JP7060457B2 - Post-treatment method and equipment for methane fermented liquid - Google Patents

Post-treatment method and equipment for methane fermented liquid Download PDF

Info

Publication number
JP7060457B2
JP7060457B2 JP2018113415A JP2018113415A JP7060457B2 JP 7060457 B2 JP7060457 B2 JP 7060457B2 JP 2018113415 A JP2018113415 A JP 2018113415A JP 2018113415 A JP2018113415 A JP 2018113415A JP 7060457 B2 JP7060457 B2 JP 7060457B2
Authority
JP
Japan
Prior art keywords
fermented liquid
post
treatment
tank
bottomed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018113415A
Other languages
Japanese (ja)
Other versions
JP2019214026A (en
Inventor
淳 原田
均 前田
元宣 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2018113415A priority Critical patent/JP7060457B2/en
Publication of JP2019214026A publication Critical patent/JP2019214026A/en
Application granted granted Critical
Publication of JP7060457B2 publication Critical patent/JP7060457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明はメタン発酵液の後処理方法及び装置に関し,とくにバイオマスのメタン発酵処理後に発生する発酵液の後処理方法及び装置に関する。 The present invention relates to a post-treatment method and an apparatus for a methane fermentation broth, and more particularly to a post-treatment method and an apparatus for a fermentation broth generated after the methane fermentation treatment of biomass.

循環型社会を形成する観点から,生ごみ,高濃度有機性排水,余剰汚泥,家畜糞尿のような有機物を含むバイオマスSを微生物により嫌気的に分解し,エネルギー源となるバイオガスGを生成するメタン発酵処理技術が実用化されている(特許文献1,非特許文献1参照)。図4を参照して,従来のメタン発酵プラントの流れを本発明の理解に必要な程度において説明する。先ず処理対象のバイオマスSを原料タンク1に蓄え,必要に応じて異物分離・粉砕・希釈等の前処理を施したうえで,原料ポンプ1aによりメタン発酵槽(バイオリアクタ)2へ投入してメタン発酵処理に供する。 From the viewpoint of forming a sound material-cycle society, biomass S containing organic substances such as food waste, high-concentration organic wastewater, excess sludge, and livestock manure is anaerobically decomposed by microorganisms to generate biogas G as an energy source. A methane fermentation treatment technique has been put into practical use (see Patent Document 1 and Non-Patent Document 1). With reference to FIG. 4, the flow of a conventional methane fermentation plant will be described to the extent necessary for understanding the present invention. First, the biomass S to be treated is stored in the raw material tank 1, and after pretreatment such as foreign matter separation, crushing, and dilution as necessary, it is put into the methane fermentation tank (bioreactor) 2 by the raw material pump 1a to methane. It is used for fermentation processing.

メタン発酵槽2におけるメタン発酵処理(有機物の消化過程)は,多くの微生物群の共生によりタンパク質,炭水化物,脂質等の様々な有機物を分解する複雑な反応過程であるが,一般的には第1段階において分子量の大きな有機物が低分子量のアルコール,脂肪酸,水素等に分解され,第2段階において脂肪酸等が酢酸に酸化分解され,第3段階において酢酸,水素等から最終的にバイオガスGが生成される。図示例は固形物濃度が比較的小さいバイオマスSを処理対象とする湿式のメタン発酵槽2を示しているが,固形物濃度が比較的高いバイオマスSを処理する場合は乾式のメタン発酵槽とすることも可能である。 The methane fermentation treatment (digestion process of organic matter) in the methane fermentation tank 2 is a complicated reaction process in which various organic substances such as proteins, fatty acids, and lipids are decomposed by the symbiosis of many microorganisms. In the stage, organic substances with large molecular weight are decomposed into low molecular weight alcohols, fatty acids, hydrogen, etc., in the second stage, fatty acids, etc. are oxidatively decomposed into acetic acid, and in the third stage, biogas G is finally generated from acetic acid, hydrogen, etc. Will be done. The illustrated example shows a wet methane fermentation tank 2 for treating biomass S having a relatively low solid matter concentration, but when treating biomass S having a relatively high solid matter concentration, a dry methane fermentation tank is used. It is also possible.

メタン発酵槽2では,バイオガスGが生成されると共に,発酵処理後に発酵液ないし発酵残渣(以下,両者をまとめて発酵液という)Fが発生する。発酵液Fは後処理を施すことにより,コンポスト(堆肥)や土壌改良材等として再資源化し,又は適当な排水処理等により無害化することができる。図示例の後処理工程では,先ずメタン発酵処理で発生した発酵液Fを流入路2a経由で発酵液調整槽20に送って一旦貯留し,調整槽20の発酵液Fを発酵液ポンプ29により固液分離装置(例えば脱水機等)30へ送って固相と液相とを分離している。固液分離時には,図示例にように,凝集剤ポンプ31aにより凝集剤タンク31から凝集剤を添加してもよい。固液分離後の液相は濾液タンク32に一旦蓄え,濾液ポンプ33により排水処理装置(例えば活性汚泥処理装置等)34に送って所定環境基準値まで無害化処理することができ,無害化した発酵液Fは例えば排水ポンプ35により下水道等の環境中に放流することができる。また,固液分離後の固相は適当な堆肥化装置に投入して再資源化することができる。 In the methane fermentation tank 2, biogas G is generated, and after the fermentation treatment, a fermentation broth or a fermentation residue (hereinafter, both are collectively referred to as a fermentation broth) F is generated. The fermented liquid F can be recycled as compost (compost), soil conditioner, etc. by post-treatment, or can be detoxified by appropriate wastewater treatment or the like. In the post-treatment step of the illustrated example, first, the fermented liquid F generated in the methane fermentation treatment is sent to the fermented liquid adjusting tank 20 via the inflow path 2a and temporarily stored, and the fermented liquid F in the adjusting tank 20 is solidified by the fermented liquid pump 29. It is sent to a liquid separation device (for example, a dehydrator or the like) 30 to separate the solid phase and the liquid phase. At the time of solid-liquid separation, the flocculant may be added from the flocculant tank 31 by the flocculant pump 31a as shown in the illustrated example. The liquid phase after solid-liquid separation can be temporarily stored in the filtrate tank 32 and sent to a wastewater treatment device (for example, an active sludge treatment device) 34 by a filtrate pump 33 to be detoxified to a predetermined environmental standard value, and detoxified. The fermented liquid F can be discharged into an environment such as a sewer by a drainage pump 35, for example. In addition, the solid phase after solid-liquid separation can be recycled by putting it in an appropriate composting device.

特開2000-167523号公報Japanese Unexamined Patent Publication No. 2000-167523 特開2004-195453号公報Japanese Unexamined Patent Publication No. 2004-195453

財団法人新エネルギー財団編「バイオマス技術ハンドブック~導入と事業化のためのノウハウ~ 第3章メタン発酵」株式会社オーム社,平成20年10月25日,pp.206~447"Biomass Technology Handbook-Knowledge for Introduction and Commercialization-Chapter 3 Methane Fermentation" edited by New Energy Foundation, Ohmsha Co., Ltd., October 25, 2008, pp. 206-447 独立行政法人農業・食品産業技術総合研究機構プレスリリース「養豚で発生するリンの再利用技術を開発」2008年6月18日発行,インターネット<http://www.naro.affrc.go.jp/publicity_report/press/laboratory/nilgs/012887.html>Incorporated Administrative Agency Agricultural and Food Industry Technology Research Organization Press Release "Development of Phosphorus Reuse Technology Generated in Pig Farming" Published June 18, 2008, Internet <http://www. naro. affrc. go. jp / publicity_report / press / laboratory / nigs / 012887. html> 島村和彰ほか「2槽式流動層MAPリアクタによる高効率りん回収方法の検証」エバラ時報No.206,2005年発行,インターネット<https://www.ebara.co.jp/about/technologies/abstract/detail/__icsFiles/afieldfile/2016/04/25/206_P23_1.pdf>Kazuaki Shimamura et al. "Verification of high-efficiency phosphorus recovery method using a two-tank fluidized bed MAP reactor" Ebara Times No. 206, published in 2005, Internet <https: // www. evara. co. jp / about / technologies / abstract / datail / __icsFiles / afieldfile / 2016/04/25/206_P23_1. pdf>

しかし,従来のメタン発酵処理には,メタン発酵処理後の発酵液F中に溶解した結晶化成分が後処理工程(とくに,図4の点線で囲まれた発酵槽貯留槽20から濾液ポンプ33に至る工程)において析出し,析出した結晶が処理槽・配管の内部の閉塞を引き起こしてプラントの稼働に影響を与えうる問題点がある。析出する結晶の主なものは,処理対象のバイオマスSにリン酸イオン(PO 3-),アンモニウムイオン(NH ),マグネシウムイオン(Mg2+)等の結晶化成分が含まれている場合に,それらが結合して形成されるリン酸マグネシウムアンモニウム(MgNHPO;以下,MAPという)である。 However, in the conventional methane fermentation treatment, the crystallization component dissolved in the fermentation broth F after the methane fermentation treatment is transferred from the fermenter storage tank 20 surrounded by the dotted line in FIG. 4 to the filtrate pump 33. There is a problem that the crystals that are deposited in the process) may cause blockage inside the treatment tank / piping and affect the operation of the plant. The main crystals that precipitate are when the biomass S to be treated contains crystallization components such as phosphate ion ( PO 4-3- ) , ammonium ion (NH 4 + ), and magnesium ion (Mg 2+ ). Magnesium ammonium phosphate (MgNH 4 PO 4 ; hereinafter referred to as MAP) formed by combining them.

メタン発酵の処理対象は多くの緩衝剤が含まれる複雑な緩衝溶液であり,後処理工程における結晶の析出は複数の条件(圧力,温度等)が重なって生じるものなので,MAP等の結晶の析出反応を単純に定式化することは困難である。もっとも,図4の原料タンク1では乳酸発酵反応により通常pH4~5程度の酸性に維持されており,メタン発酵槽2では上述したバイオイオガスGへの分解反応により通常pH7.5程度に維持されているのが一般的であるのに対し,メタン発酵槽2から排出後の発酵液Fは溶解した炭酸ガス(HCO)が二酸化炭素(CO)となって徐々に放出されるため,後処理工程ではpHが上昇して通常pH8以上となっている。後処理工程においてMAP等の結晶が析出する一つの原因は,このような発酵液FのpH8以上の上昇(アルカリ化)にあると考えられる。すなわち,MAP等の結晶を形成するリン酸イオン,アンモニウムイオン,マグネシウムイオン等は,pH上昇により析出する結晶化成分(以下,高pH結晶化成分ということがある)である。 The treatment target of methane fermentation is a complicated buffer solution containing many buffers, and the precipitation of crystals in the post-treatment step occurs due to the overlap of multiple conditions (pressure, temperature, etc.), so the precipitation of crystals such as MAP It is difficult to simply formulate the reaction. However, in the raw material tank 1 of FIG. 4, the acidity is usually maintained at about 4 to 5 by the lactic acid fermentation reaction, and in the methane fermentation tank 2, the pH is usually maintained at about 7.5 by the decomposition reaction into the bioiogas G described above. On the other hand, in the fermented liquid F after being discharged from the methane fermentation tank 2, the dissolved carbon dioxide gas (H 2 CO 3 ) is gradually released as carbon dioxide (CO 2 ). In the post-treatment step, the pH rises to usually be 8 or higher. It is considered that one of the causes of the precipitation of crystals such as MAP in the post-treatment step is such an increase in the pH of the fermentation broth F of 8 or more (alkalination). That is, phosphate ions, ammonium ions, magnesium ions, etc. that form crystals such as MAP are crystallization components that precipitate due to an increase in pH (hereinafter, may be referred to as high pH crystallization components).

従来の高pH結晶化成分が含まれるバイオマスSのメタン発酵プラントでは,後処理工程で析出するMAP等の結晶が処理槽・配管の閉塞につながることを避けるため,定期的に又は必要に応じて内部を清掃することが不可欠である。ただし,メタン発酵槽2は稼働を一旦停止すると再起動に長い時間がかかるので,メタン発酵槽2の稼働を停止せずに後処理工程の清掃を求められることがあり,後処理工程を短時間で手間をかけずに清掃できる技術の開発が求められている。 In the conventional methane fermentation plant of Biomass S containing high pH crystallization components, crystals such as MAP deposited in the post-treatment process do not lead to blockage of the treatment tank / piping, so that they are regularly or as needed. Cleaning the interior is essential. However, once the operation of the methane fermentation tank 2 is stopped, it takes a long time to restart, so it may be required to clean the post-treatment process without stopping the operation of the methane fermentation tank 2, and the post-treatment process can be performed in a short time. There is a need to develop a technology that can be cleaned without hassle.

本発明者は,メタン発酵処理の後処理工程の前段部分において高pH結晶化成分を集中的・効率的に析出させることに着目した。例えば養豚業等で発生する高濃度有機性排水(豚舎汚水)の処理に際して,有機性排水中に含まれるリン酸をMAPとして回収する技術が開発されている(特許文献2,非特許文献2~3参照)。このような結晶の回収技術をメタン発酵処理の後処理工程に適用し,後処理工程の前段部分において高pH結晶化成分を集中的・効率的に析出させることができれば,後処理工程の後段部分における結晶の析出を小さく抑え,後処理工程の全体の清掃作業を簡単化することが期待できる。 The present inventor focused on precipitating high pH crystallization components intensively and efficiently in the pretreatment stage of the post-treatment step of methane fermentation treatment. For example, in the treatment of high-concentration organic wastewater (pig house sewage) generated in the pig farming industry, a technique for recovering phosphoric acid contained in the organic wastewater as MAP has been developed (Patent Document 2, Non-Patent Document 2 to 2). 3). If such a crystal recovery technique can be applied to the post-treatment step of the methane fermentation treatment and the high pH crystallization component can be intensively and efficiently precipitated in the pre-treatment step of the post-treatment step, the post-treatment step of the post-treatment step can be performed. It is expected that the precipitation of crystals in the above process will be kept small and the cleaning work of the entire post-treatment process will be simplified.

そこで本発明の目的は,後処理工程の清掃の簡単化を図ることができるメタン発酵液の後処理方法及び装置を提供することにある。 Therefore, an object of the present invention is to provide a post-treatment method and an apparatus for a methane fermented liquid that can simplify the cleaning of the post-treatment step.

図1(B)の実施例を参照するに,本発明によるメタン発酵液の後処理方法は,バイオマスSのメタン発酵処理後の発酵液Fを取り入れて一時滞留させる発酵液調整槽20の流入口21の内側に周囲から仕切って有底チャンバー11(図1(A)も参照)を設け,有底チャンバー11内に曝気して発酵液F中の高pH結晶化成分(例えばリン酸イオン,アンモニウムイオン,マグネシウムイオン)をpH上昇により析出させ,有底チャンバー11内に交換可能に沈設した金属製の枠体網17に曝気中の析出結晶(例えばMAP)の少なくとも一部分を付着させ,結晶析出後の発酵液Fを有底チャンバー11から発酵液調整槽20へ溢流させて一時滞留させ,発酵液調整槽20内に曝気して発酵液F中の未析出の高pH結晶化成分をpH上昇により析出させたのち,結晶析出後の発酵液Fを後続の後処理工程へ送ってなるものである。 With reference to the example of FIG. 1 (B) , the post-treatment method of the methane fermentation liquid according to the present invention is a flow of the fermentation liquid adjusting tank 20 in which the fermentation liquid F after the methane fermentation treatment of the biomass S is taken in and temporarily retained. A bottomed chamber 11 (see also FIG. 1 (A)) is provided inside the inlet 21 by partitioning from the surroundings , and the bottomed chamber 11 is exposed to air to provide a high pH crystallizing component (for example, phosphate ion, etc.) in the fermented liquid F. Ammonium ions (ammonium ions, magnesium ions) are precipitated by increasing the pH, and at least a part of the precipitated crystals (for example, MAP) being exposed is attached to the metal frame net 17 which is replaceably settled in the bottomed chamber 11 to precipitate the crystals. The subsequent fermented liquid F is overflowed from the bottomed chamber 11 to the fermented liquid adjusting tank 20 and temporarily retained, and is exposed to air in the fermented liquid adjusting tank 20 to make the unprecipitated high-pH crystallizing component in the fermented liquid F pH. After precipitating by ascending, the fermented liquid F after crystal precipitation is sent to a subsequent post-treatment step.

また,図1(B)の実施例を参照するに,本発明によるメタン発酵液の後処理装置は,バイオマスSのメタン発酵処理後の発酵液Fを取り入れて一時滞留させる発酵液調整槽20,発酵液調整槽20の流入口21の内側に周囲から仕切って設けた有底チャンバー11(図1(A)も参照),有底チャンバー11内に曝気して発酵液F中の高pH結晶化成分(例えばリン酸イオン,アンモニウムイオン,マグネシウムイオン)をpH上昇により析出させる曝気装置15,有底チャンバー11内の曝気装置15の上方に交換可能に沈設する金属製の枠体網17,結晶析出後の発酵液Fを有底チャンバー11から発酵液調整槽20へ溢流させる溢流堰14,及び発酵液調整槽20内に曝気して発酵液F中の未析出の高pH結晶化成分をpH上昇により析出させる曝気装置26を備えてなるものである。 Further, referring to the embodiment of FIG. 1 (B) , the post-treatment apparatus for the methane fermented liquid according to the present invention takes in the fermented liquid F after the methane fermentation treatment of the biomass S and temporarily retains the fermented liquid adjusting tank 20. A bottomed chamber 11 (see also FIG. 1 (A)) provided inside the inflow port 21 of the fermented liquid adjusting tank 20 so as to be partitioned from the surroundings . An aeration device 15 that precipitates components (for example, phosphate ion, ammonium ion, magnesium ion) by increasing the pH, a metal frame net 17 that is interchangeably set above the aeration device 15 in the bottomed chamber 11, and crystal precipitation. The unprecipitated high-pH crystallization component in the fermented liquid F is aerated in the overflow dam 14 for overflowing the subsequent fermented liquid F from the bottomed chamber 11 to the fermented liquid adjusting tank 20 and in the fermented liquid adjusting tank 20. It is provided with an aeration device 26 for precipitating by increasing the pH .

望ましい実施例では,図1(B)に示すように,発酵液調整槽20に傾斜底面23を設け,その傾斜底面23の下端部に析出結晶の収集溝24を形成する。 In a desirable embodiment, as shown in FIG. 1 (B), the fermented liquid adjusting tank 20 is provided with an inclined bottom surface 23, and a precipitation crystal collecting groove 24 is formed at the lower end portion of the inclined bottom surface 23.

更に望ましい実施例では,図2(B)に示すように,一対の有底チャンバー11付き発酵液調整槽20a,20bを設け,メタン発酵処理後の発酵液Fの流入路2aを有底チャンバー11付き発酵液調整槽20a,20bの何れかの流入口21に接続する切換え弁40を設ける。 In a more desirable embodiment, as shown in FIG. 2B, a pair of fermented liquid adjusting tanks 20a and 20b with a bottomed chamber 11 are provided, and an inflow path 2a of the fermented liquid F after the methane fermentation treatment is provided in the bottomed chamber 11. A switching valve 40 connected to the inflow port 21 of any of the fermented liquid adjusting tanks 20a and 20b is provided.

本発明によるメタン発酵液の後処理方法及び装置は,バイオマスSのメタン発酵処理後の発酵液Fを取り入れて一時滞留させる発酵液調整槽20の流入口21の内側に周囲から仕切って有底チャンバー11を設け,有底チャンバー11内の曝気装置15より曝気して発酵液F中の高pH結晶化成分をpH上昇により析出させ,有底チャンバー11内の曝気中に金属製の枠体網17を交換可能に沈設して析出結晶(例えばMAP)の少なくとも一部分を付着させ,結晶析出後の発酵液Fを有底チャンバー11から発酵液調整槽20へ溢流させて一時滞留させ,発酵液調整槽20内に曝気して発酵液F中の未析出の高pH結晶化成分をpH上昇により析出させたのち,結晶析出後の発酵液Fを後続の後処理工程へ送るので,次の有利な効果を奏する。 The post-treatment method and apparatus for the methane fermentation liquid according to the present invention are bottomed by partitioning from the surroundings inside the inflow port 21 of the fermentation liquid adjustment tank 20 in which the fermentation liquid F after the methane fermentation treatment of the biomass S is taken in and temporarily retained. A chamber 11 is provided , and the high pH crystallizing component in the fermented liquid F is precipitated by increasing the pH by aerating from the aeration device 15 in the bottomed chamber 11, and a metal frame net is provided during the aeration in the bottomed chamber 11. 17 is replaceably submerged to adhere at least a part of the precipitated crystals (for example, MAP), and the fermented liquid F after crystal precipitation is overflowed from the bottomed chamber 11 to the fermented liquid adjusting tank 20 and temporarily retained, and the fermented liquid is temporarily retained. After aerating in the adjusting tank 20 to precipitate the unprecipitated high pH crystallization component in the fermented liquid F by increasing the pH, the fermented liquid F after the crystal precipitation is sent to the subsequent post-treatment step, which is advantageous as follows. It has a great effect.

(イ)メタン発酵処理の後処理工程の前段部分において高pH結晶化成分を集中的に析出させ,後処理工程の後段部分における結晶の析出を小さく抑えることにより,後処理工程の全体の清掃作業を簡単化することができる。
(ロ)また,メタン発酵処理の後処理工程の前段部分に高pH結晶化成分を集中的に析出させる有底チャンバー11を設け,有底チャンバー11の内部に析出結晶を付着させる金属製の枠体網17を設けることにより,必要に応じて有底チャンバー11又は枠体網17を交換する簡単な短時間作業によって後処理工程の処理槽・配管の閉塞を避けることができる。
(B) Cleaning work of the entire post-treatment step by intensively precipitating high pH crystallization components in the pre-treatment part of the post-treatment step of methane fermentation treatment and suppressing the precipitation of crystals in the post-treatment step of the post-treatment step to a small size. Can be simplified.
(B) Further, a bottomed chamber 11 for intensively precipitating high pH crystallization components is provided in the pretreatment stage of the post-treatment step of the methane fermentation treatment, and a metal frame for adhering the precipitated crystals inside the bottomed chamber 11. By providing the body net 17, it is possible to avoid blockage of the treatment tank / pipe in the post-treatment step by a simple short-time operation of replacing the bottomed chamber 11 or the frame body net 17 as needed.

(ハ)発酵液Fの流入路2aに切換え弁40を介して一対の有底チャンバー11a,11bを接続すれば,一方の有底チャンバー11aの接続時に他方の有底チャンバー11bを清掃することができ,発酵液Fの流入を停止させることなく後処理工程を清掃することができる。
(ニ)また,有底チャンバー11を発酵液調整槽20の流入口21の内側に周囲から仕切って設けた溢流堰14付き有底小部屋11とすることにより,高pH結晶化成分の析出のための別途スペースが確保できない場合であっても,従来の発酵液調整槽20の設置スペースの一部分を利用して高pH結晶化成分を集中的に析出させることができる。
(C) If a pair of bottomed chambers 11a and 11b are connected to the inflow path 2a of the fermentation broth F via a switching valve 40, the other bottomed chamber 11b can be cleaned when one bottomed chamber 11a is connected. The post-treatment step can be cleaned without stopping the inflow of the fermented liquid F.
(D) Further, by forming the bottomed chamber 11 as a bottomed small chamber 11 with an overflow weir 14 provided inside the inflow port 21 of the fermentation broth adjusting tank 20 from the surroundings, precipitation of high pH crystallization components is performed. Even if a separate space cannot be secured for the above, the high pH crystallization component can be intensively deposited by utilizing a part of the installation space of the conventional fermentation broth adjusting tank 20.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明によるメタン発酵液の後処理方法の一実施例の説明図である。 本発明によるメタン発酵液の後処理方法の他の実施例の説明図である。 本発明で用いる曝気装置15及び枠体網17の一例の説明図である。 従来のメタン発酵液の後処理方法の一例の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is explanatory drawing of one Example of the post-treatment method of the methane fermentation liquid by this invention. It is explanatory drawing of another Example of the post-treatment method of the methane fermentation liquid by this invention. It is explanatory drawing of an example of an aeration apparatus 15 and a frame net 17 used in this invention. It is explanatory drawing of an example of the post-treatment method of the conventional methane fermentation liquid.

図1(A)は,本発明によるメタン発酵液の後処理方法の実施例を示す。図示例の後処理方法では,図4を参照して上述したメタン発酵槽2と発酵液調整槽20との間に析出槽10を設けている。メタン発酵槽2で発生したメタン発酵処理直後の発酵液Fを析出槽10に取り入れ,析出槽10において発酵液F中の高pH結晶化成分を集中的に析出させ,結晶析出後の発酵液Fを後続の後処理工程である発酵液調整槽20へ溢流させる。メタン発酵槽2の直後に析出槽10を設けることにより,後処理工程の前段部分において高pH結晶化成分を集中的に析出させ,後処理工程の後段部分における結晶の析出を小さく抑え,後処理工程の全体の清掃作業を簡単化することができる。析出槽10の設置位置は,図示例のように発酵槽2の直後に限定されるわけではなく,後処理工程の前段部分において適当に選択することができる。 FIG. 1A shows an example of the post-treatment method for the methane fermented liquid according to the present invention. In the post-treatment method of the illustrated example, a precipitation tank 10 is provided between the above-mentioned methane fermentation tank 2 and the fermentation broth adjusting tank 20 with reference to FIG. The fermentation broth F immediately after the methane fermentation treatment generated in the methane fermentation tank 2 is taken into the precipitation tank 10, and the high pH crystallization components in the fermentation broth F are intensively precipitated in the precipitation tank 10, and the fermentation broth F after crystal precipitation F. Is overflowed into the fermented liquid adjusting tank 20 which is a subsequent post-treatment step. By providing the precipitation tank 10 immediately after the methane fermentation tank 2, the high pH crystallization component is intensively precipitated in the pretreatment portion of the post-treatment step, the precipitation of crystals in the post-stage portion of the post-treatment step is suppressed to a small size, and the post-treatment is performed. The cleaning work of the entire process can be simplified. The installation position of the precipitation tank 10 is not limited to immediately after the fermentation tank 2 as shown in the illustrated example, and can be appropriately selected in the pretreatment portion of the post-treatment step.

図示例の析出槽10は,発酵液Fを取り入れて一時滞留させる有底チャンバー11と,有底チャンバー11の底部に設けた曝気装置15と,曝気装置15の上方の発酵液F中に交換可能に沈設した金属製の枠体網17とを有する。有底チャンバー11には,発酵液流入路2aに接続する取入口12と,後続の発酵液調整槽20に接続する溢流堰14とが設けられており,取り入れた発酵液Fを所定時間滞留させることができる。有底チャンバー11の容量は,発酵液Fの取入流量に応じて発酵液F中の高pH結晶化成分が十分に析出する時間だけ滞留するように設計できるが,大きくなると清掃に手間がかかるので,清掃の手間・時間を考慮して設計することが望ましい。 The precipitation tank 10 of the illustrated example can be exchanged between the bottomed chamber 11 that takes in the fermented liquid F and temporarily retains it, the aeration device 15 provided at the bottom of the bottomed chamber 11, and the fermented liquid F above the aeration device 15. It has a metal frame net 17 sunk in. The bottomed chamber 11 is provided with an intake port 12 connected to the fermented liquid inflow path 2a and an overflow weir 14 connected to the subsequent fermented liquid adjusting tank 20, and the taken-in fermented liquid F is retained for a predetermined time. Can be made to. The capacity of the bottomed chamber 11 can be designed so that the high pH crystallization component in the fermented liquid F stays for a sufficient time according to the intake flow rate of the fermented liquid F, but when it becomes large, it takes time and effort to clean it. Therefore, it is desirable to design in consideration of the labor and time of cleaning.

図示例の曝気装置15は,発酵液Fに溶解した炭酸ガス(HCO)を曝気ガスPと置換して追い出すことにより,発酵液F中の高pH結晶化成分(リン酸イオン,アンモニウムイオン,マグネシウムイオン)が析出する程度にまで有底チャンバー11内のpHを上昇させるものである。曝気ガスPの一例は空気であるが,窒素ガスその他の無害ガスを用いることも可能である。上述したように従来のメタン発酵処理では発酵液FがpH8以上となる後処理工程においてMAP等の結晶が析出することから,例えば曝気装置15の曝気によって有底チャンバー11内の発酵液FをpH8~9程度又はそれ以上まで上昇させることにより,有底チャンバー11内において高pH結晶化成分の集中的・効率的な析出を促進ができる。 The aeration device 15 of the illustrated example replaces the carbon dioxide gas (H 2 CO 3 ) dissolved in the fermented liquid F with the aeration gas P and expels the high pH crystallization component (phosphate ion, ammonium) in the fermented liquid F. The pH in the bottomed chamber 11 is raised to the extent that ions (ions, magnesium ions) are deposited. An example of the aeration gas P is air, but nitrogen gas or other harmless gas can also be used. As described above, in the conventional methane fermentation treatment, crystals such as MAP are deposited in the post-treatment step in which the fermentation liquid F becomes pH 8 or higher. By raising the temperature to about 9 or more, intensive and efficient precipitation of high pH crystallization components can be promoted in the bottomed chamber 11.

曝気装置15は有底チャンバー11内の適当な位置に設置できるが,望ましくは有底チャンバー11の底部に設ける。曝気装置15を有底チャンバー11の底部に設けることにより,発酵液Fの全体を攪拌しながら曝気し,有底チャンバー11の内部の発酵液FのpHを全体的に上昇させることができる。また,発酵液Fを攪拌しながら曝気することにより,発酵液F中の高pH結晶化成分の析出効率を全体的に高め,有底チャンバー11から溢流する発酵液F中の未析出の高pH結晶化成分を低減し,後続の後処理工程における結晶の析出を小さく抑えることができる。図示例では,有底チャンバー11の底部に単独の曝気装置15を設けているが,有底チャンバー11の底部には複数の曝気装置15を設けることが可能である。 The aeration device 15 can be installed at an appropriate position in the bottomed chamber 11, but is preferably provided at the bottom of the bottomed chamber 11. By providing the aeration device 15 at the bottom of the bottomed chamber 11, the whole fermented liquid F can be aerated while stirring, and the pH of the fermented liquid F inside the bottomed chamber 11 can be raised as a whole. Further, by agitating and aerating the fermented liquid F, the precipitation efficiency of the high pH crystallization component in the fermented liquid F is increased as a whole, and the unprecipitated high amount in the fermented liquid F overflowing from the bottomed chamber 11. The pH crystallization component can be reduced, and the precipitation of crystals in the subsequent post-treatment step can be suppressed to a small level. In the illustrated example, a single aeration device 15 is provided at the bottom of the bottomed chamber 11, but a plurality of aeration devices 15 can be provided at the bottom of the bottomed chamber 11.

図示例の金属製枠体網17は,従来のメタン発酵処理の後処理工程において析出するMAP等の結晶が処理槽・配管の金属表面に付着し,その表面で更なる析出が進行して成長することから,曝気装置15の散気(気泡)と交差する上方に結晶の析出・付着・成長する環境を作り出すものである。枠体網17は,適用するメタン発酵プラントに応じて結晶が付着・成長しやすい材質を選択できるが,例えばアルミニウム製,ステンレス製,又は銅製とすることができる。また枠体網17は,曝気装置15の散気との接触面積が大きくなるように,散気が自在に通過できる網状又は籠状とすることが望ましい。更に枠体網17の表面は,結晶の付着・成長には滑面よりも粗面が適していることから,適当な粗面処理を施すことが望ましい。 In the metal frame net 17 of the illustrated example, crystals such as MAP deposited in the post-treatment step of the conventional methane fermentation treatment adhere to the metal surface of the treatment tank / pipe, and further precipitation progresses and grows on the surface. Therefore, it creates an environment in which crystals precipitate, adhere, and grow above the air diffuser (air bubbles) of the aeration device 15. The frame net 17 can be made of a material in which crystals are likely to adhere and grow depending on the methane fermentation plant to which it is applied, and can be made of, for example, aluminum, stainless steel, or copper. Further, it is desirable that the frame net 17 has a net shape or a cage shape through which the aeration can freely pass so that the contact area of the aeration device 15 with the air diffuser becomes large. Further, since the surface of the frame net 17 is more suitable for the adhesion and growth of crystals than the smooth surface, it is desirable to perform an appropriate rough surface treatment.

図示例の金属製枠体網17は,曝気装置15の上面に固定治具17aで固定して取り付けることができ,必要に応じて固定治具17aを解除して曝気装置15から取り外すことができる。曝気装置15の上方で析出した結晶は,一部分は枠体網17に付着せず沈殿するものもあるが,多くは枠体網17の表面に付着する。従って,必要に応じて枠体網17を交換する簡単な短時間作業で析出した結晶を回収することができ,後処理工程の清掃作業の簡単化を図ることができる。ただし,枠体網17の曝気装置15への固定は本発明に必須のものではなく,曝気装置15から独立した枠体網17を,例えば曝気装置15の上方に吊り下げて沈設してもよい(図1(B)の曝気装置26を参照)。 The metal frame net 17 of the illustrated example can be fixedly attached to the upper surface of the aeration device 15 with a fixing jig 17a, and can be removed from the aeration device 15 by releasing the fixing jig 17a as needed. .. Some of the crystals precipitated above the aeration device 15 do not adhere to the frame net 17, but some of them precipitate, but most of them adhere to the surface of the frame net 17. Therefore, the precipitated crystals can be recovered by a simple short-time operation of exchanging the frame net 17 as needed, and the cleaning work of the post-treatment step can be simplified. However, fixing the frame net 17 to the aeration device 15 is not essential to the present invention, and the frame net 17 independent of the aeration device 15 may be suspended and sunk above the aeration device 15, for example. (See the aeration device 26 in FIG. 1 (B)).

図3は,本発明に適した曝気装置15及び金属製枠体網17の実施例を示す。図3(A)及び(B)に示す曝気装置15は,一端に吸気口15aを形成すると共に他端を封止端15bとした中空管状の送気管15cを有し,その送気管15cの周壁に多数の吹出し孔15dを形成したものである。吸気口15aに曝気ホース16(図1参照)を接続して空気を送り込むことにより,周壁の多数の吹出し孔15dから散気(気泡)を供給することができる。送気管15cの中心軸方向に沿った片側には有底チャンバー11の底面に安定的に着座させるための脚部が形成されており,中心軸方向に沿った反対側には金属製枠体網17を取り付ける取付け板15eが設けられている。必要に応じて曝気装置15に複数本の送気管15cを含めることができ,有底チャンバー11の内部の発酵液FのpHを全体的に上昇させることができる。 FIG. 3 shows an example of an aeration device 15 and a metal frame net 17 suitable for the present invention. The aeration device 15 shown in FIGS. 3A and 3B has a hollow tubular air supply tube 15c having an intake port 15a formed at one end and a sealing end 15b at the other end, and the peripheral wall of the air supply tube 15c. A large number of blowout holes 15d are formed in the air. By connecting an aeration hose 16 (see FIG. 1) to the intake port 15a and sending air, air diffusers (air bubbles) can be supplied from a large number of outlet holes 15d on the peripheral wall. Legs for stable seating on the bottom surface of the bottomed chamber 11 are formed on one side of the air supply tube 15c along the central axis direction, and a metal frame net is formed on the other side along the center axis direction. A mounting plate 15e for mounting the 17 is provided. If necessary, the aeration device 15 can include a plurality of air supply tubes 15c, and the pH of the fermented liquid F inside the bottomed chamber 11 can be raised as a whole.

図3(C)及び(D)は,上述した曝気装置15の取付け板15eに金属製枠体網17を取り付け,固定治具17aで固定した状態を示す。図示例のように,取付け板15eに金属製枠体網17を固定した状態で,曝気装置15を有底チャンバー11の底面に着座させることにより,枠体網17の全体を曝気装置15の散気(気泡)と交差させ,枠体網17の沈設空間を結晶の析出・付着・成長しやすい環境とすることができる。有底チャンバー11の底部には複数の曝気装置15及び枠体網17を設けることが可能であり,複数の曝気装置15及び枠体網17を設けることにより,有底チャンバー11の内部空間全体を結晶の析出・付着・成長しやすい環境とすることができる。 3 (C) and 3 (D) show a state in which the metal frame net 17 is attached to the mounting plate 15e of the above-mentioned aeration device 15 and fixed by the fixing jig 17a. As shown in the illustrated example, the aeration device 15 is seated on the bottom surface of the bottomed chamber 11 in a state where the metal frame net 17 is fixed to the mounting plate 15e, so that the entire frame net 17 is dispersed by the aeration device 15. By intersecting with air (air bubbles), the submerged space of the frame net 17 can be made into an environment in which crystals are likely to precipitate, adhere, and grow. A plurality of aeration devices 15 and a frame net 17 can be provided at the bottom of the bottomed chamber 11, and by providing a plurality of aeration devices 15 and a frame net 17, the entire internal space of the bottomed chamber 11 can be provided. It is possible to create an environment in which crystals are likely to precipitate, adhere, and grow.

図1(A)のように,後処理工程の前段部分において高pH結晶化成分を集中的に析出させ,必要に応じて枠体網17を交換することにより,後処理工程の清掃作業を簡単化することができる。図1(A)において,枠体網17の交換に代えて,予め複数の析出槽10を用意しておき,必要に応じて析出槽10を交換することにより,後処理工程の清掃作業を簡単化することも可能である。上述したように析出槽10の内部で析出した結晶の多くは枠体網17の表面に付着するが,一部分は付着せずに有底チャンバー11の底部に沈殿するため,後処理工程の閉塞を避けるためには枠体網17の交換だけでは足らず,有底チャンバー11の内部の清掃も必要となり得る。析出槽10自体を交換することにより,後処理工程の清掃作業の更なる簡単化を図ることができる。 As shown in FIG. 1A, the cleaning work of the post-treatment step is simplified by intensively precipitating the high pH crystallization component in the pre-treatment portion of the post-treatment step and replacing the frame net 17 as necessary. Can be transformed into. In FIG. 1A, instead of replacing the frame net 17, a plurality of precipitation tanks 10 are prepared in advance, and the precipitation tanks 10 are replaced as necessary to simplify the cleaning work in the post-treatment step. It is also possible to make it. As described above, most of the crystals precipitated inside the precipitation tank 10 adhere to the surface of the frame net 17, but some of them do not adhere and precipitate at the bottom of the bottomed chamber 11, so that the post-treatment step is blocked. In order to avoid this, it is not enough to replace the frame net 17, and it may be necessary to clean the inside of the bottomed chamber 11. By replacing the precipitation tank 10 itself, the cleaning work in the post-treatment step can be further simplified.

好ましくは,図2(A)に示すように,析出槽10に一対の有底チャンバー11a,11bを含める。各有底チャンバー11a,11bにはそれぞれ曝気装置15と金属製枠体網17とを設け,取入口12と溢流堰14とを設ける。また,発酵液の流入路2aを有底チャンバー11a,11bの何れか一方の取入口12に接続する切換え弁40(V1,V2)を設け,有底チャンバー11a,11bの何れか一方の溢流堰14を後続の発酵液調整槽20に接続する切換え弁40(V3,V4)を設ける。 Preferably, as shown in FIG. 2A, the precipitation tank 10 includes a pair of bottomed chambers 11a and 11b. An aeration device 15 and a metal frame net 17 are provided in each of the bottomed chambers 11a and 11b, respectively, and an intake port 12 and an overflow weir 14 are provided. Further, a switching valve 40 (V1, V2) for connecting the inflow path 2a of the fermented liquid to the intake port 12 of either of the bottomed chambers 11a and 11b is provided, and the overflow of either of the bottomed chambers 11a and 11b is provided. A switching valve 40 (V3, V4) for connecting the weir 14 to the subsequent fermentation broth adjusting tank 20 is provided.

図2(A)の実施例では,例えば切換え弁V1,V3を開放(切換え弁V2,V4を閉鎖)して有底チャンバー11aを後処理工程に組み込み,有底チャンバー11aにおいて処理液F中の高pH結晶化成分を集中的に析出させる。析出した結晶が枠体網17の表面に十分析出したのち,切換え弁V1,V3を閉鎖(切換え弁V2,V4を開放)して有底チャンバー11aを後処理工程から切り離すと共に他方の有底チャンバー11bを組み込み,他方の有底チャンバー11bにおいて処理液F中の高pH結晶化成分を集中的に析出させる。有底チャンバー11aは,後処理工程から切り離した状態で内部を清掃することができる。 In the embodiment of FIG. 2A, for example, the switching valves V1 and V3 are opened (switching valves V2 and V4 are closed) to incorporate the bottomed chamber 11a into the post-treatment step, and the bottomed chamber 11a is contained in the treatment liquid F. Intensive precipitation of high pH crystallization components. After the precipitated crystals are sufficiently deposited on the surface of the frame net 17, the switching valves V1 and V3 are closed (switching valves V2 and V4 are opened) to separate the bottomed chamber 11a from the post-treatment step and the other bottomed. A chamber 11b is incorporated, and the high pH crystallization component in the treatment liquid F is intensively deposited in the other bottomed chamber 11b. The inside of the bottomed chamber 11a can be cleaned in a state of being separated from the post-treatment step.

有底チャンバー11bの枠体網17の表面に析出した結晶が十分析出した場合は,切換え弁V1,V3を開放(切換え弁V2,V4を閉鎖)して有底チャンバー11bを後処理工程から切り離すと共に有底チャンバー11aを再度組み込み,有底チャンバー11aにおいて処理液F中の高pH結晶化成分を集中的に析出させる。このように有底チャンバー11a,11bの切り替えを繰り返すことにより,メタン発酵槽2の稼働を停止せずに発酵液Fを連続的に受入ながら後処理工程を簡単に清掃することができ,後処理工程の処理槽・配管の閉塞を避けることができる。 When the crystals deposited on the surface of the frame net 17 of the bottomed chamber 11b are sufficiently deposited, the switching valves V1 and V3 are opened (switching valves V2 and V4 are closed) to remove the bottomed chamber 11b from the post-treatment step. Upon disconnection, the bottomed chamber 11a is reassembled, and the high pH crystallization component in the treatment liquid F is intensively deposited in the bottomed chamber 11a. By repeating the switching of the bottomed chambers 11a and 11b in this way, the post-treatment step can be easily cleaned while continuously receiving the fermented liquid F without stopping the operation of the methane fermenter 2. It is possible to avoid blockage of the processing tank and piping in the process.

こうして本発明の目的である「後処理工程の清掃の簡単化を図ることができるメタン発酵液の後処理方法及び装置」の提供を達成することができる。 In this way, it is possible to achieve the object of the present invention, "a post-treatment method and apparatus for a methane fermented liquid capable of simplifying cleaning of the post-treatment step".

図1(B)は,図1(A)の析出槽10の有底チャンバー11を,後続の後処理工程である発酵液調整槽20の流入口21の内側に組み込んだ本発明の他の実施例を示す。図1(A)を参照して上述したように,析出槽10は,メタン発酵槽2と発酵液調整槽20との間に設置して発酵液F中の高pH結晶化成分を集中的に析出させることにより後続の後処理工程における結晶の析出を小さく抑えるものであるが,従来の発酵液調整槽20に比べて追加的な設置スペースが必要となる。図1(B)のように析出槽10の有底チャンバー11を発酵液調整槽20の内側に組み込むことにより,追加的な設置スペースを確保できない場合であっても,発酵液調整槽20の設置スペースの一部分を利用して高pH結晶化成分を集中的に析出させることができる。 FIG. 1B is another embodiment of the present invention in which the bottomed chamber 11 of the precipitation tank 10 of FIG. 1A is incorporated inside the inflow port 21 of the fermentation broth adjusting tank 20 which is a subsequent post-treatment step. An example is shown. As described above with reference to FIG. 1 (A), the precipitation tank 10 is installed between the methane fermentation tank 2 and the fermentation broth adjusting tank 20 to concentrate the high pH crystallization components in the fermentation broth F. By precipitating, the precipitation of crystals in the subsequent post-treatment step is suppressed to a small size, but an additional installation space is required as compared with the conventional fermentation broth adjusting tank 20. By incorporating the bottomed chamber 11 of the precipitation tank 10 inside the fermented liquid adjusting tank 20 as shown in FIG. 1 (B), the fermented liquid adjusting tank 20 can be installed even when an additional installation space cannot be secured. A part of the space can be used to concentrate the high pH crystallization component.

図1(B)の実施例では,発酵液調整槽20の流入口21の内側に周囲から仕切って溢流堰14付き有底小部屋11を設け,その有底小部屋11に曝気装置15と金属製枠体網17とを配置して析出槽10としている。発酵液調整槽20の流入口21を発酵液流入路2aに接続し,メタン発酵槽2で発生したメタン発酵処理後の発酵液Fを発酵液調整槽20の流入口21から取り入れる。図示例の有底小部屋11は上面開放型であり,発酵液調整槽20の流入口21から取り入れた発酵液Fは,流入口21の内側の有底小部屋11に所定時間滞留し,有底小部屋11において高pH結晶化成分を集中的に析出したのち,有底小部屋11の溢流堰14から発酵液調整槽20へ送られる。有底小部屋11の容量も,高pH結晶化成分が十分に析出する時間だけ発酵液Fの滞留するように設計できるが,短時間で清掃できる大きさとすることが望ましい。 In the embodiment of FIG. 1B, a bottomed small room 11 with an overflow weir 14 is provided inside the inflow port 21 of the fermented liquid adjusting tank 20 by partitioning from the surroundings, and the bottomed small room 11 is equipped with an aeration device 15. A metal frame net 17 is arranged to form a precipitation tank 10. The inflow port 21 of the fermented liquid adjusting tank 20 is connected to the fermented liquid inflow path 2a, and the fermented liquid F after the methane fermentation treatment generated in the methane fermentation tank 2 is taken in from the inflow port 21 of the fermented liquid adjusting tank 20. The bottomed small chamber 11 in the illustrated example is an open top type, and the fermented liquid F taken in from the inflow port 21 of the fermented liquid adjusting tank 20 stays in the bottomed small chamber 11 inside the inflow port 21 for a predetermined time. After the high pH crystallization component is intensively deposited in the bottom small chamber 11, it is sent from the overflow dam 14 of the bottom small chamber 11 to the fermentation broth adjusting tank 20. The capacity of the bottomed small chamber 11 can be designed so that the fermented liquid F stays for a sufficient time for the high pH crystallization component to precipitate, but it is desirable that the capacity is such that it can be cleaned in a short time.

また図1(B)の実施例では,発酵液調整槽20にも曝気装置26を設け,有底小部屋11において未析出の発酵液F中の高pH結晶化成分を発酵液調整槽20において析出させている。すなわち,発酵液F中の高pH結晶化成分はできるだけ有底小部屋11において析出させるが,有底小部屋11の容量だけでは析出が不十分となり,発酵液調整槽20に溢流する発酵液F中に未析出の高pH結晶化成分が残りうる。発酵液調整槽20においても,曝気装置26により発酵液F中のpHを上昇させて高pH結晶化成分の析出を促進することにより,発酵槽調整槽20の流出口22から送り出される発酵液F中の未析出の高pH結晶化成分を低減し,発酵槽調整槽20の後続の後処理工程における結晶の析出を小さく抑えることができる。 Further, in the embodiment of FIG. 1B, the aeration device 26 is also provided in the fermented liquid adjusting tank 20, and the high pH crystallization component in the unprecipitated fermented liquid F in the bottomed small chamber 11 is put into the fermented liquid adjusting tank 20. It is precipitating. That is, the high pH crystallization component in the fermented liquid F is precipitated in the bottomed small chamber 11 as much as possible, but the precipitation is insufficient only by the capacity of the bottomed small chamber 11, and the fermented liquid overflows into the fermented liquid adjusting tank 20. Unprecipitated high pH crystallization components may remain in F. Also in the fermented liquid adjusting tank 20, the fermented liquid F sent out from the outlet 22 of the fermented liquid adjusting tank 20 by raising the pH in the fermented liquid F by the aeration device 26 to promote the precipitation of the high pH crystallization component. It is possible to reduce the unprecipitated high pH crystallization component in the fermenter and suppress the precipitation of crystals in the subsequent post-treatment step of the fermenter adjusting tank 20 to a small value.

図1(B)に示す曝気装置26は,後述する発酵液調整槽20の傾斜底面23に着座させることが難しいため,発酵液調整槽20の頂面から吊り下げて発酵液Fに沈設している。また,有底小部屋11では曝気装置15に金属製枠体網17を取り付けて析出した結晶を付着・成長させているのに対し,発酵液調整槽20の曝気は発酵液F中の未析出の高pH結晶化成分の補充的な析出を目的としているので,曝気装置26に金属製枠体網17を取り付けておらず,析出した結晶を発酵液調整槽20の底面23に沈殿させている。ただし,発酵液調整槽20の曝気装置26にも金属製枠体網17を取り付けて析出した結晶を付着・成長させることも可能である。 Since it is difficult for the aeration device 26 shown in FIG. 1B to be seated on the inclined bottom surface 23 of the fermented liquid adjusting tank 20 described later, the aeration device 26 is suspended from the top surface of the fermented liquid adjusting tank 20 and submerged in the fermented liquid F. There is. Further, in the bottomed small chamber 11, a metal frame net 17 is attached to the aeration device 15 to adhere and grow the precipitated crystals, whereas the aeration of the fermentation broth adjusting tank 20 is unprecipitated in the fermentation broth F. Since the purpose is the supplementary precipitation of the high pH crystallization component of the above, the metal frame net 17 is not attached to the aeration device 26, and the precipitated crystals are precipitated on the bottom surface 23 of the fermentation broth adjusting tank 20. .. However, it is also possible to attach a metal frame net 17 to the aeration device 26 of the fermentation broth adjusting tank 20 to attach and grow the precipitated crystals.

図1(B)に示す発酵液調整槽20は,傾斜させた底面23を有し,その傾斜底面23の下端部に堰き止め板23aを設置することにより,底面下端部に沈殿した析出結晶の収集溝24を形成している。上述したように発酵液調整槽20では析出結晶を沈殿させているため,適宜に発酵液調整槽20の内部の清掃,とくに底面全体の清掃が必要となりうる。図示例のように底面23を傾斜させ,沈殿した析出結晶が収集溝24に集まる構造とすることにより,その収集溝24の周辺の清掃によって析出結晶を回収することができ,清掃作業を簡単化・短時間化を図ることができる。 The fermented liquid adjusting tank 20 shown in FIG. 1B has an inclined bottom surface 23, and by installing a damming plate 23a at the lower end portion of the inclined bottom surface 23, the precipitated crystals precipitated at the lower end portion of the bottom surface are provided. The collection groove 24 is formed. As described above, since the precipitated crystals are precipitated in the fermented liquid adjusting tank 20, it may be necessary to appropriately clean the inside of the fermented liquid adjusting tank 20, particularly the entire bottom surface. By inclining the bottom surface 23 as shown in the illustrated example so that the precipitated crystals are collected in the collection groove 24, the precipitated crystals can be collected by cleaning the area around the collection groove 24, which simplifies the cleaning work.・ It is possible to shorten the time.

好ましくは,図2(B)に示すように,一対の発酵液調整槽20a,20bを設け,各調整槽20a,20bにそれぞれ有底小部屋11を組み込んで析出槽10a,10bとする。各調整槽20a,20bの有底小部屋11にはそれぞれ曝気装置15と金属製枠体網17とを設け,溢流堰14を設ける。また,発酵液の流入路2aを発酵液調整槽20a,20bの何れか一方の流入口21に接続する切換え弁40(V1,V2)を設け,発酵液調整槽20a,20bの何れか一方の流出口22を後続の後処理工程(例えば図4の発酵液ポンプ29及び固液分離装置30)に接続する切換え弁40(V3,V4)を設ける。 Preferably, as shown in FIG. 2B, a pair of fermentation broth adjusting tanks 20a and 20b are provided, and bottomed small chambers 11 are incorporated into the adjusting tanks 20a and 20b to form precipitation tanks 10a and 10b, respectively. An aeration device 15 and a metal frame net 17 are provided in the bottomed small chambers 11 of the adjusting tanks 20a and 20b, respectively, and an overflow weir 14 is provided. Further, a switching valve 40 (V1, V2) for connecting the inflow path 2a of the fermented liquid to the inflow port 21 of either one of the fermented liquid adjusting tanks 20a and 20b is provided, and one of the fermented liquid adjusting tanks 20a and 20b is provided. A switching valve 40 (V3, V4) for connecting the outlet 22 to a subsequent post-treatment step (for example, the fermented liquid pump 29 and the solid-liquid separating device 30 in FIG. 4) is provided.

上述した図2(A)の場合と同様に,図2(B)の実施例においても,例えば切換え弁V1,V3を開放(切換え弁V2,V4を閉鎖)して発酵液調整槽20aを後処理工程に組み込み,発酵液調整槽20aの有底小部屋11において処理液F中の高pH結晶化成分を集中的に析出させ,更に有底小部屋11の外側の発酵液調整槽20aにおいて未析出の高pH結晶化成分を補充的に析出させる。結晶が十分析出したのち,切換え弁V1,V3を閉鎖(切換え弁V2,V4を開放)して発酵液調整槽20aを後処理工程から切り離すと共に他方の発酵液調整槽20bを組み込み,他方の発酵液調整槽20bの有底小部屋11において処理液F中の高pH結晶化成分を集中的に析出させ,更に有底小部屋11の外側の発酵液調整槽20aにおいて未析出の高pH結晶化成分を補充的に析出させる。 Similar to the case of FIG. 2A described above, in the embodiment of FIG. 2B, for example, the switching valves V1 and V3 are opened (switching valves V2 and V4 are closed), and the fermentation broth adjusting tank 20a is rearranged. Incorporated into the treatment step, the high pH crystallization component in the treatment liquid F was intensively deposited in the bottomed small chamber 11 of the fermented liquid adjusting tank 20a, and further, not in the fermenting liquid adjusting tank 20a outside the bottomed small chamber 11. The high pH crystallization component of the precipitate is supplementarily precipitated. After the crystals are sufficiently precipitated, the switching valves V1 and V3 are closed (switching valves V2 and V4 are opened) to separate the fermented liquid adjusting tank 20a from the post-treatment step and incorporate the other fermented liquid adjusting tank 20b into the other. High pH crystallization components in the treatment liquid F are intensively precipitated in the bottomed small chamber 11 of the fermented liquid adjusting tank 20b, and unprecipitated high pH crystals are further deposited in the fermented liquid adjusting tank 20a outside the bottomed small chamber 11. The crystallization component is supplementarily precipitated.

更に,発酵液調整槽20bにおいて結晶が十分析出した場合は,切換え弁V1,V3を開放(切換え弁V2,V4を閉鎖)して発酵液調整槽20bを後処理工程から切り離すと共に発酵液調整槽20aを再度組み込み,発酵液調整槽20aにおいて処理液F中の高pH結晶化成分を析出させる。このように発酵液調整槽20a,20bの切り替えを繰り返すことにより,発酵液調整槽20a,20bの内部の清掃に時間がかかってもメタン発酵プラントの稼働に影響を与えるおそれはなくなる。また,メタン発酵槽2の稼働を停止せずに発酵液Fを連続的に受入ながら後処理工程を簡単に清掃することができ,後処理工程の処理槽・配管の閉塞を避けることが可能となる。 Further, when crystals are sufficiently precipitated in the fermented liquid adjusting tank 20b, the switching valves V1 and V3 are opened (switching valves V2 and V4 are closed) to separate the fermented liquid adjusting tank 20b from the post-treatment step and to adjust the fermented liquid. The tank 20a is reassembled, and the high pH crystallization component in the treatment liquid F is precipitated in the fermentation broth adjusting tank 20a. By repeating the switching of the fermented liquid adjusting tanks 20a and 20b in this way, even if it takes time to clean the inside of the fermented liquid adjusting tanks 20a and 20b, there is no possibility of affecting the operation of the methane fermentation plant. In addition, the post-treatment process can be easily cleaned while continuously receiving the fermented liquid F without stopping the operation of the methane fermentation tank 2, and it is possible to avoid blockage of the treatment tank and piping in the post-treatment process. Become.

1…原料タンク 1a…原料ポンプ
2…メタン発酵槽(バイオリアクタ) 2a…発酵液流入路
10…析出槽(析出室) 11…有底チャンバー(有底小部屋)
12…取入口 14…溢流堰
15…曝気装置 15a…吸気口
15b…封止端 15c…送気管
15d…吹出し孔 15e…取付け板
16…曝気ホース
17…金属製枠体網 17a…固定治具
20…発酵液調整槽
21…流入口 22…流出口
23…内部底面(傾斜底面) 23a…堰き止め板
24…収集溝
26…曝気装置 27…曝気ホース
28…吊り下げ部材 29…発酵液ポンプ
30…固液分離装置
31…凝集剤タンク 31a…凝集剤ポンプ
32…濾液タンク 33…濾液ポンプ
34…排水処理装置 35…排水ポンプ
40,41…切換弁
S…バイオマス
F…発酵液
G…バイオガス
P…曝気ガス
1 ... Raw material tank 1a ... Raw material pump 2 ... Methanogen fermenter (bioreactor) 2a ... Fermentation liquid inflow path 10 ... Precipitation tank (precipitation chamber) 11 ... Bottomed chamber (bottomed small room)
12 ... Intake 14 ... Aeration dam 15 ... Aeration device 15a ... Intake port 15b ... Sealing end 15c ... Air supply pipe 15d ... Blow-out hole 15e ... Mounting plate 16 ... Aeration hose 17 ... Metal frame net 17a ... Fixing jig 20 ... Fermentation liquid adjusting tank 21 ... Inflow port 22 ... Outlet 23 ... Internal bottom surface (inclined bottom surface) 23a ... Dam stop plate 24 ... Collection groove 26 ... Aeration device 27 ... Aeration hose 28 ... Hanging member 29 ... Fermentation liquid pump 30 ... Solid-liquid separation device 31 ... Coagulant tank 31a ... Coagulant pump 32 ... Sulfant tank 33 ... Sulfate pump 34 ... Wastewater treatment device 35 ... Drainage pumps 40, 41 ... Switching valve S ... Biomass F ... Fermented liquid G ... Biogas P … Aeration gas

Claims (4)

バイオマスのメタン発酵処理後の発酵液を取り入れて一時滞留させる発酵液調整槽の流入口の内側に周囲から仕切って有底チャンバーを設け,前記有底チャンバー内に曝気して発酵液中の高pH結晶化成分をpH上昇により析出させ,前記有底チャンバー内に交換可能に沈設した金属製の枠体網に曝気中の析出結晶の少なくとも一部分を付着させ,前記結晶析出後の発酵液を有底チャンバーから前記発酵液調整槽へ溢流させて一時滞留させ,前記発酵液調整槽内に曝気して発酵液中の未析出の高pH結晶化成分をpH上昇により析出させたのち,結晶析出後の発酵液を後続の後処理工程へ送ってなるメタン発酵液の後処理方法。 A bottomed chamber is provided inside the inlet of the fermented liquid adjustment tank that takes in the fermented liquid after the methane fermentation treatment of biomass and temporarily retains it. The pH crystallization component is precipitated by increasing the pH, and at least a part of the precipitated crystals during aeration is attached to a metal frame network that is replaceably settled in the bottomed chamber, and the fermented liquid after the crystal precipitation is present. It overflows from the bottom chamber to the fermented liquid adjusting tank and temporarily stays there, and is exposed to air in the fermented liquid adjusting tank to precipitate unprecipitated high-pH crystallization components in the fermented liquid by increasing the pH, and then crystallized. A post-treatment method for methane fermented liquid, in which the later fermented liquid is sent to a subsequent post-treatment step. バイオマスのメタン発酵処理後の発酵液を取り入れて一時滞留させる発酵液調整槽,前記発酵液調整槽の流入口の内側に周囲から仕切って設けた有底チャンバー,前記有底チャンバー内に曝気して発酵液中の高pH結晶化成分をpH上昇により析出させる曝気装置,前記有底チャンバー内の曝気装置の上方に交換可能に沈設する金属製の枠体網,前記結晶析出後の発酵液を有底チャンバーから前記発酵液調整槽へ溢流させる溢流堰,及び前記発酵液調整槽内に曝気して発酵液中の未析出の高pH結晶化成分をpH上昇により析出させる曝気装置を備えてなるメタン発酵液の後処理装置。 A fermented liquid adjusting tank that takes in the fermented liquid after the methane fermentation treatment of biomass and temporarily retains it, a bottomed chamber provided inside the inlet of the fermented liquid adjusting tank, which is partitioned from the surroundings, and the inside of the bottomed chamber is exposed to air. It has an aeration device that precipitates high pH crystallizing components in the fermented liquid by increasing the pH, a metal frame net that is interchangeably set above the aeration device in the bottomed chamber, and the fermented liquid after the crystal precipitation. Equipped with an overflow dam that overflows from the bottom chamber to the fermentation broth adjustment tank , and an aeration device that aerates the inside of the fermentation broth adjustment tank to precipitate unprecipitated high-pH crystallizing components in the fermentation broth by increasing the pH. A post-treatment device for methane fermented liquid. 請求項の装置において,前記発酵液調整槽に傾斜底面を設け,当該傾斜底面の下端部に前記析出結晶の収集溝を形成してなるメタン発酵液の後処理装置。 The apparatus according to claim 2 , wherein the fermented liquid adjusting tank is provided with an inclined bottom surface, and a collecting groove for the precipitated crystals is formed at the lower end of the inclined bottom surface. 請求項2又は3の装置において,一対の前記有底チャンバー付き発酵液調整槽を設け,前記メタン発酵処理後の発酵液の流入路を前記有底チャンバー付き発酵液調整槽の何れかの流入口に接続する切換え弁を設けてなるメタン発酵液の後処理装置。 In the apparatus according to claim 2 or 3 , a pair of fermented liquid adjusting tanks with a bottomed chamber is provided, and the inflow path of the fermented liquid after the methane fermentation treatment is the inflow port of any of the fermented liquid adjusting tanks with a bottomed chamber . A post-treatment device for methane fermented liquid provided with a switching valve connected to.
JP2018113415A 2018-06-14 2018-06-14 Post-treatment method and equipment for methane fermented liquid Active JP7060457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018113415A JP7060457B2 (en) 2018-06-14 2018-06-14 Post-treatment method and equipment for methane fermented liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018113415A JP7060457B2 (en) 2018-06-14 2018-06-14 Post-treatment method and equipment for methane fermented liquid

Publications (2)

Publication Number Publication Date
JP2019214026A JP2019214026A (en) 2019-12-19
JP7060457B2 true JP7060457B2 (en) 2022-04-26

Family

ID=68918299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113415A Active JP7060457B2 (en) 2018-06-14 2018-06-14 Post-treatment method and equipment for methane fermented liquid

Country Status (1)

Country Link
JP (1) JP7060457B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062491A (en) 1999-08-31 2001-03-13 Nishihara Environ Sanit Res Corp Device for removing scaling substance in sludge
JP2004195453A (en) 2002-12-03 2004-07-15 National Agriculture & Bio-Oriented Research Organization Method and apparatus for recovering phosphorus from barn sewage
JP2009226250A (en) 2008-03-19 2009-10-08 Toshiba Corp Phosphorus recovery method and system
JP2011507673A (en) 2007-09-03 2011-03-10 ピーエムシー コリア カンパニー リミテッド Sludge treatment apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062491A (en) 1999-08-31 2001-03-13 Nishihara Environ Sanit Res Corp Device for removing scaling substance in sludge
JP2004195453A (en) 2002-12-03 2004-07-15 National Agriculture & Bio-Oriented Research Organization Method and apparatus for recovering phosphorus from barn sewage
JP2011507673A (en) 2007-09-03 2011-03-10 ピーエムシー コリア カンパニー リミテッド Sludge treatment apparatus and method
JP2009226250A (en) 2008-03-19 2009-10-08 Toshiba Corp Phosphorus recovery method and system

Also Published As

Publication number Publication date
JP2019214026A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US6811701B2 (en) Fixed-film anaerobic digestion of flushed manure
US7452467B2 (en) Induced sludge bed anaerobic reactor
US20050230308A1 (en) Induced sludge bed anaerobic reactor
US7615155B1 (en) Methods for removal of non-digestible matter from an upflow anaerobic digester
CN101445305B (en) Method for recycling and purifying livestock wastewater or high concentration wastewater
US20150008169A1 (en) Combined bioreactor for the treatment of waste water, by means of anaerobic, aerobic and anoxic processes of degradation of organic matter with zone separator system and collection of biogases, scum and sludge
US20180072597A1 (en) Water treatment system and water treatment process
KR102379737B1 (en) Automatic Sedimentation Circulation Breeding Tank for Bioflock aquafarm.
CN209292178U (en) A kind of Sewage Disposal suitable for biological industry garden the dirty water decontamination handles
CN106430847A (en) Intensive swine wastewater treating equipment
CN103833129A (en) Denitrification cloth filter
CN1208262C (en) High concentration oxganic effluent treatment composite process and its equipment
JP5246665B2 (en) Methane fermentation treatment apparatus and methane fermentation treatment method
JP7060457B2 (en) Post-treatment method and equipment for methane fermented liquid
CN210620525U (en) Water-fertilizer co-production device for breeding manure
US11767248B2 (en) Process and apparatus for the treatment of organic feedstock
CN210481124U (en) Sewage treatment system is bred to beasts and birds
CN115477439A (en) Integrated MBR sewage treatment equipment
JPH10286583A (en) Apparatus for treating phosphorus-containing organic water apparatus
CN207811366U (en) A kind of sewage disposal system
CN109384350A (en) A kind of combined type biogas slurry treatment system
CN106746222B (en) Livestock and poultry manure microbial purification system and purification method
CN114074998B (en) Pretreatment method and system for preventing pipeline scaling and recovering cooperative resources
CN217487313U (en) Circulating pipeline device for culture system
KR102329273B1 (en) Fish farm cyclic water disposal apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R150 Certificate of patent or registration of utility model

Ref document number: 7060457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150