JP2019505829A - Method for polishing optical surface and optical element - Google Patents

Method for polishing optical surface and optical element Download PDF

Info

Publication number
JP2019505829A
JP2019505829A JP2018528789A JP2018528789A JP2019505829A JP 2019505829 A JP2019505829 A JP 2019505829A JP 2018528789 A JP2018528789 A JP 2018528789A JP 2018528789 A JP2018528789 A JP 2018528789A JP 2019505829 A JP2019505829 A JP 2019505829A
Authority
JP
Japan
Prior art keywords
polishing
optical surface
area
optical
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018528789A
Other languages
Japanese (ja)
Other versions
JP2019505829A5 (en
Inventor
ユルゲン ホフマン
ホフマン ユルゲン
フィシャル ロバート
フィシャル ロバート
スティッケル フランツ−ヨーゼフ
スティッケル フランツ−ヨーゼフ
マテナ マンフレッド
マテナ マンフレッド
セイトナー マーク
セイトナー マーク
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2019505829A publication Critical patent/JP2019505829A/en
Publication of JP2019505829A5 publication Critical patent/JP2019505829A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/10Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
    • B24B31/112Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using magnetically consolidated grinding powder, moved relatively to the workpiece under the influence of pressure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/061Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements characterised by a multilayer structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明は、自由曲面として具現された光学面(2)と、光学面(2)の側方に隣接する区域(3)とを有する基板(1)を備え、光学面(2)の側方に隣接する区域(3)は、各場所(P)で局所非点収差(Δz)の形態の研磨基準の閾値Δzを超えず、閾値は、Δz=(kmax−kmin)/8Dにより与えられ、式中、kminは区域(3)の各場所(P)での最小局所曲率を示し、kmaxは区域(3)の各場所(P)での最大局所曲率を示し、D=2500mm、好ましくはD=900mm、特にD=100mmが当てはまる光学素子(10)に関する。本発明は、研磨工具(6)により光学面(2)を研磨する方法であって、自由曲面として具現された光学面(2)と光学面(2)の側方に隣接する区域(3)とにわたって、研磨工具(6)の研磨面(7)を動かすことにより、光学面(2)を研磨するステップであり、区域(3)の各場所(P)で研磨基準(Δz)の閾値(Δz)を超えないように、区域(3)の形状を研磨工具(6)に、特に該研磨工具(6)の研磨面(7)の形状に適合させ、研磨基準(Δz)は、光学面(2)に隣接する区域(3)にわたって研磨工具(6)を動かすことにより作製された光学面(2)における研磨誤差の尺度を表すステップを含む方法にも関する。
【選択図】図2
The invention comprises a substrate (1) having an optical surface (2) embodied as a free-form surface and an area (3) adjacent to the side of the optical surface (2), the side of the optical surface (2). The area (3) adjacent to the threshold does not exceed the polishing reference threshold Δz S in the form of local astigmatism (Δz) at each location (P), which is Δz S = (k max −k min ) / 8D. given by 2, wherein, k min denotes the minimum local curvature at each location (P) of the zone (3), k max represents the maximum local curvature at each location (P) of the zone (3), It relates to an optical element (10) in which D 2 = 2500 mm 2 , preferably D 2 = 900 mm 2 , in particular D 2 = 100 mm 2 applies. The present invention is a method for polishing an optical surface (2) with a polishing tool (6), the optical surface (2) embodied as a free-form surface and an area (3) adjacent to the side of the optical surface (2). And polishing the optical surface (2) by moving the polishing surface (7) of the polishing tool (6), and a threshold (Δz) of the polishing reference (Δz) at each location (P) of the zone (3) The shape of the zone (3) is adapted to the polishing tool (6), in particular to the shape of the polishing surface (7) of the polishing tool (6) so that Δz S ) is not exceeded, and the polishing reference (Δz) is optical It also relates to a method comprising the step of representing a measure of the polishing error in the optical surface (2) produced by moving the polishing tool (6) over the area (3) adjacent to the surface (2).
[Selection] Figure 2

Description

本発明は、研磨工具により光学面を研磨する方法及び光学素子に関する。   The present invention relates to a method for polishing an optical surface with a polishing tool and an optical element.

[関連出願の参照]
本願は、2015年12月2日付けの独国特許出願第10 2015 223 983.7号の優先権を主張し、上記出願の全開示を参照により本願の文脈に援用する。
[Reference to related applications]
This application claims the priority of German Patent Application No. 10 2015 223 983.7 dated December 2, 2015, the entire disclosure of which is incorporated by reference into the context of the present application.

特許文献1は、基板の縁付近まで延びる光学面を有する光学素子を製造する方法を開示している。光学素子を製造するために、光学面の縁の外に延びる主面を有する基板を最初に用意する。基板はまた、主面が光学面外に延びている領域を研磨される。研磨後に、光学面外に延びる表面の一部を含む基板材料が除去される。   Patent Document 1 discloses a method of manufacturing an optical element having an optical surface extending to the vicinity of the edge of a substrate. In order to manufacture an optical element, a substrate having a major surface extending outside the edge of the optical surface is first prepared. The substrate is also polished in a region where the major surface extends out of the optical surface. After polishing, the substrate material including a portion of the surface extending out of the optical surface is removed.

概して、高精度の光学面を作製する目的で光学面の研磨時に少なくとも部分的に研磨されるのは、通常は光学面自体、すなわち使用領域だけでなく、いわゆる超過(overrun)領域、すなわち光学面に隣接する区域もである。この手順の理由は、光学面の縁領域を研磨する目的では、使用研磨工具のサイズに起因して、所望の精度で光学面の縁領域も研磨できるようにするために通常は研磨工具を少なくとも部分的に超過領域まで移動させる必要があるからである。   In general, it is usually not only the optical surface itself, i.e. the area of use, but also the so-called overrun area, i.e. the optical surface, that is at least partially polished when polishing the optical surface for the purpose of producing a highly accurate optical surface. There is also an area adjacent to. The reason for this procedure is that for the purpose of polishing the edge area of the optical surface, due to the size of the polishing tool used, at least the polishing tool is usually used to allow the edge area of the optical surface to be polished with the desired accuracy. This is because it is necessary to partially move to the excess area.

使用研磨工具の中心が光学面より大幅に外側にすでに位置する場合でも、研磨工具の一部は通常は光学面内に延び、結果として光学面でのアブレーションにも寄与する。したがって、超過領域の形状は、光学面の研磨の品質に影響を及ぼす。超過領域が研磨に幾何学的に不適当である場合、光学面の研磨時に研磨誤差又は表面誤差が生じる。このような研磨又は表面誤差は、以下では研磨シグネチャ(polishing siguature)とも称し、概して光学面における補正労力(correction effort)の大幅な増加につながる。研磨誤差が後続の補正プロセス範囲内で補正可能でない場合、光学面を仕様に従って作製することができず、つまり光学面は所望の用途に使用不可能である。   Even if the center of the polishing tool used is already located significantly outside the optical surface, a part of the polishing tool usually extends into the optical surface and consequently also contributes to ablation on the optical surface. Thus, the shape of the excess region affects the polishing quality of the optical surface. If the excess region is geometrically unsuitable for polishing, a polishing error or surface error occurs when polishing the optical surface. Such polishing or surface errors are also referred to below as polishing signatures and generally lead to a significant increase in correction effort at the optical surface. If the polishing error is not correctable within the subsequent correction process range, the optical surface cannot be made according to the specification, i.e. the optical surface cannot be used for the desired application.

米国特許第7,118,449号明細書US Pat. No. 7,118,449

光学面を研磨する方法と、研磨誤差の少ない光学素子とを提供することが、本発明の目的である。   It is an object of the present invention to provide a method for polishing an optical surface and an optical element with less polishing error.

この目的は、研磨工具により光学面を研磨する方法であって、自由曲面として具現された光学面と、通常は同じく自由曲面として具現された、光学面の側方に隣接する区域とにわたって、研磨工具の研磨面を動かすことにより、光学面を研磨するステップであり、上記区域の各場所で研磨基準の閾値を超えないように、上記区域の形状を研磨工具に、特に研磨工具の研磨面の形状(又は直径)に適合させ、研磨基準は、光学面に隣接する区域にわたって研磨工具を動かすことにより作製された光学面における研磨誤差の尺度を表すステップを含む方法により達成される。   The purpose of this is a method of polishing an optical surface with a polishing tool, which polishes over an optical surface embodied as a free-form surface and an area adjacent to the side of the optical surface, usually also embodied as a free-form surface. Polishing the optical surface by moving the polishing surface of the tool, and shape the area of the polishing tool, in particular the polishing surface of the polishing tool, so as not to exceed the polishing criteria threshold at each location of the area. Adapting to shape (or diameter), the polishing criteria is achieved by a method that includes representing a measure of the polishing error in the optical surface created by moving the polishing tool across an area adjacent to the optical surface.

本発明は、光学面に隣接する区域にわたって研磨工具を動かすことにより作製される光学面における研磨誤差ができる限り小さいか又は閾値を下回って、形態及び粗さに関する表面品質に関する仕様を満たす光学面を作製できるように、隣接区域の形状を設計するか、又は上記区域を研磨に用いられる研磨工具に適合させることを提案する。これが確実となるのは、研磨基準が光学面に隣接する区域の各場所で満たされる場合、すなわち(通常は場所に応じて変わる)研磨基準が各場所で閾値を超えない場合である。この場合、所望の仕様を満たす光学面を作製可能にするように研磨誤差を後続の補正プロセスで補正できるからである。   The present invention provides an optical surface that meets the specifications for surface quality with respect to morphology and roughness, where the polishing error in the optical surface created by moving the polishing tool across the area adjacent to the optical surface is as small as possible or below a threshold. It is proposed to design the shape of the adjacent area so that it can be made or to adapt the area to the polishing tool used for polishing. This is ensured if the polishing criteria are met at each location in the area adjacent to the optical surface, i.e., the polishing criteria (which usually varies with location) does not exceed the threshold at each location. In this case, the polishing error can be corrected by a subsequent correction process so that an optical surface satisfying a desired specification can be produced.

光学面及び上記区域の両方が、通常は自由曲面、すなわち球面及び平面形態から逸脱した面である。例として、自由曲面は、中心軸に関して放射対称であるいわゆる非球面であり得るが、(放射)対称ではない形状の、すなわち回転対称ではない自由曲面でもあり得る。自由曲面は、円形の周縁を有し得る。しかしながら、自由曲面が円形形態から逸脱した周縁を有することも可能である。   Both the optical surface and the area are usually free-form surfaces, i.e. surfaces that deviate from spherical and planar forms. As an example, the free-form surface may be a so-called aspheric surface that is radially symmetric with respect to the central axis, but may also be a free-form surface that has a shape that is not (radial) symmetric, that is, is not rotationally symmetric. The free-form surface can have a circular periphery. However, it is also possible for the free-form surface to have a peripheral edge deviating from the circular form.

通常、自由曲面は、いずれの場合も少なくとも2つの場所で、一般的には複数の場所で最小曲率を有し、当該最小曲率は、各場所において最大曲率から逸脱する。通常、自由曲面の最大曲率及び最小曲率は、少なくとも2つの場所で相互に異なる。   In general, a free-form surface has a minimum curvature in at least two locations, typically multiple locations, in any case, and the minimum curvature deviates from the maximum curvature at each location. Usually, the maximum curvature and the minimum curvature of a free-form surface are different from each other in at least two places.

本方法の一変形形態では、研磨工具の研磨面は、光学面及び隣接区域にわたる運動中に回転軸に関して回転運動を行う。回転軸は、通常は各場所で光学面及び/又は上記区域に対して実質的に垂直に位置合わせされる。(往復)運動中、研磨工具は、光学面にわたって光学面に押し付けられる。研磨工具を隣接区域まで少なくとも部分的に動かす場合も、これが当てはまる。回転運動の速度は、光学面又は隣接区域における場所に応じて変わり得るか、又は該当する場合は全研磨プロセス中に一定であり得る。   In a variant of the method, the polishing surface of the polishing tool performs a rotational movement with respect to the axis of rotation during movement over the optical surface and adjacent areas. The axis of rotation is usually aligned substantially perpendicular to the optical surface and / or the area at each location. During (reciprocating) movement, the polishing tool is pressed against the optical surface over the optical surface. This is also true if the abrasive tool is moved at least partially to the adjacent area. The speed of the rotational movement can vary depending on the location on the optical surface or adjacent area, or can be constant during the entire polishing process, if applicable.

研磨面の形状は、研磨工具を用いた研磨時に決定的に重要である。研磨面は、光学面及び/又は隣接区域と接触する研磨工具の面である。研磨面は、研磨工具の回転中でも研磨対象の表面形状に適合可能でなければならない。研磨工具から見ると、研磨対象面は、一般的には平面である研磨面から外れており、以下ではこれを(局所)変形又は(局所)偏差と称する。この局所変形又は偏差は、研磨工具下で局所的に異なるアブレーション挙動につながる。これは、研磨面内で異なるアブレーション挙動につながるだけでなく、研磨対象面全体で異なるアブレーション挙動にもつながる。   The shape of the polishing surface is critical when polishing with a polishing tool. The polishing surface is the surface of the polishing tool that contacts the optical surface and / or the adjacent area. The polishing surface must be adaptable to the surface shape of the object to be polished even during rotation of the polishing tool. When viewed from the polishing tool, the surface to be polished is deviated from the polishing surface, which is generally a flat surface, and is hereinafter referred to as (local) deformation or (local) deviation. This local deformation or deviation leads to locally different ablation behavior under the polishing tool. This not only leads to different ablation behavior within the polishing surface, but also leads to different ablation behavior across the entire surface to be polished.

研磨面からの光学面の局所変形/偏差の結果として、表面下損傷(depth damage)を除去し光学面を全体的に研磨するために、研削後の典型的な場合のように光学面(使用領域)で一定の材料アブレーションを行うことが不可能である。研磨対象面で一定の材料アブレーションを試みる際の結果として、研磨シグネチャとも称する研磨誤差が生じ、これは実質的には研磨対称面の形状に応じて変わる。この研磨シグネチャは、急勾配又は高周波成分を有することがあり、これらは厳密に与えられた仕様で表面を作製することを可能にすべき後続の補正プロセスにとって問題となる。   As a result of local deformation / deviation of the optical surface from the polished surface, the optical surface (as used in the typical case after grinding) is used to remove depth damage and polish the optical surface as a whole. It is impossible to perform constant material ablation in the region). As a result of attempting a constant material ablation on the surface to be polished, a polishing error, also referred to as a polishing signature, occurs, which substantially depends on the shape of the polishing symmetry surface. This polishing signature may have steep or high frequency components, which are problematic for subsequent correction processes that should be able to produce surfaces with strictly given specifications.

したがって、研磨対象面の形状をその研磨性に関して評価するために、研磨基準又は幾何学的基準の導入が提案される。この目的で、研磨工具の研磨平面からの研磨対象面のさらに上述した変形又は偏差が、例えば、研磨対象面の任意の場所で求められる。研磨工具の研磨面と光学面との間の偏差又は変形は、各場所で直交多項式系、例えばゼルニケ多項式に分解され、通常は分解の最低係数のみが研磨性の尺度として用いられる。ゼルニケ係数は、偏差の異なる成分に又は異なる波面収差にそれぞれ割り当てられる。したがって、例えば、ゼルニケ係数Z4は偏差の焦点成分を示し、ゼルニケ係数Z5/Z6は偏差の局所非点収差又は非点収差成分を示す。   Therefore, in order to evaluate the shape of the surface to be polished with respect to its polishing properties, the introduction of polishing criteria or geometric criteria is proposed. For this purpose, the above-described deformation or deviation of the surface to be polished from the polishing plane of the polishing tool is determined, for example, at an arbitrary location on the surface to be polished. Deviations or deformations between the polishing surface and the optical surface of the polishing tool are decomposed at each location into an orthogonal polynomial system, such as a Zernike polynomial, and usually only the lowest coefficient of decomposition is used as a measure of the abrasiveness. Zernike coefficients are respectively assigned to components with different deviations or to different wavefront aberrations. Thus, for example, the Zernike coefficient Z4 indicates the focal component of the deviation, and the Zernike coefficient Z5 / Z6 indicates the local astigmatism or astigmatism component of the deviation.

本方法の有利な変形形態では、表面領域の各場所における局所非点収差が研磨基準として選択される。偏差の非点収差成分を表面の研磨性の尺度として用いるだけで有利であることが分かった。焦点成分Z4も同様に、研磨面がどの程度強く曲がらなければならないかを特定するが、回転中に研磨面又は研磨工具が適合する必要はない。したがって、焦点成分Z4での変形又は偏差は、静的変形と考えるべきである。これに対して、変形の非点収差成分Z5/6は、回転中にどのように研磨工具を動的に適合させなければならないかを特定するものである。非点収差成分Z5/6は、「局所非点収差」と称する。回転中に研磨工具又は研磨面がそれ以上動的に適合できない場合、顕著な局所研磨誤差が予想される。   In an advantageous variant of the method, local astigmatism at each location in the surface region is selected as the polishing criterion. It has proved advantageous to simply use the astigmatism component of the deviation as a measure of the surface polish. Similarly, the focal component Z4 specifies how strongly the polishing surface must bend, but the polishing surface or polishing tool need not fit during rotation. Therefore, deformation or deviation in the focal component Z4 should be considered as static deformation. In contrast, the deformation astigmatism component Z5 / 6 specifies how the polishing tool must be dynamically adapted during rotation. The astigmatism component Z5 / 6 is referred to as “local astigmatism”. If the polishing tool or polishing surface can no longer dynamically adapt during rotation, significant local polishing errors are expected.

さらに上述したように、より高次の項又はゼルニケ係数を研磨基準に用いることが可能であろう。しかしながら、非点収差成分は、一般的に、光学素子で用いられる典型的な面に関して、例えば自由曲面に関して、表面の研磨性に関する評価に十分な基準となることが分かった。   As further described above, higher order terms or Zernike coefficients could be used for the polishing criteria. However, it has been found that the astigmatism component is generally a sufficient reference for evaluating the surface polishability of typical surfaces used in optical elements, for example, free-form surfaces.

さらに上述したように、光学面に隣接する区域の形状は、その区域のどの場所でも局所非点収差が局所非点収差の最大値を表す閾値を超えないように選択される。超えてはならない閾値の規定(prescription)は、複数のパラメータ、例えば研磨工具の回転速度、研磨工具の研磨面の面積、研磨中に得る研磨アブレーション、及び研磨後の補正プロセスの補正能力に応じて変わる。これらのパラメータに基づいて閾値を設定するために、プロセスの包括的理解が必要である。通常この理解は、実際には直接利用可能ではない。したがって、局所非点収差の形態の研磨基準の閾値は、作製済み又は研磨済みの光学面の研磨誤差との比較により通常は設定される。   As further described above, the shape of the area adjacent to the optical surface is selected such that the local astigmatism does not exceed a threshold value representing the maximum value of local astigmatism anywhere in the area. The threshold prescription that must not be exceeded depends on several parameters such as the rotational speed of the polishing tool, the area of the polishing tool's polishing surface, the polishing ablation obtained during polishing, and the correction capability of the correction process after polishing. change. A comprehensive understanding of the process is required to set thresholds based on these parameters. Usually this understanding is not directly available in practice. Therefore, the threshold of the polishing criterion in the form of local astigmatism is usually set by comparison with the polishing error of the fabricated or polished optical surface.

一般的に、研磨基準の閾値は、光学面に隣接する区域だけでなく光学面自体でも超えてはならないと理解される。光学面自体は、通常は十分に平坦であり、すなわち急激な起伏(勾配)がないので、一般的には研磨基準を満たす。   In general, it is understood that the threshold for polishing criteria should not be exceeded not only in the area adjacent to the optical surface, but also in the optical surface itself. The optical surface itself is usually sufficiently flat, i.e., without sharp undulations (gradients) and therefore generally meets the polishing criteria.

一発展形態では、上記区域の各場所での局所非点収差Δzは、
Δz=(kmax−kmin)/8D (1)
により求められるか又は近似され、式中、Dは研磨工具の研磨面の直径を示し、kminは上記区域の各場所での最小局所曲率を示し、kmaxは上記区域の各場所での最大局所曲率を示す。微分幾何学から既知のように、2つの主曲率kMin、kMaxを面の各場所又は各点に割り当てることができ、上記主曲率は、各場所での最小及び最大曲率半径の逆数を表し、すなわち以下が当てはまる。kMin=1/RMax、kMax=1/RMin。この関係は、2つの主曲率kMin、kMaxが負の値をとる場合にも数学的に正しい。局所非点収差は、長さの単位を有し、上記定義によれば、研磨工具の通常は回転対称の研磨面の直径に応じて変わる。
In one development, the local astigmatism Δz at each location of the area is
Δz = (k max −k min ) / 8D 2 (1)
Where D indicates the diameter of the polishing surface of the polishing tool, kmin indicates the minimum local curvature at each location in the area, and kmax indicates the maximum at each location in the area. Indicates the local curvature. As is known from differential geometry, two principal curvatures k Min and k Max can be assigned to each location or point of the surface, which represents the reciprocal of the minimum and maximum curvature radii at each location. That is, the following applies: k Min = 1 / R Max , k Max = 1 / R Min . This relationship is mathematically correct even when the two main curvatures k Min and k Max take negative values. Local astigmatism has a unit of length and, according to the above definition, varies with the diameter of the normally rotationally symmetric polishing surface of the polishing tool.

さらに上述したような、すなわち上記区域の各場所におけるゼルニケ多項式での分解を用いた局所非点収差の計算は、比較的複雑なので、局所非点収差は、本発展形態の式(1)に従って近似計算される。上記でさらに検討した研磨面からの表面の変形又は偏差は、焦点成分Z4に対応する各場所での表面の平均曲率(1/2(kMin+kMax))と、局所非点収差Z5/6に概ね対応する曲率差(kMax−kMin)とからほぼ構成される。曲率kMin、kMaxが表面の(既知の)パラメータ化の微分から計算されるので、表面の、この場合は光学面に隣接する区域の局所非点収差を表面の幾何学的形状から直接計算することが可能であり、その際に研磨面の直径を考慮に入れるだけでよい。 Furthermore, since the calculation of local astigmatism as described above, ie using the Zernike polynomial decomposition at each location of the area, is relatively complex, local astigmatism is approximated according to equation (1) of the present development. Calculated. The deformation or deviation of the surface from the polished surface further examined above is the average curvature of the surface at each location corresponding to the focal component Z4 (1/2 (k Min + k Max )) and local astigmatism Z5 / 6. Is substantially composed of a difference in curvature (k Max −k Min ) that roughly corresponds to. Since the curvatures k Min and k Max are calculated from the (known) parameterization derivative of the surface, the local astigmatism of the surface, in this case the area adjacent to the optical surface, is calculated directly from the surface geometry It is only necessary to take into account the diameter of the polishing surface.

一発展形態では、研磨工具の研磨面は平面を形成する。一般的に、研磨面が平面設計である研磨工具が研磨に用いられる。研磨面を軸周りで回転させる場合、研磨面は、回転運動中に不均衡を生まないように通常は円形形状を有する。研磨面が平面設計である場合、これはさらに、研磨面からの研磨対象面の変形又は偏差の計算を単純にする。   In one development, the polishing surface of the polishing tool forms a flat surface. Generally, a polishing tool whose polishing surface is a flat design is used for polishing. When rotating the polishing surface about an axis, the polishing surface usually has a circular shape so as not to create an imbalance during the rotational movement. If the polishing surface is a planar design, this further simplifies the calculation of the deformation or deviation of the surface to be polished from the polishing surface.

研磨基準を満たす区域の実現にはさまざまな選択肢がある。   There are various options for achieving an area that meets the polishing criteria.

一変形形態では、光学面の形状及び側方隣接区域の形状は、光学面及び側方隣接区域両方の面の解析的表現に基づいて求められる。   In one variation, the shape of the optical surface and the shape of the laterally adjacent area are determined based on an analytical representation of both the optical surface and the laterally adjacent area.

光学面は放射線の反射又は透過に用いられるので、その形状は、例えば多項式方程式又は多項式線/多項式面の形態の、光学設計に関する解析的表現により通常は表現される。最も単純な場合、光学面の面の解析的表現を上記区域の形状を求めるのに用いることができ、すなわち、光学面の解析的表現が隣接区域の座標に拡張される。光学面の形状の多項式表現を光学面に隣接する区域まで拡張する場合、一般的に、多項式方程式の数学的特性によりこの区域で急激な起伏が生じるので、光学面の形状の多項式表現は、通常はこの区域での研磨基準を侵害せずには隣接区域に拡張することができない。光学面の面の解析的表現を隣接区域に拡張する際に研磨基準が満たされない場合、この区域に関して異なる解を選択する必要がある。   Since the optical surface is used for reflection or transmission of radiation, its shape is usually represented by an analytical expression relating to the optical design, for example in the form of a polynomial equation or a polynomial line / polynomial surface. In the simplest case, an analytical representation of the surface of the optical surface can be used to determine the shape of the area, i.e. the analytical representation of the optical surface is extended to the coordinates of the adjacent area. When expanding a polynomial representation of the shape of an optical surface to an area adjacent to the optical surface, the polynomial expression of the shape of the optical surface is usually Cannot be extended to adjacent areas without violating the polishing standards in this area. If the polishing criteria are not met when extending the analytical representation of the surface of the optical surface to an adjacent area, a different solution must be selected for this area.

一発展形態では、光学面の(目標)形状を求める際に、側方隣接区域の研磨基準の閾値を考慮に入れる。この場合、上記区域における研磨基準を満たすことが、光学面の設計又は(目標)形状のレイアウトにおける付加的境界条件として採用される。付加的境界条件は、光学面の目標形状の設定時に自由度数を制限するので、この場合は光学面の光学性能を低下させないために付加的な自由度を設けることが通常は必要である。付加的な自由度の導入のための1つの選択肢は、面の解析的表現に高次多項式を用いることにより表される。光学面の特性の低下なく研磨基準を満たすために、このような多項式を用いることで光学面に隣接する区域における急勾配を抑制することが可能となり得る。   In one development, the polishing criteria threshold for the laterally adjacent area is taken into account when determining the (target) shape of the optical surface. In this case, meeting the polishing criteria in the above area is employed as an additional boundary condition in the optical surface design or (target) shape layout. Since the additional boundary conditions limit the number of degrees of freedom when setting the target shape of the optical surface, it is usually necessary to provide additional degrees of freedom in this case in order not to degrade the optical performance of the optical surface. One option for the introduction of additional degrees of freedom is represented by using higher order polynomials in the analytical representation of the surface. In order to meet the polishing criteria without degradation of the properties of the optical surface, it may be possible to suppress steep slopes in areas adjacent to the optical surface by using such polynomials.

さらに別の変形形態では、上記区域の形状は、上記区域の面の解析的表現を用いずに求められる。原理上、光学面に隣接する区域は自由に設計できる。例として、上記区域の外縁を予め求めて充填アルゴリズム(filling algorithm)を用いて上記区域を充填することが可能である。これにより、不利な勾配の抑制と、研磨基準に関する所望に応じた上記区域の理想的な設計とが可能となる。面の解析的表現がないことにより面の点群又は同様の表現に頼らなければならないことは、この方法では不利となる傾向がある。   In yet another variation, the shape of the area is determined without using an analytical representation of the surface of the area. In principle, the area adjacent to the optical surface can be designed freely. As an example, it is possible to pre-determine the outer edge of the area and fill the area using a filling algorithm. This allows for the suppression of adverse gradients and the ideal design of the area as desired with respect to the polishing criteria. Having to rely on a point cloud or similar representation of a surface by the absence of an analytical representation of the surface tends to be disadvantageous with this method.

さらに別の変形形態では、本方法は、研磨に先立つステップにおいて、研磨対象光学面及び側方隣接区域を作製するための基板の機械加工をさらに含む。研磨前に、光学面、すなわち光学的に用いられるべき基板の領域を、機械的前加工により、例えばフライス削り又は研削により、場合によっては遊離砥粒を用いて加工又は形成する。光学面に隣接する区域にもこれが当てはまり、上記区域も同様に機械的に前加工する。機械加工により、光学面に隣接する区域で、研磨工具の研磨面の所与のサイズ又は所与の直径の場合に研磨基準の閾値を超えない形状が作られる。   In yet another variation, the method further includes machining the substrate to create an optical surface to be polished and laterally adjacent areas in a step prior to polishing. Prior to polishing, the optical surface, i.e. the region of the substrate to be used optically, is processed or formed by mechanical pre-processing, e.g. by milling or grinding, possibly with free abrasive grains. This also applies to the area adjacent to the optical surface, which is likewise mechanically preprocessed. Machining creates a shape in the area adjacent to the optical surface that does not exceed the polishing criteria threshold for a given size or given diameter of the polishing surface of the polishing tool.

本方法の発展形態では、基板の機械加工中及び研磨中に代用(ersatz)形状を有する光学面が作製され、上記代用形状は、光学面の目標形状から逸脱したものであり、光学面の目標形状は、研磨に続く補正プロセスで代用形状から作られる。この発展形態は、光学設計により与えられた光学面の目標形状の場合に、例えば解析関数又は多項式により表現される光学面に隣接する区域に関して、研磨基準を満たす形状が見付からない場合について述べている。この場合、代用形状を求めることが可能である。この代用形状は、光学面に隣接する区域において研磨基準を満たすべきだが、さらに他の基準に従って、光学面において光学設計により設定された目標形状から逸脱してもよい。機械加工による光学面及び上記区域の作製中、すなわち整形中、光学面において光学設計により与えられた目標形状から逸脱している代用形状は、研削及び上述の研磨により最初に作られる。研磨に続く1つ又は複数の補正プロセスにおいて、代用形状、すなわち光学面の機械加工及び後続の研磨中に作られた形状からの偏差(deviation between)を、(特に)光学面の目標形状に適合させて、最後に光学面で目標形状が生じるようにする。   In a development of the method, an optical surface having an ersatz shape is produced during the machining and polishing of the substrate, the surrogate shape deviating from the target shape of the optical surface and the target of the optical surface. The shape is made from the surrogate shape in a correction process following polishing. This development describes the case where no shape satisfying the polishing criteria is found in the case of the target shape of the optical surface given by the optical design, for example in the area adjacent to the optical surface represented by an analytical function or polynomial. . In this case, a substitute shape can be obtained. This surrogate shape should meet the polishing criteria in the area adjacent to the optical surface, but may deviate from the target shape set by the optical design on the optical surface according to yet other criteria. During the creation of the optical surface and the area by machining, ie during shaping, a surrogate shape deviating from the target shape given by the optical design at the optical surface is first created by grinding and polishing as described above. In one or more correction processes following polishing, the surrogate shape, ie the deviation between the machining of the optical surface and the shape created during subsequent polishing, is adapted to the target shape of the optical surface (especially) Finally, the target shape is generated on the optical surface.

さらに別の発展形態では、少なくとも1つの後続の補正プロセスで光学面における研磨誤差が補正可能であるように、研磨基準の閾値が選択される。さらに上述したように、閾値の規定は、研磨又は研磨工具に関するパラメータだけでなく研磨後の補正プロセスの補正能力に応じても変わる。研磨基準の閾値は、1つ又は場合によっては複数の後続の補正プロセスにより光学面を所望の仕様で作製できるように選択されるべきである。   In yet another development, the polishing criteria threshold is selected such that at least one subsequent correction process can correct polishing errors at the optical surface. Further, as described above, the threshold definition varies depending not only on parameters relating to the polishing or polishing tool, but also on the correction capability of the correction process after polishing. The polishing criteria threshold should be selected so that the optical surface can be produced with the desired specifications by one or possibly multiple subsequent correction processes.

一発展形態では、後続の補正プロセスは、イオンビーム加工及び磁気粘性研磨を含む群から選択される。イオンビーム加工は、光学面で材料アブレーションをもたらすために光学面にイオン又はイオンビームを局所的に打ち込む補正法を表す。代替的又は付加的に、いわゆる磁気粘性研磨の形態の補正プロセスを実行することができる。この補正プロセスでは、磁気粘性液体が道具としての役割を果たす。例として、液体を回転砥石に塗布して磁場で固化させ、加工対象表面との接触時に材料アブレーションが得られるようにする。小さな空間波長で補正を容易にし且つ通常はその結果として中及び高空間波長域での表面品質の低下が全く又は僅かしかない、他の補正プロセスも、2つの上述した補正プロセスに加えて研磨後に用いることができることも理解される。中及び高空間波長域における表面品質は、光学面の研磨及び機械的前加工により通常は得られる。   In one development, the subsequent correction process is selected from the group comprising ion beam machining and magnetoviscous polishing. Ion beam processing represents a correction method that locally implants an ion or ion beam into the optical surface to cause material ablation at the optical surface. Alternatively or additionally, a correction process in the form of a so-called magneto-viscous polishing can be performed. In this correction process, the magnetorheological liquid serves as a tool. As an example, a liquid is applied to a rotating grindstone and solidified by a magnetic field so that material ablation can be obtained upon contact with the surface to be processed. Other correction processes that facilitate correction at small spatial wavelengths and usually result in little or no degradation of surface quality in the medium and high spatial wavelength ranges are also post-polishing in addition to the two above-described correction processes. It is also understood that it can be used. Surface quality in medium and high spatial wavelength ranges is usually obtained by polishing optical surfaces and mechanical pre-processing.

本発明のさらに別の態様は、光学素子であって、自由曲面として具現された光学面と、光学面の側方に隣接する区域とを有する基板を備えた光学素子であって、上記光学面の側方に隣接する区域は、各場所で局所非点収差の形態の研磨基準の閾値Δzを超えず、上記閾値は、
Δz=(kmax−kmin)/8D (1’)
により与えられ、式中、kminは上記区域の各場所での最小局所曲率を示し、kmaxは上記区域の各場所での最大局所曲率を示し、D=2500mm、好ましくはD=900mm、特にD=100mmが当てはまる光学素子に関する。
Still another embodiment of the present invention is an optical element, which is an optical element including a substrate having an optical surface embodied as a free-form surface and an area adjacent to a side of the optical surface, the optical surface The laterally adjacent area does not exceed the polishing reference threshold Δz S in the form of local astigmatism at each location, the threshold being
Δz S = (k max −k min ) / 8D 2 (1 ′)
Where k min denotes the minimum local curvature at each location of the area, k max denotes the maximum local curvature at each location of the area, and D 2 = 2500 mm 2 , preferably D 2 = It relates to an optical element in which 900 mm 2 , in particular D 2 = 100 mm 2 applies.

さらに上述したように、式(1)により近似される局所非点収差は、上記区域の各場所における主曲率に加えて、使用研磨工具の研磨面の直径のみに応じて変わる。しかしながら、研磨工具の研磨面は任意に大きく選択できないので、値Dは最大値に限定され、その結果として、局所非点収差の閾値Δzも、研磨工具の直径とは無関係の最大値に制限される。 Further, as described above, the local astigmatism approximated by the equation (1) changes according to only the diameter of the polishing surface of the used polishing tool in addition to the main curvature at each location in the above-mentioned area. However, since the polishing surface of the polishing tool cannot be selected arbitrarily large, the value D is limited to the maximum value, and as a result, the local astigmatism threshold Δz S is also limited to the maximum value independent of the diameter of the polishing tool. Is done.

一実施形態では、光学面は、光学面に隣接する区域に連続的に合流する。上記区域が光学面の縁に連続的に、すなわちキンクなく隣接すれば、光学面の研磨に有利である。   In one embodiment, the optical surfaces continuously merge into an area adjacent to the optical surface. It is advantageous for polishing of the optical surface if the area is continuously adjacent to the edge of the optical surface, i.e. without kinking.

さらに別の実施形態では、光学面は、1mm〜光学面の最大範囲の空間波長域で1nm rms未満の粗さを有する。本願の意味の範囲内において、表面の最大範囲とは、光学面の縁に沿った2点を結ぶ直線の最大長を意味すると理解される。円形の縁を有する光学面の場合、最大範囲は光学面の直径を表す。楕円の形態の縁又は縁輪郭を有する光学面の場合、最大範囲は長軸の、すなわち楕円等の最大直径の長さを表す。機械的前加工、研磨、及び任意に行われる後続の補正プロセスの結果として、短、中、及び長空間波長の場合に所望の品質又は表面粗さを光学面でもたらすことができる。   In yet another embodiment, the optical surface has a roughness of less than 1 nm rms in the spatial wavelength range from 1 mm to the maximum range of the optical surface. Within the meaning of the present application, the maximum surface range is understood to mean the maximum length of a straight line connecting two points along the edge of the optical surface. For an optical surface with a circular edge, the maximum range represents the diameter of the optical surface. In the case of an optical surface having an edge or edge contour in the form of an ellipse, the maximum range represents the length of the major axis, ie the maximum diameter, such as an ellipse. As a result of mechanical pre-processing, polishing, and optionally subsequent correction processes, the desired quality or surface roughness can be provided at the optical surface for short, medium, and long spatial wavelengths.

一実施形態では、上記区域は、光学面から外側に50mm以下の距離だけ延びる。光学面からは、基板において研磨基準を満たさなければならない領域は、通常は使用研磨工具の研磨面の直径よりも外側まで延びない。光学面からの距離がより大きい場合、研磨工具はその研磨面が光学面内へ突出しなくなるので、さらに外側にある区域の形状の急勾配でさえも、通常は研磨誤差に影響を及ぼさなくなる。   In one embodiment, the area extends outward from the optical surface by a distance of 50 mm or less. From the optical surface, the area of the substrate that must meet the polishing criteria usually does not extend outside the diameter of the polishing surface of the used polishing tool. If the distance from the optical surface is greater, the polishing tool will not protrude into the optical surface, so even the steepness of the shape of the outer area will usually not affect the polishing error.

さらに別の実施形態では、光学素子は、少なくとも光学面に反射コーティング、特にEUV放射線を反射するコーティングを有する。この場合、光学素子は、通常はミラー、特にEUVミラーである。一般的に、隣接区域ではなく光学面のみに反射コーティングが設けられる。しかしながら、基板は、隣接区域にも、全部又は一部に反射コーティングを任意に有することができる。光学面は、基板の表面のうち光学機構のビーム経路内に配置され且つ光学機構の使用放射線を誘導的に反射する部分である。光学機構は、例えばリソグラフィ装置、特にEUVリソグラフィ装置であり得るが、光学素子を他の光学機構で有利に用いることもできる。   In yet another embodiment, the optical element has at least a reflective coating on the optical surface, in particular a coating that reflects EUV radiation. In this case, the optical element is usually a mirror, in particular an EUV mirror. In general, reflective coatings are provided only on optical surfaces, not adjacent areas. However, the substrate can optionally have a reflective coating, either in whole or in part, in adjacent areas. The optical surface is a portion of the surface of the substrate that is disposed in the beam path of the optical mechanism and inductively reflects the radiation used by the optical mechanism. The optical mechanism can be, for example, a lithographic apparatus, in particular an EUV lithographic apparatus, but the optical element can also be used advantageously with other optical mechanisms.

本発明のさらに他の特徴及び利点は、本発明に必須の詳細を示す図面の図を参照して本発明の以下の例示的な実施形態の説明から、また特許請求の範囲から明らかになる。個々の特徴は、本発明の変形形態において単独で個別に、又は任意の所望の組み合わせで複数としてそれぞれを実現することができる。   Further features and advantages of the present invention will become apparent from the following description of exemplary embodiments of the invention, with reference to the drawing figures, which illustrate essential details of the invention, and from the claims. The individual features can be realized individually in the variant of the invention individually or as a plurality in any desired combination.

例示的な実施形態を概略図に示し、以下の説明において説明する。   Exemplary embodiments are shown in schematic form and are described in the following description.

光学面及びそれに隣接する区域の平面図の概略図を示す。Figure 2 shows a schematic diagram of a top view of an optical surface and an area adjacent to it. 研磨中の光学面及びそれに隣接する区域にわたって動かされる研磨工具の概略図を示す。FIG. 2 shows a schematic view of an polishing tool moved across an optical surface being polished and an adjacent area. 研磨中の光学面及びそれに隣接する区域にわたって動かされる研磨工具の概略図を示す。FIG. 2 shows a schematic view of an polishing tool moved across an optical surface being polished and an adjacent area. 研磨後の光学面のイオンビーム加工の形態の補正プロセスの概略図を示す。FIG. 2 shows a schematic diagram of a correction process of a form of ion beam machining of an optical surface after polishing. EUVミラーの形態の光学素子の概略図を示す。1 shows a schematic view of an optical element in the form of an EUV mirror. 図1a〜図1dに示す基板の断面に沿った平面からの基板表面の局所偏差の概略図を示す。FIG. 2 shows a schematic diagram of a local deviation of the substrate surface from a plane along the cross section of the substrate shown in FIGS. 図1a〜図1dに示す基板の断面に沿った局所非点収差の概略図を示す。FIG. 2 shows a schematic diagram of local astigmatism along the cross section of the substrate shown in FIGS.

図面の以下の説明において、同一の参照符号を同一又は機能的に同一のコンポーネントに用いる。   In the following description of the drawings, the same reference numerals are used for identical or functionally identical components.

図1a〜図1dは、光学面2、すなわち使用領域と、光学面2の側方に隣接する区域3(超過領域)とが表面に形成された基板1を概略的に示す。光学面2は、隣接区域3によりリング状に囲まれた楕円形の縁4を有する。光学面2に隣接する区域3は、基板1の外側の同様に楕円形の縁5まで延びる。図示の例では、基板1は、いわゆるゼロ膨張材料、例えばZerodur(登録商標)又はULE(登録商標)、すなわち、EUVミラーに用いることができる基板1である。別の材料の形態の、例えば石英ガラスの形態の基板1の使用も可能である。   FIGS. 1a to 1d schematically show a substrate 1 on which an optical surface 2, i.e. a use region, and an area 3 (excess region) adjacent to the side of the optical surface 2 are formed. The optical surface 2 has an elliptical edge 4 surrounded by an adjacent area 3 in a ring shape. The area 3 adjacent to the optical surface 2 extends to a similarly elliptical edge 5 outside the substrate 1. In the example shown, the substrate 1 is a so-called zero-expansion material, such as Zerodur® or ULE®, ie a substrate 1 that can be used for an EUV mirror. It is also possible to use a substrate 1 in the form of another material, for example in the form of quartz glass.

光学面2、すなわち基板1の光学使用領域と隣接区域3との両方が、自由曲面、すなわち放射対称に延びず図示の例ではxyz座標系の軸の1つに関して鏡面対称にも伸びない面をそれぞれ形成する。光学面2の形状は、研磨後及びさらなる補正プロセス後に、上記面が光学仕様に従う、すなわちビーム経路内に光学面2が配置される光学機構の光学設計により与えられた目標形状から所定の公差範囲内で逸脱するだけであるように選択される。光学面2に隣接し且つ連続的に、すなわちキンクの形態の移行部を伴わずに光学面2の縁4に繋がる区域3も、自由曲面として具現される。区域3の形状は、当該区域の各場所Pで、より詳細に後述する研磨基準に適合するように選択される。   The optical surface 2, i.e. both the optically used area of the substrate 1 and the adjacent area 3, are free-form surfaces, i.e. surfaces that do not extend radially symmetrically and do not extend mirror-symmetrically with respect to one of the axes of the xyz coordinate system in the illustrated example. Form each one. The shape of the optical surface 2 is, after polishing and after further correction processes, a predetermined tolerance range from the target shape given by the optical design of the optical mechanism in which the surface follows the optical specifications, i.e. the optical surface 2 is arranged in the beam path. Chosen to deviate only within. The area 3 adjacent to the optical surface 2 and continuously, i.e. without a transition in the form of a kink, leading to the edge 4 of the optical surface 2 is also embodied as a free-form surface. The shape of the area 3 is selected at each location P of the area so as to meet the polishing criteria described in more detail below.

研磨工具6による光学面2の研磨プロセスを図1b及び図1cに示す。研磨工具6は、研磨工具6が基板1の表面に押し付けられる円形の研磨平面7を有する。研磨の際、研磨面7の中心に接する回転軸8に関して研磨工具6を回転運動させ、研磨工具6、より正確には研磨面7を光学面2にわたって動かし(図1b参照)、その運動は通常は往復運動である。   The polishing process of the optical surface 2 by the polishing tool 6 is shown in FIGS. 1b and 1c. The polishing tool 6 has a circular polishing plane 7 on which the polishing tool 6 is pressed against the surface of the substrate 1. During polishing, the polishing tool 6 is rotated with respect to the rotating shaft 8 in contact with the center of the polishing surface 7, and the polishing tool 6, and more precisely the polishing surface 7 is moved over the optical surface 2 (see FIG. 1b). Is a reciprocating motion.

光学面2の縁も研磨できるようにするために、図1cに示すように、研磨工具6を隣接区域3にまでも少なくとも部分的に動かす必要がある。通常、研磨面7が区域3にのみ押し付けられたままだが光学面2には押し付けられなくなるまで、研磨工具6を区域3まで動かす必要がある。図1cで識別できるように、研磨工具6を光学面2に隣接する区域3まで動かすと、研磨平面7の一部が光学面2にも押し付けられる。したがって、光学面2に隣接する区域3の形状は、研磨中の光学面2での基板1の材料のアブレーションのされ方に影響を及ぼす。結果として、研磨工具6のアブレーション能力は、光学面2に隣接する区域3の不都合に選択された形状により不利な影響を受けることがあるので、研磨工具6を光学面2に隣接する区域3まで動かすことにより生じる光学面2における表面誤差又は研磨誤差を最小化するために、上記区域の形状を適切に選択しなければならない。   In order to be able to polish the edge of the optical surface 2 as well, it is necessary to move the polishing tool 6 at least partly to the adjacent area 3, as shown in FIG. Usually, it is necessary to move the polishing tool 6 to the area 3 until the polishing surface 7 remains pressed only on the area 3 but not on the optical surface 2. As can be seen in FIG. 1 c, when the polishing tool 6 is moved to the area 3 adjacent to the optical surface 2, a part of the polishing plane 7 is also pressed against the optical surface 2. Thus, the shape of the area 3 adjacent to the optical surface 2 affects how the material of the substrate 1 is ablated at the optical surface 2 being polished. As a result, the ablation capability of the polishing tool 6 may be adversely affected by the unfavorably selected shape of the area 3 adjacent to the optical surface 2, so that the polishing tool 6 is moved to the area 3 adjacent to the optical surface 2. In order to minimize surface or polishing errors in the optical surface 2 caused by movement, the shape of the area must be selected appropriately.

この目的で、区域3の形状を研磨工具6の形状に、より正確には研磨面7の直径Dに適合させて、区域3の各場所Pで研磨基準Δzの閾値Δzを超えないようにする。研磨基準Δzは、各場所Pでの区域3にわたる研磨工具6の運動により光学面2で生じる研磨誤差の尺度である。光学面2における、又は表面全般における研磨誤差は、図示の例では平面である研磨面7の形状からの表面の偏差から発生し、各場所Pでの偏差は研磨面7の直径Dに応じて変わる。 For this purpose, the shape of the area 3 is adapted to the shape of the polishing tool 6, more precisely to the diameter D of the polishing surface 7, so that the threshold Δz S of the polishing reference Δz is not exceeded at each location P in the area 3. To do. The polishing criterion Δz is a measure of the polishing error that occurs at the optical surface 2 due to the movement of the polishing tool 6 over the area 3 at each location P. The polishing error on the optical surface 2 or on the entire surface is caused by the deviation of the surface from the shape of the polishing surface 7 which is flat in the illustrated example, and the deviation at each location P depends on the diameter D of the polishing surface 7. change.

図3aは、図1aに破線で示した切り口に沿った、y方向に延びる基板1の断面を示す。図3aにおいて、光学面2の領域は中央に見ることができ、その左右に隣接区域3を見ることができる。図3bは、後述するように局所非点収差の関連値をプロットしたものである。各場所Pでの光学面2からの研磨面7の偏差Aが、ゼルニケ多項式の形態の直交多項式系に分解される場合、また低次項、すなわち焦点項Z4及び非点収差Z5/6のみを考慮する場合、焦点項Z4が、研磨面7をその回転軸8に関して回転させる際の偏差Aの静的成分のみを示すことを識別することが可能であり、上記静的成分は、研磨誤差の発生にとって重要でないか又は二義的でしかない。(局所)非点収差Z5/6の場合にはそうではないが、それは(局所)非点収差Z5/6が偏差Aの動的成分を示すからであり、回転の場合に研磨面7又は研磨工具6を各場所Pで研磨対象の光学面2又は隣接区域3にどの程度強く動的に適合させなければならないかを特定する。   FIG. 3a shows a cross section of the substrate 1 extending in the y direction along the cut line indicated by the broken line in FIG. 1a. In FIG. 3a, the area of the optical surface 2 can be seen in the middle and the adjacent area 3 can be seen on the left and right. FIG. 3b is a plot of relevant values of local astigmatism as described below. When the deviation A of the polishing surface 7 from the optical surface 2 at each location P is decomposed into an orthogonal polynomial system in the form of Zernike polynomials, only the low order terms, i.e. the focus term Z4 and astigmatism Z5 / 6 are taken into account. In this case, it is possible to identify that the focal term Z4 indicates only a static component of the deviation A when the polishing surface 7 is rotated with respect to the rotation axis 8, and the static component generates a polishing error. It is not important or secondary to it. This is not the case in the case of (local) astigmatism Z5 / 6, because (local) astigmatism Z5 / 6 exhibits a dynamic component of deviation A, and in the case of rotation the polishing surface 7 or polishing Specify how strongly and dynamically the tool 6 must be adapted to the optical surface 2 or the adjacent area 3 to be polished at each location P.

結果として、局所非点収差Z5/6は、適切な研磨基準、すなわち研磨工具6が光学面2に隣接する区域3の各場所Pに位置する際に光学面2で生じた研磨誤差の尺度を表す。図3bは、光学面2及び隣接区域3の両方における場所Pに応じた局所非点収差Δzを示す。図3bは、光学面2を所望の仕様で作製できることを確実にするために超えるべきではない局所非点収差Δzの閾値Δzも示す。 As a result, the local astigmatism Z5 / 6 is a suitable polishing criterion, i.e. a measure of the polishing error that has occurred at the optical surface 2 when the polishing tool 6 is located at each location P in the area 3 adjacent to the optical surface 2. Represent. FIG. 3 b shows the local astigmatism Δz as a function of the location P in both the optical surface 2 and the adjacent area 3. FIG. 3b also shows a threshold value Δz S for local astigmatism Δz that should not be exceeded to ensure that the optical surface 2 can be made with the desired specifications.

図3bで識別できるように、区域3のうち図示の例で光学面2のY方向の断面の左側に位置する部分では、閾値Δzを超えるが、光学面自体は、各場所Pで閾値Δzを下回る局所非点収差Δzを有する。結果として、図3bに示す例では、区域3は、十分に小さな研磨誤差が光学面2でもたらされるようには研磨工具6に、より正確には研磨面7の直径Dに適合していない。したがって、区域3の形状は、研磨基準を満たすよう適切に変更する必要がある。 As can be seen in FIG. 3b, the portion of the zone 3 located in the left-hand side of the cross section in the Y direction of the optical surface 2 in the illustrated example exceeds the threshold Δz S , but the optical surface itself has a threshold Δz at each location P. It has a local astigmatism Δz below S. As a result, in the example shown in FIG. 3b, the area 3 is not adapted to the polishing tool 6 and more precisely to the diameter D of the polishing surface 7 so that a sufficiently small polishing error is provided at the optical surface 2. Therefore, the shape of the area 3 needs to be appropriately changed so as to satisfy the polishing standard.

直交多項式系への分解を用いた局所非点収差Δzの計算の代わりに、さらに上述したように、各場所Pでの局所非点収差Δzを次式により近似計算することができる。
Δz=(kmax−kmin)/8D
式中、Dは研磨工具6の研磨面7の直径を示し、kminは区域3の各場所Pでの最小局所曲率を示し、kmaxは区域3の各場所Pでの最大局所曲率を示す。ここで、最小及び最大曲率kMin、kMaxはそれぞれ、各場所Pでの最大及び最小曲率半径の逆数であり、すなわち以下が当てはまる。kMin=1/RMax、kMax=1/RMin
Instead of calculating the local astigmatism Δz using decomposition into an orthogonal polynomial system, as described above, the local astigmatism Δz at each location P can be approximately calculated by the following equation.
Δz = (k max −k min ) / 8D 2
In the equation, D indicates the diameter of the polishing surface 7 of the polishing tool 6, kmin indicates the minimum local curvature at each location P in the area 3, and kmax indicates the maximum local curvature at each location P in the area 3. . Here, the minimum and maximum curvatures k Min and k Max are the reciprocals of the maximum and minimum curvature radii at each location P, that is, the following applies. k Min = 1 / R Max , k Max = 1 / R Min .

図3bに示すものとは異なり、研磨基準を満たす区域3を作製する選択肢が複数ある。例として、例えば多項式又は多項式方程式の形態の光学面2の面z(x,y)の解析的表現を、光学面2に隣接する区域3に拡張することができる。最も単純な場合、光学面2の面z(x,y)の解析的表現を隣接区域3にも用いることができる。しかしながら、これは、光学面2の形状の面z(x,y)の解析的表現が、光学面2に隣接する区域3で急激すぎる起伏を有しないことを前提としている。光学面2の面z(x,y)の表現を最適化することにより、これは一般的に、光学面2の外側の研磨にとって多少不利な条件を有する傾向があるので、区域3での研磨条件を満たすために特定の状況下で異なる解を選択しなければならない。   Unlike what is shown in FIG. 3b, there are a number of options for creating an area 3 that meets the polishing criteria. As an example, an analytical representation of the surface z (x, y) of the optical surface 2, for example in the form of a polynomial or polynomial equation, can be extended to the area 3 adjacent to the optical surface 2. In the simplest case, an analytical representation of the surface z (x, y) of the optical surface 2 can also be used for the adjacent area 3. However, this presupposes that the analytical representation of the surface z (x, y) of the shape of the optical surface 2 does not have too sharp undulations in the area 3 adjacent to the optical surface 2. By optimizing the representation of the surface z (x, y) of the optical surface 2, this generally tends to have some disadvantages for polishing outside the optical surface 2, so that polishing in the area 3 Different solutions must be selected under certain circumstances to meet the conditions.

例として、光学設計に応じて実行される光学面2の形状を求める際に、側方隣接区域3の研磨基準Δzの閾値Δzを追加条件として考慮することができる。追加条件は、利用可能な自由度の制限を表すので、第1に隣接区域3での研磨基準を維持するために、また第2に追加条件の導入により光学面2の光学性能を低下させないように、光学面2及び区域3の面z(x,y)の解析的表現に高次多項式を用いる必要があり得る。 As an example, the threshold value Δz S of the polishing reference Δz of the laterally adjacent section 3 can be taken into account as an additional condition when determining the shape of the optical surface 2 executed according to the optical design. Since the additional condition represents a limit on the degree of freedom that can be used, firstly, in order to maintain the polishing standard in the adjacent area 3, and secondly, by introducing the additional condition, the optical performance of the optical surface 2 is not deteriorated. In addition, it may be necessary to use higher order polynomials for the analytical representation of the surface z (x, y) of the optical surface 2 and the area 3.

代替的に、面の解析的表現を用いずに、例えば光学面2の外縁4と基板1の外縁5との間の区域3を充填アルゴリズムにより充填することにより、区域3の形状を求めることで、不都合な上昇又は勾配を抑制するようにし、且つ区域3のいずれの点でも局所非点収差の形態の研磨基準Δzの閾値Δzを超えないように研磨基準を満たすよう所望に応じて理想的にこの区域を設計するようにする。 Alternatively, the shape of the area 3 can be determined without using an analytical representation of the surface, for example by filling the area 3 between the outer edge 4 of the optical surface 2 and the outer edge 5 of the substrate 1 with a filling algorithm. Ideal as desired to suppress undesired rises or gradients and to meet the polishing criteria so that the threshold Δz S of the polishing criterion Δz in the form of local astigmatism is not exceeded at any point in zone 3 Let's design this area.

区域3での研磨基準に従うさらに別の選択肢は、光学面2の代用形状を用いることからなる。これは特に、研磨基準を区域3で面z(x,y)の解析的表現により満たすことができない場合に有利である。この場合、研磨基準が満たされない区域3の面z(x,y)の解析的表現から始まって、隣接区域3での解析基準を満たすが特定の基準、例えば最大所与勾配に従った光学設計により与えられる光学面2の目標形状から逸脱している、光学面2及び区域3の代用形状を探索することが可能である。   Yet another option according to the polishing criteria in zone 3 consists in using a surrogate shape of the optical surface 2. This is particularly advantageous when the polishing criteria cannot be met in zone 3 by an analytical representation of the surface z (x, y). In this case, starting with an analytical representation of the surface z (x, y) of the area 3 where the polishing criteria are not met, the optical design meets the analysis criteria in the adjacent area 3 but follows a specific criterion, for example the maximum given gradient It is possible to search for a surrogate shape of the optical surface 2 and area 3 that deviates from the target shape of the optical surface 2 given by

この場合、基板1を研磨前の機械加工により、例えば研削により、また研磨中に加工して、光学面2の目標形状から逸脱した代用形状で光学面2を作製するようにする。基板1の機械加工中又は整形中及び研磨中、光学面2に隣接する区域3も、当該区域が研磨基準を満たすような、すなわち区域3がいずれの場所Pでも局所非点収差Δzの形態の研磨基準の閾値Δzを超えないような形状で作製される。 In this case, the substrate 1 is processed by mechanical processing before polishing, for example, by grinding or during polishing, so that the optical surface 2 is produced with a substitute shape deviating from the target shape of the optical surface 2. During machining or shaping and polishing of the substrate 1, the area 3 adjacent to the optical surface 2 is also in the form of local astigmatism Δz where the area meets the polishing criteria, ie where the area 3 is at any location P. It is manufactured in a shape that does not exceed the polishing reference threshold value Δz S.

所与の目標形状を有する光学面2を作製するために、図1dに例示的に示すように、代用形状を有する光学面2を研磨後に補正プロセスで後加工する。図示の例では、補正プロセスはイオンビーム加工プロセスであり、光学面2の代用形状を光学設計により与えられた目標形状に適合させるように局所的に、すなわち光学面2の各場所Pで材料アブレーションをもたらすために、可動式の制御イオンビームガン9がイオンビームを光学面2上に位置合わせする。   To produce an optical surface 2 having a given target shape, the optical surface 2 having a surrogate shape is post-processed in a correction process after polishing, as exemplarily shown in FIG. 1d. In the example shown, the correction process is an ion beam machining process, and material ablation locally, i.e. at each location P of the optical surface 2, to adapt the surrogate shape of the optical surface 2 to the target shape given by the optical design. To achieve this, a movable control ion beam gun 9 aligns the ion beam on the optical surface 2.

研削及び研磨中に光学面2が代用形状の形態で作製されず、研磨中に光学面2の目標形状を作るよう直接試みる場合、図1dに示す補正プロセス又は他の補正若しくは後加工プロセス、例えばいわゆる磁気粘性研磨も通常は実行されることが理解される。一般的に、このような補正プロセスが必要なのは、光学面2が研磨では中及び長空間波長でしか所望の目標形状に近付かない一方で、イオンビーム加工等の後続の補正プロセス中には短空間波長でも目標形状に適合できることで、全空間波長域で仕様を満たす光学面2が作製されるようになるからである。   If the optical surface 2 is not made in the form of a surrogate shape during grinding and polishing, but directly attempts to create the target shape of the optical surface 2 during polishing, the correction process shown in FIG. It is understood that so-called magnetoviscous polishing is also usually performed. In general, such a correction process is necessary because the optical surface 2 is close to the desired target shape only at medium and long spatial wavelengths for polishing, while short space is required during subsequent correction processes such as ion beam processing. This is because the optical surface 2 that satisfies the specifications in the entire spatial wavelength region can be produced by adapting to the target shape even at the wavelength.

研磨基準Δzの閾値Δzは、後続の補正プロセスにおいて、光学面2の研磨誤差を少なくとも光学面2が所望の精度又は公差を有する目標形状を近似するような程度まで補正できるように選択される。作製済み又は研磨済みの光学面の研磨誤差との比較により、適切な閾値Δzを設定することができる。 The threshold value Δz S of the polishing reference Δz is selected in a subsequent correction process so that the polishing error of the optical surface 2 can be corrected to at least an extent that the optical surface 2 approximates a target shape having the desired accuracy or tolerance. . An appropriate threshold value Δz S can be set by comparison with a polishing error of a manufactured or polished optical surface.

例として、図1dに示すイオンビーム加工後に、光学面2は、1nm〜光学面2の最大範囲Lの空間波長域で1nm rms未満の粗さRを有することができ、図1aに示すように、最大範囲Lは、光学面2の長軸の、すなわち楕円状に形成された縁4の最大直径の長さLを表す。   As an example, after the ion beam processing shown in FIG. 1d, the optical surface 2 can have a roughness R of less than 1 nm rms in the spatial wavelength region from 1 nm to the maximum range L of the optical surface 2, as shown in FIG. The maximum range L represents the length L of the maximum diameter of the edge 4 formed in an ellipse, that is, the major axis of the optical surface 2.

図2に示すように、EUVミラー10を製造する目的で、反射コーティング11を目標形状又は形態及び粗さRの仕様を満たすような光学面2に施すことができる。図示の例では、コーティング11は、約5nm〜約30nmのEUV波長域のEUV放射線13を反射するよう設計され、この目的で、上記コーティングは、EUVミラー10の使用波長に相当する13.5nmの波長で反射率の最大値を有する。図示の例では、反射コーティング11は、屈折率の異なる材料でできた交互層12a、12bを有する。図示の例では、第1層12aはケイ素(高屈折率を有する)からなり、第2層12bはモリブデン(低屈折率を有する)からなる。EUV波長域の使用波長に応じて、他の材料の組合せ、例えばモリブデン及びベリリウム、ルテニウム及びベリリウム、又はランタン及びBC等も可能である。 As shown in FIG. 2, for the purpose of manufacturing an EUV mirror 10, a reflective coating 11 can be applied to the optical surface 2 that satisfies the specifications of the target shape or form and roughness R. In the example shown, the coating 11 is designed to reflect EUV radiation 13 in the EUV wavelength range of about 5 nm to about 30 nm, and for this purpose the coating is 13.5 nm corresponding to the working wavelength of the EUV mirror 10. It has the maximum reflectivity at the wavelength. In the illustrated example, the reflective coating 11 has alternating layers 12a, 12b made of materials having different refractive indexes. In the illustrated example, the first layer 12a is made of silicon (having a high refractive index), and the second layer 12b is made of molybdenum (having a low refractive index). Other material combinations, such as molybdenum and beryllium, ruthenium and beryllium, or lanthanum and B 4 C, are possible depending on the wavelength used in the EUV wavelength range.

光学素子10において、反射コーティング11を施された光学面2に隣接する区域3は、各場所Pで局所非点収差Δzの閾値Δzを超えない。すなわち、各場所Pで以下が当てはまる。Δz≦Δzであり、ここで、
Δz=(kmax−kmin)/8D
式中、kMin及びkMaxはさらに上述したように定義され、Dには以下が当てはまる。D=2500mm、好ましくはD=900mm、特にD=100mm。閾値Δzが減少すると研磨性が増加することが理解される。しかしながら、小さい閾値Δzを選択するほど、全ての場所Pで閾値Δzを超えない区域3の形状を見付けにくくなる。
In the optical element 10, the area 3 adjacent to the optical surface 2 provided with the reflective coating 11 does not exceed the threshold value Δz S of the local astigmatism Δz at each location P. That is, the following applies at each location P: Δz ≦ Δz s , where
Δz S = (k max −k min ) / 8D 2
Where k Min and k Max are further defined as described above, and the following applies to D 2 : D 2 = 2500 mm 2 , preferably D 2 = 900 mm 2 , especially D 2 = 100 mm 2 . It can be seen that as the threshold Δz S decreases, the polishability increases. However, the smaller the threshold value Δz S is selected, the harder it is to find the shape of the area 3 that does not exceed the threshold value Δz S at all locations P.

光学面2に隣接し且つ研磨基準を満たす区域3は、通常は研磨工具6の研磨面7の直径Dに対応する距離dよりも大きく光学面2から外側に延びないことが理解される。研磨工具6を光学面2からさらに遠くに動かした場合、研磨面7は光学面2から側方に離間するので、この領域での研磨は光学面2での研磨誤差に影響を及ぼさなくなる。なお、図1a〜図1dに示すものとは異なり、区域3の外縁が基板1の外縁5に必ずしも対応しなくてもよく、場合によっては基板1が区域3の外縁よりもさらに外側に延びることがあり、さらに外側にある領域で研磨基準を満たす必要はなくなる。   It will be appreciated that the area 3 adjacent to the optical surface 2 and satisfying the polishing criteria does not extend outwardly from the optical surface 2 by a distance d which usually corresponds to the diameter D of the polishing surface 7 of the polishing tool 6. When the polishing tool 6 is moved further away from the optical surface 2, the polishing surface 7 is laterally separated from the optical surface 2, so that polishing in this region does not affect the polishing error on the optical surface 2. Unlike the one shown in FIGS. 1 a to 1 d, the outer edge of the area 3 does not necessarily correspond to the outer edge 5 of the substrate 1, and in some cases, the substrate 1 extends further outward than the outer edge of the area 3. There is no need to meet the polishing criteria in the outer region.

Claims (17)

光学素子(10)であって
自由曲面として具現された光学面(2)と、該光学面(2)の側方に隣接する区域(3)とを有する基板(1)
を備え、前記光学面(2)の側方に隣接する前記区域(3)は、各場所(P)で局所非点収差(Δz)の形態の研磨基準の閾値Δzを超えず、該閾値は、
Δz=(kmax−kmin)/8D
により与えられ、式中、kminは前記区域(3)の各場所(P)での最小局所曲率を示し、kmaxは前記区域(3)の各場所(P)での最大局所曲率を示し、D=2500mm、好ましくはD=900mm、特にD=100mmが当てはまる光学素子。
A substrate (1) comprising an optical surface (2) embodied as a free-form surface and an area (3) adjacent to the side of the optical surface (2), the optical element (10)
The section (3) adjacent to the side of the optical surface (2) does not exceed a polishing reference threshold Δz S in the form of local astigmatism (Δz) at each location (P), the threshold Is
Δz S = (k max −k min ) / 8D 2
Where k min denotes the minimum local curvature at each location (P) of the zone (3), and k max denotes the maximum local curvature at each location (P) in the zone (3). , D 2 = 2500 mm 2 , preferably D 2 = 900 mm 2 , in particular D 2 = 100 mm 2 .
請求項1に記載の光学素子であって、前記光学面(2)は、該光学面(2)に隣接する前記区域(3)に連続的に合流する光学素子。   2. The optical element according to claim 1, wherein the optical surface (2) continuously joins the area (3) adjacent to the optical surface (2). 3. 請求項1又は2に記載の光学素子であって、前記光学面(2)は、1mm〜該光学面(2)の最大範囲(L)の空間波長域で1nm rms未満の粗さ(R)を有する光学素子。   The optical element according to claim 1 or 2, wherein the optical surface (2) has a roughness (R) of less than 1 nm rms in a spatial wavelength region of 1 mm to a maximum range (L) of the optical surface (2). An optical element. 請求項1〜3のいずれか1項に記載の光学素子であって、前記区域(3)は、前記光学面(2)から外側に50mm以下の距離(d)だけ延びる光学素子。   The optical element according to any one of claims 1 to 3, wherein the section (3) extends outward from the optical surface (2) by a distance (d) of 50 mm or less. 請求項1〜4のいずれか1項に記載の光学素子(10)であって、少なくとも前記光学面(2)に、反射コーティング、特にEUV放射線(13)を反射するコーティング(11)を有する光学素子。   5. Optical element (10) according to claim 1, wherein at least the optical surface (2) has a reflective coating, in particular a coating (11) that reflects EUV radiation (13). element. 研磨工具(6)により光学面(2)を研磨する方法であって、
自由曲面として具現された前記光学面(2)と、該光学面(2)の側方に隣接する区域(3)とにわたって、前記研磨工具(6)の研磨面(7)を動かすことにより、前記光学面(2)を研磨するステップを含み、前記区域(3)の各場所(P)で研磨基準(Δz)の閾値(Δz)を超えないように、前記区域(3)の形状を前記研磨工具(6)に、特に該研磨工具(6)の前記研磨面(7)の形状に適合させ、前記研磨基準(Δz)は、前記光学面(2)に隣接する前記区域(3)にわたって前記研磨工具(6)を動かすことにより作製された前記光学面(2)における研磨誤差の尺度を表す、
方法。
A method of polishing an optical surface (2) with a polishing tool (6),
By moving the polishing surface (7) of the polishing tool (6) across the optical surface (2) embodied as a free-form surface and the area (3) adjacent to the side of the optical surface (2), Polishing the optical surface (2), wherein the shape of the area (3) is such that the threshold (Δz S ) of the polishing criterion (Δz) is not exceeded at each location (P) of the area (3). The polishing tool (6) is adapted in particular to the shape of the polishing surface (7) of the polishing tool (6), the polishing reference (Δz) being the zone (3) adjacent to the optical surface (2). Represents a measure of the polishing error in the optical surface (2) made by moving the polishing tool (6) over
Method.
請求項6に記載の方法であって、前記研磨工具(6)の前記研磨面(7)は、前記光学面(2)及び前記区域(3)にわたる運動中に回転軸(8)に関して回転運動を行う方法。   7. The method according to claim 6, wherein the polishing surface (7) of the polishing tool (6) rotates in relation to a rotation axis (8) during movement over the optical surface (2) and the zone (3). How to do. 請求項6又は7に記載の方法であって、前記区域(3)の各場所(P)での局所非点収差(Δz)を研磨基準として選択する方法。   The method according to claim 6 or 7, wherein local astigmatism (Δz) at each location (P) of the zone (3) is selected as a polishing criterion. 請求項8に記載の方法であって、前記区域(3)の各場所(P)での前記局所非点収差Δzを、
Δz=(kmax−kmin)/8D
により求め、式中、Dは前記研磨工具(6)の前記研磨面(7)の直径を示し、kminは前記区域(3)の各場所(P)での最小局所曲率を示し、kmaxは前記区域(3)の各場所(P)での最大局所曲率を示す方法。
The method according to claim 8, wherein the local astigmatism Δz at each location (P) of the section (3) is
Δz = (k max −k min ) / 8D 2
Where D indicates the diameter of the polishing surface (7) of the polishing tool (6), kmin indicates the minimum local curvature at each location (P) of the zone (3), and k max Is a method of indicating the maximum local curvature at each location (P) of the zone (3).
請求項6〜9のいずれか1項に記載の方法であって、前記研磨工具(6)の前記研磨面(7)は平面を形成する方法。   The method according to any one of claims 6 to 9, wherein the polishing surface (7) of the polishing tool (6) forms a flat surface. 請求項6〜10のいずれか1項に記載の方法であって、前記光学面(2)の形状及び前記側方隣接区域(3)の形状を、前記光学面(2)及び前記側方隣接区域(3)の両方の面(z(x,y))の解析的表現に基づいて求める方法。   11. The method according to any one of claims 6 to 10, wherein the shape of the optical surface (2) and the shape of the side adjacent area (3) are the same as the optical surface (2) and the side adjacent. A method for obtaining based on an analytical expression of both faces (z (x, y)) of the zone (3). 請求項11に記載の方法であって、前記光学面(2)の形状を求める際に、前記側方隣接区域(3)の前記研磨基準(Δz)の閾値(Δz)を考慮に入れる方法。 The method as claimed in claim 11, in determining the shape of the optical surface (2), taking into account the threshold (Delta] z S) of said lateral said polishing criterion adjacent zone (3) (Delta] z) . 請求項6〜10のいずれか1項に記載の方法であって、前記区域(3)の形状を、該区域(3)の面の解析的表現を用いずに求める方法。   11. The method according to any one of claims 6 to 10, wherein the shape of the area (3) is determined without using an analytical expression of the surface of the area (3). 請求項6〜13のいずれか1項に記載の方法であって、前記研磨するステップの前のステップにおいて、
研磨対象の前記光学面(2)及び前記側方隣接区域(3)を作製するために基板(1)を機械加工するステップ
をさらに含む方法。
14. The method according to any one of claims 6 to 13, wherein in the step before the polishing step,
Method further comprising machining the substrate (1) to produce the optical surface (2) and the laterally adjacent area (3) to be polished.
請求項14に記載の方法であって、前記基板(1)の機械加工及び研磨中に代用形状を有する光学面(2)を作製し、前記代用形状は、前記光学面(2)の目標形状から逸脱しており、前記光学面(2)の目標形状を、前記研磨の後の補正プロセスで前記代用形状から作る方法。   15. A method according to claim 14, wherein an optical surface (2) having a surrogate shape is produced during machining and polishing of the substrate (1), the surrogate shape being a target shape of the optical surface (2). And the target shape of the optical surface (2) is made from the substitute shape in a correction process after the polishing. 請求項6〜15のいずれか1項に記載の方法であって、前記研磨基準(Δz)の前記閾値(Δz)を、前記光学面(2)での前記研磨誤差が少なくとも1つの後続の補正プロセスで補正可能であるように選択する方法。 16. The method according to any one of claims 6 to 15, wherein the threshold (Δz S ) of the polishing reference (Δz) is set so that the polishing error at the optical surface (2) is at least one subsequent. How to choose to be correctable in the correction process. 請求項16に記載の方法であって、前記後続の補正プロセスは、イオンビーム加工及び磁気粘性研磨を含む群から選択される方法。   The method of claim 16, wherein the subsequent correction process is selected from the group comprising ion beam machining and magnetoviscous polishing.
JP2018528789A 2015-12-02 2016-11-16 Method for polishing optical surface and optical element Pending JP2019505829A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015223983.7A DE102015223983A1 (en) 2015-12-02 2015-12-02 Method for polishing an optical surface and optical element
DE102015223983.7 2015-12-02
PCT/EP2016/077866 WO2017093020A1 (en) 2015-12-02 2016-11-16 Method for polishing an optical surface and optical element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021068492A Division JP7053925B2 (en) 2015-12-02 2021-04-14 How to polish the optical surface and optical elements

Publications (2)

Publication Number Publication Date
JP2019505829A true JP2019505829A (en) 2019-02-28
JP2019505829A5 JP2019505829A5 (en) 2019-12-26

Family

ID=57348658

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018528789A Pending JP2019505829A (en) 2015-12-02 2016-11-16 Method for polishing optical surface and optical element
JP2021068492A Active JP7053925B2 (en) 2015-12-02 2021-04-14 How to polish the optical surface and optical elements

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021068492A Active JP7053925B2 (en) 2015-12-02 2021-04-14 How to polish the optical surface and optical elements

Country Status (4)

Country Link
JP (2) JP2019505829A (en)
CN (1) CN108369299B (en)
DE (1) DE102015223983A1 (en)
WO (1) WO2017093020A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202696A1 (en) * 2019-03-29 2020-10-08 株式会社ロジストラボ Method for manufacturing optical element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322411B (en) * 2017-06-09 2023-04-11 中国科学院西安光学精密机械研究所 Large-caliber aspheric optical element polishing device
DE102017216128A1 (en) * 2017-09-13 2019-03-14 Carl Zeiss Smt Gmbh Method for processing a workpiece in the manufacture of an optical element
DE102018202570A1 (en) * 2018-02-20 2019-08-22 Carl Zeiss Smt Gmbh A method of polishing a workpiece in the manufacture of an optical element
EP3931160A1 (en) * 2019-03-01 2022-01-05 Zygo Corporation Method for figure control of optical surfaces
CN115319625A (en) * 2022-08-11 2022-11-11 浙江百康光学股份有限公司 Workpiece polishing process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958415A (en) * 1982-09-29 1984-04-04 Seiko Epson Corp Progressive multifocal lens
JP2002052451A (en) * 2000-08-11 2002-02-19 Canon Inc Polishing method, optical element and forming die for optical element
JP2002346899A (en) * 2001-03-23 2002-12-04 Ricoh Co Ltd Curve surface working method and working device
JP2002370147A (en) * 2001-06-12 2002-12-24 Canon Inc Polishing tool
US7118449B1 (en) * 2004-09-20 2006-10-10 Carl Zeiss Smt Ag Method of manufacturing an optical element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221954A (en) * 1987-03-11 1988-09-14 Matsushita Electric Ind Co Ltd Curved surface polishing method
JPH09239653A (en) * 1996-03-06 1997-09-16 Nikon Corp Polishing device
JP2001246539A (en) * 2000-03-03 2001-09-11 Inst Of Physical & Chemical Res Grinding work method for non-axisymmetric aspherical mirror
JP2001322063A (en) * 2000-05-18 2001-11-20 Canon Inc Method of machining optical element
JP3882764B2 (en) 2003-02-19 2007-02-21 セイコーエプソン株式会社 Progressive power lens
DE10338893B4 (en) * 2003-08-23 2007-07-05 Essilor International (Compagnie Generale D'optique) Process for the production of spectacle lenses and other optical molded articles made of plastic
DE102007013563A1 (en) * 2007-03-21 2008-09-25 Carl Zeiss Smt Ag Method and device for producing an element with at least one free-form surface with high dimensional accuracy and low surface roughness
JP5029485B2 (en) 2008-05-12 2012-09-19 株式会社島津製作所 Aspherical reflective optical element
PL2184132T3 (en) 2008-11-07 2013-08-30 Essilor Int A method of and an apparatus for manufacturing an optical lens
KR101039144B1 (en) * 2008-12-10 2011-06-07 한국표준과학연구원 The appatatus grinding to big size optics lens from incoming data
JP5399167B2 (en) 2009-08-19 2014-01-29 オリンパス株式会社 Polishing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958415A (en) * 1982-09-29 1984-04-04 Seiko Epson Corp Progressive multifocal lens
JP2002052451A (en) * 2000-08-11 2002-02-19 Canon Inc Polishing method, optical element and forming die for optical element
JP2002346899A (en) * 2001-03-23 2002-12-04 Ricoh Co Ltd Curve surface working method and working device
JP2002370147A (en) * 2001-06-12 2002-12-24 Canon Inc Polishing tool
US7118449B1 (en) * 2004-09-20 2006-10-10 Carl Zeiss Smt Ag Method of manufacturing an optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202696A1 (en) * 2019-03-29 2020-10-08 株式会社ロジストラボ Method for manufacturing optical element
JP2020166135A (en) * 2019-03-29 2020-10-08 株式会社ロジストラボ Method for manufacturing optical element
JP7162844B2 (en) 2019-03-29 2022-10-31 株式会社ロジストラボ Optical element manufacturing method

Also Published As

Publication number Publication date
CN108369299A (en) 2018-08-03
JP7053925B2 (en) 2022-04-12
JP2021119393A (en) 2021-08-12
WO2017093020A1 (en) 2017-06-08
DE102015223983A1 (en) 2017-06-08
CN108369299B (en) 2020-11-10

Similar Documents

Publication Publication Date Title
JP7053925B2 (en) How to polish the optical surface and optical elements
JP7252311B2 (en) Progressive spectacle lens with variable refractive index and method of design and manufacture thereof
KR20160015263A (en) Process and system for manufacturing an ophthalmic lens
US7481543B1 (en) Mirror for use in a projection exposure apparatus
CN105690187A (en) Method for machining off-axis aspherical mirror
JP3973466B2 (en) Mold, mold manufacturing method, mold manufacturing system, and molding method
KR101622419B1 (en) Method for manufacturing a precursor lens for a rim-shaped lens
AU2012300658B2 (en) Method of surfacing a surface of a spectacle lens
Supranowitz et al. Improving surface figure and microroughness of IR materials and diamond turned surfaces with magnetorheological finishing (MRF)
JP2009125850A (en) Spectacle lens and its manufacturing method
JP2011020241A (en) Polishing method
Nelson et al. VIBE™ finishing to remove mid-spatial frequency ripple
CN112805152B (en) Method for manufacturing an optical lens by additive manufacturing and corresponding intermediate optical element
Fuchs Fabrication, metrology and alignment challenges for freeform imaging systems
RU2810680C1 (en) Method of forming astigmatism and higher orders of zernike polynomials with coefficients n=m (n≥2) on surface of optical elements
US11618122B1 (en) Methods and apparatus for generating free-form optical components
JP2007136623A (en) Axisymmetric aspheric surface polishing method
JP7414447B2 (en) Eyeglass lens design system, eyeglass lens design method, and eyeglass lens design program
JPH1015800A (en) Grinding method
Bouvier Investigation of polishing algorithms and removal processes for deterministic subaperture polisher
JP2007144568A (en) Axisymmetric aspheric surface polishing method
Kelm et al. Simulation and analysis of the polishing process for aspheres
Boerret et al. High-speed form preserving polishing of precision aspheres
Stach et al. Deterministic polishing process for aspheric lenses in a production environment
Boerret et al. ASPHERO5-rapid fabrication of precise aspheres

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201215