JP2019512992A - 分散Wi−Fiネットワークの最適化 - Google Patents

分散Wi−Fiネットワークの最適化 Download PDF

Info

Publication number
JP2019512992A
JP2019512992A JP2018568177A JP2018568177A JP2019512992A JP 2019512992 A JP2019512992 A JP 2019512992A JP 2018568177 A JP2018568177 A JP 2018568177A JP 2018568177 A JP2018568177 A JP 2018568177A JP 2019512992 A JP2019512992 A JP 2019512992A
Authority
JP
Japan
Prior art keywords
access point
optimization
network
load
client
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018568177A
Other languages
English (en)
Other versions
JP6794474B2 (ja
Inventor
レンガラジャン,バラージ
マクファーランド,ウィリアム
ガオ,チンハイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plume Design Inc
Original Assignee
Plume Design Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plume Design Inc filed Critical Plume Design Inc
Publication of JP2019512992A publication Critical patent/JP2019512992A/ja
Application granted granted Critical
Publication of JP6794474B2 publication Critical patent/JP6794474B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

クラウドコントローラーによってWi−Fiシステム内のアクセスポイントの最適化処理を行うシステム及び方法であって、前記Wi−Fiシステムの動作に関する入力を受信することと、容量を最大化する目的関数を最大化するために、前記入力に基づいて最適化処理を実行することと、前記最適化に基づいて動作パラメーターを含む出力を前記Wi−Fiシステムに提供することと、を含む。前記最適化処理は、前記Wi−Fiシステム内のどのアクセスポイントに接続するかをWi−Fiクライアントデバイスごとに選択する。

Description

本開示は、広くは、無線ネットワーキングシステム及び方法に関する。より具体的には、本開示は、分散Wi−Fiネットワークにおける最適化システム及び方法に関する。
関連出願との相互参照
本特許出願は、2016年3月18日に出願された、「分散Wi−Fiネットワークの最適化」と題される米国特許仮出願第62/310,596号の優先権を主張するものであり、その内容を参照により援用する。
Wi−Fiネットワーク(すなわち、IEEE802.11規格に基づく無線ローカルエリアネットワーク(WLAN))が広く普及している。人々は、家、職場(仕事部屋)、及び公共の場で、例えば学校やカフェ、公園でもWi−Fiネットワークを使用している。Wi−Fiは、ケーブルを排除し移動性を可能にすることによって、高い利便性を提供する。消費者がWi−Fiで実行する各種アプリケーションは拡大の一途を辿っている。今日、人々は、ビデオトラフィック、オーディオトラフィック、電話での通話、ビデオ会議、オンラインゲーム、及び防犯カメラの映像など、あらゆる種類のメディアの伝送にWi−Fiを使用している。ウェブ閲覧、ファイルのアップロード/ダウンロード、ディスクドライブのバックアップ、及びいくつかのモバイルデバイス用アプリケーションなどの従来のデータサービスも同時に使用されることが多い。実際、Wi−Fiは、家又は他の場所で、ユーザーデバイスとインターネットとの主接続となっている。接続されたデバイスの大半が、主ネットワーク接続性のためにWi−Fiを使用している。
Wi−Fiの人気及び高普及率にもかかわらず、消費者の多くは尚もWi−Fiで苦労している。上述したようなリアルタイムのメディアアプリケーションを供給する難題によって、Wi−Fiのスループット、待機時間、ジッター、及び堅牢性に負担が増大している。調査によると、サービスプロバイダーを介するインターネットへのブロードバンドアクセスは、99.9%を越える確率で高データレートである。ところが、インターネットが消費者の家の境界まで確実且つ高速に届くにもかかわらず、家の中でWi−Fiを介して接続を分散する簡単なことの確実性はかなり低く、ユーザー体験満足度が低質になる。
一般的なWi−Fiシステムは、(i)干渉、(ii)輻輳、及び(iii)カバレッジを含むいくつかの問題により、良好な動作が妨げられる。干渉については、Wi−Fiの拡大に伴い、重複する異なるWi−Fiネットワーク間の干渉も拡大している。互いの範囲内にある2つのネットワークが高レベルのトラフィックを伝送する場合、互いに干渉して、両ネットワークで実現可能なスループットを低下させる。輻輳については、1つのWi−Fiネットワーク内でいくつかの通信セッションが稼働していることがある。いくつかの要求度の高いアプリケーション、例えば高解像度のビデオストリームが稼働しているとき、ネットワークは飽和状態に達し、ビデオストリームをサポートする十分な容量がなくなることがある。
カバレッジについては、Wi−Fi信号は距離とともに、及び、壁及び他の物体を通過する際に減衰する。多くの環境、例えば住居で、確実なWi−Fiサービスが全ての部屋で得られるとは限らない。基本的な接続が全ての部屋で得られる場合であっても、そうした場所の多くは弱いWi−Fi信号のせいで低性能となる。住居内の様々な物体、例えば壁、ドア、鏡、人間、及びその辺にあるような物は全てWi−Fi信号に干渉して減衰させ、データレートを低下させる。
一般的なWi−Fiシステムの性能を改善するために、2つの一般的手法が試されている。第1の手法は、単純に、より強力な単一アクセスポイントを確立して、ある場所をより高い信号強度でカバーしようというものであり、そうすることで所与の場所でより完全なカバレッジ、及びより高いデータレートを提供する。しかし、この手法は、許容送信電力(transmit power)の規制上の限界、及び基本的な自然法則の両方により制限される。そのような強力なアクセスポイントを作成する難易度は、電力の増強によるものであれ、送受信アンテナ数の増加によるものであれ、実現される改善とともに幾何級数的に上昇する。こうした技法を用いた現実的な改善は、6〜12dBの範囲である。しかし、追加の壁1枚で12dB減衰されることもある。したがって、12dBのリンクバジェットを得るための相当な難易度及び費用にも関わらず、結果としてのシステムは追加の壁の1枚さえも通過して送信できない可能性がある。もとからあり得たカバレッジの穴は尚も全て存在し、低スループットのデバイスは尚も比較的低いスループットしか実現できず、全体的なシステム容量はごく僅かしか改善されないことになる。それに加えて、この手法は、干渉及び輻輳に関する状況を何ら改善しない。実のところ、送信電力を増強することにより、ネットワーク間の干渉量は上昇する。
第2の手法は、リピーター又はWi−Fiデバイスのメッシュを用いて、ある場所全体でWi−Fiデータをリピートすることである。この手法は、基本的に、より良いカバレッジを実現するより良い手法である。家の中心に1つのリピーターノードを配置するだけでも、1つのWi−Fi送信波が移動しなければならない距離を半分に減じることができ、Wi−Fi信号の各ホップが移動(横断)しなければならない壁の数も半分になる。こうすればリンクバジェットの変化を40dB以上とすることができ、これは上述した単一アクセスポイントの増強により得ることができる6〜12dBのタイプの改善と比べて大きな変化である。メッシュネットワークは、Wi−Fiリピーターを用いるシステムと同様の特性を有する。完全に相互接続されたメッシュは、全リピーターが互いに通信できる能力を追加し、パケットがネットワーク中の任意の経路を複数のホップを介して送達される可能性を開く。
最先端のメッシュ又はリピーターシステムにも多くの限界はある。このようなシステムはローカル制御に依存するので、リピーター又はメッシュノード間で全バックホール通信に同じ周波数を用いるように自己構成する。このため深刻なシステム容量の問題が生じる。パケットを目的地に届けるのに、ネットワーク内で3ホップを要求するシステムがあるとする。3ホップは全て同じ周波数チャンネル上にあるので、また、範囲(範囲は、サポートされる最も低いデータレートの長距離によって決定される)内の複数のデバイス中、所与のチャンネルで一度に1つのWi−Fi電波しか送信できないので、一度に1つのホップしか有効にできない。したがって、この例では、3ホップを介してパケットを送達することは、当該1つのチャンネルでパケットを直接送達する場合の3倍の通信時間がかかることになる。第1のホップでは、パケットがWi−Fiゲートウェイから第1のメッシュノードへと移動しているとき、この家の他の全てのリンクは沈黙していなければならない。同様に、後にパケットが第1のメッシュノードから第2のメッシュノードへと送られるとき、その家の他のどのWi−Fiデバイスも送信することができない。最後に、パケットが第2のメッシュノードから最終目的地へと移動するときも同じである。結局、3ホップのリピートを使用することで、ネットワーク容量が3分の1に減じたことになる。また、単一アクセスポイントの場合と同様に、リピーター又はメッシュ手法は、干渉又は輻輳の問題については役に立たない。前述のように、この技法は、1つのパケット送信が3つの別個の送信となり、全部で3倍の通信時間がかかり、近隣のWi−Fiネットワークに対し3倍の干渉を生じるので、実は干渉を増加させるものである。
一例示的実施形態では、クラウドコントローラーによってWi−Fiシステム内のアクセスポイントの最適化処理を行う方法であって、Wi−Fiシステムの動作に関する入力を受信することと、容量を最大化する目的関数を最大化するために、入力に基づいて最適化処理を実行することと、最適化に基づいて動作パラメーターを含む出力をWi−Fiシステムに提供することと、を含む。入力は、各Wi−Fiクライアントデバイスにより要求される複数のトラフィック負荷と、各可能なリンクの信号強度と、各可能なリンクのデータレートと、各リンクのパケットエラーレートと、ネットワーク内インターフェアラー(interferer)の強度及び負荷と、ネットワーク外インターフェアラーの強度及び負荷とを含むことができ、出力は、複数のチャンネル及び帯域幅(BW)の選択と、経路及びトポロジーと、送信要求又は送信可(RTS/CTS)設定と、送信機(TX)電力(power)と、クリアチャンネル評価と、クライアント関連付けステアリングと、帯域ステアリングと、Arbitration inter−frame spacing(AIFS)と、複数のWi−Fiコンテンションウィンドウを含むことができる。最適化処理は、Wi−Fiシステム内のどのアクセスポイントに接続するかをWi−Fiクライアントデバイスごとに選択することができ、目的関数は、各Wi−Fiクライアントが所望する負荷を考慮して、負荷比の余剰容量を最大化する。
各Wi−Fiクライアントが所望する負荷は、最適化への入力となることができるとともに、アクセスポイントによる測定と、先行測定値に基づく推定と、未知数又は想定値への設定と、のいずれか又は複数によって決定することができる。各Wi−Fiクライアントが所望する負荷は、最小保留容量に設定することができる。最適化は、Wi−Fiシステム、及びクラスター化されている1つ又は複数の追加のWi−Fiシステムのために実行することができる。動作パラメーターは、アクセスポイントが全て使用されるわけではない、Wi−Fiクライアントデバイスが必ずしも一番近くのアクセスポイントと関連付けられるわけではない、及び複数のバックボーンリンクが異なるチャンネルを利用している、のいずれか又は複数の値が真となるように設定することができる。出力は、Wi−Fiシステム内のアクセスポイントのトポロジーをツリー構造に定義することができる。出力は、少なくとも1つのノードが2つ以上の親機を有し、これら2つ以上の親機間の通信にmulti−path Transmission Control Protocol(TCP)が利用されるようにトポロジーを定義することができる。最適化関数は、Wi−Fiシステムの動作パラメーターに変更を加えるためのコストを組み込むことができる。方法は、出力にヒステリシス閾値を適用することと、ヒステリシス閾値に基づいて出力の提供(providing)を行うことを更に含むことができる。
さらなる例示的実施形態では、最適化処理を提供するように構成されているWi−Fiシステム用のクラウドコントローラーが、当該Wi−Fiシステムと通信可能に接続されているネットワークインターフェースと、1つ又は複数のプロセッサーと、命令が格納されているメモリーとを備え、当該命令は、実行されると、当該1つ又は複数のプロセッサーに、当該Wi−Fiシステムの動作に関する入力を受信させ、容量を最大化する目的関数を最大化するために、入力に基づいて最適化処理を実行させ、最適化処理に基づいて動作パラメーターを含む出力をWi−Fiシステムに提供させる。入力は、各Wi−Fiクライアントデバイスにより要求される複数のトラフィック負荷と、各可能なリンクの信号強度と、各可能なリンクのデータレートと、各リンクのパケットエラーレートと、ネットワーク内インターフェアラーの強度及び負荷と、ネットワーク外インターフェアラーの強度及び負荷とを含むことができ、出力は、複数のチャンネル及び帯域幅(BW)の選択と、経路及びトポロジーと、送信要求又は送信可(RTS/CTS)設定と、送信機(TX)電力と、クリアチャンネル評価と、クライアント関連付けステアリングと、帯域ステアリング、Arbitration inter−frame spacing(AIFS)と、複数のWi−Fiコンテンションウィンドウとを含むことができる。
最適化処理は、Wi−Fiシステム内のどのアクセスポイントに接続するかをWi−Fiクライアントデバイスごとに選択することができ、目的関数は、各Wi−Fiクライアントが所望する負荷を考慮して負荷比の余剰容量を最大化する。各Wi−Fiクライアントが所望する負荷は、最適化への入力となることができるとともに、アクセスポイントによる測定と、先行測定値に基づく推定と、未知数又は想定値への設定と、のいずれか又は複数により決定することができる。最適化処理は、Wi−Fiシステム、及びクラスター化されている1つ又は複数の追加のWi−Fiシステムのために実行することができる。動作パラメーターは、アクセスポイントが全て使用されるわけではない、Wi−Fiクライアントデバイスが必ずしも一番近くのアクセスポイントと関連付けられるわけではない、及び複数のバックボーンリンクが異なるチャンネルを利用する、のいずれか又は複数の値が真となるように設定することができる。出力は、Wi−Fiシステム内のアクセスポイントのトポロジーをツリー構造に定義することができる。出力は、少なくとも1つのノードが2つ以上の親機を有し、これら2つ以上の親機間の通信にmulti−path Transmission Control Protocol(TCP)が利用されるようにトポロジーを定義することができる。
さらなる例示的実施形態では,クラウドコントローラーによって最適化されるように構成されているWi−Fiシステムであって、互いに通信可能に接続されている複数のアクセスポイント、及び当該Wi−Fiシステムに外部通信を提供するゲートウェイと通信可能に接続されている少なくとも1つのアクセスポイントと、を備え、上記のクラウドベースのシステムは、Wi−Fiシステムの動作に関する入力を受信し、所望する負荷をWi−Fiクライアントデバイスごとに考慮して負荷比の余剰容量を最大化する目的関数を最大化するために、入力に基づいて最適化処理を実行し、最適化処理に基づいてWi−Fiシステムの動作パラメーターを含む出力を提供するように構成されている。
本開示は、本明細書において様々な図面を参照して例示され説明され、図面中、適宜、類似の参照番号が類似のシステムの構成要素/方法ステップを表示するのに用いられる。
クラウドベースの制御を有する分散Wi−Fiシステムのネットワーク図である。 一般的な単一アクセスポイントシステム、Wi−Fiメッシュネットワーク、及びWi−Fiリピーターシステムに対する、図1の分散Wi−Fiシステムの動作の違いを示すネットワーク図である。 図1の分散Wi−Fiシステムの構成及び最適化処理のフローチャートである。 図3の構成及び最適化処理の一部としての最適化への入力及び出力のブロック図である。 図1の分散Wi−Fiシステム内のアクセスポイントの機能的構成要素のブロック図である。 図1の分散Wi−Fiシステムで用いることができる、サーバー、Wi−Fiクライアントデバイス、又はユーザーデバイスの機能的構成要素のブロック図である。 2つのアクセスポイントの互いに対し相対的な容量負荷のグラフである。 最適化のための混合整数線形計画(MILP)の一例の方程式である。 合同で最適化される家の数を減じ、それによって演算の複雑性を管理可能なものにするためのクラスター化の一例の図である。 例示的な場所における最適化の出力のサンプルのグラフである。 ツリー構造の最適化の出力のグラフである。
ここでまた、様々な例示的実施形態では、本開示は、分散Wi−Fiネットワークの最適化を可能にするデータ収集システム及び方法に関する。システム及び方法の目的は、単一AP(アクセスポイント)、リピーター、又は複数のメッシュノードを有し、Wi−Fiネットワークよりも優れた性能を有するWi−Fiネットワークを提供することである。システム及び方法は、クラウドベースの制御に基づき自己最適化する複数のアクセスポイント(ノード)を有する分散Wi−Fiシステムを含む。この自己最適化は、動作環境に基づきリアルタイムで複数のアクセスポイントのトポロジー及び構成を適合させる。複数のアクセスポイントは、バックホールリンクを介して互いに、及び、クライアントリンクを介してWi−Fiクライアントデバイスと通信し、各バックホールリンク及び各クライアントリンクは、最適化に基づき異なるチャンネルを使用することができるので、前述のWi−Fiメッシュ又はリピーターシステムの限界を回避することができる。一例示的態様では、分散Wi−Fiシステムは、(Wi−Fiメッシュ又はリピーターシステムなどの一般的な展開に対し)比較的多数のアクセスポイントを含む。例えば、多数のアクセスポイントは、典型的な住居では、6〜12以上であってもよい。多数のアクセスポイントがあれば、アクセスポイントとWi−Fiクライアントデバイスとの間の距離と同様のスケールで、任意の2つのアクセスポイント間の距離が短くなる。したがって、カバレッジの問題を回避しながら信号強度が維持され、また、トポロジー及び構成の最適化により輻輳及び干渉が最小化される。このように、分散Wi−Fiシステムは、前述の一般的なWi−Fiシステムにおける3種の限界の全てに対処するものである。
最適化システム及び方法は、分散Wi−Fiシステムからの入力を受信し、最適化を実行し、分散Wi−Fiシステムの動作パラメーターを含む出力を提供する。入力は、各Wi−Fiクライアントデバイスにより要求される複数のトラフィック負荷、各可能なリンクの信号強度及びデータレート、各リンクのパケットエラーレート、ネットワーク内インターフェアラー(interferer)の強度及び負荷、並びにネットワーク外インターフェアラーの強度及び負荷を含むことができる。出力は、複数のチャンネル及び帯域幅(BW)の選択、経路及びトポロジー、送信要求/送信可(RTS/CTS)設定、送信機(TX)電力、クリアチャンネル評価、クライアント関連付けステアリング、帯域ステアリング、拡張分散調整機能(EDCF)優先度及びArbitration Inter−Frame Spacing(AIFS)などのQoSパラメーター、並びにWi−Fiコンテンションウィンドウ設定を含むことができる。最適化は、入力に基づいて、多様な方法で定めることができる目的関数を最大化し、実際の性能(リアルワールドパフォーマンス(Real World Performance))及び使用の好みを反映することができる。特に、各Wi−Fiクライアントデバイスが所望する負荷を考慮して、負荷比の余剰容量を最大化する目的関数が有益である。最適化の目的は、実施するとWi−Fiネットワークの動作を混乱させるような新トポロジーの不利益も含む場合がある。オプティマイザーの出力は、最適化に基づくWi−Fiシステムの動作パラメーターを含むことができる。
分散Wi−Fiシステム
図1を参照すると、一例示的実施形態では、ネットワーク図が、クラウド12ベースの制御を有する分散Wi−Fiシステム10を説明する。分散Wi−Fiシステム10は、IEEE802.11プロトコル及びその変更された形態にしたがって動作することができる。分散Wi−Fiシステム10は、ある場所、例えば住居、職場その他などの全体に分散させることができる複数のアクセスポイント14(アクセスポイント14A〜14Hと表示する)を含む。つまり、分散Wi−Fiシステム10は、単一アクセスポイント、リピーター、又はメッシュシステムによるサービスが非効率又は非実用的なあらゆる物理的な場所での動作を意図している。本明細書で説明するように、分散Wi−Fiシステム10は、ネットワーク、システム、Wi−Fiネットワーク、Wi−Fiシステム、クラウドベースのシステム等と呼ばれることもある。アクセスポイント14は、ノード、アクセスポイント、Wi−Fiノード、Wi−Fiアクセスポイント等と呼ばれることもある。アクセスポイント14の目的は、Wi−Fiクライアントデバイス16(Wi−Fiクライアントデバイス16A〜16Eと表示する)へのネットワーク接続性を提供することである。Wi−Fiクライアントデバイス16は、クライアントデバイス、ユーザーデバイス、クライアント、Wi−Fiクライアント、Wi−Fiデバイス等と呼ばれることもある。
典型的な住居展開では、分散Wi−Fiシステム10は、1軒の家の中に3〜12のアクセスポイントを含むことができる。多数のアクセスポイント14(分散Wi−Fiシステム10内のノードと呼ばれることもある)によって、任意のアクセスポイント14間の距離が、Wi−Fiサービスを必要とする任意のWi−Fiクライアントデバイス16までの距離と同様、常に短いことが保証される。つまり、分散Wi−Fiシステム10の1つの目的は、アクセスポイント14間の距離が、各Wi−Fiクライアントデバイス16と関連付けられたアクセスポイント14との間の距離と同様のサイズとなることである。このような短距離によって、消費者の家が隅々まで良好にWi−Fi信号にカバーされることが保証される。また、分散Wi−Fiシステム10内の任意の所与のホップが短距離になりほとんど壁を貫通しないことも保証される。その結果、分散Wi−Fiシステム10内の各ホップの信号強度は非常に高くなり、高データレートの使用が可能になり、堅牢な動作が提供される。尚、当業者であれば、Wi−Fiクライアントデバイス16が、モバイルデバイス、タブレット、コンピューター、家電、家庭用エンターテメントデバイス、テレビ、又は任意のネットワーク可能デバイスであってもよいことを認識しよう。外部ネットワーク接続性のために、1つ又は複数のアクセスポイント14がモデム/ルーター18に接続されていてもよく、当該モデム/ルーター18はケーブルモデム、デジタル加入者ループ(DSL)モデム、又は分散Wi−Fiシステム10と関連付けられた物理的な場所への外部ネットワーク接続性を提供する任意のデバイスであってもよい。
優れたカバレッジを提供する一方で、多数のアクセスポイント14(ノード)には同調の問題がある。全てのアクセスポイント14を正しく構成させ高効率で通信させるには、中央制御が必要である。この制御は、好ましくはサーバー20で実行され、当該サーバー20にはインターネット(クラウド12)経由で到達でき、ユーザーデバイス22で稼動するアプリケーション(「アプリ」)を通じるなどして遠隔アクセスが可能である。分散Wi−Fiシステム10を稼働させることは、したがって、「クラウドサービス」として一般的に知られているものとなる。サーバー20は、クラウド12を通じて、測定データを受信し、この測定データを分析し、それに基づき分散Wi−Fiシステム10内のアクセスポイント14を構成するように、構成されている。サーバー20はまた、どのアクセスポイント14が各Wi−Fiクライアントデバイス16と接続(関連)するかを決定するように構成されることができる。つまり、一例示的態様では、分散Wi−Fiシステム10は、アクセスポイント14及びWi−Fiクライアントデバイス16の動作を最適化し、構成し、監視する、(クラウドベースのコントローラー又はクラウドサービスによる)クラウドベースの制御を含む。このクラウドベースの制御は、アクセスポイントにローカルでログインするなどによる、ローカル構成に依存する一般的な動作とは対照的である。分散Wi−Fiシステム10では、制御及び最適化はアクセスポイント14へのローカルログインを必要とせず、ユーザーデバイス22(又はローカルWi−Fiクライアントデバイス16)が、別個のネットワーク(分散Wi−Fiシステム10とは異なるネットワーク)(例えば、LTE、別のWi−Fiネットワーク等)を介するなどして、クラウド12内のサーバー20と通信する。
アクセスポイント14は、接続性のために無線リンク及び有線リンクの両方を含むことができる。図1の例では、アクセスポイント14Aは、モデム/ルーター18への例示的なギガビットイーサネット(GbE、イーサネットは登録商標)の有線接続を有する。任意選択により、アクセスポイント14Bもまた、重複又は負荷のバランスをとるためなどに、モデム/ルーター18への有線接続を有している。アクセスポイント14A、14Bはまた、モデム/ルーター18への無線接続を有することができる。アクセスポイント14は、クライアント接続性のための無線リンク(クライアントリンクと呼ばれる)、及びバックホールのための無線リンク(バックホールリンクと呼ばれる)を有することができる。分散Wi−Fiシステム10が一般的なWi−Fiメッシュネットワークと異なる点は、クライアントリンクとバックホールリンクとが必ずしも同じWi−Fiチャンネルを共有しないので、干渉が低下することである。つまり、アクセスポイント14は少なくとも2つのWi−Fi無線チャンネルをサポートすることができ、これらのチャンネルはクライアントリンク又はバックホールリンクのどちらにも対応できるように自在に用いることができ、また、モデム/ルーター18への接続性のために、又は他のデバイスに接続するために、少なくとも1つの有線ポートを有していてもよい。分散Wi−Fiシステム10では、小サブセットのアクセスポイント14だけがモデム/ルーター18への直接的な接続性を必要とし、接続されていないアクセスポイント14は接続しているアクセスポイント14へのバックホールリンクを通じてモデム/ルーター18と通信している。
分散Wi−Fiシステムの一般的なWi−Fiシステムとの比較
図2を参照すると、一例示的実施形態では、ネットワーク図が、一般的な単一アクセスポイントシステム30、Wi−Fiメッシュネットワーク32、及びWi−Fiリピーターネットワーク33に対する分散Wi−Fiシステム10の動作の違いを説明している。単一アクセスポイントシステム30は、ある場所(例えば家)にある全てのWi−Fiクライアントデバイス16に対応するように中心部に配置され得る単一の強力なアクセスポイント34に依存する。また、本明細書で先に説明したように、典型的な住居では、単一アクセスポイントシステム30は、アクセスポイント34とWi−Fiクライアントデバイス16との間に、いくつかの壁、床等を有し得る。それに加えて、単一アクセスポイントシステム30は単一チャンネルで動作するので、近隣システムからの干渉が生じ得る。Wi−Fiメッシュネットワーク32は、Wi−Fiカバレッジを分散する複数メッシュノード36を有することにより、単一アクセスポイントシステム30の問題の一部を解決する。具体的には、Wi−Fiメッシュネットワーク32は、完全に相互接続されているメッシュノード36に基づき動作し、チャンネルXなどのチャンネルを各メッシュノード36とWi−Fiクライアントデバイス16との間で共有している。つまり、Wi−Fiメッシュネットワーク32は、完全に相互接続されたグリッドであり、同じチャンネルを共有し、メッシュノード36とWi−Fiクライアントデバイス16との間で複数の異なる経路を可能にしている。しかし、Wi−Fiメッシュネットワーク32は同一のバックホールチャンネルを用いるので、ソースポイント間で全てのホップが、データ送達に必要なホップ数によってネットワーク容量を分割する。例えば、ビデオをWi−Fiクライアントデバイス16にストリーミングするのに3ホップを要する場合、Wi−Fiメッシュネットワーク32には1/3の容量しか残らない。Wi−Fiリピーターネットワーク33は、Wi−Fiリピーター38に無線接続されたアクセスポイント34を含む。Wi−Fiリピーターネットワーク33は、アクセスポイント14とWi−Fiクライアントデバイス16との間に最大で1つのWi−Fiリピーター38が存在しているスター状トポロジーである。チャンネルの観点からは、アクセスポイント34は第1のチャンネル、Ch.XでWi−Fiリピーター38と通信でき、Wi−Fiリピーター38は第2のチャンネル、Ch.YでWi−Fiクライアントデバイス16と通信できる。
分散Wi−Fiシステム10は、全接続に同一チャンネルを要するWi−Fiメッシュネットワーク32の問題を、様々なホップに異なるチャンネル又は帯域を用いることにより解決し(尚、一部のホップが同じチャンネル/帯域を使用してもよいが、必須ではない)、Wi−Fi速度の低下を防止する。例えば、分散Wi−Fiシステム10は、アクセスポイント14間で、及びWi−Fiクライアントデバイス16との間で異なるチャンネル/帯域(例えば、Ch.X、Ch.Y、Ch.Z、Ch.A)を使用することができ、また、分散Wi−Fiシステム10は、クラウド12による構成及び最適化に基づき、必ずしも全てのアクセスポイント14を使用しなくてよい。分散Wi−Fiシステム10は、複数のアクセスポイント14を提供することにより、単一アクセスポイントシステム30の問題を解決する。分散Wi−Fiシステム10は、Wi−Fiクライアントデバイス16とゲートウェイとの間に最大でも2つの無線ホップしか許可しないWi−Fiリピーターネットワーク33のようなスター状トポロジーに縛られない。また、分散Wi−Fiシステム10は、Wi−Fiクライアントデバイス16とゲートウェイとの間に1つの経路があるツリートポロジーを形成するが、Wi−Fiリピーターネットワーク33とは違って複数の無線ホップを可能とする。
Wi−Fiは、共有型単信プロトコル、つまりネットワーク内ではいかなるときも2つのデバイス間の1つの会話だけが発生可能であり、1つのデバイスが発信している間、その他のデバイスはリッスンしていなくてはならない。異なるWi−Fiチャンネルを用いることにより、分散Wi−Fiシステム10内で複数の同時の会話が同時に生じることが可能になる。アクセスポイント14間で異なるWi−Fiチャンネルを選択することにより、干渉及び輻輳が回避される。サーバー20は、クラウド12を通じて、最適化されたチャンネルホップソリューションのアクセスポイント14を自動的に構成する。分散Wi−Fiシステム10は、消費者及び彼らのWi−Fiクライアントデバイス16の常に変化し続ける需要をサポートするように、経路及びチャンネルを選択することができる。分散Wi−Fiシステム10の手法は、Wi−Fi信号がバックホール接続性でもクライアント接続性でも遠方まで移動する必要がないことを保証するものである。したがって、Wi−Fi信号は強いままであり、Wi−Fiメッシュネットワーク32又はWi−Fiリピーターのように同じチャンネルで通信することによる干渉が回避される。一例示的態様では、クラウド12内のサーバー20は、最高のユーザー体験のためにチャンネル選択を最適化するように構成されている。
分散Wi−Fiシステムの構成及び最適化処理
図3を参照すると、一例示的実施形態では、フローチャートが分散Wi−Fiシステム10の構成及び最適化処理50を説明する。具体的には、構成及び最適化処理50は、分散Wi−Fiシステム10の高効率な動作を可能にする様々なステップ51〜58を含む。これらのステップ51〜58は、適宜、異なる順で、場合によっては繰り返し実行して、変化する条件に分散Wi−Fiシステム10を適合させることができる。第1に、各アクセスポイント14が電気ソケットに挿し込まれ、オンボード化される(ステップ51)。分散Wi−Fiシステム10では、サブセットのアクセスポイント14だけがモデム/ルーター18に有線接続され(又は任意選択によりモデム/ルーター18に無線接続され)、有線接続性のないアクセスポイント14は、クラウド12に接続するためにオンボード化されなくてはならない。オンボード化ステップ51は、新たにインストールされたアクセスポイント14が分散Wi−Fiシステム10に確実に接続して、このアクセスポイントがコマンドを受信でき、データをサーバー20に提供できるようにする。オンボード化ステップ51は、正しいサービスセット識別子(SSID)(ネットワークID)及び関連付けられたセキュリティ鍵を有するアクセスポイントを構成することを含むことができる。一例示的実施形態では、オンボード化ステップ51は、アクセスポイント14とユーザーデバイス22との間で、Bluetooth(登録商標)又は同等の接続性により実行されて、ユーザーがSSID、セキュリティ鍵等を提供することを可能にする。オンボード化されると、アクセスポイント14は、構成のために、分散Wi−Fiシステム10経由でサーバー20との通信を開始することができる。
第2に、アクセスポイント14は、測定値を取得し情報を収集して、ネットワーキング設定の最適化を可能にする(ステップ52)。収集された情報は、全ノード間の、並びに全ノードと全Wi−Fiクライアントデバイス16との間の、信号強度及びサポート可能なデータレートを含むことができる。具体的には、測定ステップ52は、各アクセスポイント14がデータを収集することにより実行される。干渉量、分散Wi−Fiシステム10上で動作する異なるアプリケーションにより要求される負荷(スループット)等の様々な追加の測定を実行することができる。第3に、測定ステップ52からの測定値及び収集された情報がクラウド12内のサーバー20に提供される(ステップ53)。ステップ51〜53は、分散Wi−Fiシステム10の場所で実行される。
ステップ52、53のこれらの測定値は、各クライアントにより要求されるトラフィック負荷、各ノード間で及び各ノードから各クライアントへの間で維持され得るデータレート、ノード間の及びノードとクライアントとの間のリンクのパケットエラーレート等を含むことができる。それに加えて、ノードは、ネットワークに影響する干渉レベルの測定を行う。これは、他のクラウド制御の分散Wi−Fiシステム(「ネットワーク内インターフェアラー」)からの干渉、及び制御可能なネットワークの一部ではないデバイスからの干渉(「ネットワーク外インターフェアラー」)を含む。これらのタイプのインターフェアラーを区別することは重要である。ネットワーク内インターフェアラーは、クラウドシステムにより制御可能なので、ネットワーク内システム全体の大きな最適化に含まれ得る。ネットワーク外インターフェアラーは、クラウドからは制御できないので、これらの干渉を別のチャンネルに移動させたり別途変更したりすることはできない。システムはこれらを変更するのではなく、これらに適合しなければならない。これらのネットワーク外インターフェアラーは、クラウド制御されないWi−Fiネットワーク、及びWi−Fiにより使用される周波数で送信するBluetoothデバイス、ベビーモニター、コードレス電話その他などの非Wi−Fiデバイスを含む。
別の重要な入力は、ネットワークを移動するパケットの遅延である。これらの遅延は、直接の測定値から、Wi−Fiネットワークのゲートウェイに到着したパケットをタイムスタンプし、それらが最後のノードを離れるまでの経過時間を測定することによって導出することができる。しかし、そのような測定は、ノード間のある程度の時刻同期を要することになる。別の手法は、各ノードを通過する遅延の統計値を個々に測定する、というものになる。次に、ネットワーク全体の総遅延の平均及び何らかの仮定を与えられた遅延の分布を各ノードの個々の遅延統計値に基づき計算することができる。こうして、遅延は、最適化において最小化されるべきパラメーターとなることができる。また、各ノードが送信及び受信に費やす時間を把握することも最適化にとっては有用である。これは、送信又は受信された情報の量とともに、様々なリンクが維持している平均データレートを判定するために用いることができる。
第4に、クラウド12内のサーバー20は、これらの測定値を用いて、分散Wi−Fiシステム10の最適化アルゴリズムを実行する(ステップ54)。最適化アルゴリズムは、ネットワーク動作にとって最良のパラメーターを出力する。これらは、各ノードがクライアントリンク及びバックホールリンク用に動作すべきチャネルの選択、ノードが使用すべきこれら各チャンネルの帯域幅、ノード間の接続のトポロジー及びそのトポロジーによるネットワーク内の任意のソースから任意の目的地へのパケットの経路、各クライアントが接続すべき適切なノード、各クライアントが接続すべき帯域等を含む。
具体的には、最適化は、ノードからの測定値を、最大化される目的関数への入力として用いる。各リンクの容量は、移動したデータの量(負荷)、及び干渉のせいでメディアがビジーである時間の量を検証することによって導出することができる。これはまた、リンクを通過して移動したデータと送信キューがビジーだった時間割合との比をとることによって導出することもできる。この容量は、リンクに飽和状態になるまで負荷がかかり、可能な限りのデータ量を移動させると仮定した場合に実現され得る仮想スループットを表す。
第5に、最適化の出力が、分散Wi−Fiシステム10を構成するのに用いられる(ステップ55)。ノード及びクライアントデバイスは、最適化の出力に基づきクラウドから構成される必要がある。特定の技法が用いられて速やかに構成がなされ、既に動作しているネットワークの中断が最小化される。最適化の出力は、分散Wi−Fiシステム10の動作パラメーターである。これには、各ノードが動作する周波数チャンネル、及び使用されるチャンネルの帯域幅が含まれる。802.11ac規格は、チャンネル帯域幅20、40、80、及び160MHzを可能にする。使用する帯域幅の選択は、分散Wi−Fiシステム10において、より高いデータレート(広いチャンネル帯域幅)をサポートすることと、用いる異なる非干渉チャンネルの数が多いこととの間のトレードオフである。最適化は、様々なユーザーのアプリケーションにより要求される負荷をサポートする可能な限り低いチャンネル帯域を各リンクで使用させようとする。必要十分な最狭のスループットチャンネルを用いることにより、分散Wi−Fiシステム10内の他のリンク用に最大数の非干渉チャンネルが残される。
最適化は、上述したように目的関数を最大化することにより、入力から出力を生成する。多くの異なる可能な目的関数がある。1つの目的は、全てのクライアントに提供される総スループットを最大化することであり得る。このゴールの短所は、最大の総スループットの実現が、既に良好に通信中のクライアントの性能を改善するために一部のクライアントを完全に干上がらせて、なされ得ることである。別の目的は、最悪の状況にあるネットワーク内のクライアントの性能をできる限り高めることであり得る(クライアントへの最小のスループットの最大化)。このゴールは、公平性を高めるのには役立つが、最悪のクライアントで漸増的な改善を得るために多大な総容量を引き換えにする場合がある。好ましい手法は、ネットワーク内の各クライアントの所望の負荷を考慮し、その負荷比の余剰容量を最大化することである。最適化は、容量を改善できるとともに、2つのAP間で容量を変えることもできる。望ましい最適化は、負荷比の方向に余剰容量を最大化するものである。このことは、分散Wi−Fiシステム10に望ましい負荷を伝送する最大のマージンを与えて、それらの性能をより堅牢にし、より少ない待機時間及びより少ないジッターとすることを表す。この厳格な最適化は、可変スケールで容量割当に重み付けするよりソフトな最適化関数を提供することにより、さらに強化することができる。要求された負荷よりも高いスループットとすることには高い利用価値が置かれよう。要求された負荷を上回るスループットをクライアント又はノードに提供することは尚も利点とみなされようが、全てのクライアント/ノードにそれらが要求している負荷を与えることよりは、重み付けは相当低くなる。そのようなソフトな重み付けの最適化関数は、デバイス間の余剰性能のより有益なトレードオフを可能にする。
別のセットの最適化の出力は、分散Wi−Fiシステム10のトポロジー、つまりどのノードが他のどのノードと接続するかを定める。分散Wi−Fiシステム10を通る2つのクライアント間又はクライアントとインターネットゲートウェイ(モデム/ルーター18)との間の実際の経路もまた、最適化の出力である。ここでまた、最適化は経路内の最良のトレードオフを選択しようとする。一般に、より多くのホップを移動するほど、各ホップの範囲は短くなり、データレートが高くなり、より堅牢になる。しかし、ホップが多いと、待機時間及びジッターが増え、チャンネル周波数割り当てによってはシステムの残りからより多くの容量が奪われる。
第6に、学習アルゴリズムをクラウド記憶データに適用して、傾向及びパターンを判定することができる(ステップ56)。尚、サーバー20は、ノードからの測定値、最適化の結果、及び関連のある最適化後の後続の測定値を記憶することができる。このデータを用いて、様々な目的のために傾向及びパターンを決定し分析することができる。ネットワークの再構成には時間がかかり、有効な通信を少なくとも部分的には必ず中断するので、そのピーク負荷に達する前に、ピーク負荷のためのネットワークを構成することが有益である。既に取り込まれている履歴のデータから学習することにより、将来起こる使用及び干渉を予測することが可能である。取り込みデータの学習のその他の用途は、バグを特定し、クライアントデバイスの挙動におけるバグを発見することを含む。クライアントデバイスの挙動にバグが発見されると、ネットワークのインフラストラクチャー側からのツール及びコマンドを用いてそれらのバグを回避することが可能であり得る。
第7に、ネットワークの性能を評価し、ユーザー又はWi−Fi上でサービスを稼働させているサービスプロバイダーに報告することができる(ステップ57)。第8に、アプリケーション(例えばユーザーデバイス22で動作するモバイルアプリ)がユーザーにネットワーク動作の可視性を提供することができる(ステップ58)。これは、ネットワーク活動及び性能メトリクスの表示を含む。モバイルアプリは、ユーザーに情報を送り、測定を行い、ユーザーがWi−Fiネットワークの動作の特定の側面を制御することを可能にするために用いることができる。モバイルアプリはまた、セルラーシステム経由でインターネットと通信して、ノードが最初に設定される際のオンボード化を支援する。携帯電話アプリはまた、セルラーシステムを使用して、ユーザーの正常なインターネット接続が機能していないときに、Wi−Fiネットワークがインターネット及びクラウドと通信する方法を提供する。このセルラーベースの接続は、状況を知らせ、サービスプロバイダー及び他のユーザーに通知するために用いることができ、また、ユーザーの正常なインターネット接続が不調の際、データを家からインターネットへと伝送するのに用いることもできる。
構成及び最適化処理50は、本明細書では例示的実施形態としての分散Wi−Fiシステム10を参照して説明されている。当業者であれば、構成及び最適化処理50は、Wi−Fiメッシュネットワーク32、Wi−Fiリピーターネットワーク33等を含むあらゆるタイプの複数ノードWi−Fiシステムで動作可能であることを認識しよう。例えば、クラウドベースの制御をWi−Fiメッシュネットワーク32、Wi−Fiリピーターネットワーク33等で実施することもでき、ここでも本明細書で説明する様々なシステム及び方法は、クラウドベースの制御及び最適化のために動作することができる。また、「分散Wi−Fiネットワーク」という用語は、Wi−Fiメッシュネットワーク32、Wi−Fiリピーターネットワーク33等にも適用可能であるが、分散Wi−Fiシステム10は分散Wi−Fiネットワークの特定の実施形態である。つまり、分散Wi−Fiシステム10は、複数ノードをサポートする点ではWi−Fiメッシュネットワーク32、Wi−Fiリピーターネットワーク33等と同様であるが、各々と関連のある限界を克服する前述した特徴を有している。
最適化
図3を参照すると、一例示的実施形態では、ブロック図が、最適化70への入力60及び出力62を説明する。入力60は、例えば、各クライアントにより要求されるトラフィック負荷、ノード間及びアクセスポイント14(ノード)とWi−fiクライアントデバイス16との間の信号強度、ネットワーク内の各可能なリンクのデータレート、各リンクのパケットエラーレート、ネットワーク内インターフェアラーの強度及び負荷、並びにネットワーク外インターフェアラーの強度及び負荷を含むことができる。ここでまた、これらの入力は、複数のアクセスポイント14により収集された測定値及びデータに基づき、クラウド12内のサーバー20に通信される。サーバー20は、最適化70を実施するように構成されている。最適化70の出力は、例えば、チャンネル及び帯域幅(BW)の選択、経路及びトポロジー、送信要求/送信可(RTS/CTS)の設定、送信機(TX)電力、クリアチャンネル評価閾値、クライアント関連付けステアリング、並びに帯域ステアリングを含む。
アクセスポイント
図5を参照すると、一例示的実施形態では、ブロック図が、分散Wi−Fiシステム10内のアクセスポイント14の機能的構成要素を説明する。アクセスポイント14は、プロセッサー102、複数の無線機104、ローカルインターフェース106、データ記憶領域108、ネットワークインターフェース110、及び電源112を収容する物理的なフォームファクター100を含む。当業者であれば、図5は、アクセスポイント14を簡略化して示したものであり、実際の実施形態は、追加の構成要素及び好ましく構成された処理論理(processing logic)を含んで、本明細書で説明する特徴、又は既知のもしくは本明細書では詳述していない一般的な動作特徴をサポートすることができることを理解すべきである。
一例示的実施形態では、フォームファクター100は、小型の物理的実装体であり、アクセスポイント14は電気ソケットに直接挿し込まれ、当該電気ソケットとの電気プラグ接続により物理的にサポートされる。この小型の物理的実装体は、住居全体に分散する多数のアクセスポイント14には理想的である。プロセッサー102は、ソフトウェア命令を実行するハードウェアデバイスである。プロセッサー102は、あらゆる特別仕様の、又は市販されているプロセッサー、中央処理装置(CPU)、モバイルデバイス300と関連付けられたいくつかのプロセッサーのうちの補助プロセッサー、(マイクロチップ又はチップセットの形態の)半導体ベースのマイクロプロセッサー、又は一般にソフトウェア命令を実行するあらゆるデバイスであってよい。アクセスポイント14の動作中、プロセッサー102は、メモリー又はデータ記憶領域108内に記憶されたソフトウェアを実行し、メモリー又はデータ記憶領域108と互いにデータを送受信し、ソフトウェア命令に従ってアクセスポイント14の動作を広く制御するように構成されている。一例示的実施形態では、プロセッサー102には、移動用/携帯用に最適化されたプロセッサー、例えば消費電力及びモバイルアプリケーションが最適化されたプロセッサーが含まれることがある。
無線機104は、分散Wi−Fiシステム10内の無線通信を可能にする。無線機104は、IEEE802.11規格にしたがい動作することができる。無線機104は、分散Wi−Fiシステム10での適切な通信を可能にするアドレス、制御部、及び/又はデータ接続を含む。本明細書で説明するように、アクセスポイント14は、異なるリンク、すなわちバックホールリンク及びクライアントリンクをサポートする複数の無線機を含む。最適化70は、無線機104の帯域幅、チャンネル、トポロジーその他などの構成を決定する。一例示的実施形態では、アクセスポイント14は、2.4GHzについては20/40MHz、5GHzについては20/40/80MHzの動作帯域幅を有する2.4GHz及び5GHzの2x2 MIMO 802.11b/g/n/acの電波を同時に操作するデュアルバンドの動作をサポートする。例えば、アクセスポイント14は、IEEE802.11AC1200ギガビットWi−Fi(300+867Mbps)をサポートすることができる。
ローカルインターフェース106は、アクセスポイント14へのローカル通信用に構成され、有線接続でも、Bluetoothその他などの無線接続でもよい。アクセスポイント14はクラウド12を介して構成されるので、新たにオンになったアクセスポイント14の接続性を確立するために、最初にオンボード化処理が必要である。一例示的実施形態では、アクセスポイント14はまた、ユーザーデバイス22上のアプリを通じるなどして分散Wi−Fiシステム10にオンボードするために、ユーザーデバイス22(又はWi−Fiクライアントデバイス16)への接続性を可能にするローカルインターフェース106を含むことができる。データ記憶領域108は、データを記憶するのに用いられる。データ記憶領域108は、揮発性メモリー素子(例えば、ランダムアクセスメモリー(RAM、例えばDRAM、SRAM、SDRAM等))、不揮発性メモリー素子(例えば、ROM、ハードドライブ、テープ、CDROM等)、及びそれらの組合せをどれでも含むことができる。さらに、データ記憶領域108は、電子、磁気、光学、及び/又は他のタイプの記憶領域媒体を組み込むことができる。
ネットワークインターフェース110は、アクセスポイント14に有線接続性を提供する。ネットワークインターフェース104は、アクセスポイント14がモデム/ルーター18と通信するのを可能にするために用いることができる。また、ネットワークインターフェース104は、Wi−Fiクライアントデバイス16又はユーザーデバイス22にローカル接続性を提供するために用いることができる。例えば、デバイスにおけるアクセスポイント14への有線接続は、Wi−Fiをサポートしていないデバイスにネットワークアクセスを提供することができる。一例示的実施形態では、分散Wi−Fiシステム10内の全てのアクセスポイント14がネットワークインターフェース110を含む。別の例示的実施形態では、モデム/ルーター18に接続するか又はローカル有線接続を要求する選択アクセスポイント14が、ネットワークインターフェース110を有する。ネットワークインターフェース110は、例えば、イーサネットカード又はアダプター(例えば、10BaseT、Fast Ethernet、ギガビットイーサネット、10GbE)を含むことができる。ネットワークインターフェース110は、ネットワーク上の適切な通信を可能にするアドレス、制御部、及び/又はデータ接続を含むことができる。
プロセッサー102及びデータ記憶領域108は、アクセスポイント14の動作を基本的に制御するソフトウェア及び/又はファームウェア、データ収集及び測定の制御、データ管理、メモリー管理、及びクラウドを介してのサーバー20との通信及び制御インターフェースを含むことができる。プロセッサー102及びデータ記憶領域108は、本明細書で説明する様々な処理、アルゴリズム、方法、技法等を実施するように構成されていることができる。
クラウドサーバー及びユーザーデバイス
図6を参照すると、一例示的実施形態では、ブロック図が、サーバー20、Wi−Fiクライアントデバイス16、又は分散Wi−Fiシステム10で使用され得るユーザーデバイス22の機能的構成要素を説明する。図6は、Wi−Fiクライアントデバイス16、サーバー20、ユーザーデバイス22、又は任意の汎用処理デバイスのどれでも形成することができる機能的構成要素を説明する。サーバー20は、ハードウェアアーキテクチャとして、一般にプロセッサー202、入力/出力(I/O)インターフェース204、ネットワークインターフェース206、データ記憶領域208、及びメモリー210を含む、デジタルコンピューターであってもよい。当業者であれば、図6は、サーバー20を簡略化して示したものであり、実際の実施形態は、追加の構成要素及び好ましく構成された処理論理を含んで、本明細書で説明する特徴、又は既知のもしくは本明細書では詳述していない一般的な動作特徴をサポートすることができることを理解すべきである。
構成要素(202、204、206、208、及び210)は、ローカルインターフェース212を介して通信可能に接続されている。ローカルインターフェース212は、例えば、限定ではないが、当業界で知られているように、バス又は他の有線もしくは無線接続の1つ又は複数であってもよい。ローカルインターフェース212は、簡潔さを期して省略されているが、コントローラー、バッファー(キャッシュ)、ドライバー、リピーター、及びレシーバー(他にも多種ある)などの通信を可能にする追加の素子を有していてもよい。さらに、ローカルインターフェース212は、前述の構成要素間の適切な通信を可能にするアドレス、制御部、及び/又はデータ接続を含むことができる。
プロセッサー202は、ソフトウェア命令を実行するハードウェアデバイスである。プロセッサー202は、あらゆる特別仕様の、又は市販されているプロセッサー、中央処理装置(CPU)、サーバー20と関連付けられたいくつかのプロセッサーのうちの補助プロセッサー、(マイクロチップ又はチップセットの形態の)半導体ベースのマイクロプロセッサー、又は一般にソフトウェア命令を実行するあらゆるデバイスであってよい。サーバー20の動作中、プロセッサー202は、メモリー210内に記憶されたソフトウェアを実行し、メモリー210と互いにデータを送受信し、ソフトウェア命令に従ってサーバー20の動作を広く制御するように構成されている。I/Oインターフェース204は、デバイス又は構成要素の1つ又は複数からのユーザー入力を受信し、及び/又はデバイス又は構成要素の1つ又は複数へのシステム出力を提供するのに用いることができる。ユーザー入力は、例えば、キーボード、タッチパッド、及び/又はマウスを介して提供されることがある。システム出力は、ディスプレイデバイス及びプリンター(図示せず)を介して提供されることがある。I/Oインターフェース204には、例えば、シリアルポート、パラレルポート、small computer system interface(SCSI)、シリアルATA(SATA)、ファイバーチャンネル、Infiniband、iSCSI、PCI Express interface(PCI−x)、赤外線(IR)インターフェース、高周波(RF)インターフェース、及び/又はユニバーサルシリアルバス(USB)インターフェースが含まれることがある。
ネットワークインターフェース206は、サーバー20がクラウド12などのネットワーク上で通信可能とするために用いることができる。ネットワークインターフェース206は、例えば、イーサネットカード又はアダプター(例えば、10BaseT、Fast Ethernet、ギガビットイーサネット、10GbE)又は無線ローカルエリアネットワーク(WLAN)カード又はアダプター(例えば、802.11a/b/g/n/ac)を含むことができる。ネットワークインターフェース206は、ネットワーク上の適切な通信を可能にするアドレス、制御部、及び/又はデータ接続を含むことができる。データ記憶領域208は、データを記憶するのに用いることができる。データ記憶領域208は、揮発性メモリー素子(例えば、ランダムアクセスメモリー(RAM、例えばDRAM、SRAM、SDRAM等))、不揮発性メモリー素子(例えば、ROM、ハードドライブ、テープ、CDROM等)、及びそれらの組合せをどれでも含むことができる。さらに、データ記憶領域208は、電子、磁気、光学、及び/又は他のタイプの記憶領域媒体を組み込むことができる。一例では、データ記憶領域208は、例えば、サーバー20内でローカルインターフェース212に接続されている内部ハードドライブなどの、サーバー20の内部に配置されてもよい。それに加えて、別の実施形態では、データ記憶領域208は、例えば、I/Oインターフェース204に接続(例えば、SCSI又はUSB接続)された外部ハードドライブなどの、サーバー20の外部に配置されてもよい。さらなる実施形態では、データ記憶領域208は、例えば、ネットワークに接続したファイルサーバーなど、ネットワークを通じてサーバー20に接続されていてもよい。
メモリー210は、揮発性メモリー素子(例えば、ランダムアクセスメモリー(RAM、例えばDRAM、SRAM、SDRAM等))、不揮発性メモリー素子(例えば、ROM、ハードドライブ、テープ、CDROM等)、及びそれらの組合せをどれでも含むことができる。さらに、メモリー210は、電子、磁気、光学、及び/又は他のタイプの記憶領域媒体を組み込むことができる。尚、メモリー210は、分散アーキテクチャを有することができ、その場合、様々な構成要素は互いに離れて配置されているが、プロセッサー202によってアクセス可能である。メモリー210内のソフトウェアは、1つ又は複数のソフトウェアプログラムを含むことができ、各々が論理関数を実施するための順序付き実行命令リストを含む。メモリー210内のソフトウェアは、好ましいオペレーティングシステム(O/S)214及び1つ又は複数のプログラム216を含む。オペレーティングシステム214は、他のコンピュータープログラム、例えば1つ又は複数のプログラム216の実行を基本的に制御し、スケジューリング、入力−出力制御、ファイル及びデータ管理、メモリー管理、並びに通信制御及び関連サービスを提供する。1つ又は複数のプログラム216は、本明細書で説明する例えば最適化70に関する様々な処理、アルゴリズム、方法、技法等を実施するように構成されていてもよい。
最適化処理
ここでまた、図4を参照すると、最適化70は、ある場所に展開しているアクセスポイント14の各々によってなされる測定を入力60として取る。このような測定値には、限定ではないが、各クライアント16により要求されるトラフィック負荷、各アクセスポイント14間で、及び各アクセスポイント14から各クライアント16までの間で維持され得る信号強度及びデータレート、アクセスポイント14間、及びアクセスポイント14とクライアント16との間のリンクにおけるパケットエラーレート等が含まれることがある。それに加えて、アクセスポイント14は、分散Wi−Fiシステム10に影響する干渉レベルの測定をする。これには、他のクラウド制御の分散Wi−Fiシステム10からの干渉(「ネットワーク内インターフェアラー」)、及び制御可能なネットワークの一部ではないデバイスからの干渉(「ネットワーク外インターフェアラー」)が含まれる。これらのタイプのインターフェアラーを区別することは重要である。ネットワーク内インターフェアラーは、クラウドシステムにより制御可能なので、ネットワーク内システム全体の大きな最適化に含まれ得る。ネットワーク外インターフェアラーは、クラウドからは制御できないので、これらの干渉を別のチャンネルに移動させたり別途変更したりすることはできない。分散Wi−Fiシステム10はこれらを変更するのではなく、これらに適合しなければならない。これらのネットワーク外インターフェアラーは、クラウド制御されないWi−Fiネットワーク、及びWi−Fiにより使用される周波数で送信するBluetoothデバイス、ベビーモニター、コードレス電話その他などの非Wi−Fiデバイスを含む。各リンクの容量は、移動したデータの量(負荷)、及び干渉のせいでメディアがビジーである時間の量を検証することによって導出することができる。これはまた、リンクを通過して移動したデータと送信キューがビジーだった時間割合との比をとることによって導出することもできる。この容量は、リンクに飽和状態になるまで負荷がかかり、可能な限りのデータ量を移動させると仮定した場合に実現され得る仮想スループットを表す。
別の重要な入力は、分散Wi−Fiシステム10を移動するパケットの遅延である。これらの遅延は、直接の測定値から、分散Wi−Fiシステム10のゲートウェイアクセスポイント14(モデム/ルーター18に接続されている)に到着したパケットをタイムスタンプし、それらが当該アクセスポイント14を離れるまでの経過時間を測定することによって導出することができる。しかし、そのような測定は、アクセスポイント14間のある程度の時刻同期を要することになる。別の手法は、各アクセスポイント14を通過する遅延の統計値を個々に測定する、というものになる。次に、分散Wi−Fiシステム10全体の総遅延の平均及び何らかの仮定を与えられた遅延の分布を各アクセスポイント14の個々の遅延統計値に基づき計算することができる。こうして、遅延は、最適化70において最小化されるべきパラメーターとなることができる。また、各アクセスポイント14が送信及び受信に費やす時間を把握することも最適化70にとっては有用である。これは、送信又は受信された情報の量とともに、様々なリンクが維持している平均データレートを判定するために用いることができる。
最適化70の出力62は、分散Wi−Fiシステム10の動作パラメーターである。これには、各アクセスポイント14が動作する周波数チャンネル、及び使用されるチャンネルの帯域幅が含まれる。802.11ac規格は、チャンネル帯域幅20、40、80、及び160MHzを可能にする。使用する帯域幅の選択は、より高いデータレート(広いチャンネル帯域幅)をサポートすることと、分散Wi−Fiシステム10で用いる異なる非干渉チャンネルの数が多いこととの間のトレードオフである。最適化70は、様々なユーザーのアプリケーションにより要求される負荷をサポートする可能な限り低いチャンネル帯域を各リンクで使用させようとする。必要十分な最狭のスループットチャンネルを用いることにより、分散Wi−Fiシステム10内の他のリンク用に最大数の非干渉チャンネルが残される。
別のセットの最適化70の出力62は、分散Wi−Fiシステム10のトポロジー、つまりどのアクセスポイント14が他のどのアクセスポイント14と接続するかを定める。分散Wi−Fiシステム10内の2つのクライアント間又はクライアントとインターネットゲートウェイ(モデム/ルーター18)との間の実際の経路もまた、最適化70の出力である。ここでまた、最適化70は経路内の最良のトレードオフを選択しようとする。一般に、より多くのホップを移動するほど、各ホップの範囲は短くなり、データレートが高くなり、より堅牢になる。しかし、ホップが多いと、待機時間及びジッターが増え、チャンネル周波数割り当てによっては分散Wi−Fiシステム10の残りからより多くの容量が奪われる。後に説明する最適化方法は、これらすべてを考慮に入れ、真に最適な構成に想到する。
最適化70はまた、分散Wi−Fiシステム10内のどのリンクがRTS/CTSプロトコルを使用して隠れノードの問題を回避するかを決定することができ、各アクセスポイント14の送信電力レベルを調節することができる。送信電力がより高いと、そのアクセスポイント14からのリンクのデータレート及びスループットが増加するが、分散Wi−Fiシステム10内の他のアクセスポイント14及び近隣システムへの干渉がより高くなる。送信電力の変更と密接に関連して、最適化70はまた、そこで電波上のトラフィックに譲るか又はそのまま他の送信と重なって送信するかのどちらかとなるクリアチャンネル評価閾値を設定することができる。これは、近隣ネットワークからの送信を無視し、他の信号と重なって送信するのが条件的に可能であれば送信を遅延しない、有効な方法である。
家の中でどのアクセスポイント14に各Wi−Fiクライアントデバイス16が接続するかを最適化70が選択することが可能であれば、システム性能は多大な恩恵を受けることができる。この能力は、いくつかの事項に役立つ。第1に、Wi−Fiクライアントデバイス16は、それらが接続されているアクセスポイント14から、移動してより近くなり得たアクセスポイント14へのローミングが上手くできないことが多い。こうした「粘着性」のクライアントは、距離が離れすぎているアクセスポイント14と通信しようとして、不必要に低いスループットをもたらすことになる。クライアントの関連付けを制御することの別の利点は、分散Wi−Fiシステム10内の特定のアクセスポイント14での輻輳を回避することである。例えば、家の中の全てのWi−Fiクライアントデバイス16が、1つの特定のアクセスポイント14と最も近い場所にある場合がある。それらのスループットは、この1つのアクセスポイント14の総容量を共有することにより、限られたものになる。この場合、Wi−Fiクライアントデバイス16の一部を異なるアクセスポイント14と強制的に関連付けると、それらのアクセスポイント14が多少遠くにあるとしても、うまくいく。その時点で各アクセスポイント14の容量はより少数のWi−Fiクライアントデバイス16の間で共有されるので、各々のスループットはより高くなる。Wi−Fiクライアントデバイス16を移動させるさらに別の理由は、バックホールリンクにおける輻輳の緩和である。Wi−Fiクライアントデバイス16がアクセスポイント14間に程よく点在したとしても、それらのアクセスポイント14の全てがバックホールで1つのアクセスポイント14に接続することもあり得る。この場合、バックホールに輻輳が生じる。ここでまた、Wi−Fiクライアントデバイス16を、バックホールの異なる経路を有する他のアクセスポイント14に移動させることで、輻輳を緩和することができる。
Wi−Fiクライアントデバイス16をどこに関連付けるかのステアリングと密接に関連するのが、クライアントがどの周波数帯域に接続するかのステアリングである。多くのシステム及び好ましい実装形態では、アクセスポイント14は、2つ以上の周波数帯域で同時に動作することができる。例えば、一部のアクセスポイント14は、2.4GHz帯域と5GHz帯域とで同時に動作することができる。
最適化70は、上述したように目的関数を最大化することにより、入力60から出力62を生成する。多くの異なる可能な目的関数がある。1つの目的は、全てのWi−Fiクライアントデバイス16に提供される総スループットを最大化することであり得る。このゴールの短所は、最大の総スループットの実現が、既に良好に通信中のWi−Fiクライアントデバイス16の性能を改善するために一部のWi−Fiクライアントデバイス16を完全に干上がらせることにより、なされ得ることである。別の目的は、最悪の状況にあるネットワーク内のWi−Fiクライアントデバイス16の性能をできる限り高めることであり得る(Wi−Fiクライアントデバイス16への最小のスループットの最大化)。このゴールは、公平性を高めるのには役立つが、最悪のWi−Fiクライアントデバイス16で漸増的な改善を得るために多大な総容量を引き換えにする場合がある。
図7を参照すると、一例示的実施形態では、グラフが、2つのアクセスポイント14の互いに対し相対的な容量負荷を説明する。好ましい方法は、ネットワーク内の各Wi−Fiクライアントデバイス16の所望の負荷を考慮し、その負荷比の余剰容量を最大化する。図7は、2つの異なるアクセスポイント14の容量要件を示して、この手法を説明する。最適化は、容量を改善できるとともに、2つのアクセスポイント14間で容量を変えることもできる。望ましい最適化70は、負荷比250の方向に余剰容量を最大化するものである。このことは、システムに望ましい負荷を伝送する最大のマージンを与えて、それらの性能をより堅牢にし、より少ない待機時間及びより少ないジッターとすることを表す。この厳格な最適化は、可変スケールで容量割当に重み付けするよりソフトな最適化関数/最適化機能を提供することにより、さらに強化することができる。要求された負荷と等しいか又はそれよりも少し高いスループットとすることには高い利用価値が置かれよう。要求された負荷を上回るスループットをWi−Fiクライアントデバイス16又はアクセスポイント14に提供することは尚も利点とみなされようが、全てのWi−Fiクライアントデバイス16/アクセスポイント14にそれらが要求している負荷を与えることよりは、重み付けははるかに低くなる。そのようなソフトな重み付けの最適化関数は、デバイス間の余剰性能のより操作容易なトレードオフを可能にする。
前述の手法が強調するのは、望ましい負荷の知識を有しての最適化である。アクセスポイント14が望ましい負荷を把握している場合は、それを直接通信することができる。直近の期間(例えば過去数分間)で、推定することもできる。負荷はまた、長期履歴データから推定することができる。例えば、過去30日間で記録された負荷を用いて予期される負荷を決定することができ、次いでそれを最適化70に用いる。こうして、予期される最悪の場合の負荷について、ネットワークが事前構成される。
しかし、負荷を把握し得ないときもあり得る。例えば、新ネットワークを立ち上げた直後は、長期負荷履歴も短期(例えば5分)負荷要件もなく、アクセスポイント14もその環境でWi−Fiクライアントデバイス16がどういった負荷を要求するかについて何の知識もない。この場合、負荷情報なしで最適化する必要がある。合理的な手法は、各アクセスポイント14の負荷要件が均等であるという仮定の下で最適化することである。
負荷を把握している場合でも、負荷を人工的に操作することは有益であり得る。例えば、最近の履歴から、又は長期履歴からであっても、特定のアクセスポイント14の負荷がゼロになることを予測することができる。しかし、誰かがその部屋に入って、分散Wi−Fiシステム10でWi−Fiクライアントデバイス16にデータを取り込もうとする機会は尚もある。したがって、各Wi−Fiクライアントデバイス16又はアクセスポイント14で最低限の負荷を保留しておくことは有益であり、稀な事態に難なく対処できるように少なくとも多少の容量が全ての場所に存在することが保証される。
他の要因を目的関数に入れることができる。例えば、分散Wi−Fiシステム10に対する特定のタイプの変更は極めて混乱を招きやすく、変更中に分散Wi−Fiシステム10内のトラフィックを遮断する。分散Wi−Fiシステム10に対し特定のタイプの変更を行うことの不利益を表す目的関数にコストを追加することができる。このコスト対他の要因を適切に重み付けすることによって、利得が大きいときは最適化70に分散Wi−Fiシステム10の構成を変更させるが、少々の利得しかない場合は分散Wi−Fiシステム10はそのままにしておくように、目的関数を調節することができる。同様に、ヒステリシス閾値を最適化70の出力に適用して、状況の微小な変化で分散Wi−Fiシステム10が2つの構成間を行き来するのではなく、比較的安定していることを保証することができる。
図8を参照すると、一例示的実施形態では、方程式が、最適化70のための混合整数線形計画(MILP)の一例を説明する。入力60があって、目的関数がわかっていれば、目的関数を最大化する出力62のセットを見出すことは数学的な問題となる。これを行う極めて高効率な方法は、MILPとして問題を公式化することである。この公式にはいくつかの利点がある。第1に、連続変数と離散変数との両方が関与するので、問題の性質に合う。例えば、チャンネル選択は整数の変数である。第2に、MILPの問題を解く高効率な方法が公知である。第3に、公式はかなり包括的であり、多様な目的関数及び解の制約に対応する。図8は、MILPの公式の一例の数学的表示を示し、注釈が方程式の様々な要素を説明している。
理想的には、この最適化は、1軒の家だけでなく、互いにWi−Fi範囲内にある全ての家で行われ、したがって互いに干渉が生じる。当然ながら、第1の家に干渉する家にも、さらに遠く離れたインターフェアラーが存在する。このように進行していくと、1回の最適化だけで非常に多数の家、例えばマンハッタン中の全ての家を最適化しようとすることになる。MILPの解の演算時間は、最適化の対象のパラメーターの数とともに幾何級数的に増加し、また、1回の最適化を実行する家の数とともに幾何級数的に増加する。この解決策は、クラスター化を行うことである。
図9を参照すると、一例示的実施形態では、図が、一緒に最適化される家の数を減じ、それによって演算の複雑性を管理可能なものにするためのクラスター化の一例を説明する。別々のクラスターがそれらの境界で尚も高レベルな重複を有する場合、反復手法を適用することができる。第1回目は、クラスター間に干渉がないものと仮定することができる。第2回目は、第2のクラスターから第1のクラスターへの干渉を計算することができ、次いでその情報を用いて第1のクラスターの最良の構成を再計算することができる。次に、第1のクラスターからの新たな干渉を計算に入れて、第2のクラスターを再び最適化することができる。クラスターのサイズは演算を幾何級数的に増加させるが、反復は演算負荷を直線的に増加させるので、数回の反復により、全問題をまとめて解くよりも、はるかに演算が少なくなる。
最適化70には複雑さがあり得る。いくつかの最適化パラメーターは、最適化70への入力そのものを変える。例えば、帯域又はチャンネルの変更は、そのアクセスポイント14が出力する送信電力を変更することがあり、ひいては当該アクセスポイント14が他のアクセスポイント14に対し示す干渉が変更される。同様に、異なるデータレートは多くの場合異なる電力レベルで送信されるので、Wi−Fiクライアントデバイス16又はアクセスポイント14の関連付けが変更されると、干渉効果も再計算されなくてはならない。
また、考慮すべきWi−Fiクライアントデバイス16の特定の挙動もある。例えば、一部のWi−Fiクライアントデバイス16は、異なる送信帯域幅(20、40、80MHz等)をパケットによって動的に切り換える。他のWi−Fiクライアントデバイス16はそれほど柔軟ではなく、40MHzのチャンネルを使用するように指示されると、40MHzのパケットしか送らない。第1のグループのWi−Fiクライアントデバイス16は、40MHzの帯域幅のチャンネルの割当の恩恵をほぼ常に受けるが、それは、可能なときにはそれを使用するが、40MHzチャンネルの一部に干渉がある場合は、より低い帯域幅モードでも送信するからである。後者の分類のWi−Fiクライアントデバイス16は、40MHzチャンネルの恩恵を、そのチャンネルのどこかに微小な干渉しかない場合だけ受けることができる。Wi−Fiクライアントデバイス16の挙動の違いは、クラウドサービスに報告されてくるネットワークの測定値から経時的に学習することができるものである。
図10を参照すると、一例示的実施形態では、グラフが、例示的な場所における最適化70の出力62のサンプルを説明する。最適化された分散Wi−Fiシステム10の一意性が、最適化70の結果に表れているいくつかの特性からわかる。図10はこれらのタイプのネットワークの3つの重要な側面を強調しており、それらはリピーター又はメッシュネットワークを使用する従来技術のWi−Fiシステムでは現れない。第1に、全部のアクセスポイント14を使用するわけではない。既存のシステムでは、リピーター又はメッシュノードからマスターノードへの通信がとにかく可能ならば、また、いずれかのクライアントがそれと関連する場合(他のどのノードよりもそのノードが近いからという理由のこともある)、その経路は使用されることになる。しかし、その経路は極めて性能が低い経路であり得る。消費者が、ゲートウェイ/マスターノードからかなり離れた自宅の片隅にリピーターを1つ配置するとする。このリピーターは、その家全体で最も接続し難い最低データレートのデバイスとなる。実のところ、その家のどのクライアントと直接通信するよりも、そのリピーターに達するほうが困難であろう。しかし、既存のシステムでは、トラフィックはそのデバイスを通ってルーティングされることになる。分散Wi−Fiシステム10では、最適化が当然このアクセスポイント14をネットワークから外し、どの親機ノードにも接続せず、又は全クライアントの関連付けをそのデバイスから移動させる。
図10に示す第2の重要な側面は、バックホールリンク(アクセスポイント14を一緒に接続し、(モデム/ルーター18に接続されている)マスターゲートウェイアクセスポイント14からの及びそれへのトラフィックを伝送するリンク)は、全てが同じ周波数チャンネル上にあるわけではない。こうすれば、異なる周波数の送信は干渉しないので、ネットワークのバックホール部分で複数の送信を同時に行うことが可能になる。リピーター又はメッシュネットワークを使用する既存のWi−Fiシステムは、バックホールに1つの周波数チャンネルを用いる。したがって、バックホールシステム全体で、常に1つの通信だけが可能となり、スループット及び容量が限られる。
図10に示す第3の重要な側面は、Wi−Fiクライアントデバイス16が、そのWi−Fiクライアントデバイス16に最も近いアクセスポイント14ではないアクセスポイント14に接続するように、多くの場合に指令されることである。こうすれば、必要に応じてリーフノードでもバックホールでも負荷のバランスをとることができる。リピーター及びメッシュネットワークを有するシステムなどの現在のWi−Fiシステムは、クライアントをどこに関連付けるかを制御しないので、輻輳するポイントを有し、性能が低下する。
図11を参照すると、一例示的実施形態では、グラフが、ツリー構造の最適化70の出力を説明する。上に示す最適化70の出力はツリー構造をとっている。各アクセスポイント14には親機が1つまでしかない。しかし、より完全に相互接続されたグラフを形成することができる。図11は、グラフ構造の一例を示す。この図でAP3と表示されるアクセスポイント14には、2つの親機デバイス、AP4及びAP0がある。このことは、AP4及びAP0の2つの並列リンクから、そのうちの一方だけが接続されている場合に提供され得るよりも高い総スループットをAP3に提供することができるという点で役に立ち得る。このことを有効にするためには、複数の並列リンクを活用することができるネットワーキングプロトコルを用いなければならない。そのようなプロトコルの一例は、Multi−Path Transmission Control Protocol(Multi−Path TCP)である。このプロトコルは、複数経路の通信のために特別に設計されており、複数の並列経路の帯域幅を集計する需要に非常に役立つ。
本明細書で説明するいくつかの例示的実施形態は、一般又は専用プロセッサーの1つ又は複数(「1つ又は複数のプロセッサー」)、例えばマイクロプロセッサー;中央処理装置(CPU);デジタル信号プロセッサー(DSP):カスタム化プロセッサー、例えばネットワークプロセッサー(NP)又はNetwork Processing Unit(NPU)、Graphics Processing Unit(GPU)等;Field Programmable Gate Array(FPGA)等を、それらを制御するための一意の記憶されたプログラム命令(ソフトウェア及びファームウェアの両方を含む)とともに含んで、特定の非プロセッサー回路と関連して、本明細書で説明する方法及び/又はシステムの一部、ほとんど、又は全部の機能を実装することができることを理解されよう。あるいは、一部又は全部の機能は、プログラム命令が記憶されていない状態のマシンによって実装されるか、又は特定用途向け集積回路(ASIC)の1つ又は複数に実装されてもよく、各機能又は特定の機能の何らかの組合せがカスタム論理又は回路として実装される。当然ながら、前述の手法を組合せて使用してもよい。本明細書で説明する例示的実施形態の一部では、ハードウェアであって任意選択によりソフトウェア、ファームウェア、及びそれらの組合せを有するものに、対応するデバイスは、1セットの動作、ステップ、方法、処理、アルゴリズム、機能、技法等を、デジタル及び/又はアナログ信号で、様々な例示的実施形態について本明細書で説明するようにして実行する「ように構成されているか又はそのようにされている回路」、「ように構成されているか又はそのようにされている論理」等と呼ばれることがある。さらに、いくつかの例示的実施形態は、本明細書で説明し特許請求する機能を実行するプロセッサーを各々含むことができるコンピューター、サーバー、アプライアンス、デバイス、プロセッサー、回路等をプログラムするためのコンピューター可読コードが記憶されている非一過性コンピューター可読記憶媒体を含むことができる。そのようなコンピューター可読記憶媒体の例としては、限定ではないが、ハードディスク、光学記憶装置、磁気記憶装置、ROM(Read Only Memory)、PROM(Programmable Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュメモリー等が挙げられる。非一過性コンピューター可読媒体に記憶される場合、ソフトウェアは、プロセッサー又はデバイス(例えば、任意のタイプのプログラム可能回路又は論理)により実行命令を含むことができ、当該命令は、そのような実行に応答して、様々な例示的実施形態について本明細書で説明するような1セットの動作、ステップ、方法、処理、アルゴリズム、機能、技法等を当該プロセッサー又はデバイスに実行させるものである。
本開示を好ましい実施形態及びそれらの具体的な例を参照して例示し説明してきたが、当業者であれば、他の実施形態及び例も同様に機能し且つ/又は同様の結果を実現することができることは容易に理解できる。そのような均等の実施形態及び例は全て、本開示の趣旨及び範囲内であり、本開示の趣旨及び範囲によって意図されるものであり、以下の特許請求の範囲によって保護されるものとする。

Claims (20)

  1. クラウドコントローラーによってWi−Fiシステム内のアクセスポイントの最適化処理を行う方法であって、
    前記Wi−Fiシステムの動作に関する入力を受信することと、
    容量を最大化する目的関数を最大化するために、前記入力に基づいて最適化処理を実行することと、
    前記最適化処理に基づいて動作パラメーターを含む出力を前記Wi−Fiシステムに提供することと、を含む、
    方法。
  2. 前記入力は、各Wi−Fiクライアントデバイスにより要求される複数のトラフィック負荷と、各可能なリンクの信号強度と、各可能なリンクのデータレートと、各リンクのパケットエラーレートと、ネットワーク内インターフェアラーの強度及び負荷と、ネットワーク外インターフェアラーの強度及び負荷とを含み、
    前記出力は、複数のチャンネル及び帯域幅(BW)の選択と、経路及びトポロジーと、送信要求又は送信可(RTS/CTS)設定と、送信機(TX)電力(power)と、クリアチャンネル評価と、クライアント関連付けステアリングと、帯域ステアリングと、Arbitration inter−frame spacing(AIFS)と、複数のWi−Fiコンテンションウィンドウとを含む、請求項1に記載の方法。
  3. 前記最適化処理は、前記Wi−Fiシステム内のどのアクセスポイントに接続するかをWi−Fiクライアントデバイスごとに選択し、前記目的関数は、各Wi−Fiクライアントが所望する負荷を考慮して負荷比の余剰容量を最大化する、請求項1に記載の方法。
  4. 各Wi−Fiクライアントが所望する負荷は、前記最適化への入力であって、前記アクセスポイントによる測定と、先行測定値に基づく推定と、未知数又は想定値への設定と、のいずれか又は複数により決定される、請求項1に記載の方法。
  5. 各Wi−Fiクライアントが所望する前記負荷が最小保留容量に設定されている、請求項4に記載の方法。
  6. 前記最適化処理は、前記Wi−Fiシステム、及びクラスター化されている1つ又は複数の追加のWi−Fiシステムのために実行される、請求項1に記載の方法。
  7. 前記動作パラメーターは、前記アクセスポイントが全て使用されるわけではないこと、前記Wi−Fiクライアントデバイスが必ずしも一番近くのアクセスポイントと関連付けられるわけではないこと、及び複数のバックボーンリンクが異なるチャンネルを利用していること、のいずれか又は複数の値が真となるように設定される、請求項1に記載の方法。
  8. 前記出力は、前記Wi−Fiシステム内の前記アクセスポイントのトポロジーをツリー構造に定義する、請求項1に記載の方法。
  9. 前記出力は、少なくとも1つのノードが2つ以上の親機を有し、前記2つ以上の親機間の通信にmulti−path Transmission Control Protocol(TCP)が利用されるようにトポロジーが定義されている、請求項1に記載の方法。
  10. 前記最適化関数は、前記Wi−Fiシステムの前記動作パラメーターに変更を加えるためのコストを組み込んでいる、請求項1に記載の方法。
  11. ヒステリシス閾値を前記出力に適用することと、前記ヒステリシス閾値に基づいて前記出力の提供を行うこととを更に含む、請求項1に記載の方法。
  12. 最適化処理を提供するように構成されているWi−Fiシステム用のクラウドコントローラーであって、
    前記Wi−Fiシステムと通信可能に接続されているネットワークインターフェースと、
    1つ又は複数のプロセッサーと、
    命令が格納されているメモリーと、を備え、
    前記命令は、実行されると、前記1つ又は複数のプロセッサーに、
    前記Wi−Fiシステムの動作に関する入力を受信させ、
    容量を最大化する目的関数を最大化するために、前記入力に基づいて最適化処理を実行させ、
    前記最適化処理に基づいて動作パラメーターを含む出力を前記Wi−Fiシステムに提供させる、
    クラウドコントローラー。
  13. 前記入力は、各Wi−Fiクライアントデバイスにより要求される複数のトラフィック負荷と、各可能なリンクの信号強度と、各可能なリンクのデータレートと、各リンクのパケットエラーレートと、ネットワーク内インターフェアラーの強度及び負荷と、ネットワーク外インターフェアラーの強度及び負荷とを含み、
    前記出力は、複数のチャンネル及び帯域幅(BW)の選択と、経路及びトポロジーと、送信要求又は送信可(RTS/CTS)設定と、送信機(TX)電力と、クリアチャンネル評価と、クライアント関連付けステアリングと、帯域ステアリングと、Arbitration inter−frame spacing(AIFS)と、複数のWi−Fiコンテンションウィンドウとを含む、請求項12に記載のクラウドコントローラー。
  14. 前記最適化処理は、前記Wi−Fiシステム内のどのアクセスポイントに接続するかをWi−Fiクライアントデバイスごとに選択し、前記目的関数は、各Wi−Fiクライアントが所望する負荷を考慮して負荷比の余剰容量を最大化する、請求項12に記載のクラウドコントローラー。
  15. 各Wi−Fiクライアントが所望する負荷は、前記最適化への入力であって、前記アクセスポイントによる測定と、先行測定値に基づく推定と、未知数又は想定値への設定と、のいずれか又は複数により決定されている、請求項12に記載のクラウドコントローラー。
  16. 前記最適化処理は、前記Wi−Fiシステム、及びクラスター化されている1つ又は複数の追加のWi−Fiシステムのために実行される、請求項12に記載のクラウドコントローラー。
  17. 前記動作パラメーターは、前記アクセスポイントが全て使用されるわけではないこと、前記Wi−Fiクライアントデバイスが必ずしも一番近くのアクセスポイントと関連付けられるわけではないこと、及び複数のバックボーンリンクが異なるチャンネルを利用していること、のいずれか又は複数の値が真となるように設定されている、請求項12に記載のクラウドコントローラー。
  18. 前記出力は、前記Wi−Fiシステム内の前記アクセスポイントのトポロジーをツリー構造に定義する、請求項12に記載のクラウドコントローラー。
  19. 前記出力は、少なくとも1つのノードが2つ以上の親機を有し、前記2つ以上の親機間の通信にmulti−path Transmission Control Protocol(TCP)が利用されるようにトポロジーが定義されている、請求項12に記載のクラウドコントローラー。
  20. クラウドコントローラーによって最適化されるように構成されているWi−Fiシステムであって、
    互いに通信可能に接続されている複数のアクセスポイント、及び前記Wi−Fiシステムに外部通信を提供するゲートウェイと通信可能に接続されている少なくとも1つのアクセスポイントと、
    クラウドベースのシステムと、を備え、
    前記クラウドベースのシステムは、
    前記Wi−Fiシステムの動作に関する入力を受信し、
    所望する負荷をWi−Fiクライアントデバイスごとに考慮して負荷比の余剰容量を最大化する目的関数を最大化するために、前記入力に基づいて最適化処理を実行し、
    前記最適化処理に基づいて前記Wi−Fiシステムの動作パラメーターを含む出力を提供するように構成されている、
    Wi−Fiシステム。
JP2018568177A 2016-03-18 2017-03-17 分散Wi−Fiネットワークの最適化 Active JP6794474B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662310596P 2016-03-18 2016-03-18
US62/310,596 2016-03-18
PCT/US2017/022958 WO2017161260A2 (en) 2016-03-18 2017-03-17 Optimization of distributed wi-fi networks

Publications (2)

Publication Number Publication Date
JP2019512992A true JP2019512992A (ja) 2019-05-16
JP6794474B2 JP6794474B2 (ja) 2020-12-02

Family

ID=59847900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018568177A Active JP6794474B2 (ja) 2016-03-18 2017-03-17 分散Wi−Fiネットワークの最適化

Country Status (5)

Country Link
US (1) US10051494B2 (ja)
EP (1) EP3430832B1 (ja)
JP (1) JP6794474B2 (ja)
CA (1) CA3016195C (ja)
WO (1) WO2017161260A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035055A (ja) * 2019-08-14 2021-03-01 華為技術有限公司Huawei Technologies Co.,Ltd. 無線周波数リソースの割り当て方法、装置、デバイスおよびシステム、ならびに記憶媒体
JP2022550033A (ja) * 2019-10-02 2022-11-30 プリューム デザイン インコーポレイテッド Wi-FiネットワークにおけるOFDMA最適化ステアリング
US11576187B2 (en) 2019-08-14 2023-02-07 Huawei Technologies Co., Ltd. Radio frequency resource allocation method, apparatus, device and system, and storage medium

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10063650B2 (en) 2014-09-22 2018-08-28 Belkin International, Inc. Intranet distributed caching
US10284299B2 (en) 2014-06-02 2019-05-07 Belkin International, Inc. Optimizing placement of a wireless range extender
US10313892B2 (en) 2015-12-17 2019-06-04 Belkin International, Inc. Optimizing placement of a wireless range extender
US10135562B2 (en) 2015-05-28 2018-11-20 Huawei Technologies Co., Ltd. Apparatus and method for link adaptation in uplink grant-less random access
US11122446B2 (en) * 2017-03-27 2021-09-14 Ambeent Inc. Method and system for managing a plurality of Wi-Fi access points considering backhauls and energy consumption using a cloud based adaptive software defined network
US11895511B2 (en) 2017-10-13 2024-02-06 Plume Design, Inc. Intelligent monitoring systems and methods for Wi-Fi metric-based predictions for cloud-based Wi-Fi networks
US11871249B2 (en) 2017-10-13 2024-01-09 Plume Design, Inc. Intelligent monitoring systems and methods for cloud-based Wi-Fi
US11743746B2 (en) 2017-10-13 2023-08-29 Plume Design, Inc. Intelligent monitoring systems and methods for Wi-Fi metric-based alarms for cloud-based Wi-Fi networks
US11930380B2 (en) 2017-10-13 2024-03-12 Plume Design, Inc. Intelligent monitoring systems and methods for Wi-Fi metric-based ISP outage detection for cloud based Wi-Fi networks
US10433194B2 (en) * 2017-12-06 2019-10-01 Plume Design, Inc. Cloud-based thermal control of wireless access points
US11576055B2 (en) 2018-06-22 2023-02-07 Nokia Shanghai Bell Co., Ltd. Method, apparatus and computer readable media for network optimization
JP7017784B2 (ja) * 2018-09-27 2022-02-09 サイレックス・テクノロジー株式会社 アクセスポイント、通信方法、及び、プログラム
EP3892024B1 (en) * 2018-12-05 2023-03-15 Safran Passenger Innovations, LLC Methods and apparatus for radio transmitters management and resource optimization in multi-band wireless networks
US11265725B2 (en) 2019-02-15 2022-03-01 Ademco Inc. Systems and methods for allocating wireless communication channels
US10999789B2 (en) * 2019-03-13 2021-05-04 Ademco Inc. Systems and methods for reducing interference in a TDMA based wireless network
US11785569B2 (en) * 2019-03-27 2023-10-10 Mediatek Singapore Pte. Ltd. Device and method for enrolling a wireless access point into a map wireless network
WO2020250384A1 (ja) * 2019-06-13 2020-12-17 ソフトバンク株式会社 中継装置、中継方法、及び移動通信システム
US11329842B2 (en) 2020-02-07 2022-05-10 Ademco Inc. Dynamic superframe slotting
US11368903B2 (en) 2020-10-23 2022-06-21 Plume Design, Inc. Detection of parallel operating Wi-Fi networks
US11582746B2 (en) 2021-04-01 2023-02-14 Ademco Inc. Dynamic, multi-frequency superframe slotting
US11658736B2 (en) 2021-07-13 2023-05-23 Ademco Inc. Keypad with repeater mode
CN114531723B (zh) * 2022-03-30 2024-04-05 阿里云计算有限公司 接入点选择方法、通信网络、电子设备和存储介质
CN114900859B (zh) * 2022-07-11 2022-09-20 深圳市华曦达科技股份有限公司 一种easymesh网络管理方法及装置
CN115442870A (zh) * 2022-11-07 2022-12-06 杭州锐思客技术有限公司 Mesh组网方法和系统
US11855859B1 (en) * 2023-07-07 2023-12-26 Plume Design, Inc. Computerized systems and methods for application prioritization during runtime

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287468A (ja) * 2005-03-31 2006-10-19 Saxa Inc 無線端末装置及びセンタ装置
JP2008066993A (ja) * 2006-09-06 2008-03-21 Kansai Electric Power Co Inc:The 管理サーバ、通信システム、および、通信方法
JP2013528984A (ja) * 2010-04-06 2013-07-11 クゥアルコム・インコーポレイテッド マルチパストランスポートを使用した協調帯域幅アグリゲーション
WO2014073706A1 (ja) * 2012-11-12 2014-05-15 日本電信電話株式会社 無線通信装置、無線通信システム及び無線通信方法
US20140328190A1 (en) * 2013-04-25 2014-11-06 Accelera Mobile Broadband, Inc. Cloud-based management platform for heterogeneous wireless devices
JP2015104048A (ja) * 2013-11-27 2015-06-04 日本電信電話株式会社 無線通信方法、そのシステムおよび無線基地局

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400702B1 (en) * 1991-10-01 2002-06-04 Intermec Ip Corp. Radio frequency local area network
US7505426B2 (en) * 2000-12-29 2009-03-17 Tropos Networks Multi-channel mesh network
US7454214B2 (en) 2003-12-01 2008-11-18 Interdigital Technology Corporation Wireless communication method and apparatus for optimizing access point channel selection
DE102004010182B3 (de) 2004-03-02 2005-07-21 Siemens Ag Verfahren und Anordnung zum Erfassen einer Funkabdeckung
US7414978B2 (en) 2004-12-30 2008-08-19 Massachusetts Institute Of Technology Minimum-cost routing with network coding
US7315533B2 (en) 2005-04-08 2008-01-01 Cisco Technology, Inc. Radio plan generator
US7539490B2 (en) 2005-12-27 2009-05-26 Motorola, Inc. Method and system for rapid channel acquisition across heterogeneous radio access technologies
US8681810B2 (en) 2006-04-13 2014-03-25 Qualcomm Incorporated Dynamic carrier sensing thresholds
US8064413B2 (en) * 2006-05-12 2011-11-22 At&T Intellectual Property I, L.P. Adaptive rate and reach optimization for wireless access networks
US8619634B2 (en) 2008-04-14 2013-12-31 Cisco Technology, Inc. Channel assignment protocol
US8305885B2 (en) 2008-05-08 2012-11-06 At&T Intellectual Property I, L.P. Control of quality of service in overlapping basic service sets in wireless local area networks
KR20110102288A (ko) 2008-06-18 2011-09-16 스파이더클라우드 와이어리스, 인크. 모니터링 결과들에 기초하여 네트워크 모니터링 및/또는 자동화 디바이스 구성들을 조정하기 위한 방법들 및 장치
US8165091B2 (en) 2008-06-27 2012-04-24 Nix John A Efficient handover of media communications in heterogeneous IP networks using LAN profiles and network handover rules
US20100029282A1 (en) * 2008-07-31 2010-02-04 Qualcomm Incorporated Resource partitioning in heterogeneous access point networks
US8995996B2 (en) 2009-08-12 2015-03-31 Harry V. Bims Methods and apparatus for performance optimization of heterogeneous wireless system communities
US8447314B2 (en) 2009-12-21 2013-05-21 Cisco Technology, Inc. System and method for providing resource management in a network environment
US9113371B2 (en) 2010-07-01 2015-08-18 The Hong Kong University Of Science And Technology Cross-layer optimization for next-generation WiFi systems
US9794949B2 (en) 2010-07-30 2017-10-17 Board Of Regents, The University Of Texas System Distributed rate allocation and collision detection in wireless networks
US9031591B2 (en) 2010-11-17 2015-05-12 Futurewei Technologies, Inc. System and method for self-optimized inter-cell interference coordination
CA2773302A1 (en) 2011-04-05 2012-10-05 Her Majesty The Queen In Right Of Canada, As Represented By The Ministerof Industry, Through The Communications Research Centre Canada Cognitive wi-fi radio network
US9210583B2 (en) * 2011-12-06 2015-12-08 At&T Mobility Ii Llc Centralized femtocell optimization
US8798021B2 (en) 2012-03-16 2014-08-05 Nokia Siemens Networks Oy Hierarchical network and interference management
US9736703B2 (en) * 2012-04-06 2017-08-15 Plume Design, Inc. Interference management and network performance optimization in dense WiFi networks
US9060289B2 (en) 2012-04-23 2015-06-16 Wildfire.Exchange, Inc. Interference management and network performance optimization in small cells
US9060279B2 (en) 2012-07-31 2015-06-16 Aruba Networks, Inc. System and method for computing coverage set and resource allocations in wireless networks
US9131392B2 (en) 2012-08-06 2015-09-08 Wildfire.Exchange, Inc. Hidden nodes detection
US9113352B2 (en) 2012-09-25 2015-08-18 Parallel Wireless, Inc. Heterogeneous self-organizing network for access and backhaul
EP2907341B1 (en) 2012-09-25 2020-07-15 Parallel Wireless Inc. Heterogeneous self-organizing network for access and backhaul
EP2785103A1 (en) * 2013-03-28 2014-10-01 British Telecommunications public limited company Method and system for controlling traffic in a wireless lan
CN105359586B (zh) * 2013-05-16 2019-04-16 英特尔Ip公司 异构网络中的网络选择
US9510214B1 (en) 2013-10-25 2016-11-29 Wildfire.Exchange, Inc. Activating, configuring, and monitoring cloud-based Wi-Fi services
US9832674B2 (en) * 2014-02-18 2017-11-28 Benu Networks, Inc. Cloud controller for self-optimized networks
US9516579B1 (en) 2014-06-30 2016-12-06 Wildfire.Exchange, Inc. Social bandwidth and connectivity sharing
US10333821B2 (en) * 2014-11-25 2019-06-25 Vmware, Inc. Method and system for optimizing network traffic in a distributed system with a point of convergence

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287468A (ja) * 2005-03-31 2006-10-19 Saxa Inc 無線端末装置及びセンタ装置
JP2008066993A (ja) * 2006-09-06 2008-03-21 Kansai Electric Power Co Inc:The 管理サーバ、通信システム、および、通信方法
JP2013528984A (ja) * 2010-04-06 2013-07-11 クゥアルコム・インコーポレイテッド マルチパストランスポートを使用した協調帯域幅アグリゲーション
WO2014073706A1 (ja) * 2012-11-12 2014-05-15 日本電信電話株式会社 無線通信装置、無線通信システム及び無線通信方法
US20140328190A1 (en) * 2013-04-25 2014-11-06 Accelera Mobile Broadband, Inc. Cloud-based management platform for heterogeneous wireless devices
JP2015104048A (ja) * 2013-11-27 2015-06-04 日本電信電話株式会社 無線通信方法、そのシステムおよび無線基地局

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035055A (ja) * 2019-08-14 2021-03-01 華為技術有限公司Huawei Technologies Co.,Ltd. 無線周波数リソースの割り当て方法、装置、デバイスおよびシステム、ならびに記憶媒体
US11576187B2 (en) 2019-08-14 2023-02-07 Huawei Technologies Co., Ltd. Radio frequency resource allocation method, apparatus, device and system, and storage medium
JP7274447B2 (ja) 2019-08-14 2023-05-16 華為技術有限公司 無線周波数リソースの割り当て方法、装置、デバイスおよびシステム、ならびに記憶媒体
JP7413443B2 (ja) 2019-08-14 2024-01-15 華為技術有限公司 無線周波数リソースの割り当て方法、装置、デバイスおよびシステム、ならびに記憶媒体
JP2022550033A (ja) * 2019-10-02 2022-11-30 プリューム デザイン インコーポレイテッド Wi-FiネットワークにおけるOFDMA最適化ステアリング
JP7423761B2 (ja) 2019-10-02 2024-01-29 プリューム デザイン インコーポレイテッド Wi-FiネットワークにおけるOFDMA最適化ステアリング

Also Published As

Publication number Publication date
JP6794474B2 (ja) 2020-12-02
US20170272963A1 (en) 2017-09-21
EP3430832B1 (en) 2021-12-29
WO2017161260A2 (en) 2017-09-21
CA3016195C (en) 2020-05-05
EP3430832A4 (en) 2019-08-07
CA3016195A1 (en) 2017-09-21
EP3430832A2 (en) 2019-01-23
US10051494B2 (en) 2018-08-14
WO2017161260A3 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6794474B2 (ja) 分散Wi−Fiネットワークの最適化
US11653230B2 (en) Optimization of distributed Wi-Fi networks
JP6724174B2 (ja) 分散Wi−Fiネットワークの最適化を可能にするためのデータ収集
US11398946B2 (en) Optimization of distributed Wi-Fi networks estimation and learning
US10554733B2 (en) Controlling clients in distributed Wi-Fi networks
US10341193B2 (en) Optimization on multiple timescales in a distributed Wi-Fi system
US10051455B2 (en) Systems and methods for changing topology and firmware in distributed wi-fi networks
US10420155B2 (en) Distributed Wi-Fi setup systems and methods
JP7423761B2 (ja) Wi-FiネットワークにおけるOFDMA最適化ステアリング
US20210105773A1 (en) Resource Unit reservation in Wi-Fi networks
US20230065256A1 (en) Optimizing clusters of Wi-Fi networks
EP4038837A1 (en) Quality of experience measurements for control of wi-fi networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R150 Certificate of patent or registration of utility model

Ref document number: 6794474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250