンベロープを変化させる。既知のように、周波数領域において、これらの位相変動はパルススペクトルの拡散に変換され、その理由は、パルススペクトルの拡散が非線形位相シフトから生じるためである。自己位相変調は、低周波数成分をパルス波面に向けてシフトさせ、高周波数成分をパルス波尾に向けてシフトさせる効果のためを有し、これは、約1μmの波長での石英ファイバにより生成される変則領域での分散効果の逆である。
別の例示的な実施形態は、第2のプリアンプ段11と電力増幅器12との間に配置される非線形偏光回転(RNLP)モジュール17の使用に依拠する。図7は、RNLPモジュール17の構造及び動作を示す。RNLPモジュール17は、ここでは、偏光要素171、受動(非PM)光ファイバ173、及び偏光コントローラ172を含む。光パルス40の偏光は、カー効果により、光ファイバ173を伝搬中、非線形的に展開する。偏光子171(又はアイソレータ)後、入射パルス40は、全成分が線形に偏光されて終わる。偏光コントローラ172は、線形偏光を楕円偏光に変更できるようにする。楕円偏光光パルスは、光ファイバ173の伝播中、偏光状態は非線形的に展開する。これは、自己位相変調とカー効果により偏光の2つの成分に誘導される相互位相変調とが組み合わせられた効果に起因する。光パルスの異なる時間成分は、ピーク強度に依存するため、同じ屈折率を認めず、ピーク強度は、偏光状態を変え、光パルスの異なる構成要素間に位相シフトを誘導する。その結果として、図7の太線で表されている光パルスの最も強度の高い部分は、電場強度の最大に依存する角度だけ偏光回転を受け、したがって、楕円軸の位置を変える。逆に、図7において細線で表されている光パルスの強度が低い部分は、偏光回転を受けない。したがって、偏光回転の角度は強度に比例する。光ファイバ173の出口において、別の偏光コントローラ174が、ファイバの線形複屈折を補償して、楕円偏光状態を線形偏光状態に変換するように向けられる。最後に、別の偏光子175が配置されて、偏光が回転した光パルスの最も強度の高い部分を通すことにより、偏光を分析する。この強度部分は、光パルスの低強度部分よりも小さな損失を受ける。したがって、得られた光パルス100は、低減された持続時間を有する。この例示的な実施形態では、必ずしも圧縮器を使用する必要はない。例示的な実施形態は、使用しやすさ及び限られたコストという利点を有する。
実施態様の更に別の例は、最後の増幅段後の変性四波混合(FWM)により操作される周波数変換モジュール27の使用に依拠する。そのようなモジュール27は、相互位相変調に起因したスペクトル拡大を用いて、好ましくは可視領域において新しい波長を生成できるようにする。FWM及びスペクトル拡大により得られる数nmのスペクトル帯域は、約数百フェムト秒の持続時間で、数ピコ秒の持続時間を有する光パルスを再圧縮できるようにする。実際には、変性FWMは、2つの同一のポンプ光子が全滅して、異なる波長及び同じ総エネルギーを有する2つの光子を生成する場合、現れる。波長の異なる幾つかの波が光ファイバを伝播するとき、そのうねりは、光学カー効果及び回折効果を介して屈折格子を生み出す。屈折のこの周期的な変調は、時間的回折により、新しい周波数を生成させる周波数間のエネルギー移動の物理的プロセスを誘導する。エネルギー保存状況に起因して、これらの新しい周波数は、初期周波数の特定の組合せである。同じ光ファイバ内のこれらの異なる波の同時伝播は、相互位相変調(XPM)により、パルスのスペクトル拡大を生じさせる。この効果は、高強度電場の効果下での媒体の屈折率の変化により現される光学カー効果の直接的な結果である。実際には、2つの波が光ファイバ内の同時に伝播する場合、それらの一方は媒体上で最初の一方の効果を受け、そして相互に。したがって、パルスは、第2のパルスにより誘導される非線形位相シフトを受ける。したがって、これらの光パルスは、1ps未満の持続時間で圧縮し得る。この場合、圧縮された光パルスは、電子光学変調器4に印加される電気パルスよりも低い持続時間を有する。
図8は、1μm前後を発する赤外線光源2と、波長調整可能放射スペクトルを有する光パルスを生成するように構成されたFWMデバイスとを備える、短又は超短光パルスを生成するシステムの使用の一例を示す。したがって、750nmから約900nmまでの波長で連続調整可能な短又は超短光パルスを生成するシステムが生成される。
詳細に上述された実施形態に1つに記載された短又は超短光パルスを生成するシステムは、レーザ法の分野で新しい見通しを開く。例えば、ガルバノメトリックヘッド又はFシータレンズの移動に基づくパルス光線変位システムでは、移動の加速及び減速はエネルギー付与の均一性を損なう。本開示のシステム目的は、光パルスのレートを光線変位システムとリアルタイムで同期させ、したがって、ビーム偏向システムの加速を考慮に入れて、エネルギーの一定付与を用いてレーザ処理を実行できるようにする。したがって、光パルスの持続時間及び/又はレート調整可能性の容易さにより、レーザ処理の精度及び規則性を改善することができる。さらに、このシステムは、レーザ法を複数のパラメータ範囲及び非常に広いダイナミクスにわたり利用できるようにし、その理由は、レーザ動作中、パルスの波長、レート、及び持続時間を同時に調整して、材料とのレーザの相互作用性を適合させることが可能であるためである。したがって、1つの光源を用いて、最適なレーザパラメータを維持しながら、不均質組成の要素を連続して処理することができる。
特定の実施形態では、短又は超短光パルスを生成するシステムは、生体細胞及び組織での生物学的研究に適合された多光子蛍光励起に基づく全視野撮像のシステム及び方法にも応用される。多光子撮像は、信号がパルス持続時間の二乗に反比例して変化する非線形現象に基づく。他方、短又は超短光パルスを生成するシステムは、数kHzから数GHzに広がる周波数範囲にわたり光パルスの放射レートを調整できるようにする。このレート範囲は、現在の技術では達成不可能であり、非破壊光パルスの範囲内に留まりながら、目標撮像の関数として信号対雑音比を微調整できるようにする。
特定の有利な実施形態によれば、短又は超短光パルスを生成するシステムは、イッテルビウムドープ光ファイバ技術を実施する。イッテルビウムドープ光ファイバは、従来の光学発振器により提供される数Wと比較して、50Wを超える平均電力までの増幅に特に適合される。そして、イッテルビウムドープ光ファイバは、数cm2のゾーンを照明し、全視野画像を形成できるようにする。比較として、現在のレーザ撮像技術は一般に、50μm2の点へのレーザビームの合焦、撮像表面のスキャン、及び画像の点毎の再構築に基づき、それにより、これらの技法は極めて長い。逆に、本明細書に提案される短又は超短光パルスを生成するシステムと組み合わせた撮像は、画像が1つの動作で得られるため、実際の技術的革新をなす。超高速カメラは、時間的力学に従う、例えば、以前、画像の点毎の再構築により達成不可能であった生体細胞の進化を辿れるようにする。

Claims (15)

  1. 短又は超短光パルスを生成するシステム(1)であって、
    −光放射(20)を発するように構成された光源(2)と、
    −少なくとも1GHzまで広がる帯域幅にわたり調整可能な周波数において動作し、1ピコ秒〜数ナノ秒の持続時間の少なくとも1つの電気パルスを含むアナログ電気変調信号(50)を発するように構成された電力生成器(5)と、
    −前記アナログ電気変調信号(50)を受信するように適合された電気帯域幅を有する電気又は電子光学変調手段であって、前記アナログ電気変調信号(50)の関数として光放射(20)の振幅を変調し、10ps〜数ナノ秒の持続時間の少なくとも1つの光パルスを含む変調光放射(40)を生成するように構成された電気又は電子光学変調手段と
    を備える、システム。
  2. 前記電力生成器(5)は、10ps〜数ナノ秒の持続時間の前記少なくとも1つの電気パルスを含む前記アナログ電気変調信号(50)を発するように構成され、前記光源(2)は、電極を有するレーザダイオードを含み、前記変調手段は、前記アナログ電気変調信号(50)を前記レーザダイオードの前記電極に印加するように構成される、請求項1に記載のシステム。
  3. 前記電力生成器(5)は、少なくとも10GHzまで広がる帯域幅にわたり調整可能な周波数において動作し、10ps〜50psの持続時間の前記少なくとも1つの電気パルスを含む前記アナログ電気変調信号(50)を発するように構成され、前記レーザダイオードは利得切り替えされ、それにより、前記レーザダイオードは、少なくとも10GHzまで広がるレートで10ps〜50psの持続時間の少なくとも1つの光パルスを含む前記変調光放射(40)を生成する、請求項2に記載のシステム。
  4. −前記光源(2)は、時間連続光放射(20)を発するように構成され、
    −前記電力生成器(5)は、1GHz〜100GHzの帯域幅にわたり調整可能な周波数において動作し、10ピコ秒〜100ピコ秒の持続時間の前記少なくとも1つの電気パルスを含む前記アナログ電気変調信号(50)を生成するように構成され、
    −前記システムは、電極と、前記アナログ電気変調信号(50)を受信するように適合された電気帯域幅とを有する電子光学変調器(4)を更に備え、前記電子光学変調器は、前記アナログ電気変調信号(50)の関数として、前記連続光放射(20)の振幅を光学的に変調し、10ピコ秒〜約100ピコ秒の持続時間の前記少なくとも1つの光パルスを含む変調光放射(40)を生成するように構成される、請求項1に記載のシステム。
  5. 前記電力生成器は、10kHz〜20GHzの周波数範囲にわたり調整可能なレートで10ps〜10nsの持続時間の電気パルス列を含む前記アナログ電気変調信号(50)を発するように構成され、前記電子光学変調器は、前記アナログ電気変調信号(50)の関数として前記連続光放射を変調し、10ps〜10nsの持続時間の光パルス列を含む変調光放射(40)を生成するよう構成され、前記光パルスは前記調整可能なレートを有する、請求項4に記載のシステム。
  6. 10ピコ秒〜100ピコ秒の持続時間の前記少なくとも1つの光パルスを受信し、1ピコ秒以下の持続時間の圧縮光パルス(100)を生成するように構成された圧縮器(8)を更に備える、請求項1〜5のいずれか一項に記載のシステム。
  7. 前記光源(2)と前記圧縮器(8)との間に配置された少なくとも1つの光学デバイス(7、17、27)を更に備え、前記光学デバイス(7、17、27)は、スペクトル分散光学デバイス(7)、偏光光学デバイス(17)、又は非線形光学デバイス(27)の中から選ばれる、請求項6に記載のシステム。
  8. 前記光源(2)は、単色又は多色性連続光放射を発するように構成される、請求項1〜7のいずれか一項に記載のシステム。
  9. 前記光放射(20)の波長を調整するデバイスを備える、請求項1〜8のいずれか一項に記載のシステム。
  10. 前記光源は、エルビウム、イッテルビウム、ツリウム、又はネオジムドープ光ファイバレーザ源の中から選ばれた希土類ドープ光ファイバレーザダイオード又はレーザ源を含む、請求項1〜9のいずれか一項に記載のシステム。
  11. 前記変調光放射(40)を受け取り、増幅パルス光放射を生成するように構成された光学増幅デバイス(10、11、12)を備える、請求項1〜10のいずれか一項に記載のシステム。
  12. 前記電気又は電子光学変調手段の出口に配置され、前記変調光放射の一部を捕捉するように構成された光学結合器と、少なくとも1GHzまで広がる帯域幅の前記変調光放射の部分の強度を測定するように構成された検出システムと、前記測定された強度の関数として、前記変調信号にバイアス信号を印加するように構成された帰還ループとを備える、請求項1〜11のいずれか一項に記載のシステム。
  13. 前記変調光放射を受け取り、拡大された変調光ビームを分析されるゾーンに向けるように構成されたビーム拡大光学システムと、前記ゾーンの画像を形成するように構成された画像検出システムとを備える、請求項1〜12のいずれか一項に記載のシステム。
  14. 短又は超短光パルスを生成する方法であって、
    −光放射(20)を発することと、
    −10kHz〜20GHzのマイクロ波帯域幅の周波数を有するアナログ電気変調信号(50)を生成することであって、前記アナログ電気変調信号は、1ピコ秒〜数ナノ秒の持続時間の少なくとも1つの電気パルスを含む、生成することと、
    −前記アナログ電気変調信号を電子光学変調器又はレーザダイオードの電極に印加することであって、前記電子光学変調器又は前記レーザダイオードは、前記アナログ電気変調信号(50)の関数として前記光放射(20)の振幅を光学的に変調し、10ps〜100psの持続時間の少なくとも1つの光パルスを含む変調光放射(40)を生成するように構成される、印加することと
    を含む、方法。
  15. 前記レーザダイオードは利得切り替えされ、それにより、前記レーザダイオードは、少なくとも10GHzまで広がるレートで10ps〜50psの持続時間の少なくとも1つの光パルスを含む前記変調光放射を生成する、請求項14に記載の方法。
JP2019503473A 2016-07-20 2017-07-20 短又は超短光パルスを生成するシステム Pending JP2019522377A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1656900A FR3054331B1 (fr) 2016-07-20 2016-07-20 Systeme de generation d'impulsions lumineuses breves ou ultra-breves
FR1656900 2016-07-20
PCT/FR2017/052000 WO2018015682A1 (fr) 2016-07-20 2017-07-20 Système de génération d'impulsions lumineuses brèves ou ultra-brèves

Publications (1)

Publication Number Publication Date
JP2019522377A true JP2019522377A (ja) 2019-08-08

Family

ID=57750034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019503473A Pending JP2019522377A (ja) 2016-07-20 2017-07-20 短又は超短光パルスを生成するシステム

Country Status (7)

Country Link
US (1) US10859888B2 (ja)
EP (1) EP3488290B1 (ja)
JP (1) JP2019522377A (ja)
KR (1) KR20190034203A (ja)
CN (1) CN109906406A (ja)
FR (1) FR3054331B1 (ja)
WO (1) WO2018015682A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230101551A (ko) * 2021-12-29 2023-07-06 한국기계연구원 광변조 레이저 펄스의 생성 시스템

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102791A1 (en) * 2016-12-04 2018-06-07 Newport Corporation High-power mode-locked laser system and methods of use
FR3085854B1 (fr) * 2018-09-13 2021-07-30 Irisiome Systeme de laser impulsionnel destine aux traitements dermatologiques
DE102018221363A1 (de) * 2018-12-10 2020-06-10 Trumpf Laser Gmbh Lasersystem und Verfahren zum Betreiben eines solchen Lasersystems
US20200316722A1 (en) * 2019-04-02 2020-10-08 Asm Technology Singapore Pte Ltd Optimised laser cutting
CN110459943A (zh) * 2019-08-14 2019-11-15 上海卫星工程研究所 适用于多个波长放大的阳光泵浦激光放大器及其放大方法
CN110702033A (zh) * 2019-10-18 2020-01-17 北京工业大学 一种基于纳秒脉冲线激光源的三维扫描仪
US20230352465A1 (en) * 2022-04-28 2023-11-02 Lightmatter, Inc. Led-based photonic communication and processing unit
EP4273623A1 (en) * 2022-05-06 2023-11-08 Deutsches Elektronen-Synchrotron DESY Wavelength conversion apparatus and method for spectrally converting laser pulses, and laser source apparatus including the wavelength conversion apparatus
WO2024050413A1 (en) * 2022-08-30 2024-03-07 Research Instruments Corporation Picosecond laser-driven plasma x-ray source

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291488A (ja) * 1987-05-25 1988-11-29 Nippon Telegr & Teleph Corp <Ntt> 光ファイバレ−ザ装置
JPH07248512A (ja) * 1994-02-22 1995-09-26 Cselt Spa (Cent Stud E Lab Telecomun) 超短光パルスの発生方法
JP2000077768A (ja) * 1998-08-28 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> 光パルス発生装置
JP2001272332A (ja) * 2000-03-23 2001-10-05 Japan Science & Technology Corp 角分散光空間干渉断層画像化装置
JP2006039132A (ja) * 2004-07-26 2006-02-09 Olympus Corp レーザ走査型観察装置
JP2006242571A (ja) * 2005-02-28 2006-09-14 Fuji Xerox Co Ltd 三次元形状測定装置
US20060210210A1 (en) * 2005-03-07 2006-09-21 Azea Networks Ltd Adaptive pulse shape control
CN101295853A (zh) * 2007-04-29 2008-10-29 中国科学院西安光学精密机械研究所 一种波长可调谐外注入式增益开关激光器
CN102393593A (zh) * 2011-06-30 2012-03-28 北京邮电大学 超短脉冲光源产生装置
JP2012208462A (ja) * 2011-03-16 2012-10-25 Olympus Corp 非線形光学装置、多光子顕微鏡および内視鏡
FR3001053A1 (fr) * 2013-01-15 2014-07-18 Univ Bourgogne Generateur et procede pour la generation d'impulsions optiques a haut taux de repetition
US20140300951A1 (en) * 2011-09-12 2014-10-09 Lawrence Livermore National Security, Llc Directly driven source of multi-gigahertz, sub-picosecond optical pulses
JP2014219571A (ja) * 2013-05-08 2014-11-20 富士通オプティカルコンポーネンツ株式会社 光変調制御装置、送信器および光出力波形制御方法
US20160084761A1 (en) * 2014-08-08 2016-03-24 Quantum-Si Incorporated Integrated device with external light source for probing detecting and analyzing molecules
US9958708B1 (en) * 2016-12-21 2018-05-01 LGS Innovations LLC Method of short optical pulse generation
JP2018518670A (ja) * 2015-05-20 2018-07-12 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated 蛍光寿命分析のための光源

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457329B2 (en) * 2006-04-19 2008-11-25 Pyrophotonics Lasers Inc. Method and system for a high power low-coherence pulsed light source
CN201298658Y (zh) * 2008-11-07 2009-08-26 中国科学院西安光学精密机械研究所 基于半导体光放大器的外注入式线性腔主动锁模光纤激光器
US7813389B2 (en) * 2008-11-10 2010-10-12 Electro Scientific Industries, Inc. Generating laser pulses of prescribed pulse shapes programmed through combination of separate electrical and optical modulators
US10605730B2 (en) * 2015-05-20 2020-03-31 Quantum-Si Incorporated Optical sources for fluorescent lifetime analysis

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291488A (ja) * 1987-05-25 1988-11-29 Nippon Telegr & Teleph Corp <Ntt> 光ファイバレ−ザ装置
JPH07248512A (ja) * 1994-02-22 1995-09-26 Cselt Spa (Cent Stud E Lab Telecomun) 超短光パルスの発生方法
JP2000077768A (ja) * 1998-08-28 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> 光パルス発生装置
JP2001272332A (ja) * 2000-03-23 2001-10-05 Japan Science & Technology Corp 角分散光空間干渉断層画像化装置
JP2006039132A (ja) * 2004-07-26 2006-02-09 Olympus Corp レーザ走査型観察装置
JP2006242571A (ja) * 2005-02-28 2006-09-14 Fuji Xerox Co Ltd 三次元形状測定装置
US20060210210A1 (en) * 2005-03-07 2006-09-21 Azea Networks Ltd Adaptive pulse shape control
CN101295853A (zh) * 2007-04-29 2008-10-29 中国科学院西安光学精密机械研究所 一种波长可调谐外注入式增益开关激光器
JP2012208462A (ja) * 2011-03-16 2012-10-25 Olympus Corp 非線形光学装置、多光子顕微鏡および内視鏡
CN102393593A (zh) * 2011-06-30 2012-03-28 北京邮电大学 超短脉冲光源产生装置
US20140300951A1 (en) * 2011-09-12 2014-10-09 Lawrence Livermore National Security, Llc Directly driven source of multi-gigahertz, sub-picosecond optical pulses
FR3001053A1 (fr) * 2013-01-15 2014-07-18 Univ Bourgogne Generateur et procede pour la generation d'impulsions optiques a haut taux de repetition
JP2014219571A (ja) * 2013-05-08 2014-11-20 富士通オプティカルコンポーネンツ株式会社 光変調制御装置、送信器および光出力波形制御方法
US20160084761A1 (en) * 2014-08-08 2016-03-24 Quantum-Si Incorporated Integrated device with external light source for probing detecting and analyzing molecules
JP2018518670A (ja) * 2015-05-20 2018-07-12 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated 蛍光寿命分析のための光源
US9958708B1 (en) * 2016-12-21 2018-05-01 LGS Innovations LLC Method of short optical pulse generation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OZEKI Y; HIROISHI J; SUGIZAKI R; ET AL: "REPETITION RATE AND WAVELENGTH TUNABLE PICOSECOND OPTICAL PULSE SOURCE EMPLOYING 以下備考", 31ST EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, vol. 1, JPN5019006517, 25 September 2005 (2005-09-25), GB, pages 41 - 42, ISSN: 0004716058 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230101551A (ko) * 2021-12-29 2023-07-06 한국기계연구원 광변조 레이저 펄스의 생성 시스템
KR102603290B1 (ko) * 2021-12-29 2023-11-17 한국기계연구원 광변조 레이저 펄스의 생성 시스템

Also Published As

Publication number Publication date
US20190235346A1 (en) 2019-08-01
FR3054331B1 (fr) 2022-07-29
KR20190034203A (ko) 2019-04-01
EP3488290A1 (fr) 2019-05-29
EP3488290B1 (fr) 2021-08-18
FR3054331A1 (fr) 2018-01-26
WO2018015682A1 (fr) 2018-01-25
CN109906406A (zh) 2019-06-18
US10859888B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
US10859888B2 (en) System for generating brief or ultra-brief light pulses
US8630320B2 (en) Method and apparatus for a hybrid mode-locked fiber laser
US7529281B2 (en) Light source with precisely controlled wavelength-converted average power
KR102528882B1 (ko) 레이트 및/또는 진폭이 시간 변조되는 펄스 레이저 시스템
US7733922B1 (en) Method and apparatus for fast pulse harmonic fiber laser
US20220149579A1 (en) Ultrashort pulse laser source with chirped pulse amplification and tailored pulse train
US20230075147A1 (en) Method and system using optical phase modulation and optical phase demodulation and spectral filtering to generate an optical pulse train
Zhou et al. Transform-limited, injection seeded, Q-switched, ring cavity fiber laser
CA2781319A1 (en) Fiber laser oscillators and systems using an optimized phase varying function
Wilcox et al. Fusion laser oscillator and pulse-forming system using integrated optics
Antoncini Ultrashort laser pulses
JP2012038895A (ja) ファイバレーザ光源およびそれを用いた波長変換レーザ光源
WO2019053487A1 (en) LASER OR STABILIZED OPTICAL AMPLIFIER AND METHOD OF STABILIZATION
Yoshimi et al. An Er fiber laser generating multi-milliwatt picosecond pulses with nearly shot-noise-limited intensity noise
Nikodem et al. Actively mode-locked fiber laser using acousto-optic modulator
US20230223730A1 (en) Device for the compression of laser pulses of the order of the nanosecond and consequent generation of ultrashort pulses of the order of one hundred femtoseconds
Wang et al. Stable SESAM-mode-locked Yb fiber laser in the similariton regime
KR20230151994A (ko) 지속시간 및/또는 반복 주파수 조절이 가능한 서브피코초의지속시간을 갖는 광 펄스를 생성하기 위한 시스템 및 방법
JPH02310982A (ja) モード同期ファイバレーザ装置
Vasseur et al. Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach–Zehnder Interferometer in a Mode-locked Fiber Ring Laser
Chi et al. Pulse-jitter reduction in passively Q-switched Nd: YAG/Cr: YAG microchip lasers by injection seeding actively Q-switched laser pulses
Honig et al. Diode-pumped 22-W average-power uv laser with user-selectable pulse width and> 50% conversion efficiency
WO2001052370A1 (en) SOLID-STATE TUNABLE VISIBLE LASER SOURCE USING SUM FREQUENCY MIXING OR FREQUENCY DOUBLING OF A Yb:SILICA FIBER LASER AND AN Nd:YAG LASER
Runge Dissipative Dynamics in Advanced Mode-Locked Fibre Laser Designs
Khalilah Zatiliman Bandwidth, pulse width and wavelength tunability in passively pulse fiber laser/Khalilah Zatiliman Hamdan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301