JP2019214026A - Post-processing method and apparatus for methane fermentation liquid - Google Patents
Post-processing method and apparatus for methane fermentation liquid Download PDFInfo
- Publication number
- JP2019214026A JP2019214026A JP2018113415A JP2018113415A JP2019214026A JP 2019214026 A JP2019214026 A JP 2019214026A JP 2018113415 A JP2018113415 A JP 2018113415A JP 2018113415 A JP2018113415 A JP 2018113415A JP 2019214026 A JP2019214026 A JP 2019214026A
- Authority
- JP
- Japan
- Prior art keywords
- fermentation
- post
- bottomed
- liquid
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Physical Water Treatments (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明はメタン発酵液の後処理方法及び装置に関し,とくにバイオマスのメタン発酵処理後に発生する発酵液の後処理方法及び装置に関する。 The present invention relates to a method and an apparatus for post-treatment of a methane fermentation liquor, and more particularly to a method and an apparatus for post-treatment of a fermentation liquor generated after a methane fermentation treatment of biomass.
循環型社会を形成する観点から,生ごみ,高濃度有機性排水,余剰汚泥,家畜糞尿のような有機物を含むバイオマスSを微生物により嫌気的に分解し,エネルギー源となるバイオガスGを生成するメタン発酵処理技術が実用化されている(特許文献1,非特許文献1参照)。図4を参照して,従来のメタン発酵プラントの流れを本発明の理解に必要な程度において説明する。先ず処理対象のバイオマスSを原料タンク1に蓄え,必要に応じて異物分離・粉砕・希釈等の前処理を施したうえで,原料ポンプ1aによりメタン発酵槽(バイオリアクタ)2へ投入してメタン発酵処理に供する。 From the viewpoint of forming a recycling-oriented society, biomass S containing organic matter such as garbage, high-concentration organic wastewater, surplus sludge, and livestock manure is anaerobically decomposed by microorganisms to generate biogas G as an energy source. A methane fermentation treatment technology has been put to practical use (see Patent Literature 1 and Non-Patent Literature 1). Referring to FIG. 4, the flow of the conventional methane fermentation plant will be described to the extent necessary for understanding the present invention. First, the biomass S to be treated is stored in a raw material tank 1, subjected to pretreatment such as separation of foreign matter, pulverization, dilution, etc. as necessary, and then fed into a methane fermentation tank (bioreactor) 2 by a raw material pump 1a. Provide for fermentation treatment.
メタン発酵槽2におけるメタン発酵処理(有機物の消化過程)は,多くの微生物群の共生によりタンパク質,炭水化物,脂質等の様々な有機物を分解する複雑な反応過程であるが,一般的には第1段階において分子量の大きな有機物が低分子量のアルコール,脂肪酸,水素等に分解され,第2段階において脂肪酸等が酢酸に酸化分解され,第3段階において酢酸,水素等から最終的にバイオガスGが生成される。図示例は固形物濃度が比較的小さいバイオマスSを処理対象とする湿式のメタン発酵槽2を示しているが,固形物濃度が比較的高いバイオマスSを処理する場合は乾式のメタン発酵槽とすることも可能である。 The methane fermentation treatment (organic matter digestion process) in the methane fermentation tank 2 is a complicated reaction process in which various organic substances such as proteins, carbohydrates, and lipids are decomposed by symbiosis of many microbial groups. High molecular weight organic substances are decomposed into low molecular weight alcohols, fatty acids, hydrogen, etc. in the stage, fatty acids, etc. are oxidatively decomposed into acetic acid in the second stage, and finally biogas G is produced from acetic acid, hydrogen, etc. in the third stage Is done. The illustrated example shows a wet methane fermentation tank 2 for treating biomass S having a relatively low solids concentration, but a dry methane fermentation tank for processing biomass S having a relatively high solids concentration. It is also possible.
メタン発酵槽2では,バイオガスGが生成されると共に,発酵処理後に発酵液ないし発酵残渣(以下,両者をまとめて発酵液という)Fが発生する。発酵液Fは後処理を施すことにより,コンポスト(堆肥)や土壌改良材等として再資源化し,又は適当な排水処理等により無害化することができる。図示例の後処理工程では,先ずメタン発酵処理で発生した発酵液Fを流入路2a経由で発酵液調整槽20に送って一旦貯留し,調整槽20の発酵液Fを発酵液ポンプ29により固液分離装置(例えば脱水機等)30へ送って固相と液相とを分離している。固液分離時には,図示例にように,凝集剤ポンプ31aにより凝集剤タンク31から凝集剤を添加してもよい。固液分離後の液相は濾液タンク32に一旦蓄え,濾液ポンプ33により排水処理装置(例えば活性汚泥処理装置等)34に送って所定環境基準値まで無害化処理することができ,無害化した発酵液Fは例えば排水ポンプ35により下水道等の環境中に放流することができる。また,固液分離後の固相は適当な堆肥化装置に投入して再資源化することができる。 In the methane fermenter 2, biogas G is generated, and a fermentation liquid or a fermentation residue (hereinafter, both are collectively referred to as a fermentation liquid) F is generated after the fermentation treatment. The fermentation liquor F can be recycled as a compost (compost), soil improvement material, or the like by performing post-treatment, or can be rendered harmless by appropriate wastewater treatment or the like. In the illustrated post-treatment step, first, the fermentation liquid F generated in the methane fermentation treatment is sent to the fermentation liquid adjustment tank 20 via the inflow passage 2a and temporarily stored therein, and the fermentation liquid F in the adjustment tank 20 is solidified by the fermentation liquid pump 29. The liquid is sent to a liquid separator (eg, a dehydrator) 30 to separate a solid phase and a liquid phase. At the time of solid-liquid separation, a coagulant may be added from the coagulant tank 31 by the coagulant pump 31a as shown in the illustrated example. The liquid phase after solid-liquid separation is once stored in a filtrate tank 32 and sent to a wastewater treatment device (for example, an activated sludge treatment device) 34 by a filtrate pump 33 so that it can be detoxified to a predetermined environmental standard value. The fermentation liquid F can be discharged into an environment such as a sewer by a drain pump 35, for example. Also, the solid phase after solid-liquid separation can be put into an appropriate composting device and recycled.
しかし,従来のメタン発酵処理には,メタン発酵処理後の発酵液F中に溶解した結晶化成分が後処理工程(とくに,図4の点線で囲まれた発酵槽貯留槽20から濾液ポンプ33に至る工程)において析出し,析出した結晶が処理槽・配管の内部の閉塞を引き起こしてプラントの稼働に影響を与えうる問題点がある。析出する結晶の主なものは,処理対象のバイオマスSにリン酸イオン(PO4 3−),アンモニウムイオン(NH4 +),マグネシウムイオン(Mg2+)等の結晶化成分が含まれている場合に,それらが結合して形成されるリン酸マグネシウムアンモニウム(MgNH4PO4;以下,MAPという)である。 However, in the conventional methane fermentation treatment, the crystallized components dissolved in the fermentation solution F after the methane fermentation treatment are subjected to the post-treatment step (particularly, from the fermenter storage tank 20 surrounded by the dotted line in FIG. In the following steps), and the deposited crystals may cause blockage of the inside of the processing tank / piping and affect the operation of the plant. Most of the precipitated crystals are when the biomass S to be treated contains crystallization components such as phosphate ions (PO 4 3- ), ammonium ions (NH 4 + ), and magnesium ions (Mg 2+ ). And magnesium ammonium phosphate (MgNH 4 PO 4 ; hereinafter, referred to as MAP) formed by combining them.
メタン発酵の処理対象は多くの緩衝剤が含まれる複雑な緩衝溶液であり,後処理工程における結晶の析出は複数の条件(圧力,温度等)が重なって生じるものなので,MAP等の結晶の析出反応を単純に定式化することは困難である。もっとも,図4の原料タンク1では乳酸発酵反応により通常pH4〜5程度の酸性に維持されており,メタン発酵槽2では上述したバイオイオガスGへの分解反応により通常pH7.5程度に維持されているのが一般的であるのに対し,メタン発酵槽2から排出後の発酵液Fは溶解した炭酸ガス(H2CO3)が二酸化炭素(CO2)となって徐々に放出されるため,後処理工程ではpHが上昇して通常pH8以上となっている。後処理工程においてMAP等の結晶が析出する一つの原因は,このような発酵液FのpH8以上の上昇(アルカリ化)にあると考えられる。すなわち,MAP等の結晶を形成するリン酸イオン,アンモニウムイオン,マグネシウムイオン等は,pH上昇により析出する結晶化成分(以下,高pH結晶化成分ということがある)である。 The target of methane fermentation is a complex buffer solution containing many buffers, and the precipitation of crystals in the post-treatment process is caused by multiple conditions (pressure, temperature, etc.). It is difficult to simply formulate the reaction. However, in the raw material tank 1 in FIG. 4, the acidity is usually maintained at about pH 4 to 5 by the lactic acid fermentation reaction, and in the methane fermentation tank 2, the pH is usually maintained at about 7.5 by the decomposition reaction to the bio-iogas G described above. On the other hand, the fermented liquid F discharged from the methane fermenter 2 is gradually released as dissolved carbon dioxide (H 2 CO 3 ) as carbon dioxide (CO 2 ). In the post-treatment step, the pH rises and usually reaches pH 8 or higher. One cause of the precipitation of crystals such as MAP in the post-treatment process is considered to be such an increase (alkalineization) of the fermentation liquid F at pH 8 or higher. That is, phosphate ions, ammonium ions, magnesium ions, and the like that form crystals such as MAP are crystallization components (hereinafter, sometimes referred to as high pH crystallization components) that precipitate due to an increase in pH.
従来の高pH結晶化成分が含まれるバイオマスSのメタン発酵プラントでは,後処理工程で析出するMAP等の結晶が処理槽・配管の閉塞につながることを避けるため,定期的に又は必要に応じて内部を清掃することが不可欠である。ただし,メタン発酵槽2は稼働を一旦停止すると再起動に長い時間がかかるので,メタン発酵槽2の稼働を停止せずに後処理工程の清掃を求められることがあり,後処理工程を短時間で手間をかけずに清掃できる技術の開発が求められている。 In a conventional methane fermentation plant of biomass S containing a high pH crystallization component, to prevent crystals such as MAP precipitated in the post-treatment process from blocking the treatment tanks and pipes, periodically or as needed. It is essential to clean the inside. However, once the operation of the methane fermentation tank 2 is temporarily stopped, it takes a long time to restart. Therefore, cleaning of the post-processing step may be required without stopping the operation of the methane fermentation tank 2. There is a demand for the development of a technology that can be cleaned without any hassle.
本発明者は,メタン発酵処理の後処理工程の前段部分において高pH結晶化成分を集中的・効率的に析出させることに着目した。例えば養豚業等で発生する高濃度有機性排水(豚舎汚水)の処理に際して,有機性排水中に含まれるリン酸をMAPとして回収する技術が開発されている(特許文献2,非特許文献2〜3参照)。このような結晶の回収技術をメタン発酵処理の後処理工程に適用し,後処理工程の前段部分において高pH結晶化成分を集中的・効率的に析出させることができれば,後処理工程の後段部分における結晶の析出を小さく抑え,後処理工程の全体の清掃作業を簡単化することが期待できる。 The present inventor has paid attention to intensively and efficiently precipitating high pH crystallized components in a pre-stage of a post-treatment step of a methane fermentation treatment. For example, in the treatment of high-concentration organic wastewater (swine sewage) generated in the pig farming industry, etc., a technique of recovering phosphoric acid contained in the organic wastewater as MAP has been developed (Patent Document 2, Non-Patent Documents 2). 3). If such a crystal recovery technology is applied to the post-treatment step of the methane fermentation treatment, and if high pH crystallized components can be intensively and efficiently precipitated in the front part of the post-treatment step, the latter part of the post-treatment step Therefore, it can be expected that the precipitation of crystals at the step is suppressed to be small, and the cleaning operation of the whole post-processing step is simplified.
そこで本発明の目的は,後処理工程の清掃の簡単化を図ることができるメタン発酵液の後処理方法及び装置を提供することにある。 Therefore, an object of the present invention is to provide a method and an apparatus for post-treatment of a methane fermentation solution, which can simplify cleaning of a post-treatment step.
図1(A)の実施例を参照するに,本発明によるメタン発酵液の後処理方法は,バイオマスSのメタン発酵処理後の発酵液Fを有底チャンバー11に取り入れて一時滞留させ,有底チャンバー11内に曝気して発酵液F中の高pH結晶化成分(例えばリン酸イオン,アンモニウムイオン,マグネシウムイオン)をpH上昇により析出させ,有底チャンバー11内に交換可能に沈設した金属製の枠体網17に曝気中の析出結晶(例えばMAP)の少なくとも一部分を付着させ,結晶析出後の発酵液Fを有底チャンバー11から後続の後処理工程へ溢流させてなるものである。 Referring to the embodiment of FIG. 1 (A), the post-treatment method of the methane fermentation liquid according to the present invention is such that the fermentation liquid F after the methane fermentation treatment of the biomass S is introduced into the bottomed chamber 11 and temporarily stays there. A high-pH crystallizing component (eg, phosphate ion, ammonium ion, magnesium ion) in the fermentation solution F is precipitated by increasing the pH by aerating the inside of the chamber 11, and is exchangeably deposited in the bottomed chamber 11. At least a part of the precipitated crystals (for example, MAP) during aeration is attached to the frame network 17, and the fermented liquid F after the crystal deposition is caused to overflow from the bottomed chamber 11 to a subsequent post-processing step.
また,図1(A)の実施例を参照するに,本発明によるメタン発酵液の後処理装置は,バイオマスSのメタン発酵処理後の発酵液Fを取り入れて一時滞留させる有底チャンバー11,有底チャンバー11内に曝気して発酵液F中の高pH結晶化成分(例えばリン酸イオン,アンモニウムイオン,マグネシウムイオン)をpH上昇により析出させる曝気装置15,有底チャンバー11内の曝気装置15の上方に交換可能に沈設する金属製の枠体網17,及び結晶析出後の発酵液Fを有底チャンバー11から後続の後処理工程へ溢流させる溢流堰14を備えてなるものである。 Referring to the embodiment of FIG. 1 (A), the post-treatment apparatus for the methane fermentation liquid according to the present invention incorporates a bottomed chamber 11 for temporarily storing the fermentation liquid F after the methane fermentation treatment of biomass S, Aeration device 15 for aerating into bottom chamber 11 to precipitate high pH crystallization components (for example, phosphate ions, ammonium ions, magnesium ions) in fermentation solution F by increasing the pH, and aeration device 15 in bottomed chamber 11 It is provided with a metal frame network 17 which is set up so that it can be exchanged upward, and an overflow weir 14 which allows the fermented liquid F after crystal precipitation to overflow from the bottomed chamber 11 to the subsequent post-processing step.
好ましい実施例では,図2(A)に示すように,一対の有底チャンバー11a,11bを設け,メタン発酵処理後の発酵液の流入路2aを有底チャンバー11a,11bの何れかの取入口12に接続する切換え弁40を設け,有底チャンバー11a,11bの一方の接続時に他方を清掃する。 In a preferred embodiment, as shown in FIG. 2A, a pair of bottomed chambers 11a and 11b are provided, and the inflow passage 2a of the fermented liquid after the methane fermentation treatment is taken into one of the inlets of the bottomed chambers 11a and 11b. A switching valve 40 is provided to connect to one of the chambers 12, and the other is cleaned when one of the bottomed chambers 11a and 11b is connected.
他の好ましい実施例では,図1(B)に示すように,溢流堰14から溢流する発酵液Fを蓄える発酵液調整槽20を設け,有底チャンバー11を発酵液調整槽20の流入口21の内側に周囲から仕切って設けた溢流堰14付き有底小部屋11とし,曝気装置15及び枠体網17を有底小部屋11に設ける。 In another preferred embodiment, as shown in FIG. 1 (B), a fermentation liquid adjusting tank 20 for storing the fermentation liquid F overflowing from the overflow weir 14 is provided, and the bottomed chamber 11 is provided with the flow of the fermentation liquid adjustment tank 20. A small bottomed room 11 with an overflow weir 14 is provided inside the entrance 21 and partitioned from the surroundings, and an aeration device 15 and a frame net 17 are provided in the small bottomed room 11.
望ましい実施例では,図1(B)に示すように,発酵液調整槽20にも曝気装置26を設け,有底小部屋11において未析出の発酵液F中の高pH結晶化成分を発酵液調整槽20においてpH上昇により析出沈殿させる。また,発酵液調整槽20に傾斜底面23を設け,その傾斜底面23の下端部に析出結晶の収集溝24を形成することができる。 In a preferred embodiment, as shown in FIG. 1 (B), an aeration device 26 is also provided in the fermentation liquid adjusting tank 20 to remove the high pH crystallized component in the unprecipitated fermentation liquid F in the bottomed small room 11. In the adjustment tank 20, precipitation is performed by increasing the pH. Further, an inclined bottom surface 23 is provided in the fermentation liquid adjusting tank 20, and a collection groove 24 for precipitated crystals can be formed at the lower end of the inclined bottom surface 23.
更に望ましい実施例では,図2(B)に示すように,一対の有底小部屋11付き発酵液調整槽20a,20bを設け,メタン発酵処理後の発酵液Fの流入路2aを有底小部屋11付き発酵液調整槽20a,20bの何れかの流入口21に接続する切換え弁40を設ける。 In a more preferred embodiment, as shown in FIG. 2 (B), a pair of fermented liquid conditioning tanks 20a and 20b with a small bottomed chamber 11 are provided, and the inflow passage 2a of the fermented liquid F after the methane fermentation treatment has a small bottomed. A switching valve 40 is provided which is connected to one of the inlets 21 of the fermentation liquid adjusting tanks 20a and 20b with the room 11.
本発明によるメタン発酵液の後処理方法及び装置は,バイオマスSのメタン発酵処理後の発酵液Fを有底チャンバー11に取り入れて一時滞留させ,有底チャンバー11内の曝気装置15より曝気して発酵液F中の高pH結晶化成分をpH上昇により析出させ,有底チャンバー11内の曝気中に金属製の枠体網17を交換可能に沈設して析出結晶(例えばMAP)の少なくとも一部分を付着させ,結晶析出後の発酵液Fを有底チャンバー11から後続の後処理工程へ溢流させるので,次の有利な効果を奏する。 The post-treatment method and apparatus of the methane fermentation solution according to the present invention take the fermentation solution F after the methane fermentation treatment of the biomass S into the bottomed chamber 11 to temporarily stay there, and aeration is performed by the aeration device 15 in the bottomed chamber 11. The high pH crystallized component in the fermentation liquid F is precipitated by increasing the pH, and a metal frame network 17 is exchangeably disposed during the aeration in the bottomed chamber 11 to replace at least a part of the precipitated crystal (for example, MAP). Since the fermented liquid F after the deposition and the precipitation of the crystals overflows from the bottomed chamber 11 to the subsequent post-processing step, the following advantageous effect is obtained.
(イ)メタン発酵処理の後処理工程の前段部分において高pH結晶化成分を集中的に析出させ,後処理工程の後段部分における結晶の析出を小さく抑えることにより,後処理工程の全体の清掃作業を簡単化することができる。
(ロ)また,メタン発酵処理の後処理工程の前段部分に高pH結晶化成分を集中的に析出させる有底チャンバー11を設け,有底チャンバー11の内部に析出結晶を付着させる金属製の枠体網17を設けることにより,必要に応じて有底チャンバー11又は枠体網17を交換する簡単な短時間作業によって後処理工程の処理槽・配管の閉塞を避けることができる。
(A) High-pH crystallized components are intensively precipitated in the first part of the post-treatment step of the methane fermentation treatment, and the precipitation of crystals in the second part of the post-treatment step is suppressed to a small degree, so that the entire post-treatment step is cleaned. Can be simplified.
(B) A bottomed chamber 11 for intensively precipitating high-pH crystallized components is provided at the front stage of the post-treatment step of the methane fermentation treatment, and a metal frame for adhering the precipitated crystals inside the bottomed chamber 11. By providing the body net 17, the clogging of the processing tanks and pipes in the post-processing step can be avoided by a simple short work of replacing the bottomed chamber 11 or the frame net 17 as necessary.
(ハ)発酵液Fの流入路2aに切換え弁40を介して一対の有底チャンバー11a,11bを接続すれば,一方の有底チャンバー11aの接続時に他方の有底チャンバー11bを清掃することができ,発酵液Fの流入を停止させることなく後処理工程を清掃することができる。
(ニ)また,有底チャンバー11を発酵液調整槽20の流入口21の内側に周囲から仕切って設けた溢流堰14付き有底小部屋11とすることにより,高pH結晶化成分の析出のための別途スペースが確保できない場合であっても,従来の発酵液調整槽20の設置スペースの一部分を利用して高pH結晶化成分を集中的に析出させることができる。
(C) If a pair of bottomed chambers 11a and 11b are connected to the inflow path 2a of the fermentation liquid F via the switching valve 40, the other bottomed chamber 11b can be cleaned when one bottomed chamber 11a is connected. Thus, the post-treatment step can be cleaned without stopping the inflow of the fermentation liquid F.
(D) Further, by forming the bottomed chamber 11 into a small bottomed chamber 11 having an overflow weir 14 provided inside the inlet 21 of the fermentation liquid regulating tank 20 and partitioned from the surroundings, the precipitation of high pH crystallized components is achieved. Even if it is not possible to secure a separate space for the high-temperature crystallization, the high pH crystallized component can be intensively deposited by using a part of the installation space of the conventional fermentation solution adjusting tank 20.
以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
図1(A)は,本発明によるメタン発酵液の後処理方法の実施例を示す。図示例の後処理方法では,図4を参照して上述したメタン発酵槽2と発酵液調整槽20との間に析出槽10を設けている。メタン発酵槽2で発生したメタン発酵処理直後の発酵液Fを析出槽10に取り入れ,析出槽10において発酵液F中の高pH結晶化成分を集中的に析出させ,結晶析出後の発酵液Fを後続の後処理工程である発酵液調整槽20へ溢流させる。メタン発酵槽2の直後に析出槽10を設けることにより,後処理工程の前段部分において高pH結晶化成分を集中的に析出させ,後処理工程の後段部分における結晶の析出を小さく抑え,後処理工程の全体の清掃作業を簡単化することができる。析出槽10の設置位置は,図示例のように発酵槽2の直後に限定されるわけではなく,後処理工程の前段部分において適当に選択することができる。 FIG. 1A shows an embodiment of a method for post-treatment of a methane fermentation solution according to the present invention. In the illustrated post-treatment method, the precipitation tank 10 is provided between the methane fermentation tank 2 and the fermentation liquid adjustment tank 20 described above with reference to FIG. The fermentation liquid F generated in the methane fermentation tank 2 immediately after the methane fermentation treatment is introduced into the precipitation tank 10, and the high pH crystallized components in the fermentation liquid F are intensively precipitated in the precipitation tank 10. Is overflowed into the fermented liquid adjusting tank 20 which is a subsequent post-processing step. By providing the precipitation tank 10 immediately after the methane fermentation tank 2, high pH crystallized components are intensively precipitated in the pre-stage of the post-treatment process, and the precipitation of crystals in the post-stage of the post-treatment process is suppressed to be small. The cleaning operation of the entire process can be simplified. The installation position of the precipitation tank 10 is not limited to the position immediately after the fermentation tank 2 as in the illustrated example, but can be appropriately selected in the preceding stage of the post-treatment process.
図示例の析出槽10は,発酵液Fを取り入れて一時滞留させる有底チャンバー11と,有底チャンバー11の底部に設けた曝気装置15と,曝気装置15の上方の発酵液F中に交換可能に沈設した金属製の枠体網17とを有する。有底チャンバー11には,発酵液流入路2aに接続する取入口12と,後続の発酵液調整槽20に接続する溢流堰14とが設けられており,取り入れた発酵液Fを所定時間滞留させることができる。有底チャンバー11の容量は,発酵液Fの取入流量に応じて発酵液F中の高pH結晶化成分が十分に析出する時間だけ滞留するように設計できるが,大きくなると清掃に手間がかかるので,清掃の手間・時間を考慮して設計することが望ましい。 In the illustrated example, the precipitation tank 10 has a bottomed chamber 11 for taking in and temporarily retaining the fermentation liquid F, an aeration device 15 provided at the bottom of the bottomed chamber 11, and a fermentation liquid F above the aeration device 15 which can be exchanged. And a metal frame net 17 submerged in the metal frame. The bottomed chamber 11 is provided with an inlet 12 connected to the fermentation liquid inflow passage 2a, and an overflow weir 14 connected to the subsequent fermentation liquid adjustment tank 20. The intake fermentation liquid F stays for a predetermined time. Can be done. The capacity of the bottomed chamber 11 can be designed so that the high pH crystallized component in the fermentation solution F stays for a sufficient time to be deposited in accordance with the intake flow rate of the fermentation solution F. Therefore, it is desirable to design in consideration of the labor and time of cleaning.
図示例の曝気装置15は,発酵液Fに溶解した炭酸ガス(H2CO3)を曝気ガスPと置換して追い出すことにより,発酵液F中の高pH結晶化成分(リン酸イオン,アンモニウムイオン,マグネシウムイオン)が析出する程度にまで有底チャンバー11内のpHを上昇させるものである。曝気ガスPの一例は空気であるが,窒素ガスその他の無害ガスを用いることも可能である。上述したように従来のメタン発酵処理では発酵液FがpH8以上となる後処理工程においてMAP等の結晶が析出することから,例えば曝気装置15の曝気によって有底チャンバー11内の発酵液FをpH8〜9程度又はそれ以上まで上昇させることにより,有底チャンバー11内において高pH結晶化成分の集中的・効率的な析出を促進ができる。 The aeration apparatus 15 in the illustrated example replaces the carbon dioxide gas (H 2 CO 3 ) dissolved in the fermentation liquid F with the aeration gas P and drives it out, so that the high pH crystallization components (phosphate ion, ammonium Ions, magnesium ions) to raise the pH in the bottomed chamber 11 to such an extent as to precipitate. An example of the aeration gas P is air, but it is also possible to use a nitrogen gas or another harmless gas. As described above, in the conventional methane fermentation treatment, crystals such as MAP are precipitated in the post-treatment step in which the fermentation liquid F has a pH of 8 or more. By increasing the temperature to about 9 or more, intensive and efficient precipitation of the high pH crystallized component in the bottomed chamber 11 can be promoted.
曝気装置15は有底チャンバー11内の適当な位置に設置できるが,望ましくは有底チャンバー11の底部に設ける。曝気装置15を有底チャンバー11の底部に設けることにより,発酵液Fの全体を攪拌しながら曝気し,有底チャンバー11の内部の発酵液FのpHを全体的に上昇させることができる。また,発酵液Fを攪拌しながら曝気することにより,発酵液F中の高pH結晶化成分の析出効率を全体的に高め,有底チャンバー11から溢流する発酵液F中の未析出の高pH結晶化成分を低減し,後続の後処理工程における結晶の析出を小さく抑えることができる。図示例では,有底チャンバー11の底部に単独の曝気装置15を設けているが,有底チャンバー11の底部には複数の曝気装置15を設けることが可能である。 The aeration device 15 can be installed at an appropriate position in the bottomed chamber 11, but is preferably provided at the bottom of the bottomed chamber 11. By providing the aeration device 15 at the bottom of the bottomed chamber 11, the entire fermentation liquid F can be aerated while being stirred, and the pH of the fermentation liquid F inside the bottomed chamber 11 can be raised as a whole. Further, the aeration of the fermentation liquid F while stirring it enhances the precipitation efficiency of the high pH crystallized components in the fermentation liquid F as a whole, and increases the unprecipitated high concentration in the fermentation liquid F overflowing from the bottomed chamber 11. The pH crystallization component can be reduced, and the precipitation of crystals in the subsequent post-treatment step can be suppressed to a small level. In the illustrated example, a single aeration device 15 is provided at the bottom of the bottomed chamber 11, but a plurality of aeration devices 15 can be provided at the bottom of the bottomed chamber 11.
図示例の金属製枠体網17は,従来のメタン発酵処理の後処理工程において析出するMAP等の結晶が処理槽・配管の金属表面に付着し,その表面で更なる析出が進行して成長することから,曝気装置15の散気(気泡)と交差する上方に結晶の析出・付着・成長する環境を作り出すものである。枠体網17は,適用するメタン発酵プラントに応じて結晶が付着・成長しやすい材質を選択できるが,例えばアルミニウム製,ステンレス製,又は銅製とすることができる。また枠体網17は,曝気装置15の散気との接触面積が大きくなるように,散気が自在に通過できる網状又は籠状とすることが望ましい。更に枠体網17の表面は,結晶の付着・成長には滑面よりも粗面が適していることから,適当な粗面処理を施すことが望ましい。 In the illustrated metal frame network 17, crystals such as MAP deposited in the post-treatment process of the conventional methane fermentation process adhere to the metal surface of the treatment tank / pipe, and further precipitation proceeds on the surface to grow. Therefore, an environment in which crystals are deposited, adhered, and grown is created above the aeration device 15 where the air diffuses (bubbles). The frame net 17 can be made of a material to which crystals easily adhere and grow depending on the methane fermentation plant to be applied. For example, it can be made of aluminum, stainless steel, or copper. Further, the frame net 17 is desirably a net-like or basket-like shape through which air can freely pass so that the contact area of the aeration device 15 with the air is large. Furthermore, since the surface of the frame net 17 is more suitable for the attachment and growth of crystals than a smooth surface, it is desirable to perform an appropriate roughening treatment.
図示例の金属製枠体網17は,曝気装置15の上面に固定治具17aで固定して取り付けることができ,必要に応じて固定治具17aを解除して曝気装置15から取り外すことができる。曝気装置15の上方で析出した結晶は,一部分は枠体網17に付着せず沈殿するものもあるが,多くは枠体網17の表面に付着する。従って,必要に応じて枠体網17を交換する簡単な短時間作業で析出した結晶を回収することができ,後処理工程の清掃作業の簡単化を図ることができる。ただし,枠体網17の曝気装置15への固定は本発明に必須のものではなく,曝気装置15から独立した枠体網17を,例えば曝気装置15の上方に吊り下げて沈設してもよい(図1(B)の曝気装置26を参照)。 The metal frame net 17 in the illustrated example can be fixed and attached to the upper surface of the aeration device 15 with a fixing jig 17a, and can be removed from the aeration device 15 by releasing the fixing jig 17a as necessary. . Some of the crystals deposited above the aeration device 15 do not adhere to the frame net 17 and precipitate, but most of the crystals adhere to the surface of the frame net 17. Therefore, the precipitated crystals can be collected by a simple short work of replacing the frame net 17 as necessary, and the cleaning work in the post-processing step can be simplified. However, the fixing of the frame net 17 to the aeration device 15 is not essential to the present invention, and the frame net 17 independent of the aeration device 15 may be suspended, for example, above the aeration device 15 and sunk. (See the aeration device 26 in FIG. 1B).
図3は,本発明に適した曝気装置15及び金属製枠体網17の実施例を示す。図3(A)及び(B)に示す曝気装置15は,一端に吸気口15aを形成すると共に他端を封止端15bとした中空管状の送気管15cを有し,その送気管15cの周壁に多数の吹出し孔15dを形成したものである。吸気口15aに曝気ホース16(図1参照)を接続して空気を送り込むことにより,周壁の多数の吹出し孔15dから散気(気泡)を供給することができる。送気管15cの中心軸方向に沿った片側には有底チャンバー11の底面に安定的に着座させるための脚部が形成されており,中心軸方向に沿った反対側には金属製枠体網17を取り付ける取付け板15eが設けられている。必要に応じて曝気装置15に複数本の送気管15cを含めることができ,有底チャンバー11の内部の発酵液FのpHを全体的に上昇させることができる。 FIG. 3 shows an embodiment of the aeration device 15 and the metal frame net 17 suitable for the present invention. The aeration device 15 shown in FIGS. 3A and 3B has a hollow tubular air supply pipe 15c having an intake port 15a at one end and a sealed end 15b at the other end, and a peripheral wall of the air supply pipe 15c. Are formed with a large number of blow holes 15d. By connecting the aeration hose 16 (see FIG. 1) to the intake port 15a to feed air, diffused air (bubbles) can be supplied from a number of outlets 15d in the peripheral wall. On one side along the central axis direction of the air supply pipe 15c, a leg portion for stably seating on the bottom surface of the bottomed chamber 11 is formed, and on the opposite side along the central axis direction, a metal frame net is formed. A mounting plate 15e for mounting the mounting member 17 is provided. If necessary, the aeration device 15 can include a plurality of air supply pipes 15c, and the pH of the fermentation liquid F inside the bottomed chamber 11 can be raised as a whole.
図3(C)及び(D)は,上述した曝気装置15の取付け板15eに金属製枠体網17を取り付け,固定治具17aで固定した状態を示す。図示例のように,取付け板15eに金属製枠体網17を固定した状態で,曝気装置15を有底チャンバー11の底面に着座させることにより,枠体網17の全体を曝気装置15の散気(気泡)と交差させ,枠体網17の沈設空間を結晶の析出・付着・成長しやすい環境とすることができる。有底チャンバー11の底部には複数の曝気装置15及び枠体網17を設けることが可能であり,複数の曝気装置15及び枠体網17を設けることにより,有底チャンバー11の内部空間全体を結晶の析出・付着・成長しやすい環境とすることができる。 FIGS. 3C and 3D show a state in which the metal frame net 17 is attached to the attachment plate 15e of the aeration device 15 described above and fixed by the fixing jig 17a. As shown in the illustrated example, the aerating device 15 is seated on the bottom surface of the bottomed chamber 11 in a state where the metal frame net 17 is fixed to the mounting plate 15e, so that the entire frame net 17 is dispersed by the aerating device 15. By intersecting with air (bubbles), the space where the frame net 17 is set can be set as an environment where crystals can be easily deposited, adhered and grown. A plurality of aerators 15 and a frame net 17 can be provided at the bottom of the bottomed chamber 11. By providing the plurality of aerators 15 and the frame net 17, the entire internal space of the bottomed chamber 11 can be reduced. An environment in which crystals can be easily deposited, adhered, and grown can be provided.
図1(A)のように,後処理工程の前段部分において高pH結晶化成分を集中的に析出させ,必要に応じて枠体網17を交換することにより,後処理工程の清掃作業を簡単化することができる。図1(A)において,枠体網17の交換に代えて,予め複数の析出槽10を用意しておき,必要に応じて析出槽10を交換することにより,後処理工程の清掃作業を簡単化することも可能である。上述したように析出槽10の内部で析出した結晶の多くは枠体網17の表面に付着するが,一部分は付着せずに有底チャンバー11の底部に沈殿するため,後処理工程の閉塞を避けるためには枠体網17の交換だけでは足らず,有底チャンバー11の内部の清掃も必要となり得る。析出槽10自体を交換することにより,後処理工程の清掃作業の更なる簡単化を図ることができる。 As shown in FIG. 1 (A), the high pH crystallized components are intensively precipitated in the pre-stage of the post-processing step, and the frame net 17 is replaced as necessary, thereby simplifying the cleaning work in the post-processing step. Can be In FIG. 1A, instead of replacing the frame net 17, a plurality of deposition tanks 10 are prepared in advance, and the precipitation tanks 10 are replaced as necessary, thereby simplifying the cleaning work in the post-processing step. It is also possible to convert. As described above, most of the crystals precipitated inside the precipitation tank 10 adhere to the surface of the frame net 17, but a part thereof does not adhere and precipitates at the bottom of the bottomed chamber 11, so that the post-treatment step is closed. In order to avoid this, it is not enough to replace the frame net 17, but it is also necessary to clean the inside of the bottomed chamber 11. By replacing the precipitation tank 10 itself, it is possible to further simplify the cleaning operation in the post-processing step.
好ましくは,図2(A)に示すように,析出槽10に一対の有底チャンバー11a,11bを含める。各有底チャンバー11a,11bにはそれぞれ曝気装置15と金属製枠体網17とを設け,取入口12と溢流堰14とを設ける。また,発酵液の流入路2aを有底チャンバー11a,11bの何れか一方の取入口12に接続する切換え弁40(V1,V2)を設け,有底チャンバー11a,11bの何れか一方の溢流堰14を後続の発酵液調整槽20に接続する切換え弁40(V3,V4)を設ける。 Preferably, as shown in FIG. 2A, the precipitation tank 10 includes a pair of bottomed chambers 11a and 11b. Each of the bottomed chambers 11a and 11b is provided with an aeration device 15 and a metal frame net 17, and an intake 12 and an overflow weir 14. Further, a switching valve 40 (V1, V2) for connecting the inflow passage 2a of the fermented liquid to one of the inlets 12 of the bottomed chambers 11a and 11b is provided, and one of the bottomed chambers 11a and 11b overflows. A switching valve 40 (V3, V4) for connecting the weir 14 to the subsequent fermentation liquid adjusting tank 20 is provided.
図2(A)の実施例では,例えば切換え弁V1,V3を開放(切換え弁V2,V4を閉鎖)して有底チャンバー11aを後処理工程に組み込み,有底チャンバー11aにおいて処理液F中の高pH結晶化成分を集中的に析出させる。析出した結晶が枠体網17の表面に十分析出したのち,切換え弁V1,V3を閉鎖(切換え弁V2,V4を開放)して有底チャンバー11aを後処理工程から切り離すと共に他方の有底チャンバー11bを組み込み,他方の有底チャンバー11bにおいて処理液F中の高pH結晶化成分を集中的に析出させる。有底チャンバー11aは,後処理工程から切り離した状態で内部を清掃することができる。 In the embodiment shown in FIG. 2A, for example, the switching valves V1 and V3 are opened (the switching valves V2 and V4 are closed) to incorporate the bottomed chamber 11a in the post-processing step, and the bottomed chamber 11a is used for the processing liquid F in the processing chamber. High pH crystallized components are intensively precipitated. After the deposited crystals are sufficiently deposited on the surface of the frame net 17, the switching valves V1 and V3 are closed (the switching valves V2 and V4 are opened) to separate the bottomed chamber 11a from the post-processing step and to remove the other bottomed chamber. The chamber 11b is installed, and the high pH crystallization component in the processing solution F is intensively precipitated in the other bottomed chamber 11b. The inside of the bottomed chamber 11a can be cleaned while being separated from the post-processing step.
有底チャンバー11bの枠体網17の表面に析出した結晶が十分析出した場合は,切換え弁V1,V3を開放(切換え弁V2,V4を閉鎖)して有底チャンバー11bを後処理工程から切り離すと共に有底チャンバー11aを再度組み込み,有底チャンバー11aにおいて処理液F中の高pH結晶化成分を集中的に析出させる。このように有底チャンバー11a,11bの切り替えを繰り返すことにより,メタン発酵槽2の稼働を停止せずに発酵液Fを連続的に受入ながら後処理工程を簡単に清掃することができ,後処理工程の処理槽・配管の閉塞を避けることができる。 When the crystals deposited on the surface of the frame net 17 of the bottomed chamber 11b are sufficiently deposited, the switching valves V1 and V3 are opened (the switching valves V2 and V4 are closed) to remove the bottomed chamber 11b from the post-processing step. At the same time as the separation, the bottomed chamber 11a is installed again, and the high pH crystallized component in the processing solution F is intensively deposited in the bottomed chamber 11a. By repeatedly switching the bottomed chambers 11a and 11b in this manner, the post-treatment process can be easily cleaned while continuously receiving the fermentation liquid F without stopping the operation of the methane fermentation tank 2, and the post-treatment is performed. Blockage of processing tanks and pipes in the process can be avoided.
こうして本発明の目的である「後処理工程の清掃の簡単化を図ることができるメタン発酵液の後処理方法及び装置」の提供を達成することができる。 Thus, it is possible to achieve the object of the present invention, that is, provision of "method fermentation solution post-treatment method and apparatus capable of simplifying post-treatment step cleaning".
図1(B)は,図1(A)の析出槽10の有底チャンバー11を,後続の後処理工程である発酵液調整槽20の流入口21の内側に組み込んだ本発明の他の実施例を示す。図1(A)を参照して上述したように,析出槽10は,メタン発酵槽2と発酵液調整槽20との間に設置して発酵液F中の高pH結晶化成分を集中的に析出させることにより後続の後処理工程における結晶の析出を小さく抑えるものであるが,従来の発酵液調整槽20に比べて追加的な設置スペースが必要となる。図1(B)のように析出槽10の有底チャンバー11を発酵液調整槽20の内側に組み込むことにより,追加的な設置スペースを確保できない場合であっても,発酵液調整槽20の設置スペースの一部分を利用して高pH結晶化成分を集中的に析出させることができる。 FIG. 1 (B) shows another embodiment of the present invention in which the bottomed chamber 11 of the precipitation tank 10 of FIG. 1 (A) is incorporated inside an inlet 21 of a fermentation liquid adjusting tank 20 which is a subsequent post-treatment step. Here is an example. As described above with reference to FIG. 1 (A), the precipitation tank 10 is installed between the methane fermentation tank 2 and the fermentation liquid adjustment tank 20 to concentrate high pH crystallized components in the fermentation liquid F. The precipitation suppresses the precipitation of crystals in the subsequent post-treatment process, but requires additional installation space as compared with the conventional fermentation solution adjusting tank 20. By incorporating the bottomed chamber 11 of the precipitation tank 10 inside the fermentation liquid adjustment tank 20 as shown in FIG. 1B, even if additional installation space cannot be secured, the fermentation liquid adjustment tank 20 can be installed. High pH crystallized components can be intensively precipitated by utilizing a part of the space.
図1(B)の実施例では,発酵液調整槽20の流入口21の内側に周囲から仕切って溢流堰14付き有底小部屋11を設け,その有底小部屋11に曝気装置15と金属製枠体網17とを配置して析出槽10としている。発酵液調整槽20の流入口21を発酵液流入路2aに接続し,メタン発酵槽2で発生したメタン発酵処理後の発酵液Fを発酵液調整槽20の流入口21から取り入れる。図示例の有底小部屋11は上面開放型であり,発酵液調整槽20の流入口21から取り入れた発酵液Fは,流入口21の内側の有底小部屋11に所定時間滞留し,有底小部屋11において高pH結晶化成分を集中的に析出したのち,有底小部屋11の溢流堰14から発酵液調整槽20へ送られる。有底小部屋11の容量も,高pH結晶化成分が十分に析出する時間だけ発酵液Fの滞留するように設計できるが,短時間で清掃できる大きさとすることが望ましい。 In the embodiment of FIG. 1 (B), a bottomed small room 11 with an overflow weir 14 is provided inside the inflow port 21 of the fermentation liquid adjusting tank 20 and partitioned from the surroundings. The deposition tank 10 is formed by disposing a metal frame net 17. The inflow port 21 of the fermentation liquid regulating tank 20 is connected to the fermentation liquid inflow passage 2a, and the fermentation liquid F generated in the methane fermentation tank 2 after the methane fermentation treatment is taken in from the inflow port 21 of the fermentation liquid regulating tank 20. In the illustrated example, the bottomed small room 11 is of an open-top type, and the fermentation liquid F introduced from the inlet 21 of the fermentation liquid adjusting tank 20 stays in the bottomed small room 11 inside the inlet 21 for a predetermined time, and After the high pH crystallization component is intensively precipitated in the small bottom chamber 11, it is sent from the overflow weir 14 of the small bottom chamber 11 to the fermentation liquid adjusting tank 20. The capacity of the bottomed small room 11 can also be designed so that the fermented liquid F stays for a time during which the high pH crystallized component is sufficiently precipitated, but it is desirable that the size be such that it can be cleaned in a short time.
また図1(B)の実施例では,発酵液調整槽20にも曝気装置26を設け,有底小部屋11において未析出の発酵液F中の高pH結晶化成分を発酵液調整槽20において析出させている。すなわち,発酵液F中の高pH結晶化成分はできるだけ有底小部屋11において析出させるが,有底小部屋11の容量だけでは析出が不十分となり,発酵液調整槽20に溢流する発酵液F中に未析出の高pH結晶化成分が残りうる。発酵液調整槽20においても,曝気装置26により発酵液F中のpHを上昇させて高pH結晶化成分の析出を促進することにより,発酵槽調整槽20の流出口22から送り出される発酵液F中の未析出の高pH結晶化成分を低減し,発酵槽調整槽20の後続の後処理工程における結晶の析出を小さく抑えることができる。 In the embodiment of FIG. 1 (B), an aeration device 26 is also provided in the fermented liquid adjusting tank 20, and the high pH crystallized component in the unprecipitated fermented liquid F in the small-bottomed room 11 is removed in the fermented liquid adjusting tank 20. Has been deposited. That is, the high pH crystallized component in the fermented liquid F is precipitated in the small-bottomed room 11 as much as possible. Unprecipitated high pH crystallization components may remain in F. Also in the fermentation liquor adjusting tank 20, the aeration device 26 raises the pH in the fermentation liquor F to promote the precipitation of the high-pH crystallized component. The high-pH crystallized component which has not been precipitated can be reduced, and the precipitation of crystals in the post-treatment step following the fermenter tank 20 can be suppressed.
図1(B)に示す曝気装置26は,後述する発酵液調整槽20の傾斜底面23に着座させることが難しいため,発酵液調整槽20の頂面から吊り下げて発酵液Fに沈設している。また,有底小部屋11では曝気装置15に金属製枠体網17を取り付けて析出した結晶を付着・成長させているのに対し,発酵液調整槽20の曝気は発酵液F中の未析出の高pH結晶化成分の補充的な析出を目的としているので,曝気装置26に金属製枠体網17を取り付けておらず,析出した結晶を発酵液調整槽20の底面23に沈殿させている。ただし,発酵液調整槽20の曝気装置26にも金属製枠体網17を取り付けて析出した結晶を付着・成長させることも可能である。 The aeration device 26 shown in FIG. 1 (B) is difficult to be seated on the inclined bottom surface 23 of the fermentation liquid adjusting tank 20, which will be described later. I have. In addition, in the small-bottomed room 11, the metal crystals 17 are attached to the aeration device 15 to attach and grow the deposited crystals, whereas the aeration of the fermentation solution adjusting tank 20 is performed by the non-precipitation in the fermentation solution F. The purpose is to supplement the precipitation of the high pH crystallized component of the fermentation solution. Therefore, the metal frame net 17 is not attached to the aeration device 26, and the precipitated crystals are precipitated on the bottom surface 23 of the fermentation solution adjusting tank 20. . However, it is also possible to attach the metal frame net 17 to the aeration device 26 of the fermentation solution adjusting tank 20 and attach and grow the precipitated crystals.
図1(B)に示す発酵液調整槽20は,傾斜させた底面23を有し,その傾斜底面23の下端部に堰き止め板23aを設置することにより,底面下端部に沈殿した析出結晶の収集溝24を形成している。上述したように発酵液調整槽20では析出結晶を沈殿させているため,適宜に発酵液調整槽20の内部の清掃,とくに底面全体の清掃が必要となりうる。図示例のように底面23を傾斜させ,沈殿した析出結晶が収集溝24に集まる構造とすることにより,その収集溝24の周辺の清掃によって析出結晶を回収することができ,清掃作業を簡単化・短時間化を図ることができる。 The fermentation liquid adjusting tank 20 shown in FIG. 1 (B) has a slanted bottom surface 23, and by installing a dam plate 23a at the lower end portion of the slanted bottom surface 23, the precipitated crystals settled at the lower end portion of the bottom surface are removed. A collection groove 24 is formed. As described above, since the precipitated crystals are precipitated in the fermentation liquid adjusting tank 20, it may be necessary to appropriately clean the inside of the fermenting liquid adjusting tank 20, especially the entire bottom surface. As shown in the illustrated example, the bottom surface 23 is inclined so that the precipitated precipitated crystals collect in the collecting groove 24, so that the precipitated crystals can be collected by cleaning around the collecting groove 24, thereby simplifying the cleaning operation.・ The time can be shortened.
好ましくは,図2(B)に示すように,一対の発酵液調整槽20a,20bを設け,各調整槽20a,20bにそれぞれ有底小部屋11を組み込んで析出槽10a,10bとする。各調整槽20a,20bの有底小部屋11にはそれぞれ曝気装置15と金属製枠体網17とを設け,溢流堰14を設ける。また,発酵液の流入路2aを発酵液調整槽20a,20bの何れか一方の流入口21に接続する切換え弁40(V1,V2)を設け,発酵液調整槽20a,20bの何れか一方の流出口22を後続の後処理工程(例えば図4の発酵液ポンプ29及び固液分離装置30)に接続する切換え弁40(V3,V4)を設ける。 Preferably, as shown in FIG. 2 (B), a pair of fermentation liquid adjusting tanks 20a and 20b are provided, and each of the adjusting tanks 20a and 20b is provided with a small-bottomed room 11, respectively, to form precipitation tanks 10a and 10b. An aeration device 15 and a metal frame net 17 are provided in the bottomed small room 11 of each of the adjusting tanks 20a and 20b, and an overflow weir 14 is provided. Further, a switching valve 40 (V1, V2) for connecting the fermentation liquid inflow path 2a to one of the inlets 21 of the fermentation liquid adjustment tanks 20a, 20b is provided, and one of the fermentation liquid adjustment tanks 20a, 20b is provided. A switching valve 40 (V3, V4) for connecting the outlet 22 to a subsequent post-processing step (for example, the fermentation liquid pump 29 and the solid-liquid separation device 30 in FIG. 4) is provided.
上述した図2(A)の場合と同様に,図2(B)の実施例においても,例えば切換え弁V1,V3を開放(切換え弁V2,V4を閉鎖)して発酵液調整槽20aを後処理工程に組み込み,発酵液調整槽20aの有底小部屋11において処理液F中の高pH結晶化成分を集中的に析出させ,更に有底小部屋11の外側の発酵液調整槽20aにおいて未析出の高pH結晶化成分を補充的に析出させる。結晶が十分析出したのち,切換え弁V1,V3を閉鎖(切換え弁V2,V4を開放)して発酵液調整槽20aを後処理工程から切り離すと共に他方の発酵液調整槽20bを組み込み,他方の発酵液調整槽20bの有底小部屋11において処理液F中の高pH結晶化成分を集中的に析出させ,更に有底小部屋11の外側の発酵液調整槽20aにおいて未析出の高pH結晶化成分を補充的に析出させる。 As in the case of FIG. 2A described above, in the embodiment of FIG. 2B, for example, the switching valves V1 and V3 are opened (the switching valves V2 and V4 are closed) and the fermentation liquid adjusting tank 20a is moved backward. High pH crystallized components in the treatment liquid F are intensively precipitated in the bottomed small room 11 of the fermentation solution adjusting tank 20a, and are not concentrated in the fermentation solution adjusting tank 20a outside the bottomed small room 11. The high pH crystallization component of the precipitation is replenished. After the crystals have sufficiently precipitated, the switching valves V1 and V3 are closed (the switching valves V2 and V4 are opened) to disconnect the fermentation solution adjusting tank 20a from the post-processing step, and incorporate the other fermenting solution adjusting tank 20b. The high pH crystallized component in the treatment liquid F is intensively precipitated in the small-bottomed room 11 of the fermentation liquid adjusting tank 20b, and the non-precipitated high-pH crystals are further deposited in the fermentation liquid adjusting tank 20a outside the bottomed small room 11. The additional components are precipitated.
更に,発酵液調整槽20bにおいて結晶が十分析出した場合は,切換え弁V1,V3を開放(切換え弁V2,V4を閉鎖)して発酵液調整槽20bを後処理工程から切り離すと共に発酵液調整槽20aを再度組み込み,発酵液調整槽20aにおいて処理液F中の高pH結晶化成分を析出させる。このように発酵液調整槽20a,20bの切り替えを繰り返すことにより,発酵液調整槽20a,20bの内部の清掃に時間がかかってもメタン発酵プラントの稼働に影響を与えるおそれはなくなる。また,メタン発酵槽2の稼働を停止せずに発酵液Fを連続的に受入ながら後処理工程を簡単に清掃することができ,後処理工程の処理槽・配管の閉塞を避けることが可能となる。 Further, when crystals are sufficiently deposited in the fermentation liquid adjusting tank 20b, the switching valves V1 and V3 are opened (the switching valves V2 and V4 are closed) to disconnect the fermenting liquid adjusting tank 20b from the post-processing step and to adjust the fermentation liquid. The tank 20a is installed again, and the high pH crystallization component in the treatment liquid F is precipitated in the fermentation liquid adjusting tank 20a. By repeating the switching of the fermentation liquid adjusting tanks 20a and 20b in this way, even if it takes time to clean the inside of the fermentation liquid adjusting tanks 20a and 20b, there is no possibility that the operation of the methane fermentation plant will be affected. Further, it is possible to easily clean the post-processing step while continuously receiving the fermentation liquid F without stopping the operation of the methane fermentation tank 2, and it is possible to avoid clogging of the processing tank and piping in the post-processing step. Become.
1…原料タンク 1a…原料ポンプ
2…メタン発酵槽(バイオリアクタ) 2a…発酵液流入路
10…析出槽(析出室) 11…有底チャンバー(有底小部屋)
12…取入口 14…溢流堰
15…曝気装置 15a…吸気口
15b…封止端 15c…送気管
15d…吹出し孔 15e…取付け板
16…曝気ホース
17…金属製枠体網 17a…固定治具
20…発酵液調整槽
21…流入口 22…流出口
23…内部底面(傾斜底面) 23a…堰き止め板
24…収集溝
26…曝気装置 27…曝気ホース
28…吊り下げ部材 29…発酵液ポンプ
30…固液分離装置
31…凝集剤タンク 31a…凝集剤ポンプ
32…濾液タンク 33…濾液ポンプ
34…排水処理装置 35…排水ポンプ
40,41…切換弁
S…バイオマス
F…発酵液
G…バイオガス
P…曝気ガス
DESCRIPTION OF SYMBOLS 1 ... Raw material tank 1a ... Raw material pump 2 ... Methane fermentation tank (bioreactor) 2a ... Fermentation liquid inflow path 10 ... Precipitation tank (precipitation chamber) 11 ... Bottomed chamber (bottomed small room)
DESCRIPTION OF SYMBOLS 12 ... Inlet 14 ... Overflow weir 15 ... Aeration device 15a ... Intake port 15b ... Sealed end 15c ... Air supply pipe 15d ... Outlet hole 15e ... Mounting plate 16 ... Aeration hose 17 ... Metal frame net 17a ... Fixing jig Reference Signs List 20 fermentation liquid adjustment tank 21 inlet 22 outlet 23 internal bottom surface (inclined bottom surface) 23a damming plate 24 collection groove 26 aeration device 27 aeration hose 28 hanging member 29 fermentation liquid pump 30 ... solid-liquid separator 31 ... flocculant tank 31a ... flocculant pump 32 ... filtrate tank 33 ... filtrate pump 34 ... wastewater treatment device 35 ... wastewater pumps 40 and 41 ... switching valve S ... biomass F ... fermented liquid G ... biogas P … Aeration gas
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018113415A JP7060457B2 (en) | 2018-06-14 | 2018-06-14 | Post-treatment method and equipment for methane fermented liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018113415A JP7060457B2 (en) | 2018-06-14 | 2018-06-14 | Post-treatment method and equipment for methane fermented liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019214026A true JP2019214026A (en) | 2019-12-19 |
JP7060457B2 JP7060457B2 (en) | 2022-04-26 |
Family
ID=68918299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018113415A Active JP7060457B2 (en) | 2018-06-14 | 2018-06-14 | Post-treatment method and equipment for methane fermented liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7060457B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001062491A (en) * | 1999-08-31 | 2001-03-13 | Nishihara Environ Sanit Res Corp | Device for removing scaling substance in sludge |
JP2004195453A (en) * | 2002-12-03 | 2004-07-15 | National Agriculture & Bio-Oriented Research Organization | Method and apparatus for recovering phosphorus from barn sewage |
JP2009226250A (en) * | 2008-03-19 | 2009-10-08 | Toshiba Corp | Phosphorus recovery method and system |
JP2011507673A (en) * | 2007-09-03 | 2011-03-10 | ピーエムシー コリア カンパニー リミテッド | Sludge treatment apparatus and method |
-
2018
- 2018-06-14 JP JP2018113415A patent/JP7060457B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001062491A (en) * | 1999-08-31 | 2001-03-13 | Nishihara Environ Sanit Res Corp | Device for removing scaling substance in sludge |
JP2004195453A (en) * | 2002-12-03 | 2004-07-15 | National Agriculture & Bio-Oriented Research Organization | Method and apparatus for recovering phosphorus from barn sewage |
JP2011507673A (en) * | 2007-09-03 | 2011-03-10 | ピーエムシー コリア カンパニー リミテッド | Sludge treatment apparatus and method |
JP2009226250A (en) * | 2008-03-19 | 2009-10-08 | Toshiba Corp | Phosphorus recovery method and system |
Also Published As
Publication number | Publication date |
---|---|
JP7060457B2 (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050230308A1 (en) | Induced sludge bed anaerobic reactor | |
US7615155B1 (en) | Methods for removal of non-digestible matter from an upflow anaerobic digester | |
CN101962244B (en) | Livestock breeding wastewater nutrient pollution control and recycling process | |
CN101445305B (en) | Method for recycling and purifying livestock wastewater or high concentration wastewater | |
JP2008284427A (en) | Apparatus and method for treating waste water | |
JP5868059B2 (en) | Waste water treatment apparatus and operation method thereof | |
CN209292178U (en) | A kind of Sewage Disposal suitable for biological industry garden the dirty water decontamination handles | |
CN111484137B (en) | High-concentration wastewater treatment system and process adopting AnMBR membrane | |
CN1208262C (en) | High concentration oxganic effluent treatment composite process and its equipment | |
CN102557324B (en) | Method for treating garbage leachate | |
CN110183032A (en) | A kind of livestock breeding wastewater recycling treatment system | |
JP7060457B2 (en) | Post-treatment method and equipment for methane fermented liquid | |
JP4368857B2 (en) | Wastewater treatment system and toilet device | |
CN109368771A (en) | It continuously returns fraction activated sludge and quickly handles high concentrated organic wastewater technique and device | |
US11767248B2 (en) | Process and apparatus for the treatment of organic feedstock | |
CN107540160A (en) | Cultivation wastewater purification handling process and its device | |
CN207811366U (en) | A kind of sewage disposal system | |
CN206692530U (en) | Animal waste recycling treatment equipment | |
KR100303765B1 (en) | Livestock raising waste water disposal plant and a method thereof | |
JP6071587B2 (en) | Waste water treatment apparatus and operation method thereof | |
CN211595173U (en) | Anaerobic fermentation device | |
JP6744045B2 (en) | Water treatment equipment | |
KR101043025B1 (en) | Bio-ditch water-treatment system and water-treatment method using bio-ditch water-treatment system | |
JP2005081245A (en) | Methane fermentation method and apparatus therefor | |
KR20010064953A (en) | Method and device of waste water treatment using bio mineral water reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220414 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7060457 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |