JP2019509813A - 冠動脈において健全な管腔径を推定し狭窄を定量化するためのシステム及び方法 - Google Patents
冠動脈において健全な管腔径を推定し狭窄を定量化するためのシステム及び方法 Download PDFInfo
- Publication number
- JP2019509813A JP2019509813A JP2018548407A JP2018548407A JP2019509813A JP 2019509813 A JP2019509813 A JP 2019509813A JP 2018548407 A JP2018548407 A JP 2018548407A JP 2018548407 A JP2018548407 A JP 2018548407A JP 2019509813 A JP2019509813 A JP 2019509813A
- Authority
- JP
- Japan
- Prior art keywords
- lumen
- vasculature
- patient
- healthy
- site
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 100
- 208000031481 Pathologic Constriction Diseases 0.000 title description 25
- 208000037804 stenosis Diseases 0.000 title description 25
- 230000036262 stenosis Effects 0.000 title description 25
- 210000004351 coronary vessel Anatomy 0.000 title description 9
- 210000005166 vasculature Anatomy 0.000 claims abstract description 83
- 230000011218 segmentation Effects 0.000 claims abstract description 46
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 26
- 238000007637 random forest analysis Methods 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 13
- 230000035945 sensitivity Effects 0.000 claims description 11
- 238000013500 data storage Methods 0.000 claims description 2
- 230000002792 vascular Effects 0.000 abstract description 29
- 238000004422 calculation algorithm Methods 0.000 description 77
- 238000010801 machine learning Methods 0.000 description 65
- 201000010099 disease Diseases 0.000 description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 27
- 230000003902 lesion Effects 0.000 description 25
- 238000012549 training Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 15
- 238000013459 approach Methods 0.000 description 9
- 238000010200 validation analysis Methods 0.000 description 8
- 208000029078 coronary artery disease Diseases 0.000 description 6
- 238000003066 decision tree Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002586 coronary angiography Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 238000002583 angiography Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 238000002591 computed tomography Methods 0.000 description 3
- 238000010968 computed tomography angiography Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002966 stenotic effect Effects 0.000 description 2
- 200000000007 Arterial disease Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 101150104316 Dnase2b gene Proteins 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005182 global health Effects 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/02007—Evaluating blood vessel condition, e.g. elasticity, compliance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/467—Arrangements for interfacing with the operator or the patient characterised by special input means
- A61B6/468—Arrangements for interfacing with the operator or the patient characterised by special input means allowing annotation or message recording
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/507—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Physiology (AREA)
- Vascular Medicine (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pulmonology (AREA)
- Quality & Reliability (AREA)
- Cardiology (AREA)
- Human Computer Interaction (AREA)
- Geometry (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Image Analysis (AREA)
Abstract
Description
λ(x) = 1 − κ(x)(κ≦1の場合)
λ(x)=0(その他の場合)
として規定されることができる。
σx=5.0*(1+(n−3)*0.4)
σmax=200*(1+(n−3)*0.4)
σx,max=0.25*(1+(n−3)*0.4)
k=0.1+n*0.3
Se=TP/(TP+FN)
Sp=TN/(TN+FP)
として規定されることができる。
Claims (20)
- 患者の脈管構造の管腔径を識別するコンピュータ実装式方法であって、
複数の個人の既知の健全な血管セグメントの1つまたは複数の管腔セグメンテーションを含むデータセットを受信すること、
前記血管セグメントのそれぞれについて1つまたは複数の管腔特徴を抽出すること、
患者の脈管構造の管腔セグメンテーションを受信すること、
前記患者の脈管構造の部位を決定すること、及び、
前記複数の個人の前記既知の健全な血管セグメントのそれぞれについての前記抽出された1つまたは複数の特徴を使用して、前記患者の脈管構造の前記部位の健全な管腔径を決定することを含む、方法。 - 前記決定された健全な管腔径を使用して管腔狭隘化スコアを計算することを更に含み、前記管腔狭隘化スコアは、前記患者の脈管構造の部位の半径と、前記複数の個人の前記既知の健全な血管セグメントに基づく対応する理論的な健全な半径との比である、請求項1に記載の方法。
- 前記1つまたは複数の管腔特徴は、平均、最大、及び最小の管腔の面積、体積、及び長さを含む、請求項1に記載の方法。
- 前記複数の個人の前記管腔セグメンテーションのそれぞれを複数のサブユニットに分割することを更に含み、前記サブユニットの1つのユニットは、前記患者の脈管構造の部位に対応する、請求項1に記載の方法。
- 前記サブユニットのそれぞれについて1つまたは複数の管腔特徴を抽出すること、及び、
前記患者の脈管構造の部位の健全な管腔径を決定するために、ランダムフォレスト回帰を生成することを更に含む、請求項4に記載の方法。 - 前記サブユニットは、前記患者の脈管構造の前記識別された部位に対応する第1の部位、前記第1の部位の上流の脈管構造のセグメント、及び前記第1の部位の下流の脈管構造のセグメントからなる、請求項4に記載の方法。
- 冠血流予備量比の推定を生成すること、冠血流予備量比推定の推定値または感度を生成すること、または、前記決定された健全な管腔径に基づいてモデルを生成することを更に含む、請求項1に記載の方法。
- 前記既知の健全な血管セグメントは、マニュアルアノテーションに基づく、請求項1に記載の方法。
- 患者の脈管構造の管腔径を識別するためのシステムであって、
患者の脈管構造の管腔径を識別するための命令を記憶するデータ記憶デバイスと、
プロセッサとを備え、前記プロセッサは、方法であって、
複数の個人の既知の健全な血管セグメントの1つまたは複数の管腔セグメンテーションを含むデータセットを受信すること、
前記血管セグメントのそれぞれについて1つまたは複数の管腔特徴を抽出すること、
患者の脈管構造の管腔セグメンテーションを受信すること、
前記患者の脈管構造の部位を決定すること、及び、
前記複数の個人の前記既知の健全な血管セグメントのそれぞれについての前記抽出された1つまたは複数の特徴を使用して、前記患者の脈管構造の前記部位の健全な管腔径を決定することを含む、方法を実施するために前記命令を実行するように構成される、システム。 - 前記決定された健全な管腔径を使用して管腔狭隘化スコアを計算するために更に構成され、前記管腔狭隘化スコアは、前記患者の脈管構造の部位の半径と、前記複数の個人の前記既知の健全な血管セグメントに基づく対応する理論的な健全な半径との比である、請求項9に記載のシステム。
- 前記1つまたは複数の管腔特徴は、平均、最大、及び最小の管腔の面積、体積、及び長さを含む、請求項9に記載のシステム。
- 前記複数の個人の前記管腔セグメンテーションのそれぞれを複数のサブユニットに分割するために更に構成され、前記サブユニットの1つのユニットは、前記患者の脈管構造の部位に対応する、請求項9に記載のシステム。
- 前記サブユニットのそれぞれについて1つまたは複数の管腔特徴を抽出し、前記患者の脈管構造の部位の健全な管腔径を決定するために、ランダムフォレスト回帰を生成するために更に構成される、請求項12に記載のシステム。
- 前記サブユニットは、前記患者の脈管構造の前記識別された部位に対応する第1の部位、前記第1の部位の上流の脈管構造のセグメント、及び前記第1の部位の下流の脈管構造のセグメントからなる、請求項12に記載のシステム。
- 冠血流予備量比の推定を生成するため、冠血流予備量比推定の推定値または感度を生成するため、または、前記決定された健全な管腔径に基づいてモデルを生成するために更に構成される、請求項9に記載のシステム。
- 前記既知の健全な血管セグメントは、マニュアルアノテーションに基づく、請求項9に記載のシステム。
- コンピュータシステム上で使用するための非一時的コンピュータ可読媒体であって、方法であって、
複数の個人の既知の健全な血管セグメントの1つまたは複数の管腔セグメンテーションを含むデータセットを受信し、
前記血管セグメントのそれぞれについて1つまたは複数の管腔特徴を抽出し、
患者の脈管構造の管腔セグメンテーションを受信し、
前記患者の脈管構造の部位を決定し、
前記複数の個人の前記既知の健全な血管セグメントのそれぞれについての前記抽出された1つまたは複数の特徴を使用して、前記患者の脈管構造の前記部位の健全な管腔径を決定する、
方法を実施するためのコンピュータ実行可能なプログラミング命令を含む、非一時的コンピュータ可読媒体。 - 前記方法は、
前記決定された健全な管腔径を使用して管腔狭隘化スコアを計算することを更に含み、前記管腔狭隘化スコアは、前記患者の脈管構造の部位の半径と、前記複数の個人の前記既知の健全な血管セグメントに基づく対応する理論的な健全な半径との比である、請求項17に記載の非一時的コンピュータ可読媒体。 - 前記1つまたは複数の管腔特徴は、平均、最大、及び最小の管腔の面積、体積、及び長さを含む、請求項17に記載の非一時的コンピュータ可読媒体。
- 前記方法は、
前記複数の個人の前記管腔セグメンテーションのそれぞれを複数のサブユニットに分割することを更に含み、前記サブユニットの1つのユニットは、前記患者の脈管構造の部位に対応する、請求項17に記載の非一時的コンピュータ可読媒体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662309376P | 2016-03-16 | 2016-03-16 | |
US62/309,376 | 2016-03-16 | ||
PCT/US2017/022525 WO2017160994A1 (en) | 2016-03-16 | 2017-03-15 | Systems and methods for estimating healthy lumen diameter and stenosis quantification in coronary arteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019509813A true JP2019509813A (ja) | 2019-04-11 |
JP6718975B2 JP6718975B2 (ja) | 2020-07-08 |
Family
ID=58461457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018548407A Active JP6718975B2 (ja) | 2016-03-16 | 2017-03-15 | 冠動脈において健全な管腔径を推定し狭窄を定量化するためのシステム及び方法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US10575810B2 (ja) |
EP (3) | EP3795070B1 (ja) |
JP (1) | JP6718975B2 (ja) |
KR (1) | KR102447741B1 (ja) |
CN (1) | CN109069014B (ja) |
AU (1) | AU2017235454B2 (ja) |
CA (1) | CA3017610C (ja) |
WO (1) | WO2017160994A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020262681A1 (ja) * | 2019-06-28 | 2020-12-30 | ||
JP2021104140A (ja) * | 2019-12-26 | 2021-07-26 | キヤノンメディカルシステムズ株式会社 | 医用情報処理装置、医用情報処理方法、及び医用情報処理プログラム |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10433740B2 (en) * | 2012-09-12 | 2019-10-08 | Heartflow, Inc. | Systems and methods for estimating ischemia and blood flow characteristics from vessel geometry and physiology |
WO2014182505A1 (en) | 2013-05-10 | 2014-11-13 | Stenomics, Inc. | Modeling and simulation system for optimizing prosthetic heart valve treatment |
US9092743B2 (en) | 2013-10-23 | 2015-07-28 | Stenomics, Inc. | Machine learning system for assessing heart valves and surrounding cardiovascular tracts |
EP3245632B1 (en) * | 2015-01-16 | 2020-07-15 | Koninklijke Philips N.V. | Vessel lumen sub-resolution segmentation |
JP6718975B2 (ja) * | 2016-03-16 | 2020-07-08 | ハートフロー, インコーポレイテッド | 冠動脈において健全な管腔径を推定し狭窄を定量化するためのシステム及び方法 |
WO2017199246A1 (en) | 2016-05-16 | 2017-11-23 | Cathworks Ltd. | Vascular selection from images |
JP7036742B2 (ja) | 2016-05-16 | 2022-03-15 | キャスワークス リミテッド | 血管評価システム |
US11871995B2 (en) | 2017-12-18 | 2024-01-16 | Hemolens Diagnostics Sp. Z O.O. | Patient-specific modeling of hemodynamic parameters in coronary arteries |
US11771399B2 (en) | 2018-02-07 | 2023-10-03 | Atherosys, Inc. | Apparatus and method to guide ultrasound acquisition of the peripheral arteries in the transverse plane |
WO2019212992A1 (en) * | 2018-04-30 | 2019-11-07 | Atherosys, Inc. | Method and apparatus for the automatic detection of atheromas in peripheral arteries |
WO2019238754A1 (en) | 2018-06-15 | 2019-12-19 | Pie Medical Imaging Bv | Method and apparatus for quantitative hemodynamic flow analysis |
CN109979593B (zh) | 2018-09-24 | 2021-04-13 | 北京科亚方舟医疗科技股份有限公司 | 血管路径的健康半径的预测方法、血管路径的候选狭窄处的预测方法、血管狭窄度预测装置 |
PL427234A1 (pl) | 2018-09-28 | 2020-04-06 | Fundacja Rozwoju Kardiochirurgii Im. Profesora Zbigniewa Religi | Sposób modelowania naczyń krwionośnych i przepływu krwi w tych modelach naczyń krwionośnych |
US10813612B2 (en) | 2019-01-25 | 2020-10-27 | Cleerly, Inc. | Systems and method of characterizing high risk plaques |
CN109886953B (zh) * | 2019-02-27 | 2024-06-28 | 数坤科技股份有限公司 | 一种血管异常检测方法、装置及计算机可读存储介质 |
WO2020201942A1 (en) | 2019-04-01 | 2020-10-08 | Cathworks Ltd. | Methods and apparatus for angiographic image selection |
KR102361354B1 (ko) | 2019-08-30 | 2022-02-10 | 연세대학교 원주산학협력단 | 관상동맥 조영 영상에서 심장 협착증 질병 정보 제공 방법 |
US12039685B2 (en) | 2019-09-23 | 2024-07-16 | Cathworks Ltd. | Methods, apparatus, and system for synchronization between a three-dimensional vascular model and an imaging device |
CN110889896B (zh) * | 2019-11-11 | 2024-03-22 | 苏州润迈德医疗科技有限公司 | 获取血管狭窄病变区间及三维合成方法、装置和系统 |
JP2023509514A (ja) | 2020-01-07 | 2023-03-08 | クリールリー、 インコーポレーテッド | 医用画像分析、診断、重症度分類、意思決定、および/または疾患追跡のためのシステム、方法、およびデバイス |
US11969280B2 (en) | 2020-01-07 | 2024-04-30 | Cleerly, Inc. | Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking |
US20220392065A1 (en) | 2020-01-07 | 2022-12-08 | Cleerly, Inc. | Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking |
US20210228262A1 (en) | 2020-01-29 | 2021-07-29 | Covidien Lp | System and methods for identifying vessels within tissue |
CN111445449B (zh) * | 2020-03-19 | 2024-03-01 | 上海联影智能医疗科技有限公司 | 感兴趣区域的分类方法、装置、计算机设备和存储介质 |
CN113837985B (zh) * | 2020-06-24 | 2023-11-07 | 上海博动医疗科技股份有限公司 | 用于血管造影图像处理的训练方法和装置、自动处理方法和装置 |
EP4075446A1 (en) | 2021-04-18 | 2022-10-19 | Kardiolytics Inc. | Method and system for modelling blood vessels and blood flow under high-intensity physical exercise conditions |
CN113592939B (zh) * | 2021-07-20 | 2024-02-27 | 燕山大学 | 基于冠脉造影图像判断狭窄血管尺寸的深度学习方法 |
US12125217B2 (en) | 2021-11-05 | 2024-10-22 | GE Precision Healthcare LLC | System and method for detecting stenosis |
US11980492B2 (en) | 2021-11-05 | 2024-05-14 | GE Precision Healthcare LLC | System and method for deep-learning based estimation of coronary artery pressure drop |
US20230289963A1 (en) | 2022-03-10 | 2023-09-14 | Cleerly, Inc. | Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070019846A1 (en) * | 2003-08-25 | 2007-01-25 | Elizabeth Bullitt | Systems, methods, and computer program products for analysis of vessel attributes for diagnosis, disease staging, and surfical planning |
US20110224542A1 (en) * | 2010-03-12 | 2011-09-15 | Sushil Mittal | Method and System for Automatic Detection and Classification of Coronary Stenoses in Cardiac CT Volumes |
JP2013165874A (ja) * | 2012-02-16 | 2013-08-29 | Hitachi Ltd | 画像診断支援システム、プログラム及び記憶媒体 |
WO2015153362A1 (en) * | 2014-03-31 | 2015-10-08 | Heartflow, Inc. | Systems and methods for determining blood flow characteristics using flow ratio |
JP2015180292A (ja) * | 2007-07-05 | 2015-10-15 | 株式会社東芝 | 医用画像処理装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2421352A1 (en) * | 2002-03-08 | 2003-09-08 | Giovanni Battista Mancini (A.K.A. Mancini, G.B. John) | Vessel evaluation methods, apparatus, computer-readable media and signals |
US8155411B2 (en) | 2008-07-22 | 2012-04-10 | Pie Medical Imaging B.V. | Method, apparatus and computer program for quantitative bifurcation analysis in 3D using multiple 2D angiographic images |
US8315812B2 (en) | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
US9675301B2 (en) * | 2012-10-19 | 2017-06-13 | Heartflow, Inc. | Systems and methods for numerically evaluating vasculature |
US9858387B2 (en) * | 2013-01-15 | 2018-01-02 | CathWorks, LTD. | Vascular flow assessment |
CN103892799B (zh) * | 2012-12-24 | 2016-09-14 | 财团法人工业技术研究院 | 主动脉血管测量探针、装置及主动脉管径的测量方法 |
US9042613B2 (en) * | 2013-03-01 | 2015-05-26 | Heartflow, Inc. | Method and system for determining treatments by modifying patient-specific geometrical models |
EP3021758A4 (en) * | 2013-07-19 | 2017-03-15 | Volcano Corporation | Devices, systems, and methods for assessment of vessels |
US9043190B2 (en) * | 2013-08-16 | 2015-05-26 | Heartflow, Inc. | Systems and methods for identifying personalized vascular implants from patient-specific anatomic data |
US9805463B2 (en) * | 2013-08-27 | 2017-10-31 | Heartflow, Inc. | Systems and methods for predicting location, onset, and/or change of coronary lesions |
US10362943B2 (en) * | 2013-09-20 | 2019-07-30 | Siemens Healthcare Gmbh | Dynamic overlay of anatomy from angiography to fluoroscopy |
US9700219B2 (en) * | 2013-10-17 | 2017-07-11 | Siemens Healthcare Gmbh | Method and system for machine learning based assessment of fractional flow reserve |
US9747525B2 (en) * | 2014-06-16 | 2017-08-29 | Siemens Healthcare Gmbh | Method and system for improved hemodynamic computation in coronary arteries |
US9349178B1 (en) * | 2014-11-24 | 2016-05-24 | Siemens Aktiengesellschaft | Synthetic data-driven hemodynamic determination in medical imaging |
JP6718975B2 (ja) * | 2016-03-16 | 2020-07-08 | ハートフロー, インコーポレイテッド | 冠動脈において健全な管腔径を推定し狭窄を定量化するためのシステム及び方法 |
US12062198B2 (en) * | 2021-09-27 | 2024-08-13 | Shenzhen Keya Medical Technology Corporation | Method and system for multi-modality joint analysis of vascular images |
-
2017
- 2017-03-15 JP JP2018548407A patent/JP6718975B2/ja active Active
- 2017-03-15 AU AU2017235454A patent/AU2017235454B2/en active Active
- 2017-03-15 EP EP20202450.1A patent/EP3795070B1/en active Active
- 2017-03-15 US US15/459,835 patent/US10575810B2/en active Active
- 2017-03-15 EP EP17714963.0A patent/EP3429465B1/en active Active
- 2017-03-15 KR KR1020187028613A patent/KR102447741B1/ko active IP Right Grant
- 2017-03-15 CN CN201780022642.3A patent/CN109069014B/zh active Active
- 2017-03-15 CA CA3017610A patent/CA3017610C/en active Active
- 2017-03-15 EP EP22211218.7A patent/EP4162870B1/en active Active
- 2017-03-15 WO PCT/US2017/022525 patent/WO2017160994A1/en active Application Filing
-
2020
- 2020-01-22 US US16/749,560 patent/US11207045B2/en active Active
-
2021
- 2021-11-22 US US17/456,039 patent/US11883225B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070019846A1 (en) * | 2003-08-25 | 2007-01-25 | Elizabeth Bullitt | Systems, methods, and computer program products for analysis of vessel attributes for diagnosis, disease staging, and surfical planning |
JP2015180292A (ja) * | 2007-07-05 | 2015-10-15 | 株式会社東芝 | 医用画像処理装置 |
US20110224542A1 (en) * | 2010-03-12 | 2011-09-15 | Sushil Mittal | Method and System for Automatic Detection and Classification of Coronary Stenoses in Cardiac CT Volumes |
JP2013165874A (ja) * | 2012-02-16 | 2013-08-29 | Hitachi Ltd | 画像診断支援システム、プログラム及び記憶媒体 |
WO2015153362A1 (en) * | 2014-03-31 | 2015-10-08 | Heartflow, Inc. | Systems and methods for determining blood flow characteristics using flow ratio |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020262681A1 (ja) * | 2019-06-28 | 2020-12-30 | ||
WO2020262681A1 (ja) * | 2019-06-28 | 2020-12-30 | 富士フイルム株式会社 | 学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器 |
JP7170868B2 (ja) | 2019-06-28 | 2022-11-14 | 富士フイルム株式会社 | 学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器 |
JP2021104140A (ja) * | 2019-12-26 | 2021-07-26 | キヤノンメディカルシステムズ株式会社 | 医用情報処理装置、医用情報処理方法、及び医用情報処理プログラム |
US11901074B2 (en) | 2019-12-26 | 2024-02-13 | Canon Medical Systems Corporation | Medical information processing apparatus, medical information processing method, and non-transitory computer-readable storage medium storing program |
JP7485512B2 (ja) | 2019-12-26 | 2024-05-16 | キヤノンメディカルシステムズ株式会社 | 医用情報処理装置、医用情報処理方法、及び医用情報処理プログラム |
Also Published As
Publication number | Publication date |
---|---|
CN109069014B (zh) | 2021-07-06 |
JP6718975B2 (ja) | 2020-07-08 |
EP3429465B1 (en) | 2020-11-11 |
US20220079540A1 (en) | 2022-03-17 |
CA3017610C (en) | 2024-04-30 |
CN113440112A (zh) | 2021-09-28 |
EP3429465A1 (en) | 2019-01-23 |
US20170265831A1 (en) | 2017-09-21 |
AU2017235454B2 (en) | 2019-07-18 |
AU2017235454A1 (en) | 2018-11-01 |
EP4162870A1 (en) | 2023-04-12 |
US11207045B2 (en) | 2021-12-28 |
KR20180121957A (ko) | 2018-11-09 |
KR102447741B1 (ko) | 2022-09-29 |
EP4162870B1 (en) | 2024-01-31 |
US11883225B2 (en) | 2024-01-30 |
EP3795070B1 (en) | 2022-12-21 |
EP3795070A1 (en) | 2021-03-24 |
US20200155106A1 (en) | 2020-05-21 |
CA3017610A1 (en) | 2017-09-21 |
CN109069014A (zh) | 2018-12-21 |
WO2017160994A1 (en) | 2017-09-21 |
US10575810B2 (en) | 2020-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6718975B2 (ja) | 冠動脈において健全な管腔径を推定し狭窄を定量化するためのシステム及び方法 | |
JP6553675B2 (ja) | 脈管構造を数値的に評価するためのシステムおよび方法 | |
US10595790B2 (en) | Method and system for personalized non-invasive hemodynamic assessment of renal artery stenosis from medical images | |
KR101834051B1 (ko) | 혈관 기하학적 구조 및 생리학으로부터 혈류 특징들을 추정하기 위한 시스템들 및 방법들 | |
US9659365B2 (en) | Image analysing | |
CN110998744A (zh) | 针对弥漫性和串联性病变中冠状动脉疾病的非侵入性评估和治疗指导 | |
JP6484760B2 (ja) | 非侵襲的血流予備量比(ffr)に対する側副血流モデル化 | |
JP4990143B2 (ja) | デジタル画像で網膜血管を分析するための方法および装置 | |
JP6975235B2 (ja) | 生物物理的シミュレーション用の血管樹標準化及び/又はプルーニングされた部分用の拡張シミュレーション | |
CN110494893B (zh) | 基于ffr的对非侵入性成像的交互监测 | |
Sankaran et al. | Hale: Healthy area of lumen estimation for vessel stenosis quantification | |
Sankaran et al. | Real-time sensitivity analysis of blood flow simulations to lumen segmentation uncertainty | |
US20230005139A1 (en) | Fibrotic Cap Detection In Medical Images | |
CN113440112B (zh) | 用于估计在冠状动脉中的健康管腔直径和狭窄定量的系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6718975 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |