JP2019517185A - 光ネットワークのためのセグメントルーティング - Google Patents

光ネットワークのためのセグメントルーティング Download PDF

Info

Publication number
JP2019517185A
JP2019517185A JP2018555218A JP2018555218A JP2019517185A JP 2019517185 A JP2019517185 A JP 2019517185A JP 2018555218 A JP2018555218 A JP 2018555218A JP 2018555218 A JP2018555218 A JP 2018555218A JP 2019517185 A JP2019517185 A JP 2019517185A
Authority
JP
Japan
Prior art keywords
optical
control information
node
optical switch
switch node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018555218A
Other languages
English (en)
Other versions
JP6739771B2 (ja
Inventor
ハミッド・メフルヴァー
Original Assignee
ホアウェイ・テクノロジーズ・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホアウェイ・テクノロジーズ・カンパニー・リミテッド filed Critical ホアウェイ・テクノロジーズ・カンパニー・リミテッド
Publication of JP2019517185A publication Critical patent/JP2019517185A/ja
Application granted granted Critical
Publication of JP6739771B2 publication Critical patent/JP6739771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0003Switching fabrics, e.g. transport network, control network
    • H04J2203/0023Routing/path finding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0051Network Node Interface, e.g. tandem connections, transit switching
    • H04J2203/0053Routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/002Construction using optical delay lines or optical buffers or optical recirculation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0039Electrical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0041Optical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0069Network aspects using dedicated optical channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

本開示の態様は、ソースノードから宛先ノードまで光ネットワーク内のルートを形成するノード間のノードおよび/また光リンクのリストを生成する、光ネットワークのある所定の知識を有するソースノードを含む。光ネットワーク内のノードは、ソースノードから宛先ノードまでのルート全体を必ずしも知っている必要はない。各ノードは、宛先ノードに向かうルート内の次のホップを識別する制御情報を単に復号する。次のホップを識別する復号された制御情報を利用することにより、ノード内のスイッチを制御して、ペイロードと制御情報の一部または全部を含む光信号を宛先ノードに向かう次の光リンクにルーティングすることができる。

Description

関連出願の相互参照
本出願は、「光ネットワークのためのセグメントルーティング」と題する2016年4月22日に出願された米国非仮特許出願第15/136,378号の優先権および利益を主張するものであり、その全体が再現されているかのように参照により本明細書に組み込まれる。
開示の分野
本出願は、光ネットワーク、特にそのようなネットワークにおける光信号のルーティングに関する。
セグメントルーティングは、ソースベースのルーティングとしても知られ、通信ネットワークの電子ルータで使用されている。セグメントルーティングは、各ノードが他のノードに接続される方法を含むネットワークのトポロジを光ネットワーク内の少なくとも1つのノードが知ることによって少なくとも部分的に可能になる。セグメントルーティングされたネットワークを横断するパケットは、通常、ヘッダとペイロードとを含む。セグメントルーティングされたパケットのヘッダは、通常、完全なルーティング情報を含む。ルーティング情報は、典型的には、パケットがネットワークを横切るようにルーティングされるノードおよび/またはリンクのリストである。セグメントルーティングされたネットワーク内のノードはパケットを受信すると、ヘッダに格納されたルーティング情報を検査することによって、パケットをどこに転送するかを決定できる。パケットを転送する前に、ノードは通常、ソースルーティングリストから1つのアドレスを削除する。別の実装形態では、ノードアドレスのリストの代わりに、ソースルーティングリストは、各ノードがパケットを転送すべきポートのリストを含む。そのような実施形態では、ノードがパケットを受信すると、ノードは、パケットをヘッダ内で識別されたポートにルーティングし、リストからそのポートを削除する。ネットワーク内の各ノードは同じ処理を実行する。
現在、セグメントルーティングはネットワーク層で実装されている。セグメントルーティング情報を取得するには、パケットヘッダを電気ドメインで読み取る必要がある。光リンクを利用するセグメントルーテッドネットワークでは、ルーティング情報を読み取ることができるように光信号を電気ドメインに変換しなければならない。ヘッダへの任意の必要な変更は、その後実行され、パケットが転送される。転送プロセスは、光リンク上での伝送のために光ドメインへの再変換を含むことが多い。この光‐電気‐光(O−E−O)変換プロセスは、時間とリソースを大量に消費する。
光ネットワーク内の信号のルーティングは高速であることが意図されているため、ノード当たりの処理時間が限られている。光ネットワークの性能を引き続き向上させることは、通信ネットワークの帯域幅と速度の両方に対する増大する需要を満たすのに役立つ可能性がある。
本開示の一実施形態によれば、セグメントルーティングされた光ネットワークにおいて光スイッチノードを動作させる方法が提供される。この方法は、第1の先行ノードから、光ネットワーク内の第1の光リンクを介して、ペイロードと、光スイッチノードに関連し、かつセグメントルーティングされたパス内の後続の光スイッチノードに関連する制御情報とを搬送する第1の光信号を受信することを含む。さらなる工程は、セグメントルーティングされたパス内の後続の光スイッチノードに関連する制御情報に対して非破壊的な方法で、受信した第1の光信号から読み取った光スイッチノードに関連する制御情報に従って、スイッチファブリックを制御することを含む。さらなる工程は、受信したペイロードとセグメントルーティングされたパス内の後続の光スイッチノードに関連する制御情報とを搬送する光信号を、読み取った制御情報に従って決定された方法で、スイッチファブリックを介して、光ネットワーク内の後続ノードに転送することを含む。
本開示の別の実施形態によれば、セグメントルーティングされた光ネットワークにおいてソースノードを動作させる方法が提供される。この方法は、光スイッチノードの順序付きリストを含むセグメントルーティングされたパスを生成することを含む。後続の工程は、順序付きリスト内の各光スイッチノードのための制御情報を生成することを含む。さらなる工程は、生成された制御情報を少なくとも1つの制御波長チャネルに符号化することを含む。別の工程は、符号化された制御情報と共にペイロードを順序付きリストの第1の光スイッチノードに伝送することを含む。
本開示のさらなる実施形態によれば、セグメントルーティングされた光ネットワークで使用される光スイッチノードが提供される。光スイッチノードは、光ネットワーク内の先行ノードから、光リンクを介して、ペイロードと、光スイッチノードに関連し、かつセグメントルーティングされたパス内の後続の光スイッチノードに関連する制御情報とを搬送する光信号を受信するように構成された入力ポートを含む。光スイッチノードはまた、受信した光信号の一部を光学的に迂回させるように構成された波長ダイバータを含む。光スイッチノードはまた、受信したペイロードと少なくとも後続の光スイッチノードに関連する制御情報とを含む光信号を光ネットワーク内の後続ノードにルーティングするように構成された入力ポートに、光学的に結合された光スイッチファブリックを含む。光スイッチノードはさらに、波長ダイバータおよび光スイッチファブリックに光学的に結合されたコントローラを含む。コントローラは、光スイッチファブリックを制御して、受信したペイロードと少なくとも後続の光スイッチノードに関連する制御情報とを含む光信号を、受信した光信号の迂回部分で搬送される情報に従って選択された出力ポートに導くように構成される。
本開示のさらに別の実施形態によれば、セグメントルーティングされた光ネットワークで使用される光スイッチノードが提供される。光スイッチノードは、光スイッチノードの順序付きリストを含む光ネットワークを通るセグメントルーティングされたパスを生成し、順序付きリスト内の光スイッチノードの各々について制御情報を生成し、生成された制御情報を少なくとも1つの制御波長チャネルに符号化し、符号化された制御情報と共にペイロードを順序付きリスト内の第1の光スイッチノードに伝送するように構成されたコントローラを含む。
本開示の他の態様および特徴は、本開示の様々な実施形態の以下の説明を検討することにより、当業者には明らかになるであろう。
以下、添付の図面を参照して実施形態を説明する。
本開示の一態様によるフォトニックセグメントルーティングを利用する光ネットワークのブロック図である。 本開示の一態様によるフォトニックセグメントルーティングを利用する、図1の光ネットワークにおけるスイッチノードのブロック図である。 本開示の一態様によるフォトニックセグメントルーティングを利用する光ネットワークのブロック図である。 本開示の一態様によるフォトニックセグメントルーティングを利用する、図3の光ネットワークにおけるスイッチノードのブロック図である。 本開示の一態様によるフォトニックセグメントルーティングを利用する、図3の光ネットワークにおける別のスイッチノードのブロック図である。 本開示の一態様によるフォトニックセグメントルーティングを利用する光ネットワークにおける2つの中間ノードのブロック図である。 本開示の一態様によるフォトニックセグメントルーティングを利用する光ネットワークにおける2つの中間ノードのブロック図である。 本開示の一態様による例示的な中間または宛先スイッチノードのブロック図である。 本開示の一態様による例示的なソーススイッチノードのブロック図である。 本開示の一態様による、セグメントルーティングされた光ネットワーク内のスイッチノードにおける使用方法を説明するフローチャートである。 本開示の一態様による、セグメントルーティングされた光ネットワーク内の光スイッチノードにおける使用方法を説明するフローチャートである。
始めに、本開示の1つ以上の実施形態の例示的な実装形態が以下に提供されるが、開示されるシステムおよび/または方法は、現在知られているかまたは存在しているかに関わらず、任意の数の技術を使用して実装され得ることを理解するべきである。本開示は、本明細書に例示し記載する例示的な設計および実装形態を含む、以下に例示する例示的な実装形態、図面、および技術に決して限定されるべきではなく、それらの等価物の全範囲とともに添付の請求項の範囲内で改変することができる。
本開示の態様は、フォトニックスイッチノードで構成されるネットワークにおいてセグメントルーティングを可能にすることに関する。フォトニックスイッチノードのネットワークは、光信号をスイッチングすることができるノードの集合、光リンクによって互いに接続されたノードの集合内のノードであると見なすことができる。隣接ノード間の各光リンクは、単一のホップと見なすことができる。光信号は、光ネットワークをソースノードから宛先ノードまで横断する。ソースノードと宛先ノードは、光信号がソースノードから宛先ノードまで単一のホップをするように隣接ノードであり得るか、またはソースノードと宛先ノードは、光信号が2つ以上のホップで横断するように1つ以上の他のノードによって分離され得る。
本開示のいくつかの実施形態では、ソースノードは、ネットワーク内のノードの数およびネットワーク内のノードの接続性など、ネットワークトポロジの所定の知識を有し、ソースノードから宛先ノードまでネットワーク内のルートを形成するノード間のノードおよび/または光リンクのリストを生成する。ネットワーク内のノードは、ソースノードから宛先ノードまでのルート全体を必ずしも知る必要はない。各ノードは、宛先ノードに向かうルート内の次のホップを識別する制御情報を単に復号する。次のホップを識別する復号された制御情報を利用することにより、ノード内のスイッチを制御して、ペイロードと制御情報の一部または全部を含む光信号を宛先ノードに向かう次の光リンクにルーティングすることができる。別の実施形態では、ネットワークコントローラがネットワークトポロジの知識を有し、ソースルーティングリストをソースノードに提供する。コントローラを使用してセグメントルーティングリストを作成することにより、ネットワークトポロジの知識を集中化することができ、各々にネットワークトポロジを提供する必要なく複数のノードをソースノードとして動作させることができる。
いくつかの態様では、光信号は、ソースノードから宛先ノードへフレームをルーティングするために必要な全てのルーティング情報を各フレームが搬送する、一連のフォトニックフレームまたはバーストと見なすことができる。ソースノードから宛先ノードへ伝送される各フレームは、制御情報とペイロードとを含む。制御情報を含むフレームの一部は、ネットワーク内の全ての光リンクについて同じ波長チャネル上で伝送されてもよい。あるいは、制御情報は、複数の専用波長チャネル上で伝送されてもよく、各専用波長チャネルは、ネットワークの特定の光リンク用である。
ソースから宛先へのルーティングが意図されたノードのリストは、ペイロードと共に光信号でソースノードによって伝送される制御情報の少なくとも一部を形成する。パス内の各ノードは、ペイロードと制御情報の両方を受信する。受信した制御情報に従って、ノードは次のホップを識別し、それに応じてペイロードを転送する。ルート内の各ノードは、セグメントルーティングされたパス内の他のノードに関連する制御情報に対して非破壊的な方法で、関連する制御情報を読み取ることができる。「他のノードに関連する制御情報に対して非破壊的な方法で」という表現は、他のノードに関連する制御情報の内容が根本的に変更されないことを伝えるために使用される。現在のノードは、関連する制御情報を抽出し、残りの制御情報を後続ノードに渡すことができる。「関連する制御情報」という語句は、受信ノードが必要とする制御情報を指すものと理解されるべきである。各ホップで信号を転送すべきリンクを定義するセグメントルートが制御情報に符号化されている場合、各ノードは、関連する信号を転送するリンクを見つけるが、他のノードのためのルーティング情報は関連性がない。以下で詳細に説明するいくつかの実施形態では、後続ノードに関連する制御情報は、スイッチノードを横断する際にペイロードから一時的に分離されるか、または光ドメインから電気ドメインに変換された後、現在光信号を受信しているスイッチノードによって光ドメインに戻されるが、後続ノードに関連する制御情報の内容は変更されない。
パス内の各ノードにルーティング情報を転送するために使用される制御情報に加えて、他の情報が制御情報に符号化されてもよい。ソースノードまたはネットワークコントローラは、ルーティング情報ではない追加の制御情報を含むことができる。例えば、宛先ノードは、フレーム単位で(バーストモード受信機のためのリセット信号)、または複数のフレーム単位でリセットする必要があり得る。ノード自身でフレームリセットをトリガすることができるノードもあり得るが、何らかの形の外部トリガ信号を必要とするノードもあり得る。ソースノードは、外部トリガとして動作する情報を制御情報に含むことができる。
いくつかの実施形態では、ソースノードから中間ノードおよび/またはエンドツーエンド管理通信情報および更新情報(アップグレード、ステータスなど)も、2つのノード間の制御情報内で伝送することができる。
光セグメントルーティングネットワークの第1の態様は、ネットワーク内の光リンクのいずれかを介して制御情報を伝送するための単一波長チャネルを使用してフォトニックセグメントルーティングが実行されるように実装することができる。単一波長チャネルを使用して、ソースノードから宛先ノードへのNホップの全てのルーティング情報を搬送することができる。ルート内の各ノードは、受信した光信号をフィルタリングして、制御情報を含む単一波長チャネルをドロップし、ペイロードを通過させることができる。単一波長チャネル上の制御情報は、ノード内のスイッチを制御するために復号され、使用され得る。ペイロードと、少なくともルート内の後続ノードに関連する制御情報は、次にスイッチによって宛先ノードに向けて転送される。
光セグメントルーティングネットワークの第2の態様は、制御情報の伝送のために複数の波長を使用してフォトニックセグメントルーティングが実行されるように実装されてもよい。一実施形態では、M個の制御波長がMリンクフォトニックネットワークに使用される(Mは、ルート内のソースノードと宛先ノードとを接続する光リンクの総数である)。ルート内の各ノードは、制御情報のための関連する制御周波数を有する。ノードは、制御情報とペイロード情報の両方を搬送する光信号を受信する。この信号はフィルタリングされ、ノードに関連付けられた専用波長チャネルが抽出される。この波長チャネルは、ノードに固有の制御情報を搬送する。このフィルタリングにより、ペイロードと、ノードに関連付けられていない制御情報とが通過することが可能になる。ノードの制御情報は、ノードが次のホップの光信号を後続ノードにルーティングすることを可能にする情報である。制御情報は復号され、ノード内のスイッチを制御するために使用される。ルーティング情報を使用して、ペイロードと、制御情報の一部または全部がスイッチによって宛先ノードに転送される。フィルタリングから制御情報を抽出する際に、フィルタリングされた波長で搬送される情報を後続ノードに転送する必要はないことが理解されよう。しかしながら、フィルタリングされた波長における伝送を防ぐ必要もない。
上述した第1および第2の態様は、受信した光信号をフィルタリングして制御情報を搬送する特定の波長を抽出することを含む。これに代わる方法は、受信した光信号をタップし、光信号のタップ部分から制御情報を読み取って復号し、復号された情報を使用して、受信した光信号のルーティングを制御することである。
図1を参照して、全ての光リンクの単一の制御情報波長チャネルに関連して上述した第1の実施形態のより詳細な説明を提供する。図1は、複数のノード15,20,25,30,35,40,45および50と、ノードを接続するそれぞれの光リンク12,13,24,27,28,33,34,38,42,43および48とを有するセグメントルーティング光ネットワーク10を示す。ノード15および20は光リンク12によって接続され、ノード15および25は光リンク13によって接続され、ノード20および25は光リンク27によって接続され、以下同様である。図1の例では、ノード15はソースノードと考えられ、ノード50は宛先ノードと考えられる。ソースノード15は、制御情報とペイロードとを含む光信号を宛先ノード50にルーティングするために使用されるリンクのリストを生成する。また、図1は、ソースノード15から宛先ノード50までネットワーク10を横断している各光リンク12,24,33,38,48について単一波長チャネルλで伝送されている制御情報17,22,32,37および47の表現を示す。制御情報内の各ブロック(例えば、制御情報17内の17a、17b、17c、17dおよび17e)は、それぞれの受信ノードによって抽出され使用される制御情報を表す。ブロックは、ソースノードによって、受信ノードのために適切に割り当てられたそれぞれの制御情報を受信ノードが抽出することができるような方法で配置される。制御情報17は、光リンク12を介して伝送され、ノード20によって受信される。ノード20は、制御情報17から制御情報17aを抽出し(図2を参照してより詳細に後述する)、ノード20は、制御情報のその部分を使用してノード20内のスイッチを制御して、ペイロード(図示せず)および残りの制御情報22(17b、17c、17dおよび17eを含む)を、ノード30を介して宛先ノード50に向けてルーティングする。制御情報22は、光リンク24を介して伝送され、ノード30によって受信される。ノード30は、制御情報22から制御情報17bを抽出し、制御情報のその部分を使用して、ノード30内のスイッチを制御して、ペイロード(図示せず)および残りの制御情報32(17c、17dおよび17eを含む)を、ノード35を介して宛先ノード50に向けてルーティングする。制御情報32は、光リンク33を介して伝送され、ノード35によって受信される。ノード35は、制御情報32から制御情報17cを抽出し、制御情報のその部分を使用して、ノード35内のスイッチを制御して、ペイロード(図示せず)および残りの制御情報37(17dおよび17eを含む)を、ノード45を介して宛先ノード50に向けてルーティングする。制御情報37は、光リンク38を介して伝送され、ノード45によって受信される。ノード45は、制御情報37から制御情報17dを抽出し、制御情報のその部分を使用してノード45内のスイッチを制御して、ペイロード(図示せず)および残りの制御情報47(17eを含む)を宛先ノード50に向けてルーティングする。制御情報47は、光リンク48を介して伝送され、宛先ノード50によって受信される。宛先ノード50は、制御情報47から制御情報17eを抽出し、制御情報のその部分を使用して宛先ノードを適宜更新し、例えば、ペイロード(図示せず)が受信され処理されると、ノード50におけるバーストモードリセットをトリガする。
図2を参照して、図1のノード20のより詳細な動作を説明する。図2は、光リンク12上の光信号を受信するノード20を示す。ノード20で受信されている光信号は、単一波長チャネルλ上の制御情報17(17a、17b、17c、17d、17e)と複数の波長チャネルのペイロード112との両方を含む。光フィルタ110は、光信号を受信し、制御情報17を搬送する波長チャネルλをドロップし、ペイロード112を通過させる。制御情報17を搬送するドロップされた波長チャネルλは、光−電気変換器120によって電気信号に変換される。電気信号はコントローラ130に供給される。コントローラ130は、制御情報17の一部17aを復号し、制御情報の復号部分17aを使用して、スイッチング制御信号出力135を介して光スイッチ150を制御する。コントローラ130は、制御情報17b、17c、17dおよび17eを電気−光変換器140に送信し、電気ドメイン制御情報を変換して波長チャネルλの光ドメインに戻す。制御情報を搬送するこの変換された光信号は、その後、結合器170を使用してペイロード112と結合される。図2の例では、ペイロード112は遅延要素160によって、残りの制御情報と再結合される前に遅延される。遅延要素160は、光‐電気変換器120によって実行される光‐電気変換と、電気‐光変換器140によって実行される電気‐光変換とによって制御情報にもたらされる遅延を補償することができる。遅延要素160はまた、コントローラ130における処理遅延、および/またはスイッチ設定遅延およびスイッチ応答時間遅延などの光スイッチ150から生じる遅延を補償してもよい。遅延要素160は、ペイロード112と、残りの制御情報17b、17c、17dおよび17eと、スイッチング制御信号出力135との同期レベルを維持することを援助する。ペイロード112および残りの制御情報17b、17c、17dおよび17eは、次に、スイッチング制御信号出力135を介してコントローラ130から受信した制御情報17aの復号部分に基づいて、光スイッチ150によってルーティングされる。ペイロード112および残りの制御情報は、宛先ノード50に向かって光リンク24を介してルーティングされる。この実施形態では、O−E−O変換は制御情報に対してのみ必要とされ、これによりO−E−O変換の複雑さが低減されることが理解されよう。
図2は、ノード20に連結された光リンク12、24のみを示しているが、これらはノードに連結され得る多くの光リンクのうちの2つであり、ノードは、ノードに連結される複数のリンクのうちの任意の2つの間で信号をルーティングするように上記と同様に動作することが理解される。光リンクの各々は、ノードの入力ポートに光学的に連結されてもよく、入力ポートはそれぞれのフィルタに各々連結され、これらのフィルタがコントローラ130に連結される。
図1の他のノード25,30,35,40および45は、上記と同様に動作し、ノード20は光信号を受信し、それを宛先ノードに向けて転送する。
宛先ノード50は、制御情報をフィルタリングおよびドロップするという点で、上述したようにノード20と同様の方法で動作するが、その制御情報を使用してスイッチを制御する代わりに、宛先ノードによって使用される代替情報を制御情報に含むことができ、例えばバーストモードのリセットまたはアップグレードの通信、ソースノードから中間ノードへの通信、またはエンドツーエンドの管理情報を宛先ノードに送信することが挙げられる。
光−電気(OE)および電気−光(EO)変換コンポーネント120,140は、図2のコントローラとは別個に示されているが、1つまたは両方のコンポーネントはコントローラ130と共に実装することができる。いくつかの実施形態では、OEコンポーネントはフォトダイオードであり、EOコンポーネントは、電気ドメイン制御情報に従って変調することができるレーザダイオードなどの光源である。
遅延要素160は、ファイバ遅延線(FDL)を使用して実装することができる。いくつかの実施形態では、遅延要素160は、同じくシリコンフォトニックチップとして実装されるスイッチファブリック150と組み合わせて、フィルタ110および結合器170と一体化されたシリコンフォトニックチップを使用して実装されてもよい。
コントローラ130は、ハードウェアまたはソフトウェア、あるいはその2つの組み合わせで実施することができる。
フィルタ110は、リング共振器などの波長可変フィルタであってもよく、制御情報波長チャネルとして使用される波長チャネルを、システム要件に応じて異なる波長チャネルにわたって変化するように適応させる。フィルタはまた、制御情報波長が、例えば1550nm波長帯域または1310nm波長帯域のどこかにあるように、広範囲の波長チャネルにわたって調整可能であってもよい。これにより、システム要件に従って、1550nm波長帯域の制御情報と1310nm波長帯域のペイロードとに適応するのに十分な汎用性を持たせることができる。光スイッチ150は、本明細書で説明されるような動作を可能にする光スイッチを実施する任意の既知の方法に従って実施され得る。
図3を参照して、多重制御波長チャネルに関する上述の第2の実施形態のさらなる詳細を説明する。図3は、複数のノード215,220,225,230,235,240,245および250と、それらのノードを接続している複数の光リンク212,213,224,227,228,233,234,238,242,243および248とを有するネットワーク210を示している。ノード215および220は光リンク212によって接続され、ノード215および225は光リンク213によって接続され、ノード220および225は光リンク227によって接続され、以下同様である。図3の例では、ノード215はソースノードと考えられ、ノード250は宛先ノードと考えられる。ソースノード215は、ペイロードと制御情報とを含む光信号を宛先ノード250にルーティングするために使用されるリンクのリストを生成する。図3の例では、リスト内の各光リンクの制御情報は、図1のように単一波長で符号化されるリスト内の光リンクの全てに関する制御情報の代わりに、別個の波長で符号化されている。ネットワーク内の各光リンクは、そのチャネルの制御情報のために使用される波長チャネルを表す、関連するλnと共に図3に示されている。また、図3は、ソースノード215から宛先ノード250までネットワークを横断している各光リンクについて、それぞれの波長チャネルλ1、λ2、λ6、λ9、λ10で伝送されている制御情報217,222,232,237および247の表現を示す。一例として、制御情報217(217a、217b、217c、217d、217e)は、それぞれの光リンクについて制御情報を搬送する複数の波長チャネルλ1、λ2、λ6、λ9、λ10で符号化される。
制御情報217は、光リンク212の複数の波長チャネルで伝送され、ノード220によって受信される。ノード220は、波長λ1の制御情報217aを制御情報217から抽出し(図4を参照してより詳細に後述する)、抽出した制御情報を使用してノード220のスイッチを制御して、ペイロード(図示せず)と波長チャネルλ2、λ6、λ9、λ10の後続ノード(217b、217c、217dおよび217eを含む)に関連する制御情報222とを、ノード230を介して宛先ノード250に向けてルーティングする。制御情報222を搬送する波長チャネルは、光リンク224上で伝送され、ノード230によって受信される。ノード230は、制御情報222から制御情報217bを抽出し、抽出した制御情報を使用してノード230のスイッチを制御して、ペイロード(図示せず)と波長チャネルλ6、λ9、λ10の後続ノード(217c、217dおよび217eを含む)に関連する制御情報232とを、ノード235を介して宛先ノード250に向けてルーティングする。制御情報232を搬送する波長チャネルは、光リンク233上で伝送され、ノード235によって受信される。ノード235は、制御情報232から制御情報217cを抽出し、抽出した制御情報を使用してノード235のスイッチを制御して、ペイロード(図示せず)と波長チャネルλ9、λ10の後続ノード(217dおよび217eを含む)に関連する制御情報237とを、ノード245を介して宛先ノード250に向けてルーティングする。制御情報237を搬送する波長チャネルは、光リンク238上で伝送され、ノード245によって受信される。ノード245は、制御情報237から制御情報217dを抽出し、抽出した制御情報を使用してノード245のスイッチを制御して、ペイロード(図示せず)と波長チャネルλ10の後続ノード(217eを含む)に関連する制御情報247とを宛先ノード250に向けてルーティングする。制御情報247を搬送する波長チャネルは、光リンク248上で伝送され、宛先ノード250によって受信される。宛先ノード250は、制御情報247から制御情報217eを抽出し、抽出した制御情報を使用して、入力信号用のノードをセットアップし、および/またはノードパラメータを構成する。この例は、ペイロード(図示せず)が受信され処理されると、制御情報217eがノード250においてバーストモードリセットをトリガすることであり得る。
図4を参照して、図3のノード220のより詳細な動作を説明する。図4は、光リンク212上の光信号を受信しているノード220を示す。ノード220で受信されている光信号は、波長チャネルλ1、λ2、λ6、λ9、λ10上の制御情報217(217a、217b、217c、217dおよび217e)とペイロード412との両方を含む。光フィルタ410は、光信号を受信し、その光リンク専用の制御情報217aを搬送する波長チャネルλ1を抽出し、ペイロード412と後続ノードに関連する制御情報217b、217c、217dおよび217e搬送する波長チャネルλ2、λ6、λ9、λ10を通過させる。抽出されると、波長チャネルλ1上を搬送された制御情報217aは、コントローラ430に供給される。コントローラ430は、制御情報217aに従ってスイッチング制御信号出力435を介して光スイッチ450を制御する。図4の例では、ペイロード412と後続ノードに関連する制御情報217b、217c、217dおよび217eを搬送する波長チャネルλ2、λ6、λ9、λ10は、コントローラ430によってもたらされた任意の遅延を補償するために、スイッチングされる前に遅延要素460によって遅延される。遅延要素460は、スイッチ450上のスイッチング制御信号435の効果と、ペイロード412および下流ノードに関連する制御情報217b、217c、217d、217eの到着との間の同期のレベルを維持するのを支援する。ペイロード412および波長チャネルλ2、λ6、λ9、λ10上の制御情報217b、217c、217d、217eは、次にスイッチング制御信号出力435に従って光スイッチ450によって適切にルーティングされる。ペイロード412および制御情報217b、217c、217d、217eは、宛先ノード250に向かって光リンク224上をルーティングされる。
図4は、ノード220に連結された光リンク212、224のみを示しているが、これらはノードに連結され得る多くの光リンクのうちの2つであり、ノードは、ノードに連結される複数のリンクのうちの任意の2つの間で信号をルーティングするように上記と同様に動作することが理解される。図3の他のノード225,230,235,240および245は、ノード220について上述したのと同様の方法で動作することができる。
宛先ノード250は、制御情報をフィルタリングおよびドロップするという点で、上記のようにノード220と同様の方法で動作することができるが、その制御情報を使用してスイッチを制御する代わりに、宛先ノードによって使用される代替情報を制御情報に含むことができ、例えばバーストモードのリセットまたはアップグレードの通信、ソースノードから中間ノードへの通信、またはエンドツーエンドの管理情報を宛先ノードに送信することが挙げられる。
遅延要素460は、ファイバ遅延線(FDL)を使用して実装することができる。いくつかの実施形態では、遅延要素460は、同じくシリコンフォトニックチップとして実装されたスイッチファブリック450と組み合わせて、フィルタ410と一体化されたシリコンフォトニックチップを使用して実装されてもよい。
コントローラ430は、ハードウェアまたはソフトウェア、あるいはその2つの組み合わせで実施することができる。
フィルタ410は、リング共振器などの波長可変フィルタであってもよく、制御情報波長チャネルとして使用される波長チャネルを、システム要件に応じて異なる波長チャネルにわたって変化するように適応させる。フィルタはまた、制御情報波長が、例えば1550nm波長帯域または1310nm波長帯域のどこかにあるように、広範囲の波長チャネルにわたって調整可能であってもよい。複数のフィルタ、すなわちネットワーク内で接続されている各光リンクのフィルタを有するノードでは、ノードは、全ての固定波長フィルタ、全ての波長可変フィルタ、および2種類の波長フィルタの混合であるフィルタの混合を有していてもよい。
図1および図3は、ネットワーク内に8つのノードを有する各ネットワークの特定の例を示し、各ノードは2つまたは3つの隣接ノードに接続されている。より一般的には、実際の実装形態において、ノードの数およびノードの接続性は、図1および図3に示されるものとは異なる可能性があることが理解される。ネットワークは、本明細書で説明されるタイプの動作、すなわち、フィルタリングして制御情報を読み取り、復号する、および/または入力信号をタップして制御情報を読み取り、復号する動作のいずれかを有するノードの集合で構成される可能性があることも理解されたい。
図5を参照して、図3のノード220のより詳細な動作を代替的な実装形態に関して説明する。図5は、光リンク212上のノード220で受信されている光信号を示す。ノード220で受信されている光信号は、波長チャネルλ1、λ2、λ6、λ9、λ10上の制御情報217(217a、217b、217c、217dおよび217e)とペイロード412との両方を含む。光スプリッタ310は、光信号を受信し、光信号の10%をタップし、光信号の90%を通過させる(図5に関して説明する特定のパーセンテージは、例の目的のためであり、限定と見なされるべきではない)。スプリッタを使用することにより、各パスは、異なる代表電力ではあるが、受信信号のバージョン(ペイロードおよび全ての制御情報の両方)を伝搬する。光信号のタップされた部分は、コントローラ320に供給される。コントローラ320は、現在のノードに対応する制御情報(波長チャネルλ1の制御情報217a)を復号し、関連する制御情報に従ってスイッチング制御信号出力340を介して光スイッチ350を制御する。ペイロード412および波長チャネルλ1、λ2、λ6、λ9、λ10上の制御情報217(217a、217b、217c、217dおよび217e)を含む光信号の90%部分は、コントローラ320が制御情報217aを読み取り復号することによってもたらされた遅延を補償するために、スイッチングされる前に遅延要素360によって遅延される。遅延要素360によって誘発される遅延はまた、コントローラ320における処理遅延、およびスイッチ設定遅延およびスイッチ応答時間遅延などの光スイッチ350から生じる遅延を補償してもよい。遅延要素360は、ペイロード412、コントローラ320からの制御情報217およびスイッチング制御信号出力340の間の同期レベルを維持することを援助する。ペイロード412および制御情報217は、次に、スイッチング制御信号出力340を介してコントローラ320から受信した復号された制御情報217aに基づいて、光スイッチ350によってルーティングされる。ペイロード412および波長チャネルλ1、λ2、λ6、λ9、λ10上の制御情報217は、宛先ノード250に向かって光リンク224上をルーティングされる。図3に関して上述したように、コントローラ320は、光リンク212上で受信した信号から割り当てられた波長に関する制御情報を抽出するように準備される。コントローラ320は、同様に、ノード220に連結された異なる光リンクに対して割り当てられた異なる波長に関する制御情報を抽出するように準備される。
光スプリッタを用いて受信した光信号をタップする同様の手法を、ネットワーク内の全てのホップの制御情報を含む単一の制御情報波長チャネルに関連して上述した第1の実施形態の実装形態に適用することができる。図2のフィルタ110が制御情報波長をドロップするのに使用される代わりに、光スプリッタを使用して、受信した光信号の10%をタップし、タップされた信号からそのスイッチノードに対応する制御情報をコントローラに読み取らせることができる。ペイロードと制御情報が共に維持されるため、受信電力よりも低い電力であるが、制御情報は、図2のようにペイロードと一緒になるように戻す必要はない。コントローラは制御波長チャネルから適切な情報を読み取り復号する必要があり、スイッチ関連遅延もあることから、受信信号の90%の部分と光スイッチへの制御信号との間に小さな時間的オフセットが存在する可能性があるため、遅延要素は、受信した光信号の90%の部分がノードを通過するパスにおいて依然として有益であり得る。
光スプリッタを使用して受信した光信号の一部をタップする場合、いくつかの実装形態では、信号パスのいずれかまたは両方、すなわちタップされた経路および/または通過パス上で、それぞれの信号をブーストするために、信号増幅の何らかの形態が有益であり得る。さらに、10%および90%の値は、スプリッタのスプリット比に関して上述したが、そのような値は、例としてのみ意図されており、信号を受信するノードの制御情報を読み取り復号するためにタップすることができる受信信号の部分は、実装形態に固有である。
図6および図7に関して説明する以下の例は、実装形態に固有の例であり、各光リンクの制御情報は専用波長チャネルで符号化される。
図6は、中間ノードが各々2つの別個の光スイッチ530,535を有するセグメントルーティングを使用する光ネットワークの一部における2つの中間ノード510,550および宛先ノード590の概略図である。このような実装形態は、例えば、単一のスイッチが、ペイロードと制御情報の両方を包含する波長のスペクトルにわたってスイッチングを提供することができない場合に有利であり得る。この例では、制御情報は、受信信号の第1の波長帯域の1つ以上の波長チャネルに含まれ、ペイロードは、第2の波長帯域の1つ以上の波長チャネルに含まれる。ノード510内の光スイッチ530は、受信信号の第1の波長帯域をスイッチングするために使用され、光スイッチ535は、受信信号の第2の波長帯域をスイッチングするために使用される。ペイロードと制御情報がスイッチングされると、それぞれの信号が結合され、後続ノードに転送される。
図6において、第1のノード510は、受信ポート508において2つの別個の波長帯域で光信号517を受信するように示されている。ペイロード515は第1の波長帯域にあり、制御情報516(516a、516b、516c)は第2の波長帯域にある。入力ポート508に光学的に連結された第1の光フィルタ512は、光信号517を受信し、制御情報516を搬送する第2の波長帯域部分をドロップし、ペイロード515を搬送する第1の波長帯域部分を通過させる。第1の光フィルタ512に光学的に連結された第2の光フィルタ514は、受信した光信号のドロップされた第2の波長帯域部分を受信し、受信した光信号の第2の波長帯域部分のさらなる部分、すなわち制御情報516aをドロップする。制御情報516aは、光信号517が受信された光リンク専用の波長チャネル上にある。第2の光フィルタ514は、制御情報516b、516cを含む受信した光信号の第2の波長帯域部分の部分520を通過させる。制御情報516aは、第2の光フィルタ514に光学的に連結されたコントローラ540に供給され、制御情報516aは復号され、光スイッチ530,535の両方を構成するために使用される(コントローラ540からスイッチ530、535までを破線で示す)。
光スイッチ530は、第1の光フィルタ512に光学的に連結され、光フィルタ512によって通過されたペイロード515を搬送する第1の波長帯域部分を受信し、コントローラ540からの復号された制御情報に基づいてペイロード515をルーティングする。光スイッチ535は、光フィルタ514に光学的に連結され、光フィルタ514を通過した部分520を受信し、コントローラ540からの復号された制御情報に基づいて部分520をルーティングする。次に、それぞれの光スイッチ530、535の出力は、結合器532によって結合され、結果としての光信号545は、ノード510の第1の出力ポートからノード550に伝送される。
図6のノード550は、(入力ポート551で)ノード510と同様の受信、フィルタリングおよびスイッチング処理を実行する。光フィルタ552、554は、光信号545をフィルタリングしてペイロード515、ノード550に関連しない制御情報516c、およびノード550に関連する制御情報516bを分離する。ノード550に関連する制御情報516bは、コントローラ580によって使用され、光スイッチ570、575を構成する。次に、それぞれの光スイッチ570、575の出力は結合器572によって結合され、結果としての光信号585はノード550の出力ポート573からノード590に伝送される。
図6の宛先ノード590は、(入力ポート591で)ノード510、550と同様の受信およびフィルタリング処理を実行する。ノード590は、ノード510、550と同様の機能、すなわち、波長帯域を分離する第1の工程と、ノードの制御情報を後続ノードの制御情報からフィルタリングする第2の工程との2段階フィルタリングを実装するために同様の内部物理構造を有するが、単純化のために、ペイロードから制御情報を含む単一波長を分離するようにノード590にはただ1つのフィルタが示されている。光フィルタ592は、光信号585をフィルタリングして、ペイロード515とノード590に関連する制御情報516cとを分離する。ノード590に関連する制御情報516cは、例えば、バーストリセットをトリガするため、またはソースノードと宛先ノードとの間のエンドツーエンド通信を管理するため、またはソースノードと中間ノードとの間の通信を管理するために、上述のように、ノードコントローラ(図示せず)によって使用される。
図6において、ノード510、550内のコントローラ540、580は、他の入力ポート541,581からの複数の入力を有するように示され、ノードは他の光リンク上で光信号を受信する。したがって、図6の例示的な実装形態では、ノード510の入力ポート508で受信されている光信号517に関して説明し、その入力ポートで受信される光信号がどのようにルーティングされるかを説明するが、ノード510(および同様にノード550)は、任意の他の入力ポートで受信される光信号に対して同様に動作するように構成されることが理解される。
図7は、中間ノードが各々単一の光スイッチを有するセグメントルーティング光ネットワークの一部における、2つの中間ノード610,650および1つの宛先ノード690の概略図である。各ノード内の光スイッチは、複数の波長帯域を含み得る広範囲の波長をスイッチングすることができる。この例では、制御情報は第1の波長帯域に含まれ、ペイロードは第2の波長帯域に含まれ、スイッチは両方の波長帯域を共にスイッチングすることができる。両方の波長帯域を共に切り替えることができる結果として、図6に関して上述した2段階フィルタリングプロセス、すなわち波長帯域を分離する第1の工程と、波長帯域の1つから専用波長をフィルタリングしてノードに関連する制御情報を得る第2の工程とを実行する必要はない。
図7において、第1のノード610は、第1の波長帯域のペイロード615と、第2の波長帯域の制御情報616(616a、616b、616c)との2つの別個の波長帯域で入力ポート611上の光信号617を受信する。光フィルタ612は、入力ポート611に光学的に連結され、光信号617を受信する。光フィルタ612は、光信号617の第1の部分をドロップし、光信号の第2の部分を通過させる。光信号のドロップされた第1の部分は、光信号617を受信した光リンク専用の波長チャネルに制御情報616aを搬送する。光フィルタ612によって通過された光信号の第2の部分は、ペイロード615と残りの制御情報616b、616cとを搬送する。コントローラ640は光フィルタ612に光学的に連結され、コントローラ640は制御情報616aを受信し、制御情報616aは復号され、光スイッチ630を制御するために使用される。光スイッチ630は、通過した光信号の第2の部分を受信し、ペイロード615および制御情報616b、616cを、結果としての光信号645として、コントローラ640からの復号された制御情報に基づいてルーティングする。結果としての光信号645は、ノード610の出力ポート633からノード650に伝送される。
ノード650は、(入力ポート651で)ノード610と同様の受信、フィルタリングおよびスイッチング処理を実行する。光フィルタ652は、光信号645をフィルタリングして、ペイロード615とノード650に関連しない制御情報616cとを、ノード650に関連する制御情報616bから分離する。ノード650に関連する制御情報616cは、光スイッチ670を構成するためにコントローラ680によって使用される。結果としての光信号685は、ノード650の出力ポート673からノード690に伝送される。
宛先ノード690は、(入力ポート691で)ノード610、650と同様の受信およびフィルタリング処理を実行する。光フィルタ692は、光信号685をフィルタリングして、ペイロード615とノード690に関連する制御情報616cとを分離する。ノード690に関連する制御情報616cは、必要に応じてノード690によって使用される。
図7において、ノード610、650内のコントローラ640、680は、他の入力ポート641、681からの複数の入力を有するように示され、ノードは他の光リンク上で光信号を受信する。したがって、図7の例示的な実装形態では、ノード610の入力ポート611で受信されている光信号617に関して説明し、その入力ポートで受信される光信号がどのようにルーティングされるかを説明するが、ノード610(および同様にノード650)は、任意の他の入力ポートで受信される光信号に対して同様に動作するように構成されることが理解される。
図6および図7に関して説明した実装形態では、光信号を受信するそれぞれのノードの制御情報を分離するためにフィルタリングを使用したが、フィルタリングの代わりに、上述のような光タップ構成を使用できることを理解されたい。単純化のために、例えば図7について考慮すると、ノード610内の単一のフィルタ612を、受信した光信号をタップする光スプリッタと置き換えることができる。ノードの制御情報は、光信号のタップ部分から読み取られ復号され、受信した光信号の残りの通過部分は、復号された制御情報に基づいてスイッチ630によってスイッチングすることができる。
図8を参照して、セグメントルーティングを利用する光ネットワークで使用される光スイッチノード800のより一般的な例について説明する。上述したように、セグメントルーティングネットワークは、ペイロードと共に制御情報を生成し符号化するソースノードと、ネットワークを介してペイロードおよび制御情報をルーティングする1つ以上の中間ノードと、ペイロードおよび潜在的には制御情報の一部を受信する宛先ノードとを含む。図8に記載されている光スイッチノードは、セグメントルーティングされた光ネットワーク内の中間ノードまたは宛先ノード、すなわち専用波長チャネル上の制御情報を読み取るノードと考えることができる。ネットワーク内の任意の所与のノードは、物理的ハードウェアおよび/またはソフトウェアを有してソースノード、中間ノードまたは宛先ノードの機能を実行することができるが、図8の説明は、中間ノードまたは宛先ノードの動作および機能に焦点を当てている。
光スイッチノード800は、少なくとも1つの入力ポートを含む。図8は、特に、複数の入力ポート810を示している。各入力ポートは、光リンクを介して、光ネットワーク内の先行ノードから、ペイロードとセグメントルーティングされたパス内の全ての後続ノードの制御情報とを搬送する光信号を受信するように構成されている。
光スイッチノード800は、複数の入力ポート810に光学的に連結された波長迂回要素840を含む。いくつかの実施形態では、波長迂回要素840は、光スイッチノードに関連する制御情報を搬送する波長チャネルをドロップしてペイロードを通過させることによって、光スイッチノードに関連する制御情報を搬送する1つ以上の波長チャネルを迂回させるように機能する光フィルタである。いくつかの実施形態では、光フィルタは、ペイロードと共に、セグメントルーティングされたパス内の他の光スイッチノードに関連する制御情報を通過させることができる。いくつかの実施形態では、波長迂回要素840は、複数の入力ポート810のうちの1つ以上から受信した光信号をテーピングすることによって、1つ以上の波長を導くように機能する光スプリッタである。そのようなシナリオでは、所望の波長チャネルが、光スプリッタによって迂回された光スイッチノードに関連する制御情報を搬送するだけでなく、ペイロードおよび他の波長チャネルも、指定されたルートの後続のスイッチノードに関連する制御情報を搬送する。
光スイッチノード800は、受信したペイロードと少なくとも後続の光スイッチノードに関連する制御情報とを含む光信号を光ネットワーク内の後続の光スイッチノードにルーティングするように構成された、光スイッチファブリック820を含む。上述したように、本開示のいくつかの実施形態では、光信号を受信するノードに関連する制御情報は、ノードに関連する制御情報を読み取るノードの処理の一部として、受信した光信号から実質的に除去することができる。このように、ノード内の光スイッチファブリックによってルーティングされる光信号は、ノードに関連する制御情報を含まない可能性がある元の受信信号の修正バージョンである。光スイッチファブリック820は、波長迂回要素840に光学的に連結されている。他の実施形態では、例えば、受信された信号がフィルタリングされたものとは対照的にタップされている場合、受信された信号全体の表現がスイッチによってルーティングされてもよい。
光スイッチノード800は、波長迂回要素840に光学的に連結されたコントローラ830を含む。コントローラ830は、セグメントルーティングされたパス内の他のノードに関連する制御情報に対して非破壊的な方法で、波長迂回要素840から迂回した光信号から光スイッチノード800に関連する制御情報を読み取るように構成される。次に、コントローラ830は、光スイッチファブリック820を制御して、ペイロードとセグメントルーティングされたパス内の後続ノードに関連する制御情報とを搬送する光信号を、受信信号の迂回部分で搬送された情報に従って選択された出力ポートに導く。
いくつかの実施形態では、コントローラは、抽出された波長チャネルからの光スイッチノードに関連する読み取られた制御情報を、光スイッチノード内の光スイッチファブリックを制御するための電気信号に変換するように構成される。いくつかの実施形態では、コントローラは、電気信号の少なくとも一部を変換して、抽出された波長チャネルと同じ波長チャネルの光信号に戻すように構成される。
いくつかの実施形態では、波長迂回要素840は、受信した光信号をフィルタリングして制御情報を搬送する全ての波長チャネルを抽出するように構成されている光フィルタである。次に、コントローラは、抽出された波長チャネルから制御情報を読み取ることができる。これは、第2の光フィルタを使用して、制御情報の全体からノードに関連する制御情報を抽出することを含み得る。
制御情報は、複数の光スイッチノードを含むセグメントルーティングされたパス内の光リンクのリストを含むルーティング情報を含むことができる。リストは、現在の光スイッチノードから宛先光スイッチノードまでの少なくとも1つのルートを定義する。制御情報はまた、バーストモードリセット情報、ソースノードから中間ノードまでの管理および更新、および/またはエンドツーエンド(ソースノードから宛先ノードまで)の管理および更新情報を含むことができる。管理情報および更新情報は、例えば、コミッショニングおよびソフトウェア更新情報を含むことができる。
いくつかの実施形態では、制御情報はペイロードと同じ波長帯域で伝送され、他の実施形態では、制御情報はペイロードとは異なる波長帯域で伝送される。波長帯域は、複数の波長チャネルを有する。例えば、制御情報は1310nm波長帯域または1550nm波長帯域のうちの1つにあり、各々が複数の波長チャネルを有し、ペイロードは1310nm波長帯域または1550nm波長帯域の他方にあってもよい。
図9を参照して、セグメントルーティングを利用する光ネットワークで使用されるソース光スイッチノード900の一例を説明する。ソース光スイッチノード900は、そのようなノードの通常の動作を実行するように構成された追加のハードウェアおよび/またはソフトウェアを有すると見なされるが、ここでは詳細に説明しない。そのような動作の例には、光ネットワークに入るとペイロードを電気信号から光信号に変換すること、本開示の態様による生成時に制御情報を光ネットワーク上で伝送するための光信号に変換すること、ペイロードと制御情報とを結合させることが含まれ得る。
光スイッチノード900は、複数の機能を実行するように構成されたコントローラ910を含む。コントローラ910は、光スイッチノードの順序付きリストを含むセグメントルーティングされたパスを生成することができる。セグメントルーティングされたパスが生成された後、コントローラ910は、その情報を使用して、順序付きリスト内の光スイッチノードの各々に関連する制御情報を生成することができる。制御情報が生成された後、コントローラ910は、生成された制御情報を少なくとも1つの制御波長チャネルに符号化することができる。コントローラ910は、ペイロードおよび符号化された制御情報の、順序付きリストの第1の光スイッチノードへの伝送を制御することができる。また、光スイッチノード900は、上位レイヤコントローラへのインターフェース915を含む。上位レイヤコントローラの一例は、トランスポートSDNコントローラであってもよい。上位レイヤコントローラは、ソースノードが中間ノードまたは宛先ノードに送信するためのルーティング情報および/または管理情報および更新情報をコントローラ910が生成するための関連情報をコントローラ910に提供することができる。
いくつかの実施形態では、コントローラ910は、生成された制御情報を複数の制御波長チャネル上に符号化するように構成され、各制御波長チャネルは、光ネットワーク内の特定の光リンクの制御情報を有して符号化される。
いくつかの実施形態では、コントローラ910は、制御情報にバーストモードリセットをさらに付加するように構成される。バーストモードリセットは、他の全ての制御情報と同じ波長チャネル上で符号化され、宛先ノードに関連付けられるか、または宛先光スイッチノードに到達する前の最後の光リンクの制御情報と同じ波長チャネルに関連付けられる。
いくつかの実施形態では、コントローラ910は、エンドツーエンドおよび/またはソースノードから宛先ノードまでの更新情報および管理情報の少なくとも1つを、制御情報にさらに付加するように構成される。更新情報および管理情報の少なくとも1つは、他の全ての制御情報と同じ波長チャネル上で符号化され、宛先ノードに関連付けられるか、または宛先光スイッチノードに到達する前の最後の光リンクの制御情報と同じ波長チャネルに関連付けられる。いくつかの実施形態では、コントローラ910は、ルーティング情報、エンドツーエンドおよび/またはソースノードから中間ノードまでの管理情報、およびバーストモードリセットを符号化するための1つ以上の波長チャネルを選択するようにさらに構成される。
いくつかの実施形態では、ソース光スイッチノードは、中間ノードに見られる上述した特徴をさらに含む。例えば、光スイッチノードは少なくとも1つの入力ポートを含み、各ポートは光ネットワーク内のそれぞれの光リンクを介して先行ノードから、ペイロードとセグメントルーティングされたパス内の全ての後続ノードの制御情報とを搬送する光信号を受信するように構成される。光スイッチノードは、複数の入力ポートに光学的に連結された波長迂回要素を含む。光スイッチノードはまた、受信したペイロードと少なくとも後続の光スイッチノードに関連する制御情報とを含む光信号を複数の伝送ポートの1つにルーティングするために複数の入力ポートに光学的に連結された、光スイッチファブリックを含むことができる。ノードのコントローラは、セグメントルーティングされたパス内の他のノードに関連する制御情報に対して非破壊的な方法で、光スイッチノードに関連する受信した光信号内の制御情報を読み取るようにさらに構成されてもよい。また、ノードのコントローラは、光スイッチファブリックを制御して、ペイロードとセグメントルーティングされたパス内の後続ノードに関連する制御情報とを搬送する光信号を、受信信号の迂回部分で搬送された情報に従って選択された出力ポートに導くようにさらに構成されてもよい。
ここで図10を参照して、光ネットワークにおいてセグメントルーティングを実行する方法1000について説明する。方法1000は、光ネットワークのセグメントルーティングされたパスに含まれる光スイッチノードにおいて実行することができ、方法1000は、第1の先行する光スイッチノードから、光ネットワーク内の第1の光リンクを介して、ペイロードとセグメントルーティングされたパス内の現在の光スイッチノードおよび後続ノードの制御情報とを搬送する第1の光信号を受信する、現在の光スイッチノードのステップ1010を含む。
ステップ1020では、オプションで、光スイッチノードは、セグメントルーティングされたパス内の後続の光スイッチノードに関連する制御情報に対して非破壊的な方法で、現在の光スイッチノードに関連する受信した第1の光信号内の制御情報を読み取る。制御情報の読み取りは、様々な異なる方法を用いて行うことができる。例えば、制御情報を読み取ることは、まず受信信号をフィルタリングして1つ以上の波長チャネルを抽出するか、または受信信号をタップし、タップ信号から1つ以上の波長チャネルを読み取ることを含み得る。
ステップ1030に示すように、現在の光スイッチノードは、オプションで、発生している現在の光スイッチノードに関連する制御情報を読み取る間、ペイロードおよび少なくとも後続の光スイッチノードに関連する制御情報を遅延させることができる。制御情報の読み取りが受信した光信号をタップすることを含むシナリオでは、遅延される制御情報は、現在の光スイッチノードに関連する制御情報と、後続の光スイッチノードに関連する制御情報との両方を含むことができる。制御情報の読み取りが受信光信号のフィルタリングを含むシナリオでは、遅延される制御情報は、後続の光スイッチノードに関連する制御情報を含むことができる。セグメントルーティングされたパスを横断する制御情報は、現行の光スイッチノードおよび後続の光スイッチノードだけでなく、以前の光スイッチノードに関連する制御情報を含むことができる。遅延ステップ1030は、制御情報を読み取るステップが十分に速く、読み取りステップに著しい遅延が発生しない場合、実行される必要はない。あるいは、全てではなく一部の光スイッチノードに遅延を追加し、各ノードにおける非常に短い読み取り遅延の相加効果を避けることが可能である。
ステップ1040では、光スイッチノードは、光スイッチノード内の光スイッチファブリックを制御して、受信したペイロードと少なくとも後続の光スイッチノードに関連する制御情報をルーティングする。光スイッチノードは、ステップ1020で読み取った現在の光スイッチノードに関連する制御情報に基づいて制御される。
ステップ1050では、現在の光スイッチノードは、受信したペイロードと少なくとも後続の光スイッチノードに関連する制御情報とを搬送する光信号を、光ネットワーク内の後続ノードに転送する。
フィルタリングを伴う実施形態では、受信した第1の光信号はフィルタリングされて、制御情報を搬送する全ての波長チャネルが抽出される。次に、光スイッチノードに関連する抽出された波長チャネルから制御情報が読み取られる。
いくつかの実施形態では、この方法は、ルートパス内の光スイッチノードに関連しない制御情報(すなわち、パス内の後続ノードに関連する制御情報)がペイロードから迂回された場合、受信したペイロードとセグメントルーティングされたパス内の少なくとも後続の光スイッチノードに関連する制御情報とを搬送する光信号を後続ノードに転送する前に、光スイッチノードに関連しない制御情報を搬送する波長チャネルをペイロードと結合させることをさらに含み得る。
いくつかの実施形態では、この方法は、光ネットワーク内の第2の光リンクを介して第2の先行ノードから、第2のペイロードと、セグメントルーティングされたパス内の全ての後続ノードについての第2の制御情報とを搬送する第2の光信号を受信することをさらに含み得、ここで第2の制御情報は、第1の光リンクを介して第1の先行ノードから受信した制御情報と同じ波長チャネル上にある。光スイッチノードは、セグメントルーティングされたパス内の他のノードに関連する制御情報に対して非破壊的な方法で、受信した第2の光信号から読み取った光スイッチノードに関連する受信した第2の光信号内の第2の制御情報に従って、スイッチファブリックを制御する。次に、光スイッチノードは、受信したペイロードと光ネットワーク内の後続ノードに関連する制御情報とを搬送する第2の光信号を、読み取った第2の制御情報に従って決定された方法で、スイッチファブリックを介して、光ネットワーク内の後続の光スイッチノードに転送する。
いくつかの実施形態では、この方法は、光ネットワーク内の第2の光リンクを介して第2の先行ノードから、第2のペイロードと第2の制御情報とを搬送する第2の光信号を受信することをさらに含み得、ここで第2の制御情報は、第1の光リンクを介して第1の先行ノードから受信したチャネル情報とは異なる波長チャネル上にある。光スイッチノードは、セグメントルーティングされたパス内の他のノードに関連する制御情報に対して非破壊的な方法で、受信した第2の光信号から読み取った光スイッチノードに関連する受信した第2の光信号内の第2の制御情報に従って、スイッチファブリックを制御する。次に、光スイッチノードは、受信したペイロードと光ネットワーク内の後続ノードに関連する制御情報とを搬送する第2の光信号を、読み取った第2の制御情報に従って決定された方法で、スイッチファブリックを介して、光ネットワーク内の後続ノードに転送する。
いくつかの実施形態では、受信した第1の光信号をフィルタリングして光スイッチノードに関連する波長チャネルを抽出することは、光スイッチノードに関連する制御情報を搬送する少なくとも1つの波長チャネルと、光スイッチノードに関連しない制御情報を搬送する少なくとも1つの波長チャネルとを備える複数の波長チャネルを含む第1の波長帯域をドロップするために、受信した第1の光信号をフィルタリングする第1のステップを含む。次に第2のステップは、光スイッチノードに関連する制御情報を搬送する少なくとも1つの波長チャネルをドロップし、かつ光スイッチノードに関連しない制御情報を搬送する少なくとも1つの波長チャネルを通過させるために、ドロップされた第1の波長帯域をフィルタリングすることを含む。いくつかの実施形態では、この方法は、光スイッチノード内の光スイッチファブリックを制御するために、
光スイッチノードに関連する制御情報を搬送するドロップされた少なくとも1つの波長チャネル上の制御情報の少なくとも一部を電気信号に変換することをさらに含み得る。
いくつかの実施形態では、セグメントルーティングされたパス内の他のノードに関連する制御情報に対して非破壊的な方法で、光スイッチノードに関連する受信した第1の光信号内の制御情報を読み取ることは、受信した光信号内の制御情報から、ノードに関連するルーティング情報を抽出することを含む。いくつかの実施形態では、光スイッチノードに関連する読み取った制御情報に従って光信号を転送することは、ペイロードまたはノードに関連しない制御情報を変更することなく、抽出されたルーティング情報に従って光信号を転送することを含む。
いくつかの実施形態では、この方法は、光スイッチノードに関連しない制御情報を含む電気信号の少なくとも一部を変換して、セグメントルーティングされた光ネットワーク内の全ての光スイッチノードの制御情報専用の波長チャネル上の光信号に戻すことをさらに含み得る。スイッチングが発生する前に、全ての光スイッチノードの専用波長チャネル上の光信号を、光スイッチノードに関連する少なくとも1つの波長チャネルをドロップした後に、受信した光信号から残ったスルー信号に再結合させる。電気信号の少なくとも一部を変換して光信号に戻すことは、光スイッチノードから最終的な宛先までの光ネットワーク内のルートを規定する光リンクまたは光スイッチノードのリストを含む電気信号の一部を変換することを含み得る。
ここで図11を参照して、光ネットワークにおいてセグメントルーティングを実行するためのソースノードで使用する方法1100について説明する。ソースノードは、光ネットワーク内の特定のセグメントルーティングされたパスの開始点と考えられる。ソースノードは、光ネットワーク内の任意のノードであってもよい。方法1100は、光スイッチノードの順序付きリストを含むセグメントルーティングされたパスを生成するステップ1110を含む。セグメントルーティングされたパスは、トラフィックが光ネットワークを横断するパスである。いくつかの実施形態では、ソースノードはセグメントルーティングされたパスを生成することができ、光ネットワークトポロジの所定の知識を有する。他の実施形態では、ネットワークトポロジの知識を有するネットワークコントローラが、セグメントルーティングされたパスをソースノードに提供する。
方法1100の次のステップ1120は、光スイッチノードの順序付きリストに少なくとも部分的に基づいて、順序付きリスト内の光スイッチノードの各々について制御情報を生成することを含む。
ステップ1130では、オプションで、セグメントルーティングされたパス内の1つ以上の光スイッチノードのルーティング制御情報に、追加の非ルーティング制御情報を加えることができる。いくつかの実施形態では、制御情報に追加の非ルーティング情報を加えることは、宛先ノードのバーストモードリセットを制御情報に付加すること、またはエンドツーエンドおよび/またはソースノードから中間ノードまでの更新情報および管理情報の少なくとも1つを制御情報に付加することを含む。単一の波長チャネルが全ての光スイッチノードの制御情報を伝送するために使用されるシナリオでは、バーストモードリセット、更新情報および管理情報は、ルーティング制御情報と同じ波長チャネル上に符号化されてもよい。光ネットワークの各リンクの制御情報を伝送するために異なる波長チャネルが割り当てられるシナリオでは、バーストモードリセット、更新情報および管理情報は、追加情報が関連する光スイッチノードのためのルーティング制御情報と同じ波長チャネル上に符号化される。ルーティング制御情報に加えられる追加の非ルーティング情報がない場合、このステップは発生しないことが理解されるべきである。
方法1100の次のステップ1140は、ステップ1120およびステップ1130の生成された制御情報を少なくとも1つの制御波長チャネルに符号化することを含む。単一の波長チャネルが全ての光スイッチノードの制御情報を伝送するために使用されるシナリオでは、生成された制御情報を少なくとも1つの制御波長チャネルに符号化することは、生成された制御情報を単一の波長チャネルに符号化することを含む。光ネットワークの各リンクの制御情報を伝送するために異なる波長チャネルが割り当てられるシナリオでは、生成された制御情報を少なくとも1つの制御波長チャネルに符号化することは、生成された制御情報を複数の波長チャネルに符号化することを含む。各波長チャネルは、セグメントルーティングされた光ネットワーク内の特定の光リンクまたは光スイッチノードについて生成された制御情報を有して符号化される。
いくつかの実施形態では、生成された制御情報を少なくとも1つの制御波長チャネルに符号化することは、制御情報を符号化するための1つ以上の波長チャネルを選択することをさらに含む。
方法1100のさらなるステップ1150は、符号化された制御情報と共にペイロードを、セグメントルーティングされたパスの順序付きリスト内の第1の光スイッチノードに伝送することを含む。ソースノードは、トランスポートSDNコントローラなどの上位レイヤコントローラとインターフェースして、ルーティング情報を生成するための情報と、ソースノードから中間ノードまでおよび/またはソースノードから宛先ノードまでの管理および/または更新に関する情報とを取得することができる。
本開示によるセグメントルーティングのための光ネットワークは、数マイクロ秒のような小さなフローと回路接続のような大きなフローを扱うことができる。
本開示の態様はまた、フォトニックネットワークと、ソフトウェア定義ネットワーク(SDN)およびソースベースのルーティングとの互換性を可能にすることができる。フローの割り当ては、帯域幅のオーバーサブスクリプションの可能性を減らし、競合を減らすために、メインSDNコントローラによって制御されてもよい。
本開示によるフォトニック・パケット・スイッチング・ネットワークの実装形態は、3つのタイプのコントローラのいずれか1つ以上を利用してもよい。第1のタイプのコントローラは、SDNスタイルコントローラのようなフォトニックネットワークコントローラである。フォトニックネットワークコントローラは、エッジ(またはアグリゲーション)ノード間のフロー管理を制御する。エッジノードは、そのようなフォトニックネットワークコントローラとそのトラフィック状態に関して通信し、コントローラは、競合なしに同時に確立できるフローを決定する。エッジノードは、フォトニックドメインと電子ドメインとの間のインターフェースにおけるノードである。フローが決定されると、コントローラは、各フローが横断してエッジノードに指示することができるフォトニックセグメントの識別を行う。
第2のタイプのコントローラは、エッジ(またはアグリゲーション)ノードコントローラである。エッジノードコントローラは、他のエッジノード宛てのトラフィックの状態をフォトニックネットワークコントローラに通知する。エッジノードコントローラはまた、セグメントベースのルーティングに基づいて、フォトニックネットワークコントローラからフロー形成のためのコマンドを受信する。エッジノードコントローラは、制御情報に使用される波長を決定する。例えば、エッジノードコントローラは、ルーティング情報を符号化するための波長、バーストモードリセット情報を符号化するための波長、および他の管理情報を符号化するための波長を割り当てる。
第3のタイプのコントローラは、フォトニックノードコントローラである。これは、図2、図4、図5および図6に示されているタイプのコントローラである。各ノードは、それぞれのポートで光信号を受信し、光信号をフィルタリングして、特定の波長の光信号の一部を復元し、この復元した部分は、図1および図2のように全てのノードについて同じ波長上にあるか、または図3および図4のように所与の光リンクの専用波長上にある。制御情報である復元された部分は、ノードコントローラに渡される。ノードは、単一の波長のみがそれぞれの各フィルタによってドロップまたは抽出されるような1つ以上の静的波長フィルタ、または調整可能な範囲内で所望の波長をドロップするように動的に調整することができる1つ以上の調整可能なフィルタ、または両方のタイプのフィルタの組み合わせを有することができる。コントローラは、フィルタリングされた波長のデータを使用して、ルーティング情報と管理情報を抽出する。
本開示のいくつかの実施形態の利点は、例えば、フローにセグメントルーティングを使用することによる光パケットネットワークのSDN制御、制御情報チャネルを介したバーストフレームリセットのソリューション、および光パケット技術の展開を含み得る。
上記の教示に照らして、本開示の多数の改変および変形が可能である。したがって、添付の特許請求の範囲内において、本開示は、本明細書に具体的に記載されるものとは別の方法で実施され得ることが理解されるべきである。
10 セグメントルーティング光ネットワーク
12,13,24,27,28,33,34,38,42,43,48 光リンク
15 ソースノード
17,17a,17b,17c,17d,17e,22,32,37,47 制御情報
20,25,30,35,40,45 ノード
50 宛先ノード
110 光フィルタ
112 ペイロード
120 光−電気変換器、光−電気変換コンポーネント
130 コントローラ
135 スイッチング制御信号出力
150 光スイッチ
140 電気−光変換器
150 光スイッチ、スイッチファブリック
160 遅延要素
170 結合器
210 ネットワーク
212,213 光リンク
215 ソースノード
217,217a,217b,217c,217d,217e,222,232,237,247 制御情報
220,225,230,235,240,245 ノード
224,227,228,233,234,238,242,243,248 光リンク
250 宛先ノード
310 光スプリッタ
320 コントローラ
340 スイッチング制御信号出力
350 光スイッチ
360 遅延要素
410 光フィルタ
412 ペイロード
430 コントローラ
435 スイッチング制御信号出力
450 光スイッチ、スイッチファブリック
460 遅延要素
508 入力ポート、受信ポート
510,550,610,650 中間ノード
512 第1の光フィルタ
514 第2の光フィルタ
515 ペイロード
516,516a,516b,516c 制御情報
517 光信号
520 部分
530,535,570,575,630,670 光スイッチ
532 結合器
540,580,640,680,830,910 コントローラ
541,551,581,591,611 入力ポート
572 結合器
585,617,645,685 光信号
590,690 宛先ノード
612 光フィルタ
615 ペイロード
616,616a,616b,616c 制御情報
633,673 出力ポート
641,681,691,810 入力ポート
652,692 光フィルタ
800 光スイッチノード
820 光スイッチファブリック
840 波長迂回要素
900 ソース光スイッチノード
915 上位レイヤコントローラへのインターフェース
1000,1100 方法

Claims (36)

  1. セグメントルーティングされた光ネットワークにおいて光スイッチノードを動作させる方法であって、前記方法は、
    第1の先行ノードから、前記光ネットワーク内の第1の光リンクを介して、ペイロードと、前記光スイッチノードに関連し、かつセグメントルーティングされたパス内の後続の光スイッチノードに関連する制御情報とを搬送する第1の光信号を受信するステップと、
    前記セグメントルーティングされたパス内の前記後続の光スイッチノードに関連する前記制御情報に非破壊的な方法で、受信した前記第1の光信号から読み取った前記光スイッチノードに関連する前記制御情報に従って、スイッチファブリックを制御するステップと、
    受信した前記ペイロードと前記セグメントルーティングされたパス内の前記後続の光スイッチノードに関連する前記制御情報とを搬送する光信号を、読み取った前記制御情報に従って決定された方法で、前記スイッチファブリックを介して、前記光ネットワーク内の後続ノードに転送するステップと、
    を含む方法。
  2. 前記光スイッチノードに関連する波長チャネルを抽出するために、前記受信した第1の光信号をフィルタリングするステップと、
    抽出された前記波長チャネルから前記制御情報を読み取るステップと、
    をさらに含む、請求項1に記載の方法。
  3. 前記受信した第1の光信号をタップするステップと、
    タップした前記光信号から前記制御情報を読み取るステップと、
    をさらに含む、請求項1に記載の方法。
  4. 前記光スイッチノードに関連する前記波長チャネルを抽出するために前記受信した第1の光信号をフィルタリングするステップが、
    制御情報を搬送する全ての波長チャネルを抽出するステップと、
    前記光スイッチノードに関連する抽出された波長チャネルから前記制御情報を読み取るステップを含む前記制御情報を読み取るステップと、
    を含む、請求項2に記載の方法。
  5. 前記受信したペイロードと前記セグメントルーティングされたパス内の後続の前記光スイッチノードに関連する前記制御情報とを搬送する前記光信号を前記後続の光スイッチノードに転送する前に、前記光スイッチノードに関連しない制御情報を搬送する波長チャネルを前記ペイロードに結合させるステップ
    をさらに含む、請求項4に記載の方法。
  6. 前記光スイッチノードに関連する前記制御情報を読み取る間、前記受信した第1の光信号を転送する前に遅延させるステップをさらに含む、請求項1に記載の方法。
  7. 前記第1の光信号を受信するステップが、
    複数の波長チャネルを含む同じ波長帯域内で前記ペイロードと前記制御情報とを受信するステップ、または、
    各々が複数の波長チャネルを含む別個のそれぞれの波長帯域内で前記制御情報と前記ペイロードとを受信するステップ、
    を含む、請求項1に記載の方法。
  8. 前記ペイロードと制御情報を別個のそれぞれの波長帯域で受信するステップが、1310nm波長帯域または1550nm波長帯域のうちの1つで前記制御情報を受信するステップと、前記1310nm波長帯域または前記1550nm波長帯域の他方で前記ペイロードを受信するステップとを含む、請求項7に記載の方法。
  9. 前記制御情報が、
    前記セグメントルーティングされたパス内の光リンクまたは光スイッチノードのリストを含むルーティング情報であって、前記リストが前記光スイッチノードから宛先光スイッチノードまでの少なくとも1つのルートを規定する、ルーティング情報と、
    バーストモードリセット情報と、
    更新情報および/または管理情報と、
    のうちの少なくとも1つを含む、請求項1に記載の方法。
  10. 前記光スイッチノードに関連する波長を抽出するために前記光信号をフィルタリングするステップは、前記光スイッチノードに関連する制御情報を含む少なくとも1つの波長チャネルをドロップするステップを含み、
    前記抽出された波長チャネルから前記制御情報を読み取るステップは、前記光スイッチノードに関連する制御情報を含むドロップされた前記少なくとも1つの波長チャネルを、前記光スイッチノード内の光スイッチファブリックを制御するための電気信号に変換するステップを含む、
    請求項2に記載の方法。
  11. 前記光スイッチノードに関連しない制御情報を含む前記電気信号の少なくとも一部を変換して、前記セグメントルーティングされた光ネットワーク内の全ての光スイッチノードのための制御情報専用の波長チャネル上の光信号に戻すステップと、
    スイッチングが発生する前に、全ての光スイッチノードの前記専用の波長チャネル上の前記光信号を、前記光スイッチノードに関連する前記少なくとも1つの波長チャネルをドロップした後に、受信した前記光信号から残ったスルー信号と再結合させるステップと、
    をさらに含む、請求項10に記載の方法。
  12. 第2の先行ノードから前記光ネットワーク内の第2の光リンクを介して、第2のペイロードとセグメントルーティングされたパス内の全ての後続ノードのための第2の制御情報とを搬送する第2の光信号を受信するステップであって、前記第2の制御情報が、前記第1の光リンクを介して前記第1の先行ノードから受信したチャネル情報と同じ第1の波長チャネル上にある、ステップをさらに含む方法であって、前記方法は、
    前記セグメントルーティングされたパス内の他の光スイッチノードに関連する前記制御情報に対して非破壊的な方法で、受信した前記第2の光信号から読み取った前記光スイッチノードに関連する前記受信した第2の光信号内の前記第2の制御情報に従って、前記スイッチファブリックを制御するステップと、
    前記受信したペイロードと前記光ネットワーク内の後続ノードに関連する前記制御情報とを搬送する前記第2の光信号を、読み取った前記第2の制御情報に従って決定された方法で、前記スイッチファブリックを介して、前記光ネットワーク内の後続ノードに転送するステップと、
    をさらに含む、請求項1に記載の方法。
  13. 第2の先行ノードから前記光ネットワーク内の第2の光リンクを介して、第2のペイロードと第2の制御情報とを搬送する第2の光信号を受信するステップであって、前記第2の制御情報は、前記第1の光リンクを介して前記第1の先行ノードから受信したチャネル情報とは異なる波長チャネル上にある、ステップをさらに含む方法であって、前記方法は、
    前記セグメントルーティングされたパス内の他の光スイッチノードに関連する前記制御情報に対して非破壊的な方法で、前記受信した第2の光信号から読み取った前記光スイッチノードに関連する前記受信した第2の光信号内の前記第2の制御情報に従って、前記スイッチファブリックを制御するステップと、
    前記受信したペイロードと前記光ネットワーク内の後続ノードに関連する前記制御情報とを搬送する前記第2の光信号を、読み取った前記第2の制御情報に従って決定された方法で、前記スイッチファブリックを介して、前記光ネットワーク内の後続ノードに転送するステップと、
    をさらに含む、請求項1に記載の方法。
  14. 前記光スイッチノードに関連する前記波長チャネルを抽出するために前記受信した第1の光信号をフィルタリングするステップは、
    前記光スイッチノードに関連する制御情報を含む前記波長チャネルをドロップするステップと、
    前記光スイッチノードに関連しない制御情報を含む1つ以上の他の波長チャネルを通過させるステップであって、前記フィルタリングによって通過される前記制御情報が前記ペイロードと共に前記光スイッチノードを横断する、ステップと、
    を含む、請求項2に記載の方法。
  15. 前記光スイッチノードに関連する前記波長チャネルを抽出するために前記受信した第1の光信号をフィルタリングするステップが、
    前記光スイッチノードに関連する制御情報を搬送する少なくとも1つの波長チャネルと、前記光スイッチノードに関連しない制御情報を搬送する少なくとも1つの波長チャネルとを備える複数の波長チャネルを含む波長帯域をドロップするために、前記受信した第1の光信号をフィルタリングするステップと、
    前記光スイッチノードに関連する制御情報を搬送する前記少なくとも1つの波長チャネルをドロップし、前記光スイッチノードに関連しない制御情報を搬送する前記少なくとも1つの波長チャネルを通過させるために、ドロップされた前記波長帯域をフィルタリングするステップと、
    を含む、請求項2に記載の方法。
  16. 前記受信した光信号の前記制御情報から前記光スイッチノードに関するルーティング情報を抽出するステップと、
    前記ペイロードまたは前記光スイッチノードに関連しない前記制御情報を変更することなく、前記受信したペイロードと前記セグメントルーティングされたパス内の後続ノードに関連する前記制御情報とを搬送する光信号を転送するステップと、
    をさらに含む、請求項1に記載の方法。
  17. セグメントルーティングされた光ネットワークにおいてソースノードを動作させる方法であって、前記方法は、
    光スイッチノードの順序付きリストを含むセグメントルーティングされたパスを生成するステップと、
    前記順序付きリスト内の前記光スイッチノードの各々について制御情報を生成するステップと、
    生成された前記制御情報を少なくとも1つの制御波長チャネルに符号化するステップと、
    符号化された前記制御情報と共にペイロードを前記順序付きリスト内の第1の光スイッチノードに伝送するステップと、
    を含む、方法。
  18. 前記順序付きリストは、宛先ノードの識別情報を含み、前記生成された制御情報は、前記宛先ノードのルーティング情報以外の制御情報を含む、請求項17に記載の方法。
  19. 前記生成された制御情報を少なくとも1つの制御波長チャネルに符号化するステップが、
    前記生成された制御情報を単一の波長チャネルに符号化するステップ、または、
    前記生成された制御情報を複数の波長チャネルに符号化するステップであって、各波長チャネルは、前記セグメントルーティングされた光ネットワーク内の特定の光リンクまたは光スイッチノードについて前記生成された制御情報を有して符号化される、ステップ、
    を含む、請求項17に記載の方法。
  20. 前記順序付きリスト内の前記光スイッチノードの各々について制御情報を生成するステップは、前記制御情報に宛先ノードのバーストモードリセットを付加することをさらに含む、請求項17に記載の方法。
  21. 前記順序付きリスト内の前記光スイッチノードの各々について制御情報を生成するステップは、前記制御情報に更新情報および管理情報の少なくとも1つを付加することをさらに含む、請求項17に記載の方法。
  22. セグメントルーティングされた光ネットワークで使用するための光スイッチノードであって、
    ペイロードと前記光スイッチノードおよびセグメントルーティングされたパス内の後続の光スイッチノードの制御情報とを搬送する光信号を、光リンクを介して、前記光ネットワーク内の先行ノードから受信するように構成された入力ポートと、
    受信した前記光信号の一部を光学的に迂回させるように構成された波長ダイバータと、
    前記受信したペイロードと前記セグメントルーティングされたパス内の少なくとも後続ノードに関連する制御情報とを搬送する光信号を前記光ネットワーク内の後続ノードにルーティングするように構成された少なくとも1つの前記入力ポートに光学的に結合された光スイッチファブリックと、
    前記波長ダイバータおよび前記光スイッチファブリックに光学的に結合されたコントローラであって、前記コントローラは、前記光スイッチファブリックを制御して、前記受信した光信号の迂回部分で搬送される情報に従って選択された出力ポートに導くように構成された、コントローラと、
    を含む、光スイッチノード。
  23. 前記コントローラは、
    前記セグメントルーティングされたパス内の他のノードに関連する制御情報に非破壊的な方法で、前記受信した光信号の前記迂回部分の前記光スイッチノードに関連する前記制御情報を読み取り、
    前記光スイッチノードに関連する読み取った前記制御情報に従って前記光信号をルーティングするために前記光スイッチファブリックを制御する、
    ように構成されている、請求項22に記載の光スイッチノード。
  24. 前記波長ダイバータは、
    少なくとも1つの光フィルタを含み、各光フィルタは前記少なくとも1つの入力ポートおよび前記コントローラの1つ以上に光学的に結合され、前記少なくとも1つの光フィルタは、前記光スイッチノードに関連する波長チャネルを抽出するために受信した前記光信号をフィルタリングするように構成され、
    前記コントローラは、抽出された前記波長チャネルから前記光スイッチノードに関連する前記制御情報を読み取る、請求項22に記載の光スイッチノード。
  25. 前記波長ダイバータは、
    光スプリッタであって、前記光スプリッタは、前記少なくとも1つの入力ポートおよび前記コントローラの1つ以上に光学的に結合され、前記光スプリッタは、前記受信した光信号をタップするように構成された、光スプリッタ
    を含み
    前記コントローラは、タップされた前記光信号から前記光スイッチノードに関連する前記制御情報を読み取る、請求項22に記載の光スイッチノード。
  26. 前記少なくとも1つの光フィルタは、複数の波長チャネルを抽出するために前記受信した光信号をフィルタリングするように構成され、前記複数の波長チャネルは、前記光スイッチノードに関連する制御情報を搬送し、かつ前記光スイッチノードに関連しない制御情報を搬送し、
    前記コントローラは、前記光スイッチノードに関連する波長チャネルから前記制御情報を読み取るように構成されている、請求項24に記載の光スイッチノード。
  27. 前記光スイッチノードに関連する前記制御情報を読み取る間、ルーティングの前に、前記受信した光信号を遅延させるように構成された遅延要素をさらに含む、請求項22に記載の光スイッチノード。
  28. 前記制御情報は、
    前記セグメントルーティングされたパス内の光リンクまたは光スイッチノードのリストを含むルーティング情報であって、前記リストが現在の光スイッチノードから宛先光スイッチノードまでの少なくとも1つのルートを規定する、ルーティング情報と、
    バーストモードリセット情報と、
    更新情報および/または管理情報と、
    の少なくとも1つを含む、請求項22に記載の光スイッチノード。
  29. 前記少なくとも1つの光フィルタは、前記少なくとも1つの入力ポートの各々に光学的に結合されたそれぞれの光フィルタを含み、各光フィルタは単一波長チャネルをフィルタリングするように構成され、または
    前記少なくとも1つの光フィルタは、各入力ポートに光学的に結合されたそれぞれの光フィルタを含み、前記光フィルタは、各々異なる波長チャネルをフィルタリングするように構成されている、
    請求項24に記載の光スイッチノード。
  30. 前記少なくとも1つの光フィルタは、
    前記光スイッチノードに関連する制御情報を含む波長チャネルをドロップし、
    前記光スイッチノードに関連しない制御情報を含む1つ以上の他の波長チャネルを通過させ、前記少なくとも1つの光フィルタによって通過される前記制御情報は、前記ペイロードと共に前記光スイッチノードを横断する、
    ように構成されている、請求項27に記載の光スイッチノード。
  31. 前記少なくとも1つの光フィルタは、
    前記光スイッチノードに関連する制御情報を搬送する少なくとも1つの波長チャネルと、前記光スイッチノードに関連しない制御情報を搬送する少なくとも1つの波長チャネルとを備える複数の波長チャネルを含む波長帯域をドロップするために、前記受信した光信号をフィルタリングするように構成された第1の光フィルタと、
    前記光スイッチノードに関連する制御情報を搬送する前記少なくとも1つの波長チャネルをドロップし、前記光スイッチノードに関連しない制御情報を搬送する前記少なくとも1つの波長チャネルを通過させるために、ドロップされた前記波長帯域を含む光信号をフィルタリングするように構成された少なくとも1つの第2の光フィルタと、
    を含む、請求項22に記載の光スイッチノード。
  32. 前記光スイッチノードに関連しない制御情報を搬送する少なくとも1つの波長チャネルを、スイッチングが発生する前に、前記ペイロードを搬送するスルー信号に結合させるように構成された結合器をさらに備える、請求項31に記載の光スイッチノード。
  33. 前記コントローラは、前記制御情報の少なくとも一部に基づいて、バーストモードリセットをトリガするステップ、または前記光スイッチノードを更新/管理するステップのうち少なくとも1つを実行するようにさらに構成されている、請求項30に記載の光スイッチノード。
  34. セグメントルーティングされた光ネットワークで使用するための光スイッチノードであって、
    前記光スイッチノードの順序付きリストを備える前記光ネットワークを通るセグメントルーティングされたパスを生成し、
    前記順序付きリスト内の前記光スイッチノードの各々について制御情報を生成し、
    生成された前記制御情報を少なくとも1つの制御波長チャネルに符号化し、
    符号化された前記制御情報と共にペイロードを前記順序付きリスト内の第1の光スイッチノードに伝送する、
    ように構成されたコントローラ
    を備える、光スイッチノード。
  35. 前記コントローラは、
    前記生成された制御情報を複数の制御波長チャネル上に符号化するように構成され、各制御波長チャネルは、前記光ネットワーク内の特定の光リンクまたは光スイッチノードについて前記生成された制御情報を有して符号化される、請求項34に記載の光スイッチノード。
  36. 前記コントローラは、
    前記制御情報に対するバーストモードリセットと、
    前記制御情報に対する更新情報および/または管理情報と、
    の少なくとも1つをさらに付加するように構成されている、請求項34に記載の光スイッチノード。
JP2018555218A 2016-04-22 2017-04-07 光ネットワークのためのセグメントルーティング Active JP6739771B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/136,378 2016-04-22
US15/136,378 US10750255B2 (en) 2016-04-22 2016-04-22 Segment routing for optical networks
PCT/CN2017/079763 WO2017181855A1 (en) 2016-04-22 2017-04-07 Segment routing for optical networks

Publications (2)

Publication Number Publication Date
JP2019517185A true JP2019517185A (ja) 2019-06-20
JP6739771B2 JP6739771B2 (ja) 2020-08-12

Family

ID=60088604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018555218A Active JP6739771B2 (ja) 2016-04-22 2017-04-07 光ネットワークのためのセグメントルーティング

Country Status (4)

Country Link
US (1) US10750255B2 (ja)
EP (1) EP3430737B1 (ja)
JP (1) JP6739771B2 (ja)
WO (1) WO2017181855A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176743A1 (ja) * 2020-03-04 2021-09-10 日本電信電話株式会社 光バッファユニット、光信号処理装置、光ラベルスイッチ及び制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10701466B1 (en) * 2019-04-12 2020-06-30 Nokia Solutions And Networks Oy Optical packet switching based on traffic properties
ES2972101T3 (es) * 2021-11-03 2024-06-11 Deutsche Telekom Ag Procedimiento para establecer o conmutar una ruta de transmisión óptica para transmitir una señal óptica, nodo de red óptica para establecer o conmutar una ruta de transmisión óptica para transmitir una señal óptica, red troncal, red de agregación o red de telecomunicaciones, sistema, programa y medio legible por ordenador

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761050B1 (en) * 1994-05-23 2002-04-10 BRITISH TELECOMMUNICATIONS public limited company Optical packet processing
US6101013A (en) 1998-01-30 2000-08-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical circuit switched protocol
US6111673A (en) * 1998-07-17 2000-08-29 Telcordia Technologies, Inc. High-throughput, low-latency next generation internet networks using optical tag switching
US6529301B1 (en) * 1999-07-29 2003-03-04 Nortel Networks Limited Optical switch and protocols for use therewith
US6839322B1 (en) 2000-02-09 2005-01-04 Nortel Networks Limited Method and system for optical routing of variable-length packet data
JP3578960B2 (ja) * 2000-02-28 2004-10-20 日本電信電話株式会社 超高速光パケット転送リングネットワーク、光挿入分岐型多重分離ノード装置及び光挿入分岐型多重分離ノード装置の動作方法
JP2003533150A (ja) * 2000-05-11 2003-11-05 ビーティージー・インターナショナル・リミテッド 光トランスポート・ネットワーク
EP1162860A3 (en) * 2000-06-08 2006-01-11 Alcatel Scalable WDM optical IP router architecture
JP3472809B2 (ja) * 2000-09-06 2003-12-02 独立行政法人通信総合研究所 多波長ラベルを用いた光パケットルーティング方法とその装置、および多波長ラベルを用いた光パケットネットワーク
US6768827B2 (en) * 2002-01-16 2004-07-27 The Regents Of The University Of California Integrated optical router
TWI232656B (en) * 2002-08-09 2005-05-11 Ind Tech Res Inst Photonic label switching architecture
US7272310B2 (en) * 2003-06-24 2007-09-18 Intel Corporation Generic multi-protocol label switching (GMPLS)-based label space architecture for optical switched networks
CN1571301A (zh) 2003-07-16 2005-01-26 深圳市中兴通讯股份有限公司 光网络中通过显示路由实现信令并发优收的装置及方法
US7634582B2 (en) * 2003-12-19 2009-12-15 Intel Corporation Method and architecture for optical networking between server and storage area networks
US20060171386A1 (en) * 2004-09-01 2006-08-03 Interactic Holdings, Llc Means and apparatus for a scaleable congestion free switching system with intelligent control III
CN101155120B (zh) 2006-09-29 2010-05-12 华为技术有限公司 一种路由设备、路由方法和传输交换网络
CN101325560B (zh) 2008-07-22 2011-12-28 中兴通讯股份有限公司 一种链路生成方法及其装置
JP5426604B2 (ja) 2011-04-26 2014-02-26 富士通テレコムネットワークス株式会社 光パケット交換システム
CN102231864B (zh) 2011-06-20 2014-04-16 东南大学 基于光码字标签的光分组组播发送、接收方法及其装置
US9054827B2 (en) * 2012-01-27 2015-06-09 Futurewei Technologies, Inc. Optical switching device using spectral trigger
CN102907054B (zh) 2012-08-03 2014-06-25 华为技术有限公司 一种数据交换方法、装置及系统
JP2014220575A (ja) * 2013-05-01 2014-11-20 富士通株式会社 光伝送装置、光伝送システム、及び光伝送方法
US9584885B2 (en) * 2013-05-10 2017-02-28 Huawei Technologies Co., Ltd. System and method for photonic switching
WO2014183126A1 (en) * 2013-05-10 2014-11-13 Huawei Technologies Co., Ltd. System and method for photonic switching
US9654853B2 (en) * 2013-05-10 2017-05-16 Huawei Technologies Co., Ltd. System and method for photonic switching
WO2014183127A2 (en) * 2013-05-10 2014-11-13 Huawei Technologies Co., Ltd. System and method for photonic switching
EP2997699B1 (en) * 2013-05-17 2020-03-04 Cisco Technology, Inc. Segment routing mapping server for ldp/sr interoperability
US9462359B2 (en) * 2014-04-25 2016-10-04 Huawei Technologies Co., Ltd. System and method for photonic switching
US10554537B2 (en) * 2014-07-24 2020-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Segment routing in a multi-domain network
US9407359B2 (en) * 2014-07-30 2016-08-02 Ciena Corporation Localized network repair systems and methods
US10063463B2 (en) * 2014-12-16 2018-08-28 Cisco Technology, Inc. Node protection for segment routing adjacency segments
US10284290B2 (en) * 2015-09-30 2019-05-07 Juniper Networks, Inc. Packet routing using optical supervisory channel data for an optical transport system
US10164875B2 (en) * 2016-02-22 2018-12-25 Cisco Technology, Inc. SR app-segment integration with service function chaining (SFC) header metadata
US10097909B2 (en) * 2016-03-03 2018-10-09 Infinera Corporation Systems, apparatus, and methods for segment routing of optical signals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176743A1 (ja) * 2020-03-04 2021-09-10 日本電信電話株式会社 光バッファユニット、光信号処理装置、光ラベルスイッチ及び制御方法
JPWO2021176743A1 (ja) * 2020-03-04 2021-09-10
WO2021176608A1 (ja) * 2020-03-04 2021-09-10 日本電信電話株式会社 光バッファユニット、光信号処理装置、光ラベルスイッチ及び制御方法
JP7485980B2 (ja) 2020-03-04 2024-05-17 日本電信電話株式会社 光ラベルスイッチ及び制御方法
US12063462B2 (en) 2020-03-04 2024-08-13 Nippon Telegraph And Telephone Corporation Optical buffer unit, optical signal processing apparatus, optical label switch and control method

Also Published As

Publication number Publication date
WO2017181855A1 (en) 2017-10-26
JP6739771B2 (ja) 2020-08-12
EP3430737A4 (en) 2019-04-03
US20170311056A1 (en) 2017-10-26
EP3430737A1 (en) 2019-01-23
US10750255B2 (en) 2020-08-18
EP3430737B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
US7369765B2 (en) Optical network with selective mode switching
JP4723355B2 (ja) 光ネットワーク、光通信装置及び光通信方法
JP4899577B2 (ja) 光ネットワーク及びノード
US7925165B2 (en) Packet and optical routing equipment and method
US20080181605A1 (en) Multi-degree optical node architectures
US8520685B2 (en) Signal relay apparatus, node apparatus, network system, virtual-link generating method, path calculating method, and computer product
US20100061726A1 (en) Dynamically Reconfiguring An Optical Network Using An Ethernet Switch
JP6739771B2 (ja) 光ネットワークのためのセグメントルーティング
US9923805B2 (en) Backward-recursive path computation using RSVP-TE
CN102907022B (zh) 带有恢复路径的光网络节点
JP2013506372A (ja) 光パケット交換デバイス
JP2006074765A (ja) 光ネットワークにおけるデータセントリックアーキテクチャのための方法及びシステム
JP5691543B2 (ja) 光伝送装置
EP4178130A1 (en) Method for establishing or defining a transmission functionality for providing, by means of a telecommunications network, a communication or connectivity service between a first location and at least a second location based on optical data transmission of a user-defined optical signal, broadband access network or telecommunications network, system, optical safety and policy entity or functionality or central office point of delivery, program and computer-readable medium
US7856018B2 (en) Provisioning point-to-multipoint paths
EP4178132B1 (en) Method for establishing or switching an optical transmission path in order to transmit an optical signal, optical network node for establishing or switching an optical transmission path in order to transmit an optical signal, backbone network, aggregation network or telecommunications network, system, program and computer-readable medium
JP2004104543A (ja) 光ネットワークシステム及びその伝送制御方法並びにそれに用いるノード装置
JP6022975B2 (ja) 光ネットワークの制御装置、通信装置及び制御方法
JP2012244328A (ja) 光伝送装置及び光伝送方法
US10103869B2 (en) Systems, apparatus, and methods for packetized clocks
EP1335626A2 (en) High speed healing ring for optical transport networks
JP2001251253A (ja) 光ネットワーク装置、光ネットワーク及び送受信方法
Wada et al. Optical packet and circuit integrated ring network with wavelength resources boundary control
JP2003259403A (ja) 光クロスコネクトおよび光パスネットワーク
JP2013016951A (ja) 光ネットワーク経路制御装置、光ネットワーク経路制御方法およびプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R150 Certificate of patent or registration of utility model

Ref document number: 6739771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250