WO2020262681A1 - 学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器 - Google Patents

学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器 Download PDF

Info

Publication number
WO2020262681A1
WO2020262681A1 PCT/JP2020/025399 JP2020025399W WO2020262681A1 WO 2020262681 A1 WO2020262681 A1 WO 2020262681A1 JP 2020025399 W JP2020025399 W JP 2020025399W WO 2020262681 A1 WO2020262681 A1 WO 2020262681A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
teacher label
image
disease
region
Prior art date
Application number
PCT/JP2020/025399
Other languages
English (en)
French (fr)
Inventor
瑞希 武井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021528288A priority Critical patent/JP7170868B2/ja
Publication of WO2020262681A1 publication Critical patent/WO2020262681A1/ja
Priority to US17/553,641 priority patent/US20220108451A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/501Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the head, e.g. neuroimaging or craniography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06V10/7747Organisation of the process, e.g. bagging or boosting
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • G06V2201/031Recognition of patterns in medical or anatomical images of internal organs

Definitions

  • the present disclosure is constructed by learning devices, methods and programs for learning a discriminator for extracting a diseased region contained in a medical image, a medical image processing device using the learned discriminator, methods and programs, and learning. It is related to the discriminator.
  • CT Computer Tomography
  • MRI Magnetic Resonance Imaging
  • CAD Computer-Aided Diagnosis
  • a discriminator consisting of a neural network or the like that has been machine-learned by deep learning, etc., and in the brain. It has also been performed to detect diseased areas such as bleeding areas and infarcted areas in.
  • a teacher including a learning image including a disease region and a teacher label in which the disease region is specified by labeling the disease region in the learning image.
  • Data is prepared in advance. Labeling of diseased areas of learning images is done manually by the physician.
  • the learning image is input to the discriminator, the diseased area in the learning image is detected, the difference between the detection result and the teacher label is derived as a loss, and the derived loss is used for the discriminator. Learning takes place.
  • the region to be determined to be the diseased region is often different depending on the labeling doctor. For example, when another doctor sees a diseased area labeled by one doctor, the area wider than the labeled area may be determined as a diseased area. In such a case, if the discriminator is trained using the narrowly labeled disease region as a teacher label, the region that may be detected is learned as the region that should not be detected, so the disease region is overlooked. There is a possibility that it will end up.
  • This disclosure was made in view of the above circumstances, and an object is to prevent oversight of diseased areas.
  • the learning device includes an information acquisition unit that acquires a learning image including a disease area and a first teacher label that identifies a disease area included in the learning image.
  • a teacher label generator that generates at least one second teacher label whose criteria for identifying the disease area are different from the first teacher label. It includes a learning unit that learns a discriminator that detects a diseased region included in a target image based on a learning image, a first teacher label, and at least one second teacher label.
  • the teacher label generation unit may generate at least one second teacher label using the first teacher label.
  • the teacher label generation unit has at least one second teacher based on the distribution of signal values in the region within the first teacher label in the learning image and the position of the first teacher label. It may be one that produces a label.
  • the teacher label generation unit derives a representative value of the signal value of the region in the first teacher label in the learning image, and in the region corresponding to the first teacher label and the learning image.
  • a region in which the signal value of the region adjacent to the region in the first teacher label is within a predetermined range with respect to the representative value may be generated as the second teacher label.
  • the "representative value” for example, an average value, a weighted average value, a median value, a maximum value, a minimum value, and the like can be used.
  • the learning unit detects the learning disease area by inputting the learning image into the discriminator, and the first loss between the learning disease area and the first teacher label, and By deriving the second loss between the learning disease area and the second teacher label, deriving the total loss from the first loss and the second loss, and using the total loss for learning the discriminator, the discriminator It may be something to learn.
  • the learning image may include the brain, and the disease area may be the area of brain disease.
  • the medical image processing device is provided with a disease area detection unit that detects a disease area included in the target medical image by inputting the target medical image to which a discriminator learned by the learning device according to the present disclosure is applied. ..
  • a labeling unit that labels a diseased area detected from a target medical image and a labeling unit are used. It may further include a display control unit that displays the labeled target medical image on the display unit.
  • the discriminator according to the present disclosure is learned by the learning device according to the present disclosure, and detects a disease region included in the target medical image by inputting the target medical image.
  • the learning method obtains a learning image including a disease area and a first teacher label that identifies a disease area included in the learning image. Generate at least one second teacher label whose criteria for identifying the disease area are different from the first teacher label. Based on the learning image, the first teacher label, and at least one second teacher label, a discriminator for detecting a diseased region included in the target image is learned.
  • the medical image processing method detects a disease region included in the target medical image by inputting the target medical image using the discriminator learned by the learning method according to the present disclosure.
  • the learning method and the medical image processing method according to the present disclosure may be provided as a program for executing the computer.
  • Other learning devices include a memory for storing instructions to be executed by a computer and a memory.
  • the processor comprises a processor configured to execute a stored instruction.
  • Based on the learning image, the first teacher label, and at least one second teacher label, a process of learning a discriminator for detecting a diseased region included in the target image is executed.
  • Other medical image processing devices include a memory for storing instructions to be executed by a computer and a memory.
  • the processor comprises a processor configured to execute a stored instruction.
  • a process of detecting a disease region included in the target medical image is executed by inputting the target medical image.
  • Diagram showing brain image and teacher label Diagram showing brain image and teacher label Diagram showing a learning image, a first teacher label and a second teacher label The figure which shows the distribution of CT value in a disease area
  • Diagram for explaining the detection of a diseased area from a target image A flowchart showing the learning process performed in the present embodiment Flowchart showing medical image processing performed in this embodiment Diagram for explaining the detection of a diseased area from a target image
  • FIG. 1 is a hardware configuration diagram showing an outline of a diagnostic support system to which the learning device and the medical image processing device according to the embodiment of the present disclosure are applied.
  • the learning device and the medical image processing device hereinafter referred to as the medical image processing device
  • the three-dimensional image capturing device 2 and the image storage server 3 according to the present embodiment are networked. It is connected in a state where communication is possible via 4.
  • the three-dimensional image capturing device 2 is a device that generates a three-dimensional image representing the site by photographing the site to be diagnosed of the subject, and specifically, a CT device, an MRI device, and a PET (PET). Positron Emission Tomography) equipment, etc.
  • the three-dimensional image generated by the three-dimensional image capturing device 2 is transmitted to the image storage server 3 and stored.
  • the diagnosis target site of the patient as the subject is the brain
  • the three-dimensional imaging device 2 is the CT device
  • a CT image of the head including the brain of the subject is generated as the target image.
  • the learning image used for learning is a CT image of the brain, and the disease area in the learning image is labeled to generate a teacher label.
  • the image storage server 3 is a computer that stores and manages various data, and is equipped with a large-capacity external storage device and database management software.
  • the image storage server 3 communicates with another device via a wired or wireless network 4 to send and receive image data and the like.
  • various data including the image data of the target image generated by the three-dimensional image capturing device 2 are acquired via the network and stored in a recording medium such as a large-capacity external storage device for management.
  • the storage format of the image data and the communication between the devices via the network 4 are based on a protocol such as DICOM (Digital Imaging and Communication in Medicine).
  • DICOM Digital Imaging and Communication in Medicine
  • the medical image processing device 1 is a computer in which the learning program and the medical image processing program of the present embodiment are installed.
  • the computer may be a workstation or personal computer operated directly by the diagnosing doctor, or it may be a server computer connected to them via a network.
  • the learning program and the medical image processing program are stored in the storage device of the server computer connected to the network or the network storage in a state of being accessible from the outside, and are downloaded and installed in the computer upon request. Alternatively, it is recorded and distributed on a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Read Only Memory), and is installed on a computer from the recording medium.
  • a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Read Only Memory)
  • FIG. 2 is a diagram showing a schematic configuration of a medical image processing device realized by installing a learning program and a medical image processing program on a computer.
  • the medical image processing apparatus 1 includes a CPU (Central Processing Unit) 11, a memory 12, and a storage 13 as a standard workstation configuration. Further, a display unit 14 such as a liquid crystal display and an input unit 15 such as a keyboard and a mouse are connected to the medical image processing device 1.
  • a CPU Central Processing Unit
  • memory 12 main memory
  • storage 13 as a standard workstation configuration
  • a display unit 14 such as a liquid crystal display
  • an input unit 15 such as a keyboard and a mouse are connected to the medical image processing device 1.
  • the storage 13 is composed of a hard disk drive or the like, and is a target image to be processed acquired from the image storage server 3 via the network 4, a learning image for learning a neural network as described later, and a teacher for the learning image. Various information including labels and information necessary for processing is stored.
  • the memory 12 stores a learning program and a medical image processing program.
  • the learning program as a process to be executed by the CPU 11, a learning image including a disease area and a first information acquisition process for acquiring a teacher label for specifying a disease area included in the learning image, and a criterion for specifying a disease area are first.
  • a teacher label generation process that generates at least one second teacher label different from the teacher label, and a disease region contained in the target image is detected based on the learning image, the first teacher label, and at least one second teacher label.
  • the learning process for learning the discriminator is specified.
  • the medical image processing program performs a disease area detection process for detecting a disease area included in a target image to be detected of a disease area acquired by an information acquisition process, and labeling the detected disease area.
  • the labeling process to be performed and the display control process for displaying the labeled target image on the display unit 14 are defined.
  • the CPU 11 executes these processes according to the learning program and the medical image processing program, so that the computer can display the information acquisition unit 21, the teacher label generation unit 22, the learning unit 23, the disease area detection unit 24, and the labeling unit 25. It functions as a control unit 26.
  • the information acquisition unit 21 acquires the learning image and the first teacher label that identifies the disease area included in the learning image from the image storage server 3 via an interface (not shown) connected to the network.
  • the target image to be processed is also acquired.
  • the information acquisition unit 21 acquires the learning image, the first teacher label, and the target image from the storage 13. You may do it.
  • the diseased area such as cerebral hemorrhage shows a high or low CT value as compared with the surrounding area.
  • the diseased region 31 shows a higher CT value than the other regions.
  • the teacher label 32 substantially matches the diseased region 31 in the brain image 30 no matter who creates it.
  • the contrast between the diseased area 41 and the surrounding area is often unclear.
  • the contrast is unclear with a broken line.
  • the extent to which the disease area is regarded and labeling differs depending on the doctor performing the labeling. For example, one doctor may give a smaller size teacher label 42, while another doctor may give a larger size teacher label 43.
  • the teacher label generation unit 22 generates at least one second teacher label whose criteria for identifying the disease area are different from the first teacher label. Therefore, the teacher label generation unit 22 derives a representative value of the CT value in the region 55 to which the first teacher label 51 is attached in the acquired learning image 50 as shown in FIG. 5, and derives the representative value of the CT value, and the first teacher label. A region in which the signal value of the region corresponding to 51 and the region adjacent to the region in the first teacher label 51 in the learning image 50 is within a predetermined range with respect to the representative value is generated as the second teacher label. To do.
  • the teacher label generation unit 22 derives the average value ⁇ of the CT values in the region 55 as a representative value, but the present invention is not limited to this. A median value, a weighted average value, a maximum value, a minimum value, or the like may be used as representative values. Further, in the present embodiment, the teacher label generation unit 22 derives the standard deviation ⁇ of the CT value in the region 55 and the position of the center of gravity 56 of the region specified by the first teacher label 51 in the learning image 50.
  • the teacher label generation unit 22 labels a region consisting of pixels having a CT value in the range of ⁇ ⁇ ⁇ among the pixels within a predetermined distance from the position of the center of gravity 56 in the learning image 50, whereby FIG.
  • the second teacher label 52 is generated as shown in.
  • FIG. 6 is a diagram showing the distribution of CT values in the diseased region. As shown in FIG. 6, the CT value of the diseased area is larger than the CT value of the surrounding area, the CT value becomes smaller toward the diseased area, and gradually coincides with the CT value of the area around the diseased area. It is distributed as follows. Therefore, assuming that the first teacher label is given to the range shown by the arrow A shown in FIG.
  • a second teacher label 52 different from the first teacher label 51 is generated as shown in FIG.
  • the CT value in the diseased region is constant, so that the standard deviation ⁇ is substantially 0.
  • the second teacher label 52 generated by the teacher label generation unit 22 is substantially the same as the first teacher label 51.
  • one second teacher label 52 is generated from the first teacher label 51, but a plurality of second teacher labels may be generated.
  • a region consisting of pixels having CT values such as ⁇ ⁇ 0.5 ⁇ , ⁇ ⁇ ⁇ , and ⁇ ⁇ 1.5 ⁇ may be labeled to generate a plurality of second teacher labels 52.
  • the learning unit 23 learns the discriminator 28 that detects the diseased region included in the target image based on the learning image 50, the first teacher label 51, and the second teacher label 52.
  • the discriminator 28 discriminates the diseased region of the brain included in the target image.
  • the discriminator 28 is a convolutional neural network (hereinafter, CNN (Convolutional Neural Network)) which is one of multi-layer neural networks in which a plurality of processing layers are hierarchically connected and deep learning is performed. ) And).
  • CNN Convolutional Neural Network
  • a convolutional neural network consists of a plurality of convolutional layers and a pooling layer.
  • the convolution layer performs convolution processing using various kernels on the input image, and outputs a feature map consisting of feature data obtained by the convolution processing.
  • the convolution layer applies the kernel to the entire input image or the feature map output from the processing layer in the previous stage while shifting the attention pixels of the kernel. Further, the convolutional layer applies an activation function such as a sigmoid function to the convolutional value, and outputs a feature map.
  • the pooling layer reduces the amount of data in the feature map by pooling the feature map output by the convolutional layer, and outputs the feature map with the reduced amount of data.
  • FIG. 7 is a conceptual diagram of learning performed in this embodiment.
  • the learning unit 23 inputs the learning image 50 into the CNN 60 serving as the discriminator 28, and causes the CNN 60 to output the discriminant result 57 of the diseased region in the learning image 50.
  • the discrimination result 57 represents the probability that each pixel of the learning image 50 is a diseased region.
  • the learning unit 23 specifies a region consisting of pixels whose probability is equal to or higher than a predetermined threshold value as a learning disease region 58. Then, the learning unit 23 derives the first loss L1 based on the difference between the first teacher label 51 and the discrimination result 57 of the learning disease region 58.
  • the first loss L1 is the difference between the probability and the above threshold value for the pixel determined not to be the diseased region even though it is the diseased region on the first teacher label 51, and is not the diseased region on the first teacher label 51. However, it is the difference between the above threshold value and the probability for the pixel determined to be the diseased area.
  • the learning unit 23 derives the second loss L2 based on the difference between the second teacher label 52 and the determination result 57.
  • the second loss L2 is the difference between the probability and the above threshold value for the pixel determined not to be the diseased region even though it is the diseased region on the second teacher label 52, and is not the diseased region on the second teacher label 52. However, it is the difference between the above threshold value and the probability for the pixel determined to be the diseased area.
  • the learning unit 23 weights and adds the first loss L1 and the second loss L2 as shown in the following equation (1) to derive the total loss L0 for each pixel of the learning image 50.
  • ⁇ in the equation (1) is a weighting coefficient, and takes a value of 0.5, for example, but is not limited to this.
  • the learning unit 23 uses a large number of learning images 50, the first teacher label 51, and the second teacher label 52 so that the total loss L0 is equal to or less than a predetermined threshold value, and the CNN 60, that is, the discriminator 28 is used.
  • the CNN 60 that is, the discriminator 28 is used.
  • the CNN 60 that is, the discriminator 28 is learned.
  • the discriminator 28 outputs the probability that each pixel of the target image is a diseased region of the brain.
  • the learning unit 23 may perform learning a predetermined number of times instead of learning so that the total loss L0 is equal to or less than a predetermined threshold value.
  • the trained model that outputs the probability that the target image is a disease region included in the target image as a discrimination result is Will be built.
  • the trained model is applied to the disease area detection unit as a discriminator 28.
  • the disease area detection unit 24 detects the disease area included in the target image by using the discriminator 28. That is, the disease region detection unit 24 inputs the target image to the discriminator 28, and causes the discriminator 28 to output the probability that each pixel of the target image is the disease region of the brain. Then, the disease area detection unit 24 detects pixels whose probability exceeds a predetermined threshold value as pixels of the disease area included in the target image.
  • the labeling unit 25 labels the diseased area included in the target image based on the detection result by the diseased area detection unit 24. For example, when the target image 70 including the disease region 71 (indicated by the broken line) is input to the disease region detection unit 24 as shown in FIG. 8, the disease region detection unit 24 uses the disease region 71 included in the target image 70. Is detected.
  • the labeling unit 25 labels the diseased area 71 included in the target image 70 to label the diseased area 71. For example, as shown in FIG. 8, a label 72 is given to the diseased area 71 by changing the color of the diseased area, and labeling is performed. It should be noted that in FIG. 8, changing the color is shown by adding hatching. In addition, labeling may be performed by providing a frame surrounding the diseased area.
  • the display control unit 26 displays the labeled target image on the display unit 14.
  • FIG. 9 is a flowchart showing the learning process performed in the present embodiment. It is assumed that a plurality of learning images and the first teacher label are acquired from the image storage server 3 by the information acquisition unit 21 and stored in the storage 13. First, the information acquisition unit 21 acquires a set of learning images 50 and the first teacher label 51 from the plurality of learning images and the first teacher label stored in the storage 13 (step ST1). Next, the teacher label generation unit 22 generates at least one second teacher label 52 whose criteria for identifying the disease region are different from those of the first teacher label 51 (step ST2).
  • the learning unit 23 inputs the learning image 50, the first teacher label 51, and the second teacher label 52 to the CNN 60 to derive the total loss L0, and the total loss L0 is a predetermined threshold value.
  • the CNN 60 that is, the discriminator 28 is learned as follows (step ST3).
  • step ST1 the process returns to step ST1
  • the next learning image 50 and the first teacher label 51 are acquired from the storage 13, and the processes of step ST2 and step ST3 are repeated.
  • the trained discriminator 28 is constructed.
  • FIG. 10 is a flowchart of medical image processing performed in the present embodiment.
  • the information acquisition unit 21 acquires the target image (step ST11), and the disease area detection unit 24 detects the disease area included in the target image (step ST12).
  • the labeling unit 25 labels the diseased area detected from the target image 70 (step ST13).
  • the display control unit 26 displays the labeled target image on the display unit 14 (step ST14), and ends the process.
  • the learning image 50 including the disease area and the first teacher label 51 for specifying the disease area included in the learning image 50 are acquired, and the criterion for specifying the disease area is the first teacher.
  • the discriminator 28 for detecting the diseased region included in the target image 70 is learned. Therefore, the discriminator 28 detects the diseased region from the target image based not only on the criteria of the first teacher label 51 but also on the criteria of the second teacher label 52.
  • the discriminator 28 since the discriminator 28 is learned using a plurality of teacher labels of different criteria, a disease region in which the contrast with the surroundings is unclear, which is likely to be blurred by the doctor, is defined. , The learned discriminator 28 can detect with a certain tolerance. Therefore, in particular, by generating the second teacher label 52 so as to label a range of diseases larger than the first teacher label 51, a wider range than when learning is performed using only the first teacher label 51.
  • the discriminator 28 can be constructed so that the diseased region of the above can be detected. Therefore, according to the present embodiment, it is possible to prevent the diseased area included in the target image from being overlooked.
  • the probability of indicating that the disease region is output by the discriminator 28 of the disease region detection unit 24 is smaller toward the vicinity of the disease region. Therefore, as shown in FIG. 11, labels having different transparency may be given stepwise according to the probability output by the discriminator 28. In addition, in FIG. 11, it is shown by different hatching that the transparency is different. Moreover, not only the color may be changed stepwise, but also the transparency may be gradually changed. Further, the color may be changed instead of the transparency.
  • the second teacher label 52 generated by the teacher label generation unit 22 is substantially the same as the first teacher label 51. Therefore, in the case of the learning image 50 in which the boundary of the diseased region is clear, the second teacher label 52 may not be generated.
  • the teacher label generation unit 22 determines whether or not the standard deviation ⁇ of the CT value in the diseased area is equal to or less than a predetermined threshold value, and if the standard deviation ⁇ is equal to or less than the threshold value. , The second teacher label 52 may not be generated.
  • the learning of the discriminator 28 is performed using only the first teacher label 51, and the first loss L1 is used as the total loss L0.
  • the second teacher label 52 having a size larger than that of the first teacher label 51 is generated, but the second teacher label 52 having a size smaller than that of the first teacher label 51 is generated. You may.
  • the teacher label generation unit 22 generates the second teacher label 52 from the first teacher label 51, but the present invention is not limited to this.
  • the second teacher label 52 may be generated from the learning image 50.
  • the diseased region of the brain is detected by using the target image as a three-dimensional image including the brain, but the present invention is not limited to this.
  • the techniques of the present disclosure can also be applied to detect diseased areas contained in other structures other than the brain, such as lungs, liver, heart and kidneys.
  • a discriminator 28 capable of detecting the tumor contained in the liver without being overlooked can be constructed.
  • a discriminator 28 capable of detecting the lung nodule contained in the lung without being overlooked can be constructed.
  • a three-dimensional medical image is used as the target image, but the present invention is not limited to this.
  • the individual tomographic images that make up the three-dimensional medical image may be used as the target image.
  • a two-dimensional X-ray image acquired by simple X-ray photography may be used as the target image.
  • a learning image and a first teacher label corresponding to the type of the target image are prepared, and the CNN 60, that is, the discriminator 28 is trained.
  • CNN60 is used as the discriminator 28, but the present invention is not limited to this. If it is a neural network composed of a plurality of processing layers, a deep neural network (DNN (Deep Neural Network)), a recurrent neural network (RNN (Recurrent Neural Network)), and the like can be used.
  • DNN Deep Neural Network
  • RNN Recurrent Neural Network
  • a processing unit that executes various processes such as an information acquisition unit 21, a teacher label generation unit 22, a learning unit 23, a disease area detection unit 24, a labeling unit 25, and a display control unit 26.
  • various processors Processors
  • the various processors include a CPU, which is a general-purpose processor that executes software (program) and functions as various processing units, and a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like.
  • Dedicated electricity which is a processor with a circuit configuration specially designed to execute specific processing such as programmable logic device (PLD), ASIC (Application Specific Integrated Circuit), which is a processor whose configuration can be changed. Circuits and the like are included.
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). ) May be configured. Further, a plurality of processing units may be configured by one processor.
  • one processor is configured by combining one or more CPUs and software. There is a form in which this processor functions as a plurality of processing units.
  • SoC System On Chip
  • the various processing units are configured by using one or more of the various processors as a hardware structure.
  • circuitry in which circuit elements such as semiconductor elements are combined can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)

Abstract

情報取得部が、疾病領域を含む学習用画像および学習用画像に含まれる疾病領域を特定する第1教師ラベルを取得する。教師ラベル生成部が、疾病領域を特定する基準が第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成する。学習部が、学習用画像、第1教師ラベルおよび少なくとも1つの第2教師ラベルに基づいて、対象画像に含まれる疾病領域を検出する判別器を学習する。

Description

学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器
 本開示は、医用画像に含まれる疾病領域を抽出するための判別器を学習する学習装置、方法およびプログラム、学習された判別器を用いた医用画像処理装置、方法およびプログラム、並びに学習により構築された判別器に関するものである。
 近年、CT(Computed Tomography)装置およびMRI(Magnetic Resonance Imaging)装置等の医療機器の進歩により、より質の高い高解像度の医用画像を用いての画像診断が可能となってきている。とくに、対象部位を脳とした場合において、CT画像およびMRI画像等を用いた画像診断により、脳梗塞および脳出血等の血管障害を起こしている疾病領域を特定することができるため、特定した結果に基づいて適切な治療が行われるようになってきている。一般に疾病領域はCT画像上において周囲の領域と比較して高いもしくは低いCT値を示す。このため、画像診断においては周囲の領域と比較して高いもしくは低いCT値を示す領域の有無を読影することにより、疾病領域を判別することができる。
 また、読影を行う医師の負担を軽減するために、ディープラーニング等により機械学習がなされたニューラルネットワーク等からなる判別器を用いたCAD(Computer-Aided Diagnosis)により医用画像を解析して、脳内における出血領域および梗塞領域等の疾病領域を検出することも行われている。
 ここで、上述したCADに用いられる判別器の学習に際しては、疾病領域を含む学習用画像とその学習用画像内における疾病領域がラベリングされることにより疾病領域が特定された教師ラベルとを含む教師データが予め用意される。学習用画像の疾病領域に対するラベルの付与は、医師により手作業で行われる。判別器の学習に際しては、学習用画像を判別器に入力し、学習用画像における疾病領域を検出し、検出結果と教師ラベルとの相違を損失として導出し、導出した損失を用いて判別器の学習が行われる。
 一方、判別器を学習するに際して、医師の希望に沿った形の検出精度を調整するための各種手法が提案されている。例えば、特開2018-061771号公報には、判別器の学習により得られる学習パラメータを用いて疾病領域の特徴量を抽出し、疾病領域に関する、ユーザ入力によって新たに追加された特徴ラベルに応じて、特徴ラベルの種類を追加し、学習パラメータを更新する手法が提案されている。また、特開2018-061771号公報においては、特徴ラベルを追加して機械学習を行うことも提案されている。
 ところで、医用画像が非造影CT画像である場合、軽度のくも膜下出血、または超急性期の脳梗塞では、疾患が発生している部分とその周辺部分とのコントラストが不明瞭な場合が多い。このような場合、疾病領域のラベリングを正確に行うことが難しい。また、疾患が発生している部分とその周辺部分とのコントラストが不明瞭な場合、ラベリングを行う医師により、疾病領域であると判断する領域が異なるものとなることが多い。例えば、ある医師がラベリングした疾病領域を他の医師が見たときに、ラベリングされた領域よりも広い領域を疾病領域と判断する場合がある。このような場合、狭くラベリングされた疾病領域を教師ラベルとして用いて判別器の学習を行うと、検出されてもよい領域が検出されるべきでない領域として学習されてしまうため、疾病領域を見逃してしまう可能性がある。
 上記特開2018-061771号公報に記載された手法においては、疾病領域のサイズを特徴ラベルとして追加することが可能である。しかしながら、特開2018-061771号公報に記載された手法は、医師の入力により特徴ラベルが追加される。このため、医師に応じて疾病領域と判断する領域が異なることに起因する、疾病領域を見逃してしまうという問題は解決されない。
 本開示は上記事情に鑑みなされたものであり、疾病領域の見逃しを防止することを目的とする。
 本開示による学習装置は、疾病領域を含む学習用画像および学習用画像に含まれる疾病領域を特定する第1教師ラベルを取得する情報取得部と、
 疾病領域を特定する基準が第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成する教師ラベル生成部と、
 学習用画像、第1教師ラベルおよび少なくとも1つの第2教師ラベルに基づいて、対象画像に含まれる疾病領域を検出する判別器を学習する学習部とを備える。
 なお、本開示による学習装置においては、教師ラベル生成部は、第1教師ラベルを用いて少なくとも1つの第2教師ラベルを生成するものであってもよい。
 また、本開示による学習装置においては、教師ラベル生成部は、学習用画像における第1教師ラベル内の領域の信号値の分布、および第1教師ラベルの位置に基づいて、少なくとも1つの第2教師ラベルを生成するものであってもよい。
 また、本開示による学習装置においては、教師ラベル生成部は、学習用画像における第1教師ラベル内の領域の信号値の代表値を導出し、第1教師ラベルに対応する領域および学習用画像における第1教師ラベル内の領域に隣接する領域の信号値が、代表値に対して予め定められた範囲内にある領域を、第2教師ラベルとして生成するものであってもよい。
 「代表値」としては、例えば平均値、重み付け平均値、中央値、最大値および最小値等を用いることができる。
 また、本開示による学習装置においては、学習部は、判別器に学習用画像を入力することにより学習用疾病領域を検出し、学習用疾病領域と第1教師ラベルとの第1の損失、および学習用疾病領域と第2教師ラベルとの第2の損失を導出し、第1の損失および第2の損失からトータル損失を導出し、トータル損失を判別器の学習に使用することにより、判別器を学習するものであってもよい。
 また、本開示による学習装置においては、学習用画像は脳を含み、疾病領域は脳疾患の領域であってもよい。
 本開示による医用画像処理装置は、本開示による学習装置により学習された判別器が適用されてなり、対象医用画像の入力により、対象医用画像に含まれる疾病領域を検出する疾病領域検出部を備える。
 なお、本開示による医用画像処理装置においては、対象医用画像から検出された疾病領域にラベリングを行うラベリング部と、
 ラベリングされた対象医用画像を表示部に表示する表示制御部とをさらに備えるものであってもよい。
 本開示による判別器は、本開示による学習装置により学習され、対象医用画像の入力により、対象医用画像に含まれる疾病領域を検出する。
 本開示による学習方法は、疾病領域を含む学習用画像および学習用画像に含まれる疾病領域を特定する第1教師ラベルを取得し、
 疾病領域を特定する基準が第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成し、
 学習用画像、第1教師ラベルおよび少なくとも1つの第2教師ラベルに基づいて、対象画像に含まれる疾病領域を検出する判別器を学習する。
 本開示による医用画像処理方法は、本開示による学習方法により学習された判別器を用いて、対象医用画像の入力により、対象医用画像に含まれる疾病領域を検出する。
 なお、本開示による学習方法および医用画像処理方法をコンピュータに実行させるためのプログラムとして提供してもよい。
 本開示による他の学習装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
 疾病領域を含む学習用画像および学習用画像に含まれる疾病領域を特定する第1教師ラベルを取得し、
 疾病領域を特定する基準が第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成し、
 学習用画像、第1教師ラベルおよび少なくとも1つの第2教師ラベルに基づいて、対象画像に含まれる疾病領域を検出する判別器を学習する処理を実行する。
 本開示による他の医用画像処理装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
 本開示による学習方法により学習された判別器を用いて、対象医用画像の入力により、対象医用画像に含まれる疾病領域を検出する処理を実行する。
 本開示によれば、対象画像に含まれる疾病領域の見逃しを防止できる。
本開示の実施形態による医用画像処理装置を適用した、診断支援システムの概要を示すハードウェア構成図 本開示の実施形態による医用画像処理装置の概略構成を示す図 脳画像と教師ラベルを示す図 脳画像と教師ラベルを示す図 学習用画像、第1教師ラベルおよび第2教師ラベルを示す図 疾病領域におけるCT値の分布を示す図 本実施形態において行われる学習の概念図 対象画像からの疾病領域の検出を説明するための図 本実施形態において行われる学習処理を示すフローチャート 本実施形態において行われる医用画像処理を示すフローチャート 対象画像からの疾病領域の検出を説明するための図
 以下、図面を参照して本開示の実施形態について説明する。図1は、本開示の実施形態による学習装置および医用画像処理装置を適用した、診断支援システムの概要を示すハードウェア構成図である。図1に示すように、診断支援システムでは、本実施形態による学習装置および医用画像処理装置(以下、医用画像処理装置とする)1、3次元画像撮影装置2、および画像保管サーバ3が、ネットワーク4を経由して通信可能な状態で接続されている。
 3次元画像撮影装置2は、被検体の診断対象となる部位を撮影することにより、その部位を表す3次元画像を生成する装置であり、具体的には、CT装置、MRI装置、およびPET(Positron Emission Tomography)装置等である。3次元画像撮影装置2により生成された3次元画像は画像保管サーバ3に送信され、保存される。なお、本実施形態においては、被検体である患者の診断対象部位は脳であり、3次元画像撮影装置2はCT装置であり、被検体の脳を含む頭部のCT画像を対象画像として生成する。また、後述するように学習に使用する学習用画像は脳のCT画像であり、学習用画像における疾病領域がラベリングされて教師ラベルが生成されているものとする。
 画像保管サーバ3は、各種データを保存して管理するコンピュータであり、大容量外部記憶装置およびデータベース管理用ソフトウェアを備えている。画像保管サーバ3は、有線あるいは無線のネットワーク4を介して他の装置と通信を行い、画像データ等を送受信する。具体的には3次元画像撮影装置2で生成された対象画像の画像データを含む各種データをネットワーク経由で取得し、大容量外部記憶装置等の記録媒体に保存して管理する。なお、画像データの格納形式およびネットワーク4経由での各装置間の通信は、DICOM(Digital Imaging and Communication in Medicine)等のプロトコルに基づいている。
 医用画像処理装置1は、1台のコンピュータに、本実施形態の学習プログラムおよび医用画像処理プログラムをインストールしたものである。コンピュータは、診断を行う医師が直接操作するワークステーションまたはパーソナルコンピュータでもよいし、それらとネットワークを介して接続されたサーバコンピュータでもよい。学習プログラムおよび医用画像処理プログラムは、ネットワークに接続されたサーバコンピュータの記憶装置、もしくはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じてコンピュータにダウンロードされ、インストールされる。または、DVD(Digital Versatile Disc)あるいはCD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。
 図2は、コンピュータに学習プログラムおよび医用画像処理プログラムをインストールすることにより実現される医用画像処理装置の概略構成を示す図である。図2に示すように、医用画像処理装置1は、標準的なワークステーションの構成として、CPU(Central Processing Unit)11、メモリ12およびストレージ13を備えている。また、医用画像処理装置1には、液晶ディスプレイ等の表示部14、並びにキーボードおよびマウス等の入力部15が接続されている。
 ストレージ13はハードディスクドライブ等からなり、ネットワーク4を経由して画像保管サーバ3から取得した処理対象となる対象画像、後述するようにニューラルネットワークの学習を行うための学習用画像、学習用画像に対する教師ラベル、および処理に必要な情報を含む各種情報が記憶されている。
 また、メモリ12には、学習プログラムおよび医用画像処理プログラムが記憶されている。学習プログラムは、CPU11に実行させる処理として、疾病領域を含む学習用画像および学習用画像に含まれる疾病領域を特定する第1教師ラベルを取得する情報取得処理、疾病領域を特定する基準が第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成する教師ラベル生成処理、並びに学習用画像、第1教師ラベルおよび少なくとも1つの第2教師ラベルに基づいて、対象画像に含まれる疾病領域を検出する判別器を学習する学習処理を規定する。
 医用画像処理プログラムは、CPU11に実行させる処理として、情報取得処理により取得した疾病領域の検出の対象となる対象画像に含まれる疾病領域を検出する疾病領域検出処理、検出された疾病領域にラベリングを行うラベリング処理、およびラベリングされた対象画像を表示部14に表示する表示制御処理を規定する。
 そして、CPU11が学習プログラムおよび医用画像処理プログラムに従いこれらの処理を実行することで、コンピュータは、情報取得部21、教師ラベル生成部22、学習部23、疾病領域検出部24、ラベリング部25および表示制御部26として機能する。
 情報取得部21は、ネットワークに接続されたインターフェース(不図示)を介して、画像保管サーバ3から、学習用画像および学習用画像に含まれる疾病領域を特定する第1教師ラベルを取得する。また、処理の対象となる対象画像も取得する。なお、学習用画像、第1教師ラベルおよび対象画像が既にストレージ13に記憶されている場合には、情報取得部21は、ストレージ13から学習用画像、第1教師ラベルおよび対象画像を取得するようにしてもよい。
 ここで、脳のCT画像において、脳出血等の疾病領域は、周囲の領域と比較して高いもしくは低いCT値を示す。例えば、図3に示すような脳画像30の場合、疾病領域31が他の領域と比較して高いCT値を示している。このような場合、疾病領域31とその周囲の領域とのコントラストが明瞭であるため、誰が作成しても教師ラベル32は脳画像30における疾病領域31とほぼ一致するものとなる。
 一方、図4に示す脳画像40のように、軽度のくも膜下出血、または超急性期の脳梗塞のような疾患では、疾病領域41とその周辺領域とのコントラストが不明瞭な場合が多い。なお、図4においてはコントラストが不明瞭であることを破線で示している。このような場合、どこまでを疾病領域と見なしてラベリングを行うかが、ラベリングを行う医師に応じて異なる。例えば、ある医師は小さめのサイズの教師ラベル42を付与するが、他の医師は大きめのサイズの教師ラベル43を付与する事態が生じうる。
 教師ラベル生成部22は、疾病領域を特定する基準が第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成する。このため、教師ラベル生成部22は、図5に示すように取得した学習用画像50において、第1教師ラベル51が付与された領域55内のCT値の代表値を導出し、第1教師ラベル51に対応する領域および学習用画像50における第1教師ラベル51内の領域に隣接する領域の信号値が、代表値に対して予め定められた範囲内にある領域を、第2教師ラベルとして生成する。
 なお、本実施形態においては、教師ラベル生成部22は、領域55内のCT値の平均値μを代表値として導出するものとするが、これに限定されるものではない。中央値、重み付け平均値、最大値または最小値等を代表値として用いてもよい。また、本実施形態においては、教師ラベル生成部22は、領域55内のCT値の標準偏差σおよび学習用画像50における第1教師ラベル51により特定される領域の重心位置56を導出する。
 教師ラベル生成部22は、学習用画像50における重心位置56から予め定められた距離内にある画素のうち、μ±σの範囲のCT値を有する画素からなる領域をラベリングすることにより、図5に示すように第2教師ラベル52を生成する。ここで、図6は疾病領域におけるCT値の分布を示す図である。図6に示すように、疾病領域のCT値はその周囲のCT値と比較すると大きい値となり、疾病領域の周辺ほどCT値は小さくなり、疾病領域の周囲の領域のCT値と徐々に一致するように分布する。このため、図6に示す矢印Aに示す範囲に第1教師ラベルが付与されていたとすると、μ-σのCT値を有する画素からなる領域をラベリングすることにより、矢印Bに示すように、第1教師ラベル51よりも大きいサイズの第2教師ラベル52を生成することができる。一方、μ+σのCT値を有する画素からなる領域をラベリングすることにより、矢印Cに示すように、第1教師ラベル51よりも小さいサイズの第2教師ラベル52を生成することができる。
 なお、学習用画像50における疾病領域の境界が不明瞭な場合、図5に示すように、第1教師ラベル51とは異なる第2教師ラベル52が生成される。一方、図3に示すように、疾病領域の境界が明瞭な場合、疾病領域内のCT値は一定となるため、標準偏差σは実質的に0となる。このような場合、教師ラベル生成部22が生成する第2教師ラベル52は、実質的に第1教師ラベル51と同一となる。
 また、本実施形態においては、第1教師ラベル51から1つの第2教師ラベル52を生成するものとするが、複数の第2の教示ラベルを生成してもよい。この場合、例えば、μ±0.5σ、μ±σ、μ±1.5σ等のそれぞれのCT値を有する画素からなる領域をラベリングして複数の第2教師ラベル52を生成すればよい。
 学習部23は、学習用画像50、第1教師ラベル51および第2教師ラベル52に基づいて、対象画像に含まれる疾病領域を検出する判別器28を学習する。判別器28は、対象画像に含まれる脳の疾病領域を判別する。本実施形態においては、判別器28は、複数の処理層が階層的に接続され、深層学習(ディープラーニング)がなされた多層ニューラルネットワークの1つである、畳み込みニューラルネットワーク(以下CNN(Convolutional Neural Network)とする)であるものとする。
 畳み込みニューラルネットワークは、複数の畳み込み層およびプーリング層からなる。畳み込み層は、入力される画像に対して各種カーネルを用いた畳み込み処理を行い、畳み込み処理により得られた特徴量データからなる特徴量マップを出力する。カーネルは、n×n画素サイズ(例えばn=3)を有し、各要素に重みが設定されている。具体的には入力された画像のエッジを強調する微分フィルタのような重みが設定されている。畳み込み層は、カーネルの注目画素をずらしながら、入力された画像または前段の処理層から出力された特徴量マップの全体にカーネルを適用する。さらに、畳み込み層は、畳み込みされた値に対して、シグモイド関数等の活性化関数を適用し、特徴量マップを出力する。
 プーリング層は、畳み込み層が出力した特徴量マップをプーリングすることにより、特徴量マップのデータ量を低減して、データ量が低減された特徴量マップを出力する。
 図7は本実施形態において行われる学習の概念図である。図7に示すように、学習部23は、学習用画像50を判別器28となるCNN60に入力し、CNN60から学習用画像50における疾病領域の判別結果57を出力させる。判別結果57は、学習用画像50の各画素が疾病領域であることの確率を表すものとなる。学習部23は、確率が予め定められたしきい値以上となる画素からなる領域を、学習用疾病領域58に特定する。そして、学習部23は、第1教師ラベル51と学習用疾病領域58の判別結果57との相違に基づいて、第1損失L1を導出する。第1損失L1は、第1教師ラベル51において疾病領域であるのに、疾病領域でないと判別された画素についての、確率と上記しきい値との差、および第1教師ラベル51において疾病領域でないのに疾病領域であると判別された画素についての、上記しきい値と確率との差である。
 また、学習部23は、第2教師ラベル52と判別結果57との相違に基づいて、第2損失L2を導出する。第2損失L2は、第2教師ラベル52において疾病領域であるのに、疾病領域でないと判別された画素についての、確率と上記しきい値との差、および第2教師ラベル52において疾病領域でないのに疾病領域であると判別された画素についての、上記しきい値と確率との差である。
 さらに、学習部23は、第1損失L1および第2損失L2を下記の式(1)に示すように重み付け加算して、学習用画像50の各画素についてのトータル損失L0を導出する。なお、式(1)のαは重み係数であり、例えば0.5の値をとるが、これに限定されるものではない。
 L0=L1+α・L2  (1)
 そして、学習部23はトータル損失L0が予め定められたしきい値以下となるように、多数の学習用画像50、第1教師ラベル51および第2教師ラベル52を用いて、CNN60すなわち判別器28を学習する。具体的には、トータル損失L0が予め定められたしきい値以下となるように、CNN60を構成する畳み込み層の数、プーリング層の数、畳み込み層におけるカーネルの係数およびカーネルの大きさ等を導出することにより、CNN60すなわち判別器28の学習を行う。これにより、学習された判別器28に対象画像が入力されると、判別器28は、対象画像の各画素が脳の疾病領域であることの確率を出力するものとなる。なお、学習部23は、トータル損失L0が予め定められたしきい値以下となるように学習を行うことに代えて、予め定められた回数の学習を行うものであってもよい。
 上記のように学習部23がCNN60すなわち判別器28の学習を行うことにより、対象画像が入力されると、対象画像に含まれる疾病領域であることの確率を判別結果として出力する学習済みモデルが構築される。学習済みモデルが判別器28として疾病領域検出部に適用される。
 疾病領域検出部24は、対象画像が入力されると、判別器28を用いて、対象画像に含まれる疾病領域を検出する。すなわち、疾病領域検出部24は、対象画像を判別器28に入力し、判別器28から対象画像の各画素が脳の疾病領域であることの確率を出力させる。そして、疾病領域検出部24は、確率が予め定められたしきい値を超えた画素を、対象画像に含まれる疾病領域の画素として検出する。
 ラベリング部25は、疾病領域検出部24による検出結果に基づいて、対象画像に含まれる疾病領域のラベリングを行う。例えば、図8に示すように疾病領域71(破線で示す)が含まれる対象画像70が疾病領域検出部24に入力された場合、疾病領域検出部24は、対象画像70に含まれる疾病領域71を検出する。ラベリング部25は、対象画像70に含まれる疾病領域71にラベルを付与することにより、ラベリングを行う。例えば、図8に示すように、疾病領域の色を変化させることにより疾病領域71にラベル72を付与して、ラベリングを行う。なお、図8においては色を変化させることをハッチングを付与することにより示している。また、疾病領域を囲む枠を付与することにより、ラベリングを行うようにしてもよい。
 表示制御部26は、ラベリングされた対象画像を表示部14に表示する。
 次いで、本実施形態において行われる処理について説明する。図9は本実施形態において行われる学習処理を示すフローチャートである。なお、複数の学習用画像および第1教師ラベルが画像保管サーバ3から情報取得部21により取得されて、ストレージ13に保存されているものとする。まず、情報取得部21がストレージ13に保存された複数の学習用画像および第1教師ラベルから1組の学習用画像50および第1教師ラベル51を取得する(ステップST1)。次いで、教師ラベル生成部22が、疾病領域を特定する基準が第1教師ラベル51とは異なる少なくとも1つの第2教師ラベル52を生成する(ステップST2)。
 そして、学習部23が、CNN60に対して、学習用画像50、第1教師ラベル51および第2教師ラベル52を入力してトータル損失L0を導出し、トータル損失L0が予め定められたしきい値以下となるように、CNN60すなわち判別器28を学習する(ステップST3)。
 そして、ステップST1にリターンし、次の学習用画像50および第1教師ラベル51をストレージ13から取得して、ステップST2およびステップST3の処理を繰り返す。これにより、学習済みの判別器28が構築される。
 次いで、本実施形態において行われる疾病領域を検出する医用画像処理について説明する。図10は本実施形態において行われる医用画像処理のフローチャートである。情報取得部21が対象画像を取得し(ステップST11)、疾病領域検出部24が対象画像に含まれる疾病領域を検出する(ステップST12)。次いで、ラベリング部25が、対象画像70から検出された疾病領域のラベリングを行う(ステップST13)。そして、表示制御部26がラベリングされた対象画像を表示部14に表示し(ステップST14)、処理を終了する。
 このように、本実施形態においては、疾病領域を含む学習用画像50および学習用画像50に含まれる疾病領域を特定する第1教師ラベル51を取得し、疾病領域を特定する基準が第1教師ラベル51とは異なる少なくとも1つの第2教師ラベル52を生成する。そして、学習用画像50、第1教師ラベル51および少なくとも1つの第2教師ラベル52に基づいて、対象画像70に含まれる疾病領域を検出するための判別器28を学習するようにした。このため、判別器28は、第1教師ラベル51の基準のみならず、第2教師ラベル52の基準にも基づいて、対象画像から疾病領域を検出するものとなる。これにより、本実施形態においては、異なる基準の複数の教師ラベルを用いて判別器28が学習されることから、医師によって判断がぶれる可能性が高い、周囲とのコントラストが不明瞭な疾病領域を、学習された判別器28によりある程度の許容範囲を持って検出することができる。このため、とくに第1教師ラベル51よりも大きい範囲の疾病をラベリングするように第2教師ラベル52を生成することにより、第1教師ラベル51のみを使用して学習を行う場合よりも、広い範囲の疾病領域を検出できるように判別器28を構築することができる。したがって、本実施形態によれば、対象画像に含まれる疾病領域の見逃しを防止できる。
 なお、上記実施形態において、疾病領域検出部24の判別器28が出力する疾病領域であることを表す確率は、疾病領域の周辺ほど小さいものとなる。このため、図11に示すように、判別器28が出力した確率に応じて段階的に透明度が異なるラベルを付与するようにしてもよい。なお、図11においては、透明度が異なることを異なるハッチングにより示している。また、段階的に色を変更するのみならず、徐々に透明度を変更するようにしてもよい。また、透明度に代えて、色を変更してもよい。
 また、上記実施形態において、図3に示すように、疾病領域の境界が明瞭な学習用画像50の場合、疾病領域内のCT値は一定となるため、標準偏差σは実質的に0となる。このような場合、教師ラベル生成部22が生成する第2教師ラベル52は、実質的に第1教師ラベル51と同一となる。このため、疾病領域の境界が明瞭な学習用画像50の場合、第2教師ラベル52を生成しないようにしてもよい。例えば、教師ラベル生成部22において、疾病領域内のCT値の標準偏差σが予め定められたしきい値以下であるか否かを判定し、標準偏差σがしきい値以下である場合には、第2教師ラベル52を生成しないようにしてもよい。この場合、判別器28の学習は第1教師ラベル51のみを用いて行われ、第1損失L1がトータル損失L0として使用される。
 また、上記実施形態においては、第1教師ラベル51よりも大きいサイズの第2教師ラベル52を生成しているが、第1教師ラベル51よりも小さいサイズの第2教師ラベル52を生成するようにしてもよい。
 また、上記実施形態においては、教師ラベル生成部22が、第1教師ラベル51から第2教師ラベル52を生成しているが、これに限定されるものではない。例えば学習用画像50から第2教師ラベル52を生成してもよい。
 また、上記実施形態においては、対象画像を脳を含む3次元画像として、脳の疾病領域を検出しているが、これに限定されるものではない。脳以外の肺、肝臓、心臓および腎臓等の他の構造物に含まれる疾病領域を検出する場合にも、本開示の技術を適用することができる。例えば、肝臓を含む医用画像を学習用画像、肝臓の腫瘤をラベリングした第1教師ラベルを用いることにより、肝臓に含まれる腫瘤を見逃すことなく検出できる判別器28を構築できる。また、肺を含む医用画像を学習用画像、肺結節をラベリングした第1教師ラベルを用いることにより、肺に含まれる肺結節を見逃すことなく検出できる判別器28を構築できる。
 また、上記実施形態においては、対象画像として3次元の医用画像を用いているが、これに限定されるものではない。3次元の医用画像を構成する個々の断層画像を対象画像として用いてもよい。また、単純X線撮影により取得された2次元のX線画像を対象画像として用いてもよい。この場合、対象画像の種類に応じた学習用画像および第1教師ラベルが用意されてCNN60すなわち判別器28の学習が行われることとなる。
 また、上記実施形態においては、判別器28としてCNN60を用いているが、これに限定されるものではない。複数の処理層から構成されるニューラルネットワークであれば、ディープニューラルネットワーク(DNN(Deep Neural Network))およびリカレントニューラルネットワーク(RNN(Recurrent Neural Network))等を用いることができる。
 また、上記実施形態において、例えば、情報取得部21、教師ラベル生成部22、学習部23、疾病領域検出部24、ラベリング部25および表示制御部26といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(Circuitry)を用いることができる。
   1  疾病領域検出装置
   2  3次元画像撮影装置
   3  画像保管サーバ
   4  ネットワーク
   11  CPU
   12  メモリ
   13  ストレージ
   14  ディスプレイ
   15  入力部
   21  情報取得部
   22  教師ラベル生成部
   23  学習部
   24  疾病領域検出部
   25  ラベリング部
   26  表示制御部
   28  判別器
   30,40  脳画像
   31,41  疾病領域
   42,43  ラベル
   32,45,46  教師ラベル
   50  学習用画像
   51  第1教師ラベル
   52  第2教師ラベル
   55  疾病領域
   56  重心
   57  判別結果
   60  CNN
   70  対象画像
   71  疾病領域
   72,73  ラベル

Claims (13)

  1.  疾病領域を含む学習用画像および該学習用画像に含まれる前記疾病領域を特定する第1教師ラベルを取得する情報取得部と、
     前記疾病領域を特定する基準が前記第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成する教師ラベル生成部と、
     前記学習用画像、前記第1教師ラベルおよび前記少なくとも1つの第2教師ラベルに基づいて、対象画像に含まれる疾病領域を検出する判別器を学習する学習部とを備えた学習装置。
  2.  前記教師ラベル生成部は、前記第1教師ラベルを用いて前記少なくとも1つの第2教師ラベルを生成する請求項1に記載の学習装置。
  3.  前記教師ラベル生成部は、前記学習用画像における前記第1教師ラベル内の領域の信号値の分布、および前記第1教師ラベルの位置に基づいて、前記少なくとも1つの第2教師ラベルを生成する請求項2に記載の学習装置。
  4.  前記教師ラベル生成部は、前記学習用画像における前記第1教師ラベル内の領域の信号値の代表値を導出し、前記第1教師ラベルに対応する領域および前記学習用画像における前記第1教師ラベル内の領域に隣接する領域の信号値が、前記代表値に対して予め定められた範囲内にある領域を、前記第2教師ラベルとして生成する請求項3に記載の学習装置。
  5.  前記学習部は、前記判別器に前記学習用画像を入力することにより学習用疾病領域を検出し、該学習用疾病領域と前記第1教師ラベルとの第1の損失、および前記学習用疾病領域と前記第2教師ラベルとの第2の損失を導出し、前記第1の損失および前記第2の損失からトータル損失を導出し、該トータル損失を前記判別器の学習に使用することにより、前記判別器を学習する請求項1から4のいずれか1項に記載の学習装置。
  6.  前記学習用画像は脳を含み、前記疾病領域は脳疾患の領域である請求項1から5のいずれか1項に記載の学習装置。
  7.  請求項1から6のいずれか1項に記載の学習装置により学習された判別器が適用されてなり、対象医用画像の入力により、該対象医用画像に含まれる疾病領域を検出する疾病領域検出部を備えた医用画像処理装置。
  8.  前記対象医用画像から検出された前記疾病領域にラベリングを行うラベリング部と、
     前記ラベリングされた対象医用画像を表示部に表示する表示制御部とをさらに備えた請求項7に記載の医用画像処理装置。
  9.  請求項1から6のいずれか1項に記載の学習装置により学習され、対象医用画像の入力により、該対象医用画像に含まれる疾病領域を検出する判別器。
  10.  疾病領域を含む学習用画像および該学習用画像に含まれる前記疾病領域を特定する第1教師ラベルを取得し、
     前記疾病領域を特定する基準が前記第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成し、
     前記学習用画像、前記第1教師ラベルおよび前記少なくとも1つの第2教師ラベルに基づいて、対象画像に含まれる疾病領域を検出する判別器を学習する学習方法。
  11.  請求項10に記載の学習方法により学習された判別器を用いて、対象医用画像の入力により、該対象医用画像に含まれる疾病領域を検出する医用画像処理方法。
  12.  疾病領域を含む学習用画像および該学習用画像に含まれる前記疾病領域を特定する第1教師ラベルを取得する手順と、
     前記疾病領域を特定する基準が前記第1教師ラベルとは異なる少なくとも1つの第2教師ラベルを生成する手順と、
     前記学習用画像、前記第1教師ラベルおよび前記少なくとも1つの第2教師ラベルに基づいて、対象画像に含まれる疾病領域を検出する判別器を学習する手順とをコンピュータに実行させる学習プログラム。
  13.  請求項10に記載の学習方法により学習された判別器を用いて、対象医用画像の入力により、該対象医用画像に含まれる疾病領域を検出する手順をコンピュータに実行させる医用画像処理プログラム。
PCT/JP2020/025399 2019-06-28 2020-06-26 学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器 WO2020262681A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021528288A JP7170868B2 (ja) 2019-06-28 2020-06-26 学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器
US17/553,641 US20220108451A1 (en) 2019-06-28 2021-12-16 Learning device, method, and program, medical image processing apparatus, method, and program, and discriminator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019121015 2019-06-28
JP2019-121015 2019-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/553,641 Continuation US20220108451A1 (en) 2019-06-28 2021-12-16 Learning device, method, and program, medical image processing apparatus, method, and program, and discriminator

Publications (1)

Publication Number Publication Date
WO2020262681A1 true WO2020262681A1 (ja) 2020-12-30

Family

ID=74060193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025399 WO2020262681A1 (ja) 2019-06-28 2020-06-26 学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器

Country Status (3)

Country Link
US (1) US20220108451A1 (ja)
JP (1) JP7170868B2 (ja)
WO (1) WO2020262681A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061771A (ja) * 2016-10-14 2018-04-19 株式会社日立製作所 画像処理装置、及び画像処理方法
JP2019509813A (ja) * 2016-03-16 2019-04-11 ハートフロー, インコーポレイテッド 冠動脈において健全な管腔径を推定し狭窄を定量化するためのシステム及び方法
US20190192096A1 (en) * 2017-12-21 2019-06-27 Beijing Curacloud Technology Co., Ltd. Method and device for generating anatomical labels for a physiological tree structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146358A1 (ja) * 2018-01-24 2019-08-01 富士フイルム株式会社 学習システム、方法及びプログラム
US11521742B2 (en) * 2018-07-18 2022-12-06 SCA Robotics Methods of implementing an artificial intelligence based neuroradiology platform for neurological tumor identification and for T-Cell therapy initiation and tracking and related precision medical treatment predictive modeling
US11830195B2 (en) * 2018-08-06 2023-11-28 Shimadzu Corporation Training label image correction method, trained model creation method, and image analysis device
JPWO2020174862A1 (ja) * 2019-02-28 2021-12-23 ソニーグループ株式会社 情報処理装置、情報処理方法および情報処理システム
JP7231709B2 (ja) * 2019-03-28 2023-03-01 オリンパス株式会社 情報処理システム、内視鏡システム、情報処理方法及び学習済みモデルの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509813A (ja) * 2016-03-16 2019-04-11 ハートフロー, インコーポレイテッド 冠動脈において健全な管腔径を推定し狭窄を定量化するためのシステム及び方法
JP2018061771A (ja) * 2016-10-14 2018-04-19 株式会社日立製作所 画像処理装置、及び画像処理方法
US20190192096A1 (en) * 2017-12-21 2019-06-27 Beijing Curacloud Technology Co., Ltd. Method and device for generating anatomical labels for a physiological tree structure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN, JIANGFAN ET AL.: "Deep Self-Learning From Noisy Labels", DEEP SELF-LEARNING FROM NOISY LABELS, 6 August 2019 (2019-08-06), XP033723138 *
NATARAJAN, NAGARAJAN ET AL.: "Leaning with Noisy Labels", NIPS'13: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS, vol. 1, 2013, pages 1196 - 1204, XP055603359 *
SHIMABARA YUKI: "Development of cerebral aneurysm detection software utilizing deep learning", MEDICAL IMAGING AND INFORMATION SCIENCES, vol. 34, no. 2, 2017, pages 103 - 104 *

Also Published As

Publication number Publication date
JP7170868B2 (ja) 2022-11-14
JPWO2020262681A1 (ja) 2020-12-30
US20220108451A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP7018856B2 (ja) 医用画像処理装置、方法およびプログラム
JP7339270B2 (ja) 医用画像処理装置、方法およびプログラム
US11244455B2 (en) Apparatus, method, and program for training discriminator discriminating disease region, discriminator discriminating disease region, disease region discrimination apparatus, and disease region discrimination program
JP7129869B2 (ja) 疾患領域抽出装置、方法及びプログラム
US11893729B2 (en) Multi-modal computer-aided diagnosis systems and methods for prostate cancer
EP3479349B1 (en) Change detection in medical images
US11049251B2 (en) Apparatus, method, and program for learning discriminator discriminating infarction region, discriminator for discriminating infarction region, and apparatus, method, and program for discriminating infarction region
JP2022018060A (ja) 医用情報処理装置及び医用情報処理プログラム
WO2019216125A1 (ja) 梗塞領域を判別する判別器の学習装置、方法およびプログラム、梗塞領域を判別する判別器、並びに梗塞領域判別装置、方法およびプログラム
WO2019102917A1 (ja) 読影医決定装置、方法およびプログラム
JP7479546B2 (ja) 表示装置、方法およびプログラム
JP7007469B2 (ja) 医療文書作成支援装置、方法およびプログラム、学習済みモデル、並びに学習装置、方法およびプログラム
JP7109345B2 (ja) 優先度判定装置、方法およびプログラム
WO2020262681A1 (ja) 学習装置、方法およびプログラム、医用画像処理装置、方法およびプログラム、並びに判別器
EP3965117A1 (en) Multi-modal computer-aided diagnosis systems and methods for prostate cancer
WO2020241857A1 (ja) 医療文書作成装置、方法およびプログラム、学習装置、方法およびプログラム、並びに学習済みモデル
US11176413B2 (en) Apparatus, method, and program for training discriminator discriminating disease region, discriminator discriminating disease region, disease region discrimination apparatus, and disease region discrimination program
WO2020110520A1 (ja) 類似度決定装置、方法およびプログラム
WO2022137855A1 (ja) 情報処理装置、方法およびプログラム
WO2021060461A1 (ja) 画像処理装置、方法およびプログラム
JP7342120B2 (ja) 学習装置、方法およびプログラム、クラス分類装置、方法およびプログラム、並びに学習済みモデル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831468

Country of ref document: EP

Kind code of ref document: A1