JP2019216029A - 電気化学反応セルスタック - Google Patents

電気化学反応セルスタック Download PDF

Info

Publication number
JP2019216029A
JP2019216029A JP2018112778A JP2018112778A JP2019216029A JP 2019216029 A JP2019216029 A JP 2019216029A JP 2018112778 A JP2018112778 A JP 2018112778A JP 2018112778 A JP2018112778 A JP 2018112778A JP 2019216029 A JP2019216029 A JP 2019216029A
Authority
JP
Japan
Prior art keywords
electrochemical reaction
power generation
fuel
cell stack
fuel chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018112778A
Other languages
English (en)
Other versions
JP6797153B2 (ja
Inventor
健太 眞邉
Kenta Manabe
健太 眞邉
堀田 信行
Nobuyuki Hotta
信行 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018112778A priority Critical patent/JP6797153B2/ja
Publication of JP2019216029A publication Critical patent/JP2019216029A/ja
Application granted granted Critical
Publication of JP6797153B2 publication Critical patent/JP6797153B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】各電気化学反応単位へ供給されるガスの利用率を向上させつつ、電気化学反応セルスタックの圧力損失を低減する。【解決手段】セルスタックは、L個の電気化学反応単位を備える。各電気化学反応単位には、燃料室とマニホールドとを連通する入口側連通ガス流路と、燃料室と他のマニホールドとを連通する出口側連通ガス流路とが形成されている。L個の電気化学反応単位は、M個の第1の電気化学反応単位と、N個の第2の電気化学反応単位とを含む。各第2の電気化学反応単位の入口側連通ガス流路は、マニホールドを介して各第1の電気化学反応単位の出口側連通ガス流路と連通している。各第2の電気化学反応単位の燃料室の高さは、互いに等しく、かつ、各第1の電気化学反応単位の燃料室の高さより高い。N個の第2の電気化学反応単位は、連通ガス流路の幅が互いに異なる複数の第2の電気化学反応単位を含む。【選択図】図11

Description

本明細書によって開示される技術は、電気化学反応セルスタックに関する。
水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物を含む電解質層を備える固体酸化物形の燃料電池(以下、「SOFC」という)が知られている。SOFCの構成単位である燃料電池発電単位(以下、単に「発電単位」という)は、電解質層と、電解質層を挟んで所定の方向(以下、「第1の方向」という)に互いに対向する空気極および燃料極と、を含む燃料電池単セル(以下、単に「単セル」という)を有する。SOFCは、一般に、上記第1の方向に並べて配置された複数の発電単位から構成された燃料電池スタックの形態で利用される。
燃料電池スタックには、複数のマニホールドが形成されている。各マニホールドは、複数の発電単位にわたって延びるガス流路である。また、燃料電池スタックを構成する各発電単位には、燃料極に面する燃料室と、燃料室と複数のマニホールドの1つとを連通する入口側連通ガス流路と、燃料室と複数のマニホールドの1つとを連通する出口側連通ガス流路とが形成されている。マニホールドに供給されたガス(水素を含むガス)は、各発電単位における入口側連通ガス流路を介して各発電単位の燃料室内に流入し、各発電単位における発電反応に利用される。その後、各発電単位の燃料室内のガスは、各発電単位における出口側連通ガス流路を介して他のマニホールドに排出される。
従来、上流側発電単位と下流側発電単位とを備える、いわゆる並直列型の燃料電池スタックが知られている(例えば、特許文献1参照)。並直列型の燃料電池スタックでは、下流側発電単位の入口側連通ガス流路は、マニホールドを介して、上流側発電単位の出口側連通ガス流路と連通している。そのため、並直列型の燃料電池スタックでは、上流側発電単位における発電反応に利用された後のガスが、下流側発電単位の燃料室に供給されて下流側発電単位における発電反応にも利用されることとなり、燃料ガスの利用率を向上させることができる。
特開2014−197492号公報
従来の並直列型の燃料電池スタックでは、各発電単位の燃料室から排出されたガスが他の発電単位を経由せずに燃料電池スタックの外部に排出される構成と比較して、燃料電池スタック全体としての燃料極側の圧力損失が増大するおそれがある。
なお、このような課題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(以下、「SOEC」という)の一形態である電解セルスタックにも共通の課題である。なお、本明細書では、燃料電池スタックと電解セルスタックとを、まとめて「電気化学反応セルスタック」という。また、このような課題は、固体酸化物形に限らず、他のタイプの電気化学反応セルスタックにも共通の課題である。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される電気化学反応セルスタックは、電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含む電気化学反応単セルをそれぞれ有すると共に、前記第1の方向に並べて配置されたL(Lは3以上の整数)個の電気化学反応単位を備える電気化学反応セルスタックにおいて、前記電気化学反応セルスタックには、それぞれ複数の前記電気化学反応単位にわたって延びるガス流路である複数のマニホールドが形成されており、各前記電気化学反応単位には、前記燃料極に面する燃料室と、前記燃料室と前記複数のマニホールドの1つとを連通する入口側連通ガス流路と、前記燃料室と前記複数のマニホールドの1つとを連通する出口側連通ガス流路と、が形成されており、前記L個の電気化学反応単位は、M(Mは1以上の整数)個の第1の電気化学反応単位と、N(Nは2以上の整数)個の第2の電気化学反応単位であって、各前記第2の電気化学反応単位の前記入口側連通ガス流路は、少なくとも1つの前記マニホールドを介して、各前記第1の電気化学反応単位の前記出口側連通ガス流路と連通している、N個の第2の電気化学反応単位と、を含み、各前記第2の電気化学反応単位の前記燃料室における前記第1の方向に前記燃料極と対向する部分の高さは、互いに等しく、かつ、各前記第1の電気化学反応単位の前記燃料室における前記第1の方向に前記燃料極と対向する部分の高さより高く、前記N個の第2の電気化学反応単位は、前記入口側連通ガス流路と前記出口側連通ガス流路との少なくとも一方である特定連通ガス流路の幅が互いに異なる複数の前記第2の電気化学反応単位を含み、前記N個の第2の電気化学反応単位における前記特定連通ガス流路の幅の最大値は、前記M個の第1の電気化学反応単位における前記特定連通ガス流路の幅の最小値より小さい。
本電気化学反応セルスタックでは、M個の第1の電気化学反応単位とN個の第2の電気化学反応単位とを備え、各第2の電気化学反応単位の入口側連通ガス流路は、マニホールドを介して、各第1の電気化学反応単位の出口側連通ガス流路と連通している。そのため、各第1の電気化学反応単位の燃料室から排出されたガスは、各第2の電気化学反応単位の燃料室内に導入され、その後、各第2の電気化学反応単位の燃料室から排出され、最終的に電気化学反応セルスタックの外部に排出される。従って、本電気化学反応セルスタックによれば、第1の電気化学反応単位における反応に利用された後のガスが、第2の電気化学反応単位における反応にも利用されることとなり、燃料室に供給されるガスの利用率を向上させることができる。
ただし、本電気化学反応セルスタックでは、上記構成であるため、各電気化学反応単位の燃料室から排出されたガスが他の電気化学反応単位を経由せずに電気化学反応セルスタックの外部に排出される構成と比較して、電気化学反応セルスタック全体としての燃料極側の圧力損失が増大するおそれがある。しかしながら、本電気化学反応セルスタックでは、各第2の電気化学反応単位の燃料室の高さが、各第1の電気化学反応単位の燃料室の高さより高い。そのため、本電気化学反応セルスタックによれば、燃料室に供給されるガスの利用率を向上させつつ、各第2の電気化学反応単位の燃料室における圧力損失を低減させることができ、その結果、電気化学反応セルスタック全体としての燃料極側の圧力損失の増大を抑制することができる。
また、本電気化学反応セルスタックでは、各第2の電気化学反応単位の燃料室の高さが比較的高いため、各第2の電気化学反応単位の燃料室における圧力損失を低減させることができる一方で、複数の第2の電気化学反応単位間で、燃料室へ供給されるガスの流量にバラツキが発生しやすく、各第2の電気化学反応単位における反応バラツキに起因して電気化学反応セルスタック全体の性能が低下するおそれがある。しかしながら、本電気化学反応セルスタックでは、N個の第2の電気化学反応単位は、入口側連通ガス流路と出口側連通ガス流路との少なくとも一方である特定連通ガス流路の幅が互いに異なる複数の第2の電気化学反応単位を含んでいる。そのため、各第2の電気化学反応単位の特定連通ガス流路の幅を適切に設定することにより、各第2の電気化学反応単位の燃料室へ供給されるガスの流量のバラツキを抑制することができ、その結果、該バラツキに起因して電気化学反応セルスタック全体の性能が低下することを抑制することができる。
(2)上記電気化学反応セルスタックにおいて、前記N個の第2の電気化学反応単位は、前記第1の方向に互いに隣接する複数の前記第2の電気化学反応単位から構成された電気化学反応単位グループを含み、前記電気化学反応単位グループを構成する複数の前記第2の電気化学反応単位は、一の前記第2の電気化学反応単位と、前記一の第2の電気化学反応単位と比較して、前記燃料室から排出されたガスを前記電気化学反応セルスタックの外部へ排出する排出孔の近くに位置し、かつ、前記特定連通ガス流路の幅が狭い他の前記第2の電気化学反応単位と、を含む構成としてもよい。電気化学反応単位グループを構成する複数の第2の電気化学反応単位の内、燃料室から排出されたガスを前記電気化学反応セルスタックの外部へ排出する排出孔の比較的近くに位置する第2の電気化学反応単位では、燃料室に供給されるガスの流量が多くなりやすい。本電気化学反応セルスタックでは、電気化学反応単位グループを構成する複数の第2の電気化学反応単位の内、燃料室に供給されるガスの流量が多くなりやすい第2の電気化学反応単位において、特定連通ガス流路の幅が比較的狭くなっている。そのため、本電気化学反応セルスタックによれば、電気化学反応単位グループを構成する複数の第2の電気化学反応単位の燃料室へ供給されるガスの流量のバラツキを抑制することができ、その結果、該バラツキに起因して電気化学反応セルスタック全体の性能が低下することを効果的に抑制することができる。
(3)上記電気化学反応セルスタックにおいて、前記N個の第2の電気化学反応単位は、それぞれ前記第1の方向に互いに隣接する複数の前記第2の電気化学反応単位から構成された複数の電気化学反応単位グループを含み、前記複数の電気化学反応単位グループは、一の前記電気化学反応単位グループと、前記一の電気化学反応単位グループと比較して、前記燃料室から排出されたガスを前記電気化学反応セルスタックの外部へ排出する排出孔の近くに位置し、かつ、前記特定連通ガス流路の幅の最小値が小さい他の前記電気化学反応単位グループと、を含む構成としてもよい。複数の電気化学反応単位グループの内、燃料室から排出されたガスを前記電気化学反応セルスタックの外部へ排出する排出孔の比較的近くに位置する電気化学反応単位グループでは、燃料室に供給されるガスの流量が多くなりやすい。本電気化学反応セルスタックでは、複数の電気化学反応単位グループの内、燃料室に供給されるガスの流量が多くなりやすい電気化学反応単位グループにおいて、特定連通ガス流路の幅の最小値が比較的小さくなっている。そのため、本電気化学反応セルスタックによれば、複数の電気化学反応単位グループ間での、第2の電気化学反応単位の燃料室へ供給されるガスの流量のバラツキを抑制することができ、その結果、該バラツキに起因して電気化学反応セルスタック全体の性能が低下することを効果的に抑制することができる。
(4)上記電気化学反応セルスタックにおいて、前記第2の電気化学反応単位の個数Nは、前記第1の電気化学反応単位の個数Mより小さい構成としてもよい。本電気化学反応セルスタックによれば、燃料室に供給されるガスの利用率を向上させつつ、第2の電気化学反応単位においてガスが不足して反応性が低下することを抑制することができる。ただし、本電気化学反応セルスタックでは、第2の電気化学反応単位の個数Nが第1の電気化学反応単位の個数Mより小さいため、第1の電気化学反応単位と比較して第2の電気化学反応単位の方が、1つの電気化学反応単位あたりの燃料室へ供給されるガスの流量が多くなり、各第2の電気化学反応単位の燃料室へ供給されるガスの流量にバラツキが発生しやすい。本電気化学反応セルスタックによれば、そのようなバラツキが発生しやすい構成においても、特定連通ガス流路の幅を適切に設定することにより、各第2の電気化学反応単位の燃料室へ供給されるガスの流量のバラツキを抑制することができ、その結果、該バラツキに起因して電気化学反応セルスタック全体の性能が低下することを抑制することができる。
(5)上記電気化学反応セルスタックにおいて、前記電気化学反応単セルは、燃料電池単セルであることを特徴とする構成としてもよい。本電気化学反応セルスタックによれば、各電気化学反応単位の燃料室へ供給されるガスの利用率を向上させつつ、電気化学反応セルスタック全体としての圧力損失の増大を抑制することができ、さらに、各電気化学反応単位の燃料室へ供給されるガスの流量のバラツキに起因して電気化学反応セルスタック全体の発電性能が低下することを抑制することができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、電気化学反応セルスタック、電気化学反応セルスタックを備えるシステム、それらの製造方法等の形態で実現することが可能である。
本実施形態における燃料電池スタック100の外観構成を示す斜視図である。 図1のII−IIの位置における燃料電池スタック100のXZ断面構成を示す説明図である。 図1のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。 図1のIV−IVの位置における燃料電池スタック100のYZ断面構成を示す説明図である。 図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図である。 図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。 図4に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。 図5のVIII−VIIIの位置における発電単位102のXY断面構成を示す説明図である。 図5のIX−IXの位置における発電単位102のXY断面構成を示す説明図である。 図5のX−Xの位置における発電単位102のXY断面構成を示す説明図である。 燃料電池スタック100を構成する各発電単位102における燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woを示す説明図である。
A.第1の実施形態:
A−1.構成:
(燃料電池スタック100の構成)
図1は、本実施形態における燃料電池スタック100の外観構成を示す斜視図であり、図2は、図1(および後述する図8から図10)のII−IIの位置における燃料電池スタック100のXZ断面構成を示す説明図であり、図3は、図1(および後述する図8から図10)のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図であり、図4は、図1(および後述する図8から図10)のIV−IVの位置における燃料電池スタック100のYZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を「上方向」といい、Z軸負方向を「下方向」というものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。図5以降についても同様である。また、本明細書では、Z軸方向に直交する方向を、面方向と呼ぶものとする。
燃料電池スタック100は、L(Lは3以上の整数であり、本実施形態ではL=15)個の燃料電池発電単位(以下、単に「発電単位」という)102と、一対のエンドプレート104,106とを備える。15個の発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のエンドプレート104,106は、15個の発電単位102から構成される集合体を上下から挟むように配置されている。なお、上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当する。
燃料電池スタック100が備える15個の発電単位102は、M(Mは1以上の整数であり、本実施形態ではM=9)個の上流側発電単位102Uと、N(Nは2以上の整数であり、本実施形態ではN=6)個の下流側発電単位102Dとを含む。より詳細には、15個の発電単位102の内、下から数えて1〜3,6〜8番目の発電単位102が下流側発電単位102Dであり、4,5,9〜15番目の発電単位102が上流側発電単位102Uである。本実施形態では、下流側発電単位102Dの個数Nは、上流側発電単位102Uの個数Mより小さい。上流側発電単位102Uは、特許請求の範囲における第1の電気化学反応単位に相当し、下流側発電単位102Dは、特許請求の範囲における第2の電気化学反応単位に相当する。
燃料電池スタック100を構成する各層(発電単位102、エンドプレート104,106)のZ軸方向回りの周縁部には、上下方向に貫通する複数の(本実施形態では8つの)孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、一方のエンドプレート104から他方のエンドプレート106にわたって上下方向に延びる連通孔108を構成している。以下の説明では、連通孔108を構成するために燃料電池スタック100の各層に形成された孔も、「連通孔108」という。
各連通孔108には上下方向に延びるボルト22が挿入されており、ボルト22とボルト22の両側に嵌められたナット24とによって、燃料電池スタック100は締結されている。なお、図2〜図4に示すように、ボルト22の一方の側(上側)に嵌められたナット24と燃料電池スタック100の上端を構成するエンドプレート104の上側表面との間、および、ボルト22の他方の側(下側)に嵌められたナット24と燃料電池スタック100の下端を構成するエンドプレート106の下側表面との間には、絶縁シート26が介在している。ただし、後述のガス通路部材27が設けられた箇所では、ナット24とエンドプレート106の表面との間に、ガス通路部材27とガス通路部材27の上側および下側のそれぞれに配置された絶縁シート26とが介在している。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。
各ボルト22の軸部の外径は各連通孔108の内径より小さい。そのため、各ボルト22の軸部の外周面と各連通孔108の内周面との間には、空間が確保されている。該空間の内の少なくとも一部は、複数の発電単位102にわたって延びるガス流路であるマニホールドとして機能する。
具体的には、図1および図2に示すように、燃料電池スタック100のZ軸方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の中点付近に位置するボルト22(ボルト22A)と、そのボルト22Aが挿入された連通孔108とにより形成された空間は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102に供給するガス流路である酸化剤ガス導入マニホールド161として機能する。また、燃料電池スタック100のZ軸方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の中点付近に位置するボルト22(ボルト22B)と、そのボルト22Bが挿入された連通孔108とにより形成された空間は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へと排出する酸化剤ガス排出マニホールド162として機能する。なお、本実施形態では、酸化剤ガスOGとして、例えば空気が使用される。
また、図1および図3に示すように、燃料電池スタック100のZ軸方向回りの外周における1つの頂点(X軸正方向側およびY軸負方向側の頂点)付近に位置するボルト22(ボルト22C)と、そのボルト22Cが挿入された連通孔108とにより形成された空間は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各上流側発電単位102Uに供給する燃料ガス導入マニホールド171として機能する。また、図1、図3および図4に示すように、燃料電池スタック100のZ軸方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置するボルト22(ボルト22D)と、そのボルト22Dが挿入された連通孔108とにより形成された空間は、各上流側発電単位102Uの燃料室176から排出されたガスである燃料中間ガスFMGを各下流側発電単位102Dに向けて運ぶ燃料ガス中継マニホールド172として機能する。また、図1、図3および図4に示すように、燃料電池スタック100のZ軸方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置するボルト22(ボルト22E)と、そのボルト22Eが挿入された連通孔108とにより形成された空間は、各下流側発電単位102Dの燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へと排出する燃料ガス排出マニホールド173として機能する。なお、本実施形態では、燃料ガスFGとして、例えば都市ガスを改質した水素リッチなガスが使用される。また、燃料中間ガスFMGには、各上流側発電単位102Uにおいて発電反応に利用されなかった水素等が含まれる。
燃料電池スタック100には、4つのガス通路部材27が設けられている。各ガス通路部材27は、中空筒状の本体部28と、本体部28の側面から分岐した中空筒状の分岐部29とを有している。分岐部29の孔は本体部28の孔と連通している。各ガス通路部材27の分岐部29には、ガス配管(図示せず)が接続される。また、図2に示すように、酸化剤ガス導入マニホールド161を形成するボルト22Aの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス導入マニホールド161に連通している。すなわち、このガス通路部材27は、酸化剤ガスOGを燃料電池スタック100の外部から内部に供給する供給孔として機能する。また、酸化剤ガス排出マニホールド162を形成するボルト22Bの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス排出マニホールド162に連通している。すなわち、このガス通路部材27は、酸化剤オフガスOOGを燃料電池スタック100の内部から外部へ排出する排出孔として機能する。また、図3に示すように、燃料ガス導入マニホールド171を形成するボルト22Cの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス導入マニホールド171に連通している。すなわち、このガス通路部材27は、燃料ガスFGを燃料電池スタック100の外部から内部に供給する供給孔として機能する。また、図4に示すように、燃料ガス排出マニホールド173を形成するボルト22Eの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス排出マニホールド173に連通している。すなわち、このガス通路部材27は、燃料オフガスFOGを燃料電池スタック100の内部から外部へ排出する排出孔として機能する。
(エンドプレート104,106の構成)
一対のエンドプレート104,106は、略矩形の平板形状の導電性部材であり、例えばステンレスにより形成されている。一方のエンドプレート104は、最も上に位置する発電単位102の上側に配置され、他方のエンドプレート106は、最も下に位置する発電単位102の下側に配置されている。一対のエンドプレート104,106によって複数の発電単位102が押圧された状態で挟持されている。上側のエンドプレート104は、燃料電池スタック100のプラス側の出力端子として機能し、下側のエンドプレート106は、燃料電池スタック100のマイナス側の出力端子として機能する。
(発電単位102の構成)
図5は、図2に示す断面と同一の位置における互いに隣接する2つの発電単位102(1つの上流側発電単位102Uと1つの下流側発電単位102D)のXZ断面構成を示す説明図であり、図6は、図3に示す断面と同一の位置における互いに隣接する2つの発電単位102(2つの上流側発電単位102U)のYZ断面構成を示す説明図であり、図7は、図4に示す断面と同一の位置における互いに隣接する2つの発電単位102(2つの下流側発電単位102D)のYZ断面構成を示す説明図である。また、図8は、図5のVIII−VIIIの位置における発電単位102(上流側発電単位102U)のXY断面構成を示す説明図であり、図9は、図5のIX−IXの位置における発電単位102(上流側発電単位102U)のXY断面構成を示す説明図であり、図10は、図5のX−Xの位置における発電単位102(下流側発電単位102D)のXY断面構成を示す説明図である。
図5〜図7に示すように、発電単位102は、単セル110と、セパレータ120と、空気極側フレーム130と、空気極側集電体134と、燃料極側フレーム140と、燃料極側集電体144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150におけるZ軸方向回りの周縁部には、上述したボルト22が挿入される連通孔108に対応する孔が形成されている。
インターコネクタ150は、略矩形の平板形状の導電性部材であり、例えばフェライト系ステンレスにより形成されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ150は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のエンドプレート104,106を備えているため、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えておらず、最も下に位置する発電単位102は下側のインターコネクタ150を備えていない(図2〜図4参照)。
単セル110は、電解質層112と、電解質層112を挟んで上下方向(発電単位102が並ぶ配列方向)に互いに対向する空気極(カソード)114および燃料極(アノード)116とを備える。なお、本実施形態の単セル110は、燃料極116で電解質層112および空気極114を支持する燃料極支持形の単セルである。
電解質層112は、略矩形の平板形状部材であり、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、CaSZ(カルシア安定化ジルコニア)等の固体酸化物により形成されている。このように、本実施形態の単セル110は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。空気極114は、略矩形の平板形状部材であり、例えば、ペロブスカイト型酸化物(例えばLSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、LNF(ランタンニッケル鉄))により形成されている。燃料極116は、略矩形の平板形状部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子とからなるサーメット、Ni基合金等により形成されている。
セパレータ120は、中央付近に上下方向に貫通する略矩形の孔121が形成されたフレーム状の部材であり、例えば、ステンレス等の金属により形成されている。セパレータ120における孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。セパレータ120により、単セル110に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリークが抑制される。
空気極側フレーム130は、図8に示すように、中央付近に上下方向に貫通する略矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。空気極側フレーム130は、セパレータ120における電解質層112に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。また、空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。また、空気極側フレーム130には、空気室166と酸化剤ガス導入マニホールド161とを連通する空気室入口側連通ガス流路132と、空気室166と酸化剤ガス排出マニホールド162とを連通する空気室出口側連通ガス流路133とが形成されている。空気室入口側連通ガス流路132および空気室出口側連通ガス流路133は、空気極側フレーム130に形成された面方向に延びる孔である。
燃料極側フレーム140は、図9および図10に示すように、中央付近に上下方向に貫通する略矩形の孔141が形成されたフレーム状の部材であり、例えば、ステンレス等の金属により形成されている。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。燃料極側フレーム140は、セパレータ120における電解質層112に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。また、燃料極側フレーム140には、燃料室176と1つのマニホールドとを連通する燃料室入口側連通ガス流路142と、燃料室176と他の1つのマニホールドとを連通する燃料室出口側連通ガス流路143とが形成されている。燃料室入口側連通ガス流路142および燃料室出口側連通ガス流路143は、燃料極側フレーム140に形成された面方向に延びる孔である。図9に示すように、上流側発電単位102Uにおいては、燃料室入口側連通ガス流路142は、燃料室176と燃料ガス導入マニホールド171とを連通し、燃料室出口側連通ガス流路143は、燃料室176と燃料ガス中継マニホールド172とを連通する。また、図10に示すように、下流側発電単位102Dにおいては、燃料室入口側連通ガス流路142は、燃料室176と燃料ガス中継マニホールド172とを連通し、燃料室出口側連通ガス流路143は、燃料室176と燃料ガス排出マニホールド173とを連通する。
空気極側集電体134は、図5〜図8に示すように、空気室166内に配置されている。空気極側集電体134は、所定の間隔をあけて並べられた複数の略四角柱状の導電性部材から構成されており、例えば、フェライト系ステンレスにより形成されている。空気極側集電体134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触している。ただし、上述したように、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えていないため、当該発電単位102における空気極側集電体134は、上側のエンドプレート104に接触している。空気極側集電体134は、このような構成であるため、空気極114とインターコネクタ150(またはエンドプレート104)とを電気的に接続する。なお、空気極側集電体134とインターコネクタ150とが一体の部材として形成されていてもよい。
燃料極側集電体144は、図5〜図7、図9および図10に示すように、燃料室176内に配置されている。燃料極側集電体144は、インターコネクタ対向部146と、複数の電極対向部145と、各電極対向部145とインターコネクタ対向部146とをつなぐ連接部147とを備えた導電体であり、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。各電極対向部145は、燃料極116における電解質層112に対向する側とは反対側の表面に接触しており、インターコネクタ対向部146は、インターコネクタ150における燃料極116に対向する側の表面に接触している。ただし、上述したように、燃料電池スタック100において最も下に位置する発電単位102は下側のインターコネクタ150を備えていないため、当該発電単位102におけるインターコネクタ対向部146は、下側のエンドプレート106に接触している。燃料極側集電体144は、このような構成であるため、燃料極116とインターコネクタ150(またはエンドプレート106)とを電気的に接続する。なお、電極対向部145とインターコネクタ対向部146との間には、例えばマイカにより形成されたスペーサー149が配置されている。そのため、燃料極側集電体144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電体144を介した燃料極116とインターコネクタ150(またはエンドプレート106)との電気的接続が良好に維持される。
A−2.燃料電池スタック100の動作:
図2および図5に示すように、酸化剤ガス導入マニホールド161の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部から酸化剤ガスOGが供給されると、酸化剤ガスOGは、ガス通路部材27の分岐部29および本体部28の孔を介して酸化剤ガス導入マニホールド161に供給され、酸化剤ガス導入マニホールド161から各発電単位102(上流側発電単位102Uおよび下流側発電単位102D)の空気室入口側連通ガス流路132を介して空気室166に供給され、各発電単位102の単セル110の空気極114に供給される。
また、図3および図6に示すように、燃料ガス導入マニホールド171の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部から燃料ガスFGが供給されると、燃料ガスFGは、ガス通路部材27の分岐部29および本体部28の孔を介して燃料ガス導入マニホールド171に供給され、燃料ガス導入マニホールド171から各上流側発電単位102Uの燃料室入口側連通ガス流路142を介して燃料室176に供給され、各上流側発電単位102Uの単セル110の燃料極116に供給される。なお、燃料ガス導入マニホールド171は、各下流側発電単位102Dの燃料室176には連通しておらず、燃料ガス導入マニホールド171から各下流側発電単位102Dの燃料室176に燃料ガスFGが供給されることはない。
また、図3、図4、図6および図7に示すように、各上流側発電単位102Uの燃料室176から燃料室出口側連通ガス流路143を介して燃料ガス中継マニホールド172に排出された燃料中間ガスFMGは、各下流側発電単位102Dの燃料室入口側連通ガス流路142を介して燃料室176に供給され、各下流側発電単位102Dの単セル110の燃料極116に供給される。
各発電単位102(上流側発電単位102Uおよび下流側発電単位102D)の単セル110の空気極114に酸化剤ガスOGが供給され、単セル110の燃料極116に燃料ガスFGまたは燃料中間ガスFMGが供給されると、各単セル110において酸化剤ガスOGおよび燃料ガスFGまたは燃料中間ガスFMGの電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は空気極側集電体134を介して一方のインターコネクタ150に電気的に接続され、燃料極116は燃料極側集電体144を介して他方のインターコネクタ150に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
図2および図5に示すように、各発電単位102(上流側発電単位102Uおよび下流側発電単位102D)の空気室166から空気室出口側連通ガス流路133を介して酸化剤ガス排出マニホールド162に排出された酸化剤オフガスOOGは、酸化剤ガス排出マニホールド162の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部に排出される。また、図4および図7に示すように、各下流側発電単位102Dの燃料室176から燃料室出口側連通ガス流路143を介して燃料ガス排出マニホールド173に排出された燃料オフガスFOGは、燃料ガス排出マニホールド173の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示しない)を介して燃料電池スタック100の外部に排出される。
このように、本実施形態の燃料電池スタック100では、燃料電池スタック100の外部から導入された燃料ガスFGが、燃料ガス導入マニホールド171を介して複数の上流側発電単位102Uに並列に供給され、その後、各上流側発電単位102Uから排出された燃料中間ガスFMGが、燃料ガス中継マニホールド172を介して複数の下流側発電単位102Dに並列に供給される。すなわち、本実施形態の燃料電池スタック100は、いわゆる並直列型の燃料電池スタックである。
A−3.各発電単位102の燃料極側の詳細構成:
次に、各発電単位102の燃料極側の構成について、さらに詳細に説明する。上述したように、本実施形態の燃料電池スタック100が備えるL(本実施形態ではL=15)個の発電単位102は、M(本実施形態ではM=9)個の上流側発電単位102Uと、N(本実施形態ではN=6)個の下流側発電単位102Dとを含む。本実施形態の燃料電池スタック100では、下流側発電単位102Dの個数Nは、上流側発電単位102Uの個数Mより小さい(N<M)。
本実施形態の燃料電池スタック100では、6個の下流側発電単位102Dのそれぞれの燃料室176における、Z軸方向に燃料極116と対向する部分の高さHd(以下、単に「下流側発電単位102Dの燃料室176の高さHd」という)は、互いに等しい(図5および図7参照)。なお、下流側発電単位102Dの燃料室176の高さHdが、燃料室176における面方向の各位置で異なる場合には、下流側発電単位102Dの燃料室176の高さHdは、各位置での高さHdの最小値を意味するものとする。また、本明細書において、複数の燃料室176の高さが互いに等しいとは、各燃料室176の高さの差が±0.01mm以下であることを意味する。各下流側発電単位102Dの燃料室176の高さHdは、例えば、1.9mm〜2.3mm程度である。
同様に、本実施形態の燃料電池スタック100では、9個の上流側発電単位102Uのそれぞれの燃料室176における、Z軸方向に燃料極116と対向する部分の高さHu(以下、単に「上流側発電単位102Uの燃料室176の高さHu」という)は、互いに等しい(図5および図6参照)。なお、上流側発電単位102Uの燃料室176の高さHuが、燃料室176における面方向の各位置で異なる場合には、上流側発電単位102Uの燃料室176の高さHuは、各位置での高さHuの最小値を意味するものとする。各上流側発電単位102Uの燃料室176の高さHuは、例えば、1.4mm〜1.8mm程度である。
また、本実施形態の燃料電池スタック100では、各下流側発電単位102Dの燃料室176の高さHdは、各上流側発電単位102Uの燃料室176の高さHuより高い(Hd>Hu)。本実施形態では、各下流側発電単位102Dの燃料極側フレーム140の厚さ(Z軸方向における大きさ)を各上流側発電単位102Uの燃料極側フレーム140の厚さより厚くすることにより、上記関係(Hd>Hu)を実現している。下流側発電単位102Dの燃料室176の高さHdと、上流側発電単位102Uの燃料室176の高さHuとの差(=Hd−Hu)は、0.5mm以上であることが好ましい。
また、図11は、燃料電池スタック100を構成する各発電単位102における燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woを示す説明図である。図11の右端の表には、燃料電池スタック100を構成する各発電単位102について、燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woの値が示されている。
ここで、図9および図10に示すように、各発電単位102における燃料室入口側連通ガス流路142の幅Wiは、Z軸方向視で、燃料室入口側連通ガス流路142の延伸方向に直交する方向の大きさである。燃料室入口側連通ガス流路142の各位置において幅Wiが異なる場合には、燃料室入口側連通ガス流路142における燃料室176との接続位置において幅Wiを特定するものとする。また、1つの発電単位102に複数の燃料室入口側連通ガス流路142が存在する場合には、各燃料室入口側連通ガス流路142の幅Wiの合計を、該発電単位102の燃料室入口側連通ガス流路142の幅Wiというものとする。同様に、各発電単位102における燃料室出口側連通ガス流路143の幅Woは、Z軸方向視で、燃料室出口側連通ガス流路143の延伸方向に直交する方向の大きさである。燃料室出口側連通ガス流路143の各位置において幅Woが異なる場合には、燃料室出口側連通ガス流路143における燃料室176との接続位置において幅Woを特定するものとする。また、1つの発電単位102に複数の燃料室出口側連通ガス流路143が存在する場合には、各燃料室出口側連通ガス流路143の幅Woの合計を、該発電単位102の燃料室出口側連通ガス流路143の幅Woというものとする。
図11に示すように、本実施形態の燃料電池スタック100では、6個の下流側発電単位102Dのそれぞれにおける燃料室入口側連通ガス流路142の幅Wiは、互いに等しくない。すなわち、6個の下流側発電単位102Dは、燃料室入口側連通ガス流路142の幅Wiが互いに異なる複数の下流側発電単位102Dを含む。なお、本明細書において、燃料室入口側連通ガス流路142の幅Wiが互いに異なるとは、各幅Wiの差が±0.01mmより大きいことを意味する。具体的には、本実施形態の燃料電池スタック100では、下から数えて1,2,3,6,7,8番目の下流側発電単位102Dの燃料室入口側連通ガス流路142の幅Wiは、それぞれ、「j」mm、「j+0.1」mm、「j+0.2」mm、「j+0.1」mm、「j+0.2」mm、「j+0.3」mmである。ここで、「j」は、燃料室入口側連通ガス流路142の幅Wiの基準値(以下、「入口側基準幅j」という)であり、本実施形態では、最も下に位置する発電単位102(下流側発電単位102D)の燃料室入口側連通ガス流路142の幅Wiと同値である。なお、入口側基準幅jは、例えば、1.2mm〜1.6mm程度である。また、本実施形態の燃料電池スタック100では、各下流側発電単位102Dにおいて、燃料室入口側連通ガス流路142の幅Wiは、燃料室176の高さHdより小さい。燃料室入口側連通ガス流路142の幅Wiに対する燃料室176の高さHdの比(=Hd/Wi)は、1.1以上であることが好ましい。
同様に、本実施形態の燃料電池スタック100では、6個の下流側発電単位102Dのそれぞれにおける燃料室出口側連通ガス流路143の幅Woは、互いに等しくない。すなわち、6個の下流側発電単位102Dは、燃料室出口側連通ガス流路143の幅Woが互いに異なる複数の下流側発電単位102Dを含む。なお、本明細書において、燃料室出口側連通ガス流路143の幅Woが互いに異なるとは、各幅Woの差が±0.01mmより大きいことを意味する。具体的には、本実施形態の燃料電池スタック100では、下から数えて1,2,3,6,7,8番目の下流側発電単位102Dの燃料室出口側連通ガス流路143の幅Woは、それぞれ、「k」mm、「k+0.1」mm、「k+0.2」mm、「k+0.1」mm、「k+0.2」mm、「k+0.3」mmである。ここで、「k」は、燃料室出口側連通ガス流路143の幅Woの基準値(以下、「出口側基準幅k」という)であり、本実施形態では、最も下に位置する発電単位102(下流側発電単位102D)の燃料室出口側連通ガス流路143の幅Woと同値である。なお、出口側基準幅kは、例えば、1.2mm〜1.6mm程度である。また、本実施形態の燃料電池スタック100では、各下流側発電単位102Dにおいて、燃料室出口側連通ガス流路143の幅Woは、燃料室176の高さHdより小さい。燃料室出口側連通ガス流路143の幅Woに対する燃料室176の高さHdの比(=Hd/Wo)は、1.1以上であることが好ましい。
一方、本実施形態の燃料電池スタック100では、9個の上流側発電単位102Uのそれぞれにおける燃料室入口側連通ガス流路142の幅Wiは、互いに等しい(すべて、「j+0.5」mmである)。また、9個の上流側発電単位102Uのそれぞれにおける燃料室出口側連通ガス流路143の幅Woも、互いに等しい(すべて、「k+0.5」mmである)。
また、本実施形態の燃料電池スタック100では、6個の下流側発電単位102Dにおける燃料室入口側連通ガス流路142の幅Wiの最大値(=「j+0.3」mm)は、9個の上流側発電単位102Uにおける燃料室入口側連通ガス流路142の幅Wiの最小値(=「j+0.5」mm)より小さくなっている。すなわち、各下流側発電単位102Dにおける燃料室入口側連通ガス流路142の幅Wiは、各上流側発電単位102Uにおける燃料室入口側連通ガス流路142の幅Wiと比較して、全体的に狭くなっている。同様に、本実施形態の燃料電池スタック100では、6個の下流側発電単位102Dにおける燃料室出口側連通ガス流路143の幅Woの最大値(=「k+0.3」mm)は、9個の上流側発電単位102Uにおける燃料室出口側連通ガス流路143の幅Woの最小値(=「k+0.5」mm)より小さくなっている。すなわち、各下流側発電単位102Dにおける燃料室出口側連通ガス流路143の幅Woは、各上流側発電単位102Uにおける燃料室出口側連通ガス流路143の幅Woと比較して、全体的に狭くなっている。
なお、本実施形態における燃料室入口側連通ガス流路142および燃料室出口側連通ガス流路143は、特許請求の範囲における特定連通ガス流路に相当する。
また、Z軸方向に互いに隣接する複数の下流側発電単位102Dから構成されたグループを、下流側発電単位グループ102DGと呼ぶものとすると、本実施形態の燃料電池スタック100では、6個の下流側発電単位102Dは、2つの下流側発電単位グループ102DGを有すると言える(図2〜図4,図11参照)。すなわち、本実施形態では、下から数えて1,2,3番目の3つの下流側発電単位102Dから構成された下流側発電単位グループ102DG(以下、「下側下流側発電単位グループ102DG1」という)と、下から数えて6,7,8番目の3つの下流側発電単位102Dから構成された下流側発電単位グループ102DG(以下、「上側下流側発電単位グループ102DG2」という)とが存在する。
1つの下流側発電単位グループ102DGに着目すると、該下流側発電単位グループ102DGを構成する複数の下流側発電単位102Dの内、より下側に位置する下流側発電単位102Dほど、燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woが狭くなっている。例えば、下側下流側発電単位グループ102DG1を構成する3つの下流側発電単位102Dの内、最も上側に位置する下流側発電単位102Dにおける燃料室入口側連通ガス流路142の幅Wiは「j+0.2」mmであり、最も下側に位置する下流側発電単位102Dにおける燃料室入口側連通ガス流路142の幅Wiは、それより狭い「j」mmであり、両者の中間に位置する下流側発電単位102Dにおける燃料室入口側連通ガス流路142の幅Wiは、両者の中間である「j+0.1」mmである。下側下流側発電単位グループ102DG1における燃料室出口側連通ガス流路143の幅Woや、上側下流側発電単位グループ102DG2の燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woについても同様となっている。
なお、1つの下流側発電単位グループ102DGを構成する複数の下流側発電単位102Dの内、より下側に位置する下流側発電単位102Dは、燃料室176から排出されたガス(燃料オフガスFOG)を燃料電池スタック100の外部へ排出する排出孔(すなわち、燃料ガス排出マニホールド173の位置に設けられたガス通路部材27(図4参照))のより近くに位置する下流側発電単位102Dであると言える。そのため、本実施形態の燃料電池スタック100では、1つの下流側発電単位グループ102DGを構成する複数の下流側発電単位102Dは、一の下流側発電単位102Dと、該一の下流側発電単位102Dと比較して、燃料室176から排出されたガスを燃料電池スタック100の外部へ排出する排出孔の近くに位置し、かつ、燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woが狭い他の下流側発電単位102Dとを含むと言える。
また、複数の下流側発電単位グループ102DGを互いに比較すると、より下側に位置する下流側発電単位グループ102DGほど、燃料室入口側連通ガス流路142の幅Wiの最小値および燃料室出口側連通ガス流路143の幅Woの最小値が小さくなっている。例えば、下側下流側発電単位グループ102DG1における燃料室入口側連通ガス流路142の幅Wiの最小値(=「j」mm)は、上側下流側発電単位グループ102DG2における燃料室入口側連通ガス流路142の幅Wiの最小値(=「j+0.1」mm)より小さい。燃料室出口側連通ガス流路143の幅Woの最小値についても同様となっている。
なお、複数の下流側発電単位グループ102DGの内、より下側に位置する下流側発電単位グループ102DGは、燃料室176から排出されたガス(燃料オフガスFOG)を燃料電池スタック100の外部へ排出する排出孔(燃料ガス排出マニホールド173の位置に設けられたガス通路部材27)のより近くに位置する下流側発電単位グループ102DGであると言える。そのため、本実施形態の燃料電池スタック100では、複数の下流側発電単位グループ102DGは、一の下流側発電単位グループ102DGと、該一の下流側発電単位グループ102DGと比較して、燃料室176から排出されたガスを燃料電池スタック100の外部へ排出する排出孔の近くに位置し、かつ、燃料室入口側連通ガス流路142の幅Wiの最小値および燃料室出口側連通ガス流路143の幅Woの最小値が小さい他の下流側発電単位グループ102DGとを含むと言える。
A−4.本実施形態の効果:
以上説明したように、本実施形態の燃料電池スタック100は、Z軸方向に並べて配置されたL(Lは3以上の整数であり、本実施形態ではL=15)個の発電単位102を備える。各発電単位102は、電解質層112と、電解質層112を挟んでZ軸方向に互いに対向する空気極114および燃料極116と、を含む単セル110を有する。燃料電池スタック100には、それぞれ複数の発電単位102にわたって延びるガス流路である複数のマニホールド161,162,171,172,173が形成されている。各発電単位102には、燃料極116に面する燃料室176と、燃料室176と複数のマニホールドの1つ(燃料ガス導入マニホールド171または燃料ガス中継マニホールド172)とを連通する燃料室入口側連通ガス流路142と、燃料室176と複数のマニホールドの1つ(燃料ガス中継マニホールド172または燃料ガス排出マニホールド173)とを連通する燃料室出口側連通ガス流路143とが形成されている。L個の発電単位102は、M(Mは1以上の整数であり、本実施形態ではM=9)個の上流側発電単位102Uと、N(Nは2以上の整数であり、本実施形態ではN=6)個の下流側発電単位102Dとを含む。各下流側発電単位102Dの燃料室入口側連通ガス流路142は、燃料ガス中継マニホールド172を介して、各上流側発電単位102Uの燃料室出口側連通ガス流路143と連通している。また、本実施形態の燃料電池スタック100では、各下流側発電単位102Dの燃料室176におけるZ軸方向に燃料極116と対向する部分の高さHdは、互いに等しく、かつ、各上流側発電単位102Uの燃料室176におけるZ軸方向に燃料極116と対向する部分の高さHuより高い。また、N個の下流側発電単位102Dは、燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woが互いに異なる複数の下流側発電単位102Dを含む。また、N個の下流側発電単位102Dにおける燃料室入口側連通ガス流路142の幅Wiの最大値は、M個の上流側発電単位102Uにおける燃料室入口側連通ガス流路142の幅Wiの最小値より小さく、かつ、N個の下流側発電単位102Dにおける燃料室出口側連通ガス流路143の幅Woの最大値は、M個の上流側発電単位102Uにおける燃料室出口側連通ガス流路143の幅Woの最小値より小さい。
このように、本実施形態の燃料電池スタック100は、M個の上流側発電単位102UとN個の下流側発電単位102Dとを備え、各下流側発電単位102Dの燃料室入口側連通ガス流路142は、燃料ガス中継マニホールド172を介して、各上流側発電単位102Uの燃料室出口側連通ガス流路143と連通している。そのため、各上流側発電単位102Uの燃料室176から排出されたガス(燃料中間ガスFMG)は、各下流側発電単位102Dの燃料室176内に導入され、その後、各下流側発電単位102Dの燃料室176から燃料オフガスFOGとして排出され、最終的に燃料電池スタック100の外部に排出される。従って、本実施形態の燃料電池スタック100によれば、上流側発電単位102Uにおける発電反応に利用された後のガスが、下流側発電単位102Dにおける発電反応にも利用されることとなり、燃料ガスFGの利用率を向上させることができる。
ただし、本実施形態の燃料電池スタック100では、上記構成であるため、各発電単位102の燃料室176から排出されたガスが他の発電単位102を経由せずに燃料電池スタック100の外部に排出される構成と比較して、燃料電池スタック100全体としての燃料極側の圧力損失が増大するおそれがある。しかしながら、本実施形態の燃料電池スタック100では、各下流側発電単位102Dの燃料室176の高さHdが、各上流側発電単位102Uの燃料室176の高さHuより高い。そのため、本実施形態の燃料電池スタック100によれば、燃料ガスFGの利用率を向上させつつ、各下流側発電単位102Dの燃料室176における圧力損失を低減させることができ、その結果、燃料電池スタック100全体としての燃料極側の圧力損失の増大を抑制することができる。
また、本実施形態の燃料電池スタック100では、各下流側発電単位102Dの燃料室176の高さHdが比較的高いため、各下流側発電単位102Dの燃料室176における圧力損失を低減させることができる一方で、複数の下流側発電単位102D間で、燃料室176へ供給されるガス(燃料中間ガスFMG)の流量にバラツキが発生しやすく、各下流側発電単位102Dにおける反応バラツキに起因して燃料電池スタック100全体の発電性能が低下するおそれがある。しかしながら、本実施形態の燃料電池スタック100では、N個の下流側発電単位102Dは、燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woが互いに異なる複数の下流側発電単位102Dを含んでいる。そのため、各下流側発電単位102Dの燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woを適切に設定することにより、各下流側発電単位102Dの燃料室176へ供給されるガスの流量のバラツキを抑制することができ、その結果、該バラツキに起因して燃料電池スタック100全体の発電性能が低下することを抑制することができる。
また、本実施形態の燃料電池スタック100では、N個の下流側発電単位102Dは、Z軸方向に互いに隣接する複数の下流側発電単位102Dから構成された下流側発電単位グループ102DGを含む。下流側発電単位グループ102DGを構成する複数の下流側発電単位102Dは、一の下流側発電単位102Dと、該一の下流側発電単位102Dと比較して、燃料室176から排出されたガス(燃料オフガスFOG)を燃料電池スタック100の外部へ排出する排出孔(燃料ガス排出マニホールド173の位置に設けられたガス通路部材27)の近くに位置し、かつ、燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woが狭い他の下流側発電単位102Dとを含む。下流側発電単位グループ102DGを構成する複数の下流側発電単位102Dの内、上記排出孔の比較的近くに位置する下流側発電単位102Dでは、燃料室176に供給されるガス(燃料中間ガスFMG)の流量が多くなりやすい。本実施形態の燃料電池スタック100では、下流側発電単位グループ102DGを構成する複数の下流側発電単位102Dの内、燃料室176に供給されるガスの流量が多くなりやすい下流側発電単位102Dにおいて、燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woが比較的狭くなっている。そのため、本実施形態の燃料電池スタック100によれば、下流側発電単位グループ102DGを構成する複数の下流側発電単位102Dの燃料室176へ供給されるガスの流量のバラツキを抑制することができ、その結果、該バラツキに起因して燃料電池スタック100全体の発電性能が低下することを効果的に抑制することができる。
また、本実施形態の燃料電池スタック100では、N個の下流側発電単位102Dは、それぞれZ軸方向に互いに隣接する複数の下流側発電単位102Dから構成された複数の下流側発電単位グループ102DGを含む。複数の下流側発電単位グループ102DGは、一の下流側発電単位グループ102DGと、該一の下流側発電単位グループ102DGと比較して、燃料室176から排出されたガス(燃料オフガスFOG)を燃料電池スタック100の外部へ排出する排出孔(燃料ガス排出マニホールド173の位置に設けられたガス通路部材27)の近くに位置し、かつ、燃料室入口側連通ガス流路142の幅Wiの最小値および燃料室出口側連通ガス流路143の幅Woの最小値が小さい他の下流側発電単位グループ102DGとを含む。複数の下流側発電単位グループ102DGの内、上記排出孔の比較的近くに位置する下流側発電単位グループ102DGでは、燃料室176に供給されるガス(燃料中間ガスFMG)の流量が多くなりやすい。本実施形態の燃料電池スタック100では、複数の下流側発電単位グループ102DGの内、燃料室176に供給されるガスの流量が多くなりやすい下流側発電単位グループ102DGにおいて、燃料室入口側連通ガス流路142の幅Wiの最小値および燃料室出口側連通ガス流路143の幅Woの最小値が比較的小さくなっている。そのため、本実施形態の燃料電池スタック100によれば、複数の下流側発電単位グループ102DG間での、下流側発電単位102Dの燃料室176へ供給されるガスの流量のバラツキを抑制することができ、その結果、該バラツキに起因して燃料電池スタック100全体の発電性能が低下することを効果的に抑制することができる。
なお、本実施形態の燃料電池スタック100では、下流側発電単位102Dの個数Nは、上流側発電単位102Uの個数Mより小さい(N<M)。そのため、本実施形態の燃料電池スタック100によれば、燃料ガスFGの利用率を向上させつつ、下流側発電単位102Dにおいてガス(水素)が不足して反応性が低下することを抑制することができる。ただし、本実施形態の燃料電池スタック100では、下流側発電単位102Dの個数Nが上流側発電単位102Uの個数Mより小さいため、上流側発電単位102Uと比較して下流側発電単位102Dの方が、1つの発電単位102あたりの燃料室176へ供給されるガスの流量が多くなり、各下流側発電単位102Dの燃料室176へ供給されるガスの流量にバラツキが発生しやすい。本実施形態の燃料電池スタック100によれば、そのようなバラツキが発生しやすい構成においても、燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woを適切に設定することにより、各下流側発電単位102Dの燃料室176へ供給されるガスの流量のバラツキを抑制することができ、その結果、該バラツキに起因して燃料電池スタック100全体の発電性能が低下することを抑制することができる。
B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記実施形態における燃料電池スタック100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態の燃料電池スタック100における、発電単位102の個数L、上流側発電単位102Uの個数M、下流側発電単位102Dの個数N、下流側発電単位グループ102DGの個数、各下流側発電単位グループ102DGを構成する下流側発電単位102Dの個数等は、あくまで一例であり、任意に変更可能である。例えば、上記実施形態では、下流側発電単位102Dの個数Nは上流側発電単位102Uの個数Mより小さいが(N<M)、下流側発電単位102Dの個数Nは上流側発電単位102Uの個数M以上であってもよい(N≧M)。
また、上記実施形態では、各下流側発電単位102Dの燃料室入口側連通ガス流路142が、1つのマニホールド(燃料ガス中継マニホールド172)を介して各上流側発電単位102Uの燃料室出口側連通ガス流路143と連通しているが、各下流側発電単位102Dの燃料室入口側連通ガス流路142が、複数のマニホールドを介して各上流側発電単位102Uの燃料室出口側連通ガス流路143と連通しているとしてもよい。例えば、各下流側発電単位102Dの燃料室入口側連通ガス流路142が、1つのマニホールドを介して上流側発電単位102U以外に形成された面方向のガス流路に連通し、該ガス流路が燃料ガス中継マニホールド172を介して各上流側発電単位102Uの燃料室出口側連通ガス流路143と連通しているとしてもよい。
また、上記実施形態において、各発電単位102の燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woは、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、6個の下流側発電単位102Dは、燃料室入口側連通ガス流路142の幅Wiが互いに異なる複数の下流側発電単位102Dを含み、かつ、6個の下流側発電単位102Dは、燃料室出口側連通ガス流路143の幅Woが互いに異なる複数の下流側発電単位102Dを含むとしているが、燃料室入口側連通ガス流路142の幅Wiと燃料室出口側連通ガス流路143の幅Woとの一方について、6個の下流側発電単位102Dのそれぞれにおける連通ガス流路の幅が等しい構成としてもよい。この場合において、燃料室入口側連通ガス流路142と燃料室出口側連通ガス流路143との内、幅が等しくない方の連通ガス流路が、特許請求の範囲における特定連通ガス流路に相当する。また、例えば、上記実施形態では、9個の上流側発電単位102Uのそれぞれにおける燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woは等しい構成としているが、燃料室入口側連通ガス流路142の幅Wiと燃料室出口側連通ガス流路143の幅Woとの少なくとも一方について、連通ガス流路の幅が等しくないとしてもよい。
また、上記実施形態では、各下流側発電単位グループ102DGを構成する複数の(3つの)下流側発電単位102Dの燃料室入口側連通ガス流路142の幅Wiおよび燃料室出口側連通ガス流路143の幅Woが互いに異なっているが、該複数の下流側発電単位102Dの内の少なくとも一部の下流側発電単位102Dについて、幅Wiおよび幅Woの少なくとも一方が互いに同一であるとしてもよい。すなわち、各下流側発電単位グループ102DGは、幅Wiおよび幅Woの少なくとも一方が互いに同一である複数の下流側発電単位102Dを含んでいてもよい。例えば、図11に示す下側下流側発電単位グループ102DG1を構成する3つの下流側発電単位102Dの内、最も上側に位置する下流側発電単位102Dにおける燃料室入口側連通ガス流路142の幅Wiと、中央に位置する下流側発電単位102Dにおける燃料室入口側連通ガス流路142の幅Wiとが、共に「j+0.2」mmであるとしてもよい。あるいは、下側下流側発電単位グループ102DG1を構成する3つの下流側発電単位102Dの内、最も下側に位置する下流側発電単位102Dにおける燃料室出口側連通ガス流路143の幅Woと、中央に位置する下流側発電単位102Dにおける燃料室出口側連通ガス流路143の幅Woとが、共にkmmであるとしてもよい。なお、これらの変形例においても、下流側発電単位グループ102DGを構成する複数の下流側発電単位102Dは、一の下流側発電単位102Dと、該一の下流側発電単位102Dと比較して、燃料室176から排出された燃料オフガスFOGを燃料電池スタック100の外部へ排出する排出孔の近くに位置し、かつ、燃料室入口側連通ガス流路142および/または燃料室出口側連通ガス流路143の幅Wi,Woが狭い他の下流側発電単位102Dと、を含んでいると言える。
また、上記実施形態における各マニホールドや各連通ガス流路の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、各下流側発電単位102Dに形成される燃料室入口側連通ガス流路142や燃料室出口側連通ガス流路143の個数は1つであるが、各下流側発電単位102Dに形成される燃料室入口側連通ガス流路142や燃料室出口側連通ガス流路143の個数は、任意に設定可能であり、複数であってもよい。また、上記実施形態では、各ボルト22の軸部の外周面と各連通孔108の内周面との間の空間を各マニホールドとして利用しているが、これに代えて、各ボルト22の軸部に軸方向の孔を形成し、その孔を各マニホールドとして利用してもよい。また、各マニホールドを各ボルト22が挿入される各連通孔108とは別に設けてもよい。
また、上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行うSOFCを対象としているが、本発明は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(SOEC)の構成単位である電解セル単位を複数備える電解セルスタックにも同様に適用可能である。なお、電解セルスタックの構成は、例えば特開2016−81813号に記載されているように公知であるためここでは詳述しないが、概略的には上述した実施形態における燃料電池スタック100と同様の構成である。すなわち、上述した実施形態における燃料電池スタック100を電解セルスタックと読み替え、発電単位102を電解セル単位と読み替え、単セル110を電解単セルと読み替えればよい。ただし、電解セルスタックの運転の際には、空気極114がプラス(陽極)で燃料極116がマイナス(陰極)となるように両電極間に電圧が印加されると共に、マニホールドを介して原料ガスとしての水蒸気が供給される。これにより、各電解セル単位において水の電気分解反応が起こり、燃料室176で水素ガスが発生し、マニホールドを介して電解セルスタックの外部に水素が取り出される。このような構成の電解セルスタックにおいても、上記実施形態と同様の構成を採用すると、各電解セル単位の燃料室へ供給されるガスの利用率を向上させつつ、電解セルスタック全体としての圧力損失の増大を抑制することができ、さらに、各電解セル単位の燃料室へ供給されるガスの流量のバラツキに起因して電解セルスタック全体の性能が低下することを抑制することができる。
また、上記実施形態では、固体酸化物形燃料電池(SOFC)を例に説明したが、本願発明は、固体高分子形燃料電池(PEFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)といった他のタイプの燃料電池スタック(または電解セルスタック)にも適用可能である。
22:ボルト 24:ナット 26:絶縁シート 27:ガス通路部材 28:本体部 29:分岐部 100:燃料電池スタック 102:燃料電池発電単位 102D:下流側発電単位 102DG:下流側発電単位グループ 102U:上流側発電単位 104:エンドプレート 106:エンドプレート 108:連通孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 121:孔 124:接合部 130:空気極側フレーム 131:孔 132:空気室入口側連通ガス流路 133:空気室出口側連通ガス流路 134:空気極側集電体 140:燃料極側フレーム 141:孔 142:燃料室入口側連通ガス流路 143:燃料室出口側連通ガス流路 144:燃料極側集電体 145:電極対向部 146:インターコネクタ対向部 147:連接部 149:スペーサー 150:インターコネクタ 161:酸化剤ガス導入マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス導入マニホールド 172:燃料ガス中継マニホールド 173:燃料ガス排出マニホールド 176:燃料室 FG:燃料ガス FMG:燃料中間ガス FOG:燃料オフガス Hd:高さ Hu:高さ OG:酸化剤ガス OOG:酸化剤オフガス Wi:幅 Wo:幅 j:入口側基準幅 k:出口側基準幅

Claims (5)

  1. 電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含む電気化学反応単セルをそれぞれ有すると共に、前記第1の方向に並べて配置されたL(Lは3以上の整数)個の電気化学反応単位を備える電気化学反応セルスタックにおいて、
    前記電気化学反応セルスタックには、それぞれ複数の前記電気化学反応単位にわたって延びるガス流路である複数のマニホールドが形成されており、
    各前記電気化学反応単位には、
    前記燃料極に面する燃料室と、
    前記燃料室と前記複数のマニホールドの1つとを連通する入口側連通ガス流路と、
    前記燃料室と前記複数のマニホールドの1つとを連通する出口側連通ガス流路と、
    が形成されており、
    前記L個の電気化学反応単位は、
    M(Mは1以上の整数)個の第1の電気化学反応単位と、
    N(Nは2以上の整数)個の第2の電気化学反応単位であって、各前記第2の電気化学反応単位の前記入口側連通ガス流路は、少なくとも1つの前記マニホールドを介して、各前記第1の電気化学反応単位の前記出口側連通ガス流路と連通している、N個の第2の電気化学反応単位と、
    を含み、
    各前記第2の電気化学反応単位の前記燃料室における前記第1の方向に前記燃料極と対向する部分の高さは、互いに等しく、かつ、各前記第1の電気化学反応単位の前記燃料室における前記第1の方向に前記燃料極と対向する部分の高さより高く、
    前記N個の第2の電気化学反応単位は、前記入口側連通ガス流路と前記出口側連通ガス流路との少なくとも一方である特定連通ガス流路の幅が互いに異なる複数の前記第2の電気化学反応単位を含み、
    前記N個の第2の電気化学反応単位における前記特定連通ガス流路の幅の最大値は、前記M個の第1の電気化学反応単位における前記特定連通ガス流路の幅の最小値より小さい、
    ことを特徴とする電気化学反応セルスタック。
  2. 請求項1に記載の電気化学反応セルスタックにおいて、
    前記N個の第2の電気化学反応単位は、前記第1の方向に互いに隣接する複数の前記第2の電気化学反応単位から構成された電気化学反応単位グループを含み、
    前記電気化学反応単位グループを構成する複数の前記第2の電気化学反応単位は、
    一の前記第2の電気化学反応単位と、
    前記一の第2の電気化学反応単位と比較して、前記燃料室から排出されたガスを前記電気化学反応セルスタックの外部へ排出する排出孔の近くに位置し、かつ、前記特定連通ガス流路の幅が狭い他の前記第2の電気化学反応単位と、
    を含む、
    ことを特徴とする電気化学反応セルスタック。
  3. 請求項1または請求項2に記載の電気化学反応セルスタックにおいて、
    前記N個の第2の電気化学反応単位は、それぞれ前記第1の方向に互いに隣接する複数の前記第2の電気化学反応単位から構成された複数の電気化学反応単位グループを含み、
    前記複数の電気化学反応単位グループは、
    一の前記電気化学反応単位グループと、
    前記一の電気化学反応単位グループと比較して、前記燃料室から排出されたガスを前記電気化学反応セルスタックの外部へ排出する排出孔の近くに位置し、かつ、前記特定連通ガス流路の幅の最小値が小さい他の前記電気化学反応単位グループと、
    を含む、
    ことを特徴とする電気化学反応セルスタック。
  4. 請求項1から請求項3までのいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記第2の電気化学反応単位の個数Nは、前記第1の電気化学反応単位の個数Mより小さい、
    ことを特徴とする電気化学反応セルスタック。
  5. 請求項1から請求項4までのいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記電気化学反応単セルは、燃料電池単セルであることを特徴とする、電気化学反応セルスタック。
JP2018112778A 2018-06-13 2018-06-13 電気化学反応セルスタック Active JP6797153B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018112778A JP6797153B2 (ja) 2018-06-13 2018-06-13 電気化学反応セルスタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018112778A JP6797153B2 (ja) 2018-06-13 2018-06-13 電気化学反応セルスタック

Publications (2)

Publication Number Publication Date
JP2019216029A true JP2019216029A (ja) 2019-12-19
JP6797153B2 JP6797153B2 (ja) 2020-12-09

Family

ID=68919665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018112778A Active JP6797153B2 (ja) 2018-06-13 2018-06-13 電気化学反応セルスタック

Country Status (1)

Country Link
JP (1) JP6797153B2 (ja)

Also Published As

Publication number Publication date
JP6797153B2 (ja) 2020-12-09

Similar Documents

Publication Publication Date Title
JP2020009744A (ja) 電気化学反応単位および電気化学反応セルスタック
JP6445182B2 (ja) インターコネクタ−電気化学反応単セル複合体、電気化学反応セルスタックおよびインターコネクタ−電気化学反応単セル複合体の製造方法
JP6667278B2 (ja) 電気化学反応セルスタック
JP7194242B1 (ja) 電気化学反応セルスタック
JP7210508B2 (ja) 電気化学反応セルスタック
JP6527761B2 (ja) インターコネクタ−燃料電池単セル複合体および燃料電池スタック
JP6773600B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6403908B2 (ja) 電気化学反応セルスタック
JP6797153B2 (ja) 電気化学反応セルスタック
EP3579319B1 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7159249B2 (ja) 電気化学反応セルスタックおよびic-単セル複合体
JP7112443B2 (ja) 電気化学反応セルスタック
JP2019029240A (ja) 燃料電池発電単位および燃料電池スタック
US11233250B2 (en) Electrochemical reaction unit including cathode-side frame configured to improve spreading of oxidant gas and electrochemical reaction cell stack
JP6450885B2 (ja) 電気化学反応セルスタック
JP2017228481A (ja) 電気化学反応セルスタック
JP2023119145A (ja) 集電体-電気化学反応単セル複合体、および、電気化学反応セルスタック
JP2023078773A (ja) 電気化学反応セルスタック
JP2019003793A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018174040A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018174039A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018137204A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018185916A (ja) 電気化学反応セルスタック
JP2018137205A (ja) 電気化学反応単位および電気化学反応セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6797153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250