JP2019212554A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2019212554A
JP2019212554A JP2018109453A JP2018109453A JP2019212554A JP 2019212554 A JP2019212554 A JP 2019212554A JP 2018109453 A JP2018109453 A JP 2018109453A JP 2018109453 A JP2018109453 A JP 2018109453A JP 2019212554 A JP2019212554 A JP 2019212554A
Authority
JP
Japan
Prior art keywords
elastic member
battery
electrode assembly
battery cell
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018109453A
Other languages
Japanese (ja)
Inventor
信司 鈴木
Shinji Suzuki
信司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018109453A priority Critical patent/JP2019212554A/en
Publication of JP2019212554A publication Critical patent/JP2019212554A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To reduce the proportion of an elastic member in a battery module.SOLUTION: In a battery body 11 of a battery module 10, a plurality of battery cells 20 are arranged in parallel. The battery body 11 is restrained from both sides of the battery cells 20 in the juxtaposed direction by two end plates 45. In a case 21 of the battery cell 20, an elastic member 50 is juxtaposed with an electrode assembly 30 in the juxtaposed direction of the battery cells 20.SELECTED DRAWING: Figure 5

Description

本発明は、電池モジュールに関する。   The present invention relates to a battery module.

電池モジュールは、複数の電池セルを並設した電池体を備えている。そして、電池モジュールでは、電池セルの抵抗値が大きくならないように電池セルにおける電極の間隔を保持する目的で、電池体に電池セルの並設方向の両側から拘束荷重が付与されることが知られている。そうした拘束荷重を付与する構成としては、例えば、特許文献1に記載の電池モジュールのように、電池セルの並設方向の両側から電池体を挟むようにエンドプレートを設ける構成が挙げられる。この電池モジュールにおいては、エンドプレートがナット等で締め付けられることにより、複数の電池セルに拘束荷重が付与される。   The battery module includes a battery body in which a plurality of battery cells are arranged in parallel. In the battery module, it is known that a restraining load is applied to the battery body from both sides in the direction in which the battery cells are arranged in order to maintain the distance between the electrodes in the battery cell so that the resistance value of the battery cell does not increase. ing. As a configuration for applying such a restraining load, for example, a configuration in which an end plate is provided so as to sandwich the battery body from both sides in the direction in which the battery cells are arranged like the battery module described in Patent Document 1. In this battery module, the end plate is tightened with a nut or the like, whereby a restraining load is applied to the plurality of battery cells.

特開2012−212693号公報JP 2012-212663 A

ところで、使用に伴って電池セルが劣化すると、電池セルの内圧が高くなる。電池セルの内圧が高くなると、電池セルにおける電極の間隔を保持するために必要な拘束荷重が電池セルの内圧により打ち消されてしまうため、拘束荷重が小さくなり、電池セルの抵抗が大きくなるおそれがある。   By the way, if a battery cell deteriorates with use, the internal pressure of a battery cell will become high. If the internal pressure of the battery cell increases, the restraint load necessary to maintain the distance between the electrodes in the battery cell is canceled out by the internal pressure of the battery cell, so that the restraint load decreases and the resistance of the battery cell may increase. is there.

そこで、電池セルの並設方向において、各電池セルのケース外で各電池セルに並設するように弾性部材を設けるとともに、電池セルの内圧上昇を予め考慮して電池セルにおける電極の間隔を保持するために必要な拘束荷重よりも大きな拘束荷重をエンドプレートによって付与することが考えられる。こうした電池モジュールによれば、劣化に伴う電池セルの内圧上昇が生じたとしても、電池セルにおける電極の間隔を保持するために必要な拘束荷重を保持できるため、電池セルの抵抗が上昇することを抑制できる。   Therefore, in the direction in which the battery cells are arranged, an elastic member is provided so as to be arranged in parallel with each battery cell outside the case of each battery cell, and the distance between the electrodes in the battery cell is maintained in consideration of a rise in the internal pressure of the battery cell. It is conceivable to apply a restraint load larger than the restraint load necessary for the end plate. According to such a battery module, even if an increase in the internal pressure of the battery cell due to deterioration occurs, the restraint load necessary for maintaining the distance between the electrodes in the battery cell can be maintained, so that the resistance of the battery cell is increased. Can be suppressed.

しかしながら、電池モジュールの容量の向上のためには、電池モジュールに占める電極の割合をできるだけ大きくすることが望ましい。電池モジュールに占める電極の割合を大きくするためには、電池モジュールに占める弾性部材の割合をより小さくする必要がある。   However, in order to improve the capacity of the battery module, it is desirable to increase the ratio of the electrode in the battery module as much as possible. In order to increase the ratio of the electrode in the battery module, it is necessary to decrease the ratio of the elastic member in the battery module.

本発明は、上記課題を解決するためになされたものであって、その目的は、電池モジュールに占める弾性部材の割合をより小さくすることのできる電池モジュールを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a battery module that can further reduce the proportion of the elastic member in the battery module.

上記課題を解決する電池モジュールは、正極電極と負極電極とを絶縁して積層した電極組立体がケースに収容された電池セルと、複数の前記電池セルが前記正極電極及び前記負極電極の積層方向に並設された電池体と、前記電池セルの並設方向の両側から前記電池体を拘束した拘束部材と、前記ケース内にあって、前記電池セルの並設方向において前記電極組立体に並設された弾性部材と、を備える。   A battery module that solves the above problems includes a battery cell in which an electrode assembly in which a positive electrode and a negative electrode are stacked and insulated is housed in a case, and a plurality of the battery cells in the stacking direction of the positive electrode and the negative electrode A battery body arranged side by side, a restraining member that restrains the battery body from both sides of the battery cell in the parallel arrangement direction, and in the case, in parallel with the electrode assembly in the parallel arrangement direction of the battery cells. And an elastic member provided.

一般に、ゴム等の弾性部材は、弾性部材に並設した電極組立体等から荷重を受ける際に、その荷重に応じた大きさの変形量(圧縮率C)で荷重の作用方向に変形する。そして、弾性部材の圧縮率Cに応じた大きさの荷重(面圧P)が、弾性部材に並設する電極組立体等を荷重対象として弾性部材から作用するようになる。図9に示すように、弾性部材は、圧縮率Cが一定値より大きくなると弾性部材から荷重対象に作用する面圧Pが急激に大きくなる特性をもつ。また、弾性部材に作用する荷重の大きさが同じである条件下でも、弾性部材の劣化度合いに応じて弾性部材の圧縮率Cが異なる。弾性部材の劣化が進むほど弾性部材の圧縮率Cは高くなる。すなわち、弾性部材の圧縮率C及び面圧Pは、使用開始直後の弾性部材では低圧縮率且つ低面圧の範囲内(例えば範囲R11内)で推移するが、弾性部材の劣化が進むと高圧縮率且つ高面圧の範囲内(例えば範囲R13内)で推移する。   In general, when an elastic member such as rubber is subjected to a load from an electrode assembly or the like arranged in parallel with the elastic member, the elastic member is deformed in the acting direction of the load with a deformation amount (compression rate C) corresponding to the load. Then, a load (surface pressure P) having a magnitude corresponding to the compressibility C of the elastic member acts from the elastic member with the electrode assembly or the like arranged in parallel with the elastic member as a load target. As shown in FIG. 9, the elastic member has a characteristic that when the compressibility C becomes larger than a certain value, the surface pressure P applied to the load object from the elastic member suddenly increases. Further, even under the condition that the magnitude of the load acting on the elastic member is the same, the compression rate C of the elastic member varies depending on the degree of deterioration of the elastic member. As the deterioration of the elastic member proceeds, the compression ratio C of the elastic member increases. That is, the compression ratio C and the surface pressure P of the elastic member change within the range of the low compression ratio and the low surface pressure (for example, within the range R11) in the elastic member immediately after the start of use, but increase as the deterioration of the elastic member proceeds. It changes within the range of the compression rate and the high surface pressure (for example, within the range R13).

ここで、弾性部材から電極組立体に作用する面圧Pが所定の面圧P13以上になると、電池セルの電極の間から電解液が押し出されてしまうことにより、電池セルの抵抗値が大きくなるおそれがある。弾性部材の劣化が進んで弾性部材の圧縮率C及び面圧Pが範囲R13内で推移するようになると、弾性部材から電極組立体に作用する面圧Pが上記の面圧P13以上になるおそれがある。しかしながら、弾性部材では、荷重の作用方向における弾性部材の大きさ(厚み)を大きくすることで、低圧縮率且つ低面圧の範囲R11から高圧縮率且つ高面圧の範囲R13までの範囲を広げることができる。そのため、弾性部材の厚みを大きく設定すれば、弾性部材の劣化が進んでも弾性部材から電極組立体に作用する面圧Pが上記面圧P13に至りにくくすることができる。   Here, when the surface pressure P acting on the electrode assembly from the elastic member becomes a predetermined surface pressure P13 or more, the electrolyte solution is pushed out from between the electrodes of the battery cell, so that the resistance value of the battery cell increases. There is a fear. When the elastic member deteriorates and the compressibility C and the surface pressure P of the elastic member change within the range R13, the surface pressure P acting on the electrode assembly from the elastic member may be equal to or higher than the surface pressure P13. There is. However, in the elastic member, by increasing the size (thickness) of the elastic member in the load acting direction, the range from the low compression ratio and low surface pressure range R11 to the high compression ratio and high surface pressure range R13 is increased. Can be spread. Therefore, if the thickness of the elastic member is set large, the surface pressure P acting on the electrode assembly from the elastic member can hardly reach the surface pressure P13 even if the elastic member is further deteriorated.

ケース外にて各電池セルに弾性部材を並設させるとともに電池セルの並設方向の両側から拘束部材によって電池体を挟むようにした従来の電池モジュールでは、電池セルが劣化しても必要な拘束荷重が得られるように、電池セルの劣化に伴う内圧上昇分を考慮した比較的大きな拘束荷重を拘束部材によって付与する必要がある。そうした従来の電池モジュールでは、大きな拘束荷重を受けて弾性部材の圧縮率Cが高くなるため、弾性部材の使用開始直後からすでに弾性部材の圧縮率C及び面圧Pが比較的高い範囲(例えば範囲R12)で推移するようになる。そして、弾性部材の劣化に伴って、比較的早期に弾性部材から電極組立体に作用する面圧Pが上記面圧P13に至るおそれがある。このため、従来の電池モジュールでは、弾性部材から電極組立体に作用する面圧Pが早期に上記面圧P13に至らないよう、電池セルの並設方向における弾性部材の厚みを比較的大きく設定する必要がある。   In a conventional battery module in which an elastic member is juxtaposed to each battery cell outside the case and the battery body is sandwiched by restraining members from both sides of the battery cell in the juxtaposed direction, the necessary restraint is required even if the battery cell deteriorates. In order to obtain a load, it is necessary to apply a relatively large restraining load with a restraining member in consideration of an increase in internal pressure accompanying deterioration of the battery cell. In such a conventional battery module, since the compression rate C of the elastic member is increased by receiving a large restraining load, the compression rate C and the surface pressure P of the elastic member are already relatively high immediately after the start of use of the elastic member (for example, the range). R12). With the deterioration of the elastic member, the surface pressure P acting on the electrode assembly from the elastic member relatively early may reach the surface pressure P13. For this reason, in the conventional battery module, the thickness of the elastic member in the parallel arrangement direction of the battery cells is set to be relatively large so that the surface pressure P acting on the electrode assembly from the elastic member does not reach the surface pressure P13 at an early stage. There is a need.

一方、ケース内にて電極組立体に弾性部材を並設させる上記構成の電池モジュールでは、電池セルの劣化が生じて電池セルの内圧が弾性部材に作用するようになっても、そうした内圧をケース内で弾性部材の弾性変形により相殺することができる。そのため、上記構成の電池モジュールでは、拘束荷重にて考慮する電池セルの内圧上昇分を少なくすることができるため、拘束荷重を比較的小さくすることができる。そうした上記構成の電池モジュールでは、拘束荷重が比較的小さいことにより弾性部材の圧縮率Cが小さくなるため、弾性部材の使用開始直後において弾性部材の圧縮率C及び面圧Pが比較的低い範囲(例えば範囲R11)で推移する。そして、弾性部材が劣化しても、弾性部材から電極組立体に作用する面圧Pが早期には上記面圧P13に至りにくくなる。このため、上記構成の電池モジュールでは、電池セルの並設方向における弾性部材の厚みを大きくしなくても、弾性部材から電極組立体に作用する面圧Pが上記面圧P13に至りにくくすることができる。したがって、上記構成の電池モジュールでは、従来の電池モジュールよりも、電池セルの並設方向における弾性部材の厚みを小さく設定することが可能となる。そして、電池セルの並設方向における弾性部材の厚みを小さくすることにより、電池モジュールに占める弾性部材の割合をより小さくすることができる。   On the other hand, in the battery module having the above configuration in which the elastic member is arranged in parallel with the electrode assembly in the case, even if the deterioration of the battery cell occurs and the internal pressure of the battery cell acts on the elastic member, such internal pressure is applied to the case. Can be offset by elastic deformation of the elastic member. For this reason, in the battery module having the above-described configuration, the amount of increase in the internal pressure of the battery cell considered by the constraint load can be reduced, so that the constraint load can be relatively reduced. In the battery module having such a configuration, since the compression rate C of the elastic member becomes small due to the relatively small restraint load, the compression rate C and the surface pressure P of the elastic member are relatively low immediately after the start of use of the elastic member ( For example, it changes within a range R11). And even if an elastic member deteriorates, the surface pressure P which acts on an electrode assembly from an elastic member becomes difficult to reach the said surface pressure P13 at an early stage. For this reason, in the battery module having the above configuration, the surface pressure P acting on the electrode assembly from the elastic member does not easily reach the surface pressure P13 without increasing the thickness of the elastic member in the direction in which the battery cells are arranged side by side. Can do. Therefore, in the battery module having the above configuration, the thickness of the elastic member in the direction in which the battery cells are arranged can be set smaller than that of the conventional battery module. And the ratio of the elastic member which occupies for a battery module can be made smaller by reducing the thickness of the elastic member in the parallel arrangement direction of a battery cell.

電池モジュールにおいては、複数の前記電池セルのうちで少なくとも1つが、前記電極組立体と前記ケースとの間に前記弾性部材が設けられていることが望ましい。
電極組立体の積層方向において電極組立体の間に弾性部材を設けることで、ケース内に弾性部材を設けることも可能である。しかしながら、こうして弾性部材を設ける場合では、ケース内に弾性部材を設けない従来の電池セルから電極組立体の形状を調整する必要があるので、大きな変更を要するおそれがある。一方、上記構成のように弾性部材を電極組立体とケースとの間に設ける場合では、ケース内に弾性部材を設けない電池セルから電極組立体の形状を変更しなくても対応することができる。
In the battery module, it is preferable that at least one of the plurality of battery cells includes the elastic member between the electrode assembly and the case.
It is also possible to provide an elastic member in the case by providing an elastic member between the electrode assemblies in the stacking direction of the electrode assembly. However, in the case where the elastic member is provided in this way, it is necessary to adjust the shape of the electrode assembly from the conventional battery cell in which the elastic member is not provided in the case. On the other hand, in the case where the elastic member is provided between the electrode assembly and the case as in the above configuration, it can be dealt with without changing the shape of the electrode assembly from the battery cell in which no elastic member is provided in the case. .

電池モジュールにおいては、複数の前記電池セルが、前記電池セルの並設方向において、前記電極組立体の一端側に前記弾性部材が設けられた第1電池セルと、前記電極組立体の他端側に前記弾性部材が設けられた第2電池セルと、を少なくとも1つずつ含み、前記第1電池セル及び前記第2電池セルが、前記電池セルの並設方向において互いの前記弾性部材の間に互いの前記電極組立体が位置するように並設していることが望ましい。   In the battery module, the plurality of battery cells includes a first battery cell in which the elastic member is provided on one end side of the electrode assembly in the parallel arrangement direction of the battery cells, and the other end side of the electrode assembly. At least one second battery cell provided with the elastic member, and the first battery cell and the second battery cell are arranged between the elastic members in the direction in which the battery cells are arranged side by side. It is desirable that the electrode assemblies are arranged side by side so that the electrode assemblies are located.

上記構成によれば、互いの電極組立体の間に弾性部材が介在しないように並設された第1電池セル及び第2電池セルにおいては、これら電池セルの互いの電極組立体が熱マスとして機能するようになる。したがって、第1電池セル及び第2電池セルの放熱性を向上させることができる。   According to the above configuration, in the first battery cell and the second battery cell that are arranged side by side so that no elastic member is interposed between the electrode assemblies, the electrode assemblies of these battery cells serve as thermal masses. Become functional. Therefore, the heat dissipation of the first battery cell and the second battery cell can be improved.

電池モジュールにおいては、前記弾性部材が、前記電極組立体に接着していることが望ましい。
仮にケースの内壁に弾性部材を接着して設けた場合、ケース内に電極組立体を挿入する際に、弾性部材が電極組立体と干渉するおそれがある。弾性部材が電極組立体と干渉すると、電極組立体を構成する正極電極や負極電極が変形するおそれがある。上記構成によれば、弾性部材が電極組立体に接着した状態でケース内への電極組立体の挿入を行うことができる。したがって、上記のような弾性部材と電極組立体との干渉を抑制することができる。
In the battery module, it is desirable that the elastic member is bonded to the electrode assembly.
If an elastic member is bonded to the inner wall of the case, the elastic member may interfere with the electrode assembly when the electrode assembly is inserted into the case. When the elastic member interferes with the electrode assembly, the positive electrode and the negative electrode constituting the electrode assembly may be deformed. According to the above configuration, the electrode assembly can be inserted into the case with the elastic member adhered to the electrode assembly. Therefore, interference between the elastic member and the electrode assembly as described above can be suppressed.

電池モジュールにおいては、複数の前記電池セルのうちで少なくとも1つの電池セルが、前記電極組立体として、前記電池セルの並設方向に並んだ第1電極組立体及び第2電極組立体を有し、前記弾性部材が、前記電池セルの並設方向において、前記第1電極組立体と前記第2電極組立体との間に設けられていることが望ましい。   In the battery module, at least one of the plurality of battery cells has a first electrode assembly and a second electrode assembly arranged in the parallel arrangement direction of the battery cells as the electrode assembly. The elastic member is preferably provided between the first electrode assembly and the second electrode assembly in the direction in which the battery cells are arranged side by side.

上記構成によれば、電池セルの並設方向において、第1電極組立体とケースとの間や第2電極組立体とケースとの間には弾性部材がないため、これら第1電極組立体や第2電極組立体からケースへの放熱がしやすくなる。したがって、電池セルの放熱性を向上させることができる。   According to the above configuration, since there is no elastic member between the first electrode assembly and the case or between the second electrode assembly and the case in the direction in which the battery cells are arranged, these first electrode assembly and Heat radiation from the second electrode assembly to the case is facilitated. Therefore, the heat dissipation of the battery cell can be improved.

電池モジュールにおいては、前記弾性部材が、0.1〜3.5Mpaの荷重が作用したときの荷重の作用方向の最大圧縮率が25〜55%であることが望ましい。
弾性部材から電極組立体に作用する荷重(面圧)が小さすぎると、電池セルにおける電極の間隔が広がることにより、電池セルの抵抗値が大きくなってしまう。また、弾性部材から電極組立体に作用する荷重(面圧)が大きすぎると、電極の間から電解液が押し出されてしまうことにより、電池セルの抵抗値が大きくなってしまう。こうした電池セルの抵抗値の増大を回避するためには、弾性部材から電極組立体に作用する荷重を、0.1〜3.5Mpa程度とすることが望ましい。そして、弾性部材としては、そうした0.1〜3.5Mpaの荷重が作用したときの荷重の作用方向の最大圧縮率が25〜55%であるものを採用することが望ましい。
In the battery module, it is desirable that the elastic member has a maximum compressibility of 25 to 55% in the acting direction of the load when a load of 0.1 to 3.5 Mpa is applied.
If the load (surface pressure) acting on the electrode assembly from the elastic member is too small, the distance between the electrodes in the battery cell widens, thereby increasing the resistance value of the battery cell. Moreover, when the load (surface pressure) which acts on an electrode assembly from an elastic member is too large, the resistance value of a battery cell will become large because the electrolyte solution will be extruded from between electrodes. In order to avoid such an increase in the resistance value of the battery cell, it is desirable that the load acting on the electrode assembly from the elastic member is about 0.1 to 3.5 Mpa. And as an elastic member, it is desirable to employ | adopt the thing whose maximum compression rate of the effect | action direction of a load when such a load of 0.1-3.5 Mpa acts is 25-55%.

電池モジュールにおいては、複数の前記電池セルのうちで少なくとも1つの前記弾性部材が、板状であるとともに、前記電池セルの並設方向における厚みが周りよりも小さい中央部を備えていることが望ましい。   In the battery module, it is desirable that at least one of the plurality of battery cells has a plate-like shape and has a central portion in which the thickness of the battery cells in the juxtaposition direction is smaller than the surrounding area. .

一般に、電池セルの充放電に伴って電極の膨張と収縮とが繰り返されると、電極の間に保持されていた電解液が電極組立体の外に押し出されることにより、電極の間の電解液が少なくなってしまうおそれがある。   In general, when the expansion and contraction of the electrode are repeated as the battery cell is charged and discharged, the electrolyte held between the electrodes is pushed out of the electrode assembly, so that the electrolyte between the electrodes is May decrease.

上記構成によれば、電極組立体のうち、電池セルの並設方向において弾性部材の中央部と対向する部分では、弾性部材から作用する荷重が小さくなる。そのため、電極組立体における上記の中央部と対向する部分では、電極の膨張と収縮とが繰り返されても、電極間から電解液が押し出されにくくなる。したがって、電池セルの充放電に伴う電極間での電解液の減少を抑えることができる。なお、上記構成の中央部には、弾性部材の中央が薄肉状に形成されたもののほか、弾性部材の中央がくり抜かれたものも含む。   According to the above configuration, the load acting from the elastic member is reduced at the portion of the electrode assembly that faces the central portion of the elastic member in the battery cell juxtaposition direction. Therefore, in the portion of the electrode assembly that faces the central portion, even when the electrode is repeatedly expanded and contracted, the electrolytic solution is hardly pushed out between the electrodes. Therefore, it is possible to suppress a decrease in the electrolyte solution between the electrodes due to charging / discharging of the battery cell. In addition, the center part of the said structure contains what the center of the elastic member was hollowed out besides what the center of the elastic member was formed thinly.

この発明によれば、電池モジュールに占める弾性部材の割合をより小さくすることができる。   According to this invention, the ratio of the elastic member to a battery module can be made smaller.

実施形態における電池モジュールを示す斜視図。The perspective view which shows the battery module in embodiment. 電池モジュールを示す分解斜視図。The disassembled perspective view which shows a battery module. 電極組立体及び弾性部材を示す分解斜視図。The disassembled perspective view which shows an electrode assembly and an elastic member. 電池セルを示す断面図。Sectional drawing which shows a battery cell. 電池モジュールを示す断面図。Sectional drawing which shows a battery module. 弾性部材の圧縮率及び面圧の特性を示すグラフ。The graph which shows the characteristic of the compression rate and surface pressure of an elastic member. 別の実施形態における電池セルを示す断面図。Sectional drawing which shows the battery cell in another embodiment. 別の実施形態における電池セルを示す断面図。Sectional drawing which shows the battery cell in another embodiment. 一般の弾性部材の圧縮率及び面圧の特性を示すグラフ。The graph which shows the characteristic of the compression rate and surface pressure of a general elastic member.

以下、電池モジュールを具体化した一実施形態について図1〜図6を用いて説明する。
図1又は図2に示すように、電池モジュール10は、電池セル20が厚み方向(一方向)に複数並設された電池体11を備える。電池セル20が並設された方向を並設方向という。電池セル20は、有底四角箱状のケース21と、ケース21に収容された電極組立体30とを備える。各電池セル20は、電池ホルダ40に保持されている。
Hereinafter, an embodiment in which a battery module is embodied will be described with reference to FIGS.
As shown in FIG. 1 or FIG. 2, the battery module 10 includes a battery body 11 in which a plurality of battery cells 20 are arranged in the thickness direction (one direction). The direction in which the battery cells 20 are arranged side by side is referred to as a side by side arrangement. The battery cell 20 includes a bottomed square box-like case 21 and an electrode assembly 30 accommodated in the case 21. Each battery cell 20 is held by a battery holder 40.

図2に示すように、ケース21は、ケース本体22と、ケース本体22の開口部を閉塞する蓋23とを有する。ケース本体22は、矩形板状の底壁22aと、底壁22aの一対の長側縁部のうちの一方の長側縁部から立設された第1長側壁22bと、底壁22aの一対の長側縁部のうちの他方の長側縁部から立設された第2長側壁22cとを有する。さらに、ケース本体22は、底壁22aの一対の短側縁部のうちの一方の短側縁部から立設された第1短側壁22dと、底壁22aの一対の短側縁部のうちの他方の短側縁部から立設された第2短側壁22eとを有する。本実施形態の電池セル20は、ケース本体22が有底四角箱状であり、蓋23が矩形平板状であることから、その外観が角型をなす角型電池である。ケース本体22と蓋23は、何れも金属製(例えば、ステンレスやアルミニウム)である。また、本実施形態の電池セル20は、リチウムイオン電池である。   As shown in FIG. 2, the case 21 includes a case main body 22 and a lid 23 that closes the opening of the case main body 22. The case body 22 includes a rectangular plate-shaped bottom wall 22a, a first long side wall 22b erected from one long side edge of the pair of long side edges of the bottom wall 22a, and a pair of the bottom wall 22a. And the second long side wall 22c erected from the other long side edge of the long side edges. Further, the case body 22 includes a first short side wall 22d erected from one short side edge of the pair of short side edges of the bottom wall 22a, and a pair of short side edges of the bottom wall 22a. And the second short side wall 22e erected from the other short side edge. The battery cell 20 of the present embodiment is a rectangular battery whose appearance is a rectangular shape because the case body 22 has a bottomed square box shape and the lid 23 has a rectangular flat plate shape. Both the case main body 22 and the lid 23 are made of metal (for example, stainless steel or aluminum). Moreover, the battery cell 20 of this embodiment is a lithium ion battery.

電池ホルダ40は、U字枠状をなすホルダ本体41と、ホルダ本体41の外面の4隅から突出する直方体状の脚部42とを有している。ホルダ本体41は、電池セル20のケース本体22の底壁22aと、第1短側壁22d及び第2短側壁22eと、蓋23の第1短側壁22d側と、蓋23の第2短側壁22e側とを取り囲む状態で、電池セル20と一体化されている。このため、電池ホルダ40に一体化された電池セル20は、第1長側壁22b及び第2長側壁22cが、ホルダ本体41から外部に露出している。各脚部42には、脚部42の長手方向に貫通する挿通孔42aが設けられている。   The battery holder 40 includes a holder main body 41 having a U-shaped frame shape and rectangular parallelepiped leg portions 42 protruding from the four corners of the outer surface of the holder main body 41. The holder main body 41 includes the bottom wall 22a of the case main body 22 of the battery cell 20, the first short side wall 22d and the second short side wall 22e, the first short side wall 22d side of the lid 23, and the second short side wall 22e of the lid 23. It is integrated with the battery cell 20 in a state of surrounding the side. For this reason, the battery cell 20 integrated with the battery holder 40 has the first long side wall 22b and the second long side wall 22c exposed from the holder body 41 to the outside. Each leg portion 42 is provided with an insertion hole 42 a penetrating in the longitudinal direction of the leg portion 42.

図1及び図2に示すように、電池モジュール10の並設方向の両端にはエンドプレート45が設けられている。エンドプレート45は、矩形平板状をなす基部46と、基部46の四隅から突出する矩形平板状の突出部47とを備える。突出部47には、突出部47の厚み方向に貫通する挿通孔47aが設けられている。   As shown in FIGS. 1 and 2, end plates 45 are provided at both ends of the battery modules 10 in the juxtaposition direction. The end plate 45 includes a base portion 46 having a rectangular flat plate shape and a rectangular flat plate-like protruding portion 47 protruding from the four corners of the base portion 46. The projecting portion 47 is provided with an insertion hole 47 a penetrating in the thickness direction of the projecting portion 47.

電池モジュール10においては、一方のエンドプレート45の突出部47の挿通孔47a、各電池ホルダ40の脚部42の挿通孔42a、及び他方のエンドプレート45の突出部47の挿通孔47aにボルトB1が挿通されている。そして、ボルトB1にナットN1が螺合されることにより、2枚のエンドプレート45と各電池ホルダ40とが一体に組み付けられている。電池体11は、2枚のエンドプレート45によって並設方向の両側から挟持されている。本実施形態では、2枚のエンドプレート45、ボルトB1、及びナットN1が並設方向の両側から電池体11を拘束する拘束部材として機能する。電池モジュール10において、複数の電池セル20は、第1長側壁22b及び第2長側壁22cが一方向に並ぶ状態で並設されている。   In the battery module 10, the bolt B <b> 1 is inserted into the insertion hole 47 a of the protrusion 47 of one end plate 45, the insertion hole 42 a of the leg 42 of each battery holder 40, and the insertion hole 47 a of the protrusion 47 of the other end plate 45. Is inserted. Then, the nut N1 is screwed into the bolt B1, whereby the two end plates 45 and the battery holders 40 are assembled together. The battery body 11 is sandwiched between two end plates 45 from both sides in the juxtaposed direction. In the present embodiment, the two end plates 45, the bolt B1, and the nut N1 function as a restraining member that restrains the battery body 11 from both sides in the juxtaposition direction. In the battery module 10, the plurality of battery cells 20 are juxtaposed with the first long side wall 22b and the second long side wall 22c aligned in one direction.

図3に示すように、電極組立体30は、複数の正極電極31と負極電極35とセパレータ39とを備える。電極組立体30は、正極電極31と負極電極35との間にセパレータ39を介在させ、かつ相互に絶縁させた状態で積層した層状構造を有する。正極電極31と負極電極35が積層された方向を積層方向とする。また、各電池セル20は、積層方向に沿って並設されている。このため、複数の電池セル20が並設された電池体11においては、並設方向と積層方向とが一致する。   As shown in FIG. 3, the electrode assembly 30 includes a plurality of positive electrodes 31, negative electrodes 35, and separators 39. The electrode assembly 30 has a layered structure in which separators 39 are interposed between the positive electrode 31 and the negative electrode 35 and are laminated in a mutually insulated state. A direction in which the positive electrode 31 and the negative electrode 35 are stacked is defined as a stacking direction. Moreover, each battery cell 20 is arranged in parallel along the lamination direction. For this reason, in the battery body 11 in which the plurality of battery cells 20 are arranged in parallel, the arrangement direction and the stacking direction coincide.

正極電極31は、矩形シート状の正極金属箔(例えばアルミニウム箔)32と、正極金属箔32の両面全体に存在する正極活物質層33とを有する。正極活物質層33は、正極活物質が正極金属箔32に塗工されることにより形成されている。正極活物質としては、例えば、複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物は、マンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つとリチウムとを含む。正極電極31は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部31aを備えるとともに、第1縁部31aの対辺となる他方の縁部に第2縁部31bを備える。さらに、正極電極31は、第1縁部31aと第2縁部31bとを繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部31cを備えるとともに、第3縁部31cの対辺となる他方の縁部に第4縁部31dを備える。正極電極31は、第1縁部31aの一部から突出した矩形状の正極タブ34を有する。正極タブ34は、正極活物質層33が存在せず、正極金属箔32そのもので構成されている。   The positive electrode 31 includes a rectangular sheet-like positive metal foil (for example, aluminum foil) 32 and a positive electrode active material layer 33 that exists on both surfaces of the positive metal foil 32. The positive electrode active material layer 33 is formed by applying a positive electrode active material to the positive electrode metal foil 32. Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur. The composite oxide includes at least one of manganese, nickel, cobalt, and aluminum and lithium. The positive electrode 31 includes a first edge 31a on one edge of the pair of long sides, and a second edge 31b on the other edge that is the opposite side of the first edge 31a. Prepare. Furthermore, the positive electrode 31 includes a third edge 31c on one edge of a pair of short edges connecting the first edge 31a and the second edge 31b, and a third edge. A fourth edge 31d is provided on the other edge opposite to 31c. The positive electrode 31 has a rectangular positive electrode tab 34 protruding from a part of the first edge 31a. The positive electrode tab 34 is configured by the positive electrode metal foil 32 itself without the positive electrode active material layer 33.

負極電極35は、矩形シート状の負極金属箔(例えば銅箔)36と、負極金属箔36の両面全体に存在する負極活物質層37とを有する。負極活物質層37は、負極活物質として珪素や錫のようなLiと合金化反応可能な元素、またはそれらの元素の化合物を含む負極スラリーが負極金属箔36に塗工されることにより形成されている。負極電極35は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部35aを備えるとともに、第1縁部35aの対辺となる他方の縁部に第2縁部35bを備える。さらに、負極電極35は、第1縁部35aと第2縁部35bとを繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部35cを備えるとともに、第3縁部35cの対辺となる他方の縁部に第4縁部35dを備える。負極電極35は、第1縁部35aの一部から突出した矩形状の負極タブ38を有する。負極タブ38は、負極活物質層37が存在せず、負極金属箔36そのもので構成されている。   The negative electrode 35 has a rectangular sheet-like negative electrode metal foil (for example, copper foil) 36 and a negative electrode active material layer 37 that is present on both surfaces of the negative electrode metal foil 36. The negative electrode active material layer 37 is formed by applying to the negative electrode metal foil 36 a negative electrode slurry containing an element capable of alloying with Li, such as silicon or tin, or a compound of these elements as a negative electrode active material. ing. The negative electrode 35 includes a first edge 35a on one edge of the pair of long edges, and a second edge 35b on the other edge opposite to the first edge 35a. Prepare. Furthermore, the negative electrode 35 includes a third edge 35c on one edge of a pair of short edges connecting the first edge 35a and the second edge 35b, and a third edge. A fourth edge 35d is provided on the other edge opposite to 35c. The negative electrode 35 has a rectangular negative electrode tab 38 protruding from a part of the first edge 35a. The negative electrode tab 38 is composed of the negative electrode metal foil 36 itself without the negative electrode active material layer 37.

セパレータ39は、矩形シート状の絶縁性材料からなる。セパレータ39は、正極電極31と負極電極35とを絶縁する。セパレータ39は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部39aを備えるとともに、第1縁部39aの対辺となる他方の縁部に第2縁部39bを備える。また、セパレータ39は、第1縁部39aと第2縁部39bとを繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部39cを備えるとともに、第3縁部39cの対辺となる他方の縁部に第4縁部39dを備える。   The separator 39 is made of a rectangular sheet-like insulating material. The separator 39 insulates the positive electrode 31 and the negative electrode 35 from each other. The separator 39 includes a first edge 39a on one edge of the pair of long edges, and a second edge 39b on the other edge opposite to the first edge 39a. . The separator 39 includes a third edge 39c on one edge of the pair of short sides connecting the first edge 39a and the second edge 39b, and a third edge 39c. A fourth edge 39d is provided on the other edge opposite to the other edge.

負極電極35の第1縁部35aの長さは、正極電極31の第1縁部31aの長さより長い。負極電極35の第2縁部35bの長さは、正極電極31の第2縁部31bの長さより長い。また、負極電極35の第3縁部35cの長さは、正極電極31の第3縁部31cの長さより長い。負極電極35の第4縁部35dの長さは、正極電極31の第4縁部31dの長さより長い。つまり、負極電極35の外形は、正極電極31の外形より一回り大きい。   The length of the first edge 35 a of the negative electrode 35 is longer than the length of the first edge 31 a of the positive electrode 31. The length of the second edge 35 b of the negative electrode 35 is longer than the length of the second edge 31 b of the positive electrode 31. The length of the third edge 35 c of the negative electrode 35 is longer than the length of the third edge 31 c of the positive electrode 31. The length of the fourth edge 35 d of the negative electrode 35 is longer than the length of the fourth edge 31 d of the positive electrode 31. That is, the outer shape of the negative electrode 35 is slightly larger than the outer shape of the positive electrode 31.

セパレータ39の第1縁部39aの長さは、負極電極35の第1縁部35aの長さと等しい。セパレータ39の第2縁部39bの長さは、負極電極35の第2縁部35bの長さと等しい。また、セパレータ39の第3縁部39cの長さは、負極電極35の第3縁部35cの長さと等しい。セパレータ39の第4縁部39dの長さは、負極電極35の第4縁部35dの長さと等しい。つまり、セパレータ39の外形は、正極電極31の外形より一回り大きい一方で、負極電極35の外形と等しい大きさである。   The length of the first edge 39 a of the separator 39 is equal to the length of the first edge 35 a of the negative electrode 35. The length of the second edge 39 b of the separator 39 is equal to the length of the second edge 35 b of the negative electrode 35. In addition, the length of the third edge 39 c of the separator 39 is equal to the length of the third edge 35 c of the negative electrode 35. The length of the fourth edge portion 39 d of the separator 39 is equal to the length of the fourth edge portion 35 d of the negative electrode 35. That is, the outer shape of the separator 39 is slightly larger than the outer shape of the positive electrode 31, but is equal to the outer shape of the negative electrode 35.

図3及び図4に示すように、各正極電極31は、それぞれの正極タブ34が積層方向に沿って列状に配置されるように積層される。同様に、各負極電極35は、それぞれの負極タブ38が、正極タブ34と重ならない位置で積層方向に沿って列状に配置されるように積層される。また、電極組立体30は、詳細に図示はしないが絶縁シートによって覆われることにより、ケース本体22と絶縁されている。   As shown in FIGS. 3 and 4, each positive electrode 31 is stacked such that the respective positive electrode tabs 34 are arranged in a row along the stacking direction. Similarly, each negative electrode 35 is laminated so that the respective negative electrode tabs 38 are arranged in a row along the lamination direction at positions where they do not overlap with the positive electrode tab 34. The electrode assembly 30 is insulated from the case body 22 by being covered with an insulating sheet (not shown in detail).

図2及び図4に示すように、電池セル20は、電極組立体30から電気を取り出すための正極端子25及び負極端子26を備える。正極端子25及び負極端子26は、蓋23の貫通孔を貫通してケース21外に突出する。正極端子25及び負極端子26には、蓋23と絶縁するためのリング状の絶縁リング27がそれぞれ取り付けられている。各正極タブ34が積層された正極タブ群は、正極端子25と電気的に接続されている。各負極タブ38が積層された負極タブ群は、負極端子26と電気的に接続されている。   As shown in FIGS. 2 and 4, the battery cell 20 includes a positive electrode terminal 25 and a negative electrode terminal 26 for taking out electricity from the electrode assembly 30. The positive terminal 25 and the negative terminal 26 pass through the through hole of the lid 23 and protrude out of the case 21. Ring-shaped insulating rings 27 for insulating from the lid 23 are attached to the positive terminal 25 and the negative terminal 26, respectively. The positive electrode tab group in which the positive electrode tabs 34 are stacked is electrically connected to the positive electrode terminal 25. The negative electrode tab group in which the negative electrode tabs 38 are laminated is electrically connected to the negative electrode terminal 26.

図4に示すように、ケース21内では、積層方向において電極組立体30に弾性部材50が並設されている。弾性部材50は、矩形板状のプリウレタン用ポリオールからなる。弾性部材50は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部50aを備えるとともに、第1縁部50aの対辺となる他方の縁部に第2縁部50bを備える。また、弾性部材50は、第1縁部50aと第2縁部50bとを繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部50cを備えるとともに、第3縁部50cの対辺となる他方の縁部に第4縁部50dを備える。   As shown in FIG. 4, in the case 21, the elastic member 50 is juxtaposed with the electrode assembly 30 in the stacking direction. The elastic member 50 is made of a rectangular plate-like polyol for pre-urethane. The elastic member 50 includes a first edge 50a on one edge of the pair of long edges, and a second edge 50b on the other edge that is the opposite side of the first edge 50a. Prepare. The elastic member 50 includes a third edge 50c on one edge of the pair of short edges connecting the first edge 50a and the second edge 50b, and a third edge. A fourth edge 50d is provided on the other edge opposite to 50c.

弾性部材50の第1縁部50aの長さは、正極電極31の第1縁部31aの長さと等しい。弾性部材50の第2縁部50bの長さは、正極電極31の第2縁部31bの長さと等しい。また、弾性部材50の第3縁部50cの長さは、正極電極31の第3縁部31cの長さと等しい。弾性部材50の第4縁部50dの長さは、正極電極31の第4縁部31dの長さと等しい。つまり、弾性部材50の外形は、正極電極31の外形と等しい一方で、負極電極35の外形より一回り小さい大きさである。   The length of the first edge 50 a of the elastic member 50 is equal to the length of the first edge 31 a of the positive electrode 31. The length of the second edge portion 50 b of the elastic member 50 is equal to the length of the second edge portion 31 b of the positive electrode 31. The length of the third edge 50 c of the elastic member 50 is equal to the length of the third edge 31 c of the positive electrode 31. The length of the fourth edge portion 50 d of the elastic member 50 is equal to the length of the fourth edge portion 31 d of the positive electrode 31. That is, the outer shape of the elastic member 50 is equal to the outer shape of the positive electrode 31, but is slightly smaller than the outer shape of the negative electrode 35.

また、積層方向における弾性部材50の大きさ(厚み)は、0.1〜3.5Mpaの荷重を積層方向で電極組立体30に作用させることができる大きさに設定されている。そして、弾性部材50としては、厚み方向に0.1〜3.5Mpaの荷重が作用したときの荷重の作用方向の最大圧縮率が25〜55%であるものを採用している。   The size (thickness) of the elastic member 50 in the stacking direction is set to a size that allows a load of 0.1 to 3.5 Mpa to act on the electrode assembly 30 in the stacking direction. And as the elastic member 50, what has the maximum compression rate of the acting direction of a load when a load of 0.1-3.5 Mpa acts on the thickness direction is 25-55% is employ | adopted.

弾性部材50の中央に位置する中央部51は、厚み方向に貫通することにより矩形状の孔となっている。中央部51は、弾性部材50における第1縁部50aと第2縁部50bとの中間線L1と、第3縁部50cと第4縁部50dとの中間線L2との交差点である中心C1を内部に含んでいる。また、中央部51は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部51aを備えるとともに、第1縁部51aの対辺となる他方の縁部に第2縁部51bを備える。中央部51は、第1縁部51aと第2縁部51bとを繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部51cを備えるとともに、第3縁部51cの対辺となる他方の縁部に第4縁部51dを備える。   The central part 51 located in the center of the elastic member 50 is a rectangular hole by penetrating in the thickness direction. The center portion 51 is a center C1 that is an intersection of the intermediate line L1 between the first edge portion 50a and the second edge portion 50b and the intermediate line L2 between the third edge portion 50c and the fourth edge portion 50d in the elastic member 50. Is included inside. The central portion 51 includes a first edge portion 51a on one edge portion of the edge portions along the pair of long sides, and a second edge portion on the other edge portion that is the opposite side of the first edge portion 51a. 51b. The central portion 51 includes a third edge portion 51c on one edge portion of the edge portions along the short side that connects the first edge portion 51a and the second edge portion 51b, and the third edge portion 51c. A fourth edge 51d is provided on the other edge that is the opposite side.

中央部51の第1縁部51aは、弾性部材50の中心C1から第1縁部50a側にずれた位置にある。これにより、弾性部材50において、中心C1から中央部51の第1縁部51aまでの長さL5が、弾性部材50の第1縁部50aから第2縁部50bまでの長さL3の15%を占めている。また、中央部51の第2縁部51bは、弾性部材50の中心C1から第2縁部50b側にずれた位置にある。これにより、弾性部材50において、中心C1から中央部51の第2縁部51bまでの長さL6が、弾性部材50の第1縁部50aから第2縁部50bまでの長さL3の15%を占めている。   The first edge 51a of the central portion 51 is located at a position shifted from the center C1 of the elastic member 50 toward the first edge 50a. Accordingly, in the elastic member 50, the length L5 from the center C1 to the first edge 51a of the central portion 51 is 15% of the length L3 from the first edge 50a to the second edge 50b of the elastic member 50. Accounted for. Further, the second edge portion 51b of the central portion 51 is located at a position shifted from the center C1 of the elastic member 50 toward the second edge portion 50b. Accordingly, in the elastic member 50, the length L6 from the center C1 to the second edge 51b of the central portion 51 is 15% of the length L3 from the first edge 50a to the second edge 50b of the elastic member 50. Accounted for.

中央部51の第3縁部51cは、弾性部材50の中心C1から第3縁部50c側にずれた位置にある。これにより、弾性部材50において、中心C1から中央部51の第3縁部51cまでの長さL7が、弾性部材50の第3縁部50cから第4縁部50dまでの長さL4の15%を占めている。また、中央部51の第4縁部51dは、弾性部材50の中心C1から第4縁部50d側にずれた位置にある。これにより、弾性部材50において、中心C1から中央部51の第4縁部51dまでの長さL8が、弾性部材50の第3縁部50cから第4縁部50dまでの長さL4の15%を占めている。   The third edge 51c of the central portion 51 is located at a position shifted from the center C1 of the elastic member 50 toward the third edge 50c. Accordingly, in the elastic member 50, the length L7 from the center C1 to the third edge 51c of the central portion 51 is 15% of the length L4 from the third edge 50c to the fourth edge 50d of the elastic member 50. Accounted for. Further, the fourth edge portion 51d of the central portion 51 is located at a position shifted from the center C1 of the elastic member 50 toward the fourth edge portion 50d. Accordingly, in the elastic member 50, the length L8 from the center C1 to the fourth edge 51d of the central portion 51 is 15% of the length L4 from the third edge 50c to the fourth edge 50d of the elastic member 50. Accounted for.

図5に示すように、弾性部材50は、積層方向における電極組立体30の端部30aとケース本体22の第1長側壁22bとの間に設けられている。また、弾性部材50は、電極組立体30の端部30aに接着している。電池セル20においては、弾性部材50の中央部51、この中央部51と対向する電極組立体30の端部30a、及びケース本体22の第1長側壁22bによって空間が区画形成される。   As shown in FIG. 5, the elastic member 50 is provided between the end 30 a of the electrode assembly 30 and the first long side wall 22 b of the case body 22 in the stacking direction. The elastic member 50 is bonded to the end 30 a of the electrode assembly 30. In the battery cell 20, a space is defined by the central portion 51 of the elastic member 50, the end portion 30 a of the electrode assembly 30 facing the central portion 51, and the first long side wall 22 b of the case body 22.

本実施形態の電池体11においては、複数の電池セル20が、並設方向における電極組立体30の一端側(図5の左側)にケース本体22の第1長側壁22bが位置するように配設されている。こうした複数の電池セル20では、並設方向において電極組立体30の一端側に弾性部材50が設けられることになる。また、本実施形態の電池体11においては、複数の電池セル20が、並設方向における電極組立体30の他端側(図5の右側)にケース本体22の第1長側壁22bが位置するように配設されている。こうした複数の電池セル20では、並設方向において電極組立体30の他端側に弾性部材50が設けられることになる。ここで、電池体11を構成する複数の電池セル20のうち、並設方向において電極組立体30の一端側に弾性部材50が設けられた電池セル20を第1電池セル20aとする。電池体11を構成する複数の電池セル20のうち、並設方向において電極組立体30の他端側に弾性部材50が設けられた電池セル20を第2電池セル20bとする。   In the battery body 11 of the present embodiment, the plurality of battery cells 20 are arranged so that the first long side wall 22b of the case body 22 is positioned on one end side (left side in FIG. 5) of the electrode assembly 30 in the juxtaposed direction. It is installed. In such a plurality of battery cells 20, the elastic member 50 is provided on one end side of the electrode assembly 30 in the juxtaposed direction. Further, in the battery body 11 of the present embodiment, the first long side wall 22b of the case main body 22 is positioned on the other end side (right side in FIG. 5) of the electrode assembly 30 in the juxtaposed direction. It is arranged like this. In such a plurality of battery cells 20, the elastic member 50 is provided on the other end side of the electrode assembly 30 in the juxtaposed direction. Here, the battery cell 20 in which the elastic member 50 is provided on one end side of the electrode assembly 30 in the juxtaposed direction among the plurality of battery cells 20 constituting the battery body 11 is referred to as a first battery cell 20a. Among the plurality of battery cells 20 constituting the battery body 11, the battery cell 20 in which the elastic member 50 is provided on the other end side of the electrode assembly 30 in the juxtaposed direction is referred to as a second battery cell 20b.

電池体11は、複数の第1電池セル20a及び複数の第2電池セル20bで構成されている。すなわち、電池体11を構成する全ての電池セル20のケース21内で、並設方向において弾性部材50が電極組立体30に並設されている。また、電池体11においては、第1電池セル20aと第2電池セル20bとが交互に位置している。並設方向の一端から順に、第1電池セル20a及び第2電池セル20bは、並設方向において互いの弾性部材50の間に互いの電極組立体30が位置するように並設されている。   The battery body 11 includes a plurality of first battery cells 20a and a plurality of second battery cells 20b. That is, the elastic member 50 is juxtaposed to the electrode assembly 30 in the juxtaposition direction in the case 21 of all the battery cells 20 constituting the battery body 11. Moreover, in the battery body 11, the first battery cell 20a and the second battery cell 20b are alternately positioned. The first battery cell 20a and the second battery cell 20b are arranged in parallel so that the electrode assemblies 30 are positioned between the elastic members 50 in the juxtaposition direction in order from one end in the juxtaposition direction.

次に、電池モジュール10の作用について説明する。
図6に示すように、弾性部材50は、電極組立体30から弾性部材50に荷重が作用する際に、その荷重に応じた大きさの変形量(圧縮率C)で荷重の作用方向である積層方向に変形する。そして、弾性部材50の圧縮率Cに応じた大きさの荷重(面圧P)が、弾性部材50から電極組立体30に作用するようになる。弾性部材50は、圧縮率Cが一定値より大きくなると弾性部材50から電極組立体30に作用する面圧Pが急激に大きくなる特性をもつ。また、同じ大きさの荷重が弾性部材50に作用する条件下でも、弾性部材50の劣化度合いに応じて弾性部材50の圧縮率Cの大きさが異なる。弾性部材50の劣化が進むほど弾性部材50は高い圧縮率Cとなる。すなわち、弾性部材50の圧縮率C及び面圧Pは、使用開始直後の弾性部材50では低圧縮率且つ低面圧の範囲である範囲R1内で推移する。そして、弾性部材50の劣化が進むほど、弾性部材50の圧縮率C及び面圧Pは高圧縮率側且つ高面圧側の範囲で推移するようになる。
Next, the operation of the battery module 10 will be described.
As shown in FIG. 6, when a load is applied from the electrode assembly 30 to the elastic member 50, the elastic member 50 has a deformation amount (compression rate C) having a magnitude corresponding to the load and the direction of the load. Deforms in the stacking direction. Then, a load (surface pressure P) having a magnitude corresponding to the compression rate C of the elastic member 50 acts on the electrode assembly 30 from the elastic member 50. The elastic member 50 has a characteristic that the surface pressure P acting on the electrode assembly 30 from the elastic member 50 abruptly increases when the compressibility C becomes larger than a certain value. Further, even under a condition where a load having the same magnitude acts on the elastic member 50, the magnitude of the compression rate C of the elastic member 50 varies depending on the degree of deterioration of the elastic member 50. As the deterioration of the elastic member 50 progresses, the elastic member 50 has a higher compression rate C. That is, the compression rate C and the surface pressure P of the elastic member 50 change within a range R1 that is a range of a low compression rate and a low surface pressure in the elastic member 50 immediately after the start of use. Then, as the deterioration of the elastic member 50 progresses, the compression rate C and the surface pressure P of the elastic member 50 change in the range of the high compression rate side and the high surface pressure side.

また、積層方向において電極組立体30に作用する荷重(面圧P)が小さすぎると、電池セル20における正極電極31と負極電極35との間隔が広がることにより、電池セル20の抵抗値が大きくなってしまう。電池セル20における正極電極31と負極電極35との間隔を抵抗値が一定値以下になるような間隔に保持するためには、電極組立体30に積層方向で0.1Mpa以上の面圧Pを作用させることが望ましい。なお、電池セル20の充放電に伴う膨張収縮や劣化によって電池セル20の内圧は上昇するが、そうした内圧上昇に応じて弾性部材50が弾性変形することにより、電極組立体30には弾性部材50から0.1Mpa以上の面圧Pが作用する。具体的には、弾性部材50の劣化があまり進んでいないときは面圧Pが範囲R1で推移するため、面圧Pが0.1Mpaより大きくなる。そして、弾性部材50の劣化が進むほど、面圧Pは高面圧側の範囲で推移するため、さらに面圧Pは大きくなる。したがって、電池セル20の内圧が変化しても、電極組立体30における正極電極31と負極電極35との間隔を保持するのに適切な荷重が弾性部材50から電極組立体30に作用する。   Further, if the load (surface pressure P) acting on the electrode assembly 30 in the stacking direction is too small, the distance between the positive electrode 31 and the negative electrode 35 in the battery cell 20 increases, and the resistance value of the battery cell 20 increases. turn into. In order to maintain the distance between the positive electrode 31 and the negative electrode 35 in the battery cell 20 so that the resistance value becomes a certain value or less, the electrode assembly 30 is given a surface pressure P of 0.1 Mpa or more in the stacking direction. It is desirable to act. Note that the internal pressure of the battery cell 20 increases due to expansion / contraction and deterioration associated with charging / discharging of the battery cell 20, but the elastic member 50 is elastically deformed in response to the increase in internal pressure, whereby the electrode assembly 30 includes the elastic member 50. Therefore, the surface pressure P of 0.1 Mpa or more acts. Specifically, when the deterioration of the elastic member 50 is not progressing so much, the surface pressure P changes in the range R1, and thus the surface pressure P becomes greater than 0.1 Mpa. And as the deterioration of the elastic member 50 progresses, the surface pressure P changes in the range on the high surface pressure side, so the surface pressure P further increases. Therefore, even if the internal pressure of the battery cell 20 changes, a load appropriate to maintain the distance between the positive electrode 31 and the negative electrode 35 in the electrode assembly 30 acts on the electrode assembly 30 from the elastic member 50.

一方、積層方向において電極組立体30に作用する荷重(面圧P)が大きすぎると、正極電極31と負極電極35との間から電解液が押し出されてしまうため、電池セル20の抵抗値が大きくなるおそれがある。具体的には、積層方向において電極組立体30に作用する面圧Pが3.5Mpaよりも大きいと、上記の電池セル20の抵抗値の増大が生じるおそれがある。弾性部材50においては、弾性部材50が劣化してもそうした過剰な荷重が電極組立体30に作用することを抑制できる。こうした弾性部材50の機能は、0.1〜3.5Mpaの荷重を弾性部材50に作用させたときの荷重の作用方向の最大圧縮率C3が25〜55%である弾性部材を弾性部材50として用いることにより可能となっている。なお、弾性部材50においては、最大圧縮率C3であるときに3.5Mpaの面圧Pが電極組立体30に作用する。   On the other hand, if the load (surface pressure P) acting on the electrode assembly 30 in the stacking direction is too large, the electrolyte solution is pushed out from between the positive electrode 31 and the negative electrode 35, so that the resistance value of the battery cell 20 is May grow. Specifically, if the surface pressure P acting on the electrode assembly 30 in the stacking direction is greater than 3.5 Mpa, the resistance value of the battery cell 20 may increase. In the elastic member 50, even if the elastic member 50 is deteriorated, it is possible to suppress such an excessive load from acting on the electrode assembly 30. The elastic member 50 functions as an elastic member 50 with an elastic member having a maximum compression rate C3 of 25 to 55% in the acting direction of the load when a load of 0.1 to 3.5 Mpa is applied to the elastic member 50. It is possible by using it. In the elastic member 50, a surface pressure P of 3.5 Mpa acts on the electrode assembly 30 when the maximum compression rate C3 is reached.

上記実施形態では以下の効果を得ることができる。
(1)ケース21内にて電極組立体30に弾性部材50を並設させる上記実施形態の電池モジュール10では、電池セル20の劣化が生じて電池セル20の内圧が弾性部材50に作用するようになっても、そうした内圧をケース21内で弾性部材50の弾性変形により相殺することができる。そのため、電池モジュール10では、拘束荷重にて考慮する電池セル20の内圧上昇分を少なくすることができるため、拘束荷重を比較的小さくすることができる。電池モジュール10では、比較的小さな拘束荷重を受けて弾性部材50の圧縮率Cが小さくなるため、弾性部材50の使用開始直後において弾性部材50の圧縮率C及び面圧Pが比較的低い範囲R1で推移する。そして、弾性部材50が劣化しても、弾性部材50から電極組立体30に作用する面圧Pは、電池セル20の正極電極31及び負極電極35の間から電解液を押し出してしまうほどの過剰な面圧にまで至りにくくなる。このため、電池モジュール10では、弾性部材50の厚みを大きくしなくても、弾性部材50から電極組立体30に作用する面圧Pが上記の過剰な面圧に至りにくくすることができる。したがって、電池モジュール10では、並設方向における弾性部材50の厚みを小さくすることにより、電池モジュール10に占める弾性部材50の割合をより小さくすることができる。
In the above embodiment, the following effects can be obtained.
(1) In the battery module 10 of the above embodiment in which the elastic member 50 is arranged in parallel with the electrode assembly 30 in the case 21, the battery cell 20 is deteriorated so that the internal pressure of the battery cell 20 acts on the elastic member 50. Even in this case, the internal pressure can be offset by elastic deformation of the elastic member 50 in the case 21. Therefore, in the battery module 10, since the increase in the internal pressure of the battery cell 20 considered by the restraint load can be reduced, the restraint load can be made relatively small. In the battery module 10, the compression rate C of the elastic member 50 is reduced by receiving a relatively small restraining load. Therefore, the compression rate C and the surface pressure P of the elastic member 50 are relatively low immediately after the start of use of the elastic member 50. It changes in. Even if the elastic member 50 is deteriorated, the surface pressure P acting on the electrode assembly 30 from the elastic member 50 is excessive so as to push out the electrolyte from between the positive electrode 31 and the negative electrode 35 of the battery cell 20. It becomes difficult to reach even the surface pressure. For this reason, in the battery module 10, even if the thickness of the elastic member 50 is not increased, the surface pressure P acting on the electrode assembly 30 from the elastic member 50 can be less likely to reach the excessive surface pressure. Therefore, in the battery module 10, the proportion of the elastic member 50 in the battery module 10 can be further reduced by reducing the thickness of the elastic member 50 in the juxtaposed direction.

(2)積層方向において電極組立体30の間に弾性部材50を設けることで、ケース21内に弾性部材50を設けることも可能である。しかしながら、こうして弾性部材50を設ける場合では、ケース21内に弾性部材50を設けない従来の電池セル20から電極組立体30の形状を調整する必要がある。例えば、弾性部材50が介在する分だけ積層方向における正極電極31及び負極電極35の位置がずれるため、正極端子25と各正極電極31との位置関係や負極端子26と各負極電極35との位置関係がずれる。そのため、そうしたずれに応じて、正極電極31の正極タブ34や負極電極35の負極タブ38の突出長さを大きくする等、電極組立体30の大きな変更を要するおそれがある。一方、上記実施形態のように弾性部材50を電極組立体30とケース本体22との間に設ける場合では、ケース21内に弾性部材50を設けない従来の電池セル20から電極組立体30の形状を変更しなくても対応することができる。   (2) It is possible to provide the elastic member 50 in the case 21 by providing the elastic member 50 between the electrode assemblies 30 in the stacking direction. However, when the elastic member 50 is provided in this way, it is necessary to adjust the shape of the electrode assembly 30 from the conventional battery cell 20 in which the elastic member 50 is not provided in the case 21. For example, since the positions of the positive electrode 31 and the negative electrode 35 in the stacking direction are shifted by the amount of the elastic member 50 interposed therebetween, the positional relationship between the positive electrode terminal 25 and each positive electrode 31 and the position between the negative electrode terminal 26 and each negative electrode 35. The relationship is off. Therefore, there is a possibility that a large change in the electrode assembly 30 may be required, such as increasing the protruding length of the positive electrode tab 34 of the positive electrode 31 and the negative electrode tab 38 of the negative electrode 35 in accordance with such deviation. On the other hand, when the elastic member 50 is provided between the electrode assembly 30 and the case body 22 as in the above embodiment, the shape of the electrode assembly 30 from the conventional battery cell 20 in which the elastic member 50 is not provided in the case 21. It is possible to cope without changing.

(3)互いの電極組立体30の間に弾性部材50が介在しないように並設された第1電池セル20a及び第2電池セル20bにおいては、互いの電極組立体30が熱マスとして機能するようになる。したがって、第1電池セル20a及び第2電池セル20bの放熱性を向上させることができる。例えば、電池セルの異常等により第1電池セル20a及び第2電池セル20bのうちいずれか一方の電池セルが発熱した際に、他方の電池セルの電極組立体30が熱マスとして機能し、発生した熱を放熱させることができる。   (3) In the first battery cell 20a and the second battery cell 20b arranged in parallel so that the elastic member 50 is not interposed between the electrode assemblies 30, the electrode assemblies 30 function as a thermal mass. It becomes like this. Therefore, the heat dissipation of the first battery cell 20a and the second battery cell 20b can be improved. For example, when one of the first battery cell 20a and the second battery cell 20b generates heat due to a battery cell abnormality or the like, the electrode assembly 30 of the other battery cell functions as a thermal mass and is generated. Heat can be dissipated.

(4)仮にケース本体22の第1長側壁22bの内壁に弾性部材50を接着して設けた場合、ケース本体22内に電極組立体30を挿入する際に、弾性部材50が電極組立体30と干渉するおそれがある。弾性部材50が電極組立体30と干渉すると、電極組立体30を構成する正極電極31や負極電極35が変形するおそれがある。上記実施形態によれば、弾性部材50が電極組立体30に接着した状態でケース本体22内への電極組立体30の挿入を行うことができる。したがって、上記のような弾性部材50と電極組立体30との干渉を抑制することができる。   (4) If the elastic member 50 is bonded to the inner wall of the first long side wall 22 b of the case body 22, the elastic member 50 is inserted into the case body 22 when the electrode assembly 30 is inserted into the case body 22. There is a risk of interference. When the elastic member 50 interferes with the electrode assembly 30, the positive electrode 31 and the negative electrode 35 constituting the electrode assembly 30 may be deformed. According to the above embodiment, the electrode assembly 30 can be inserted into the case main body 22 with the elastic member 50 adhered to the electrode assembly 30. Therefore, interference between the elastic member 50 and the electrode assembly 30 as described above can be suppressed.

(5)一般に、電池セル20の充放電に伴って正極電極31及び負極電極35の膨張と収縮とが繰り返されると、正極電極31と負極電極35との間に保持されていた電解液が電極組立体30の外に押し出されることにより、正極電極31と負極電極35との間の電解液が少なくなってしまうおそれがある。上記実施形態では、電極組立体30のうち、並設方向において弾性部材50の中央部51と対向する部分には、弾性部材50から荷重が作用しない。そのため、電極組立体30における中央部51と対向する部分では、正極電極31及び負極電極35の膨張と収縮とが繰り返されても、正極電極31と負極電極35との間から電解液が押し出されにくくなる。したがって、電池セル20の充放電に伴う正極電極31と負極電極35との間での電解液の減少を抑えることができる。また、上記実施形態では、弾性部材50の中央部51とこの中央部51と対向する電極組立体30とで形成される空間に電解液を保持することができる。このため、電池セル20の充放電に伴って正極電極31と負極電極35との間から電解液が押し出されたら、上記の空間から正極電極31と負極電極35との間へと電解液を供給することができる。この点でも、電池セル20の充放電に伴う正極電極31と負極電極35との間での電解液の減少を抑えることができる。   (5) In general, when the positive electrode 31 and the negative electrode 35 are repeatedly expanded and contracted as the battery cell 20 is charged / discharged, the electrolytic solution held between the positive electrode 31 and the negative electrode 35 becomes the electrode. By being pushed out of the assembly 30, the electrolyte solution between the positive electrode 31 and the negative electrode 35 may be reduced. In the above embodiment, no load is applied from the elastic member 50 to a portion of the electrode assembly 30 that faces the central portion 51 of the elastic member 50 in the juxtaposed direction. Therefore, in the portion facing the central portion 51 in the electrode assembly 30, even when the positive electrode 31 and the negative electrode 35 are repeatedly expanded and contracted, the electrolyte is pushed out between the positive electrode 31 and the negative electrode 35. It becomes difficult. Therefore, it is possible to suppress a decrease in the electrolyte solution between the positive electrode 31 and the negative electrode 35 due to charging / discharging of the battery cell 20. Moreover, in the said embodiment, electrolyte solution can be hold | maintained in the space formed by the center part 51 of the elastic member 50, and the electrode assembly 30 facing this center part 51. FIG. For this reason, when the electrolytic solution is pushed out from between the positive electrode 31 and the negative electrode 35 along with charging / discharging of the battery cell 20, the electrolytic solution is supplied from the above space to between the positive electrode 31 and the negative electrode 35. can do. In this respect as well, it is possible to suppress a decrease in the electrolytic solution between the positive electrode 31 and the negative electrode 35 due to charging / discharging of the battery cell 20.

(6)珪素や錫のようなLiと合金化反応可能な元素、またはそれらの元素の化合物を含む負極活物質を採用した本実施形態では、黒鉛等のほかの負極活物質のみを採用した場合と比較して、充放電に伴う負極電極35の膨張量及び収縮量が大きくなる。仮に、負極電極35の膨張量を考慮して拘束荷重を大きく設定すると、その拘束荷重に応じて弾性部材50の厚みを大きくする必要が出てくる。しかしながら、上記実施形態においては、弾性部材50をケース21内に設けることにより、負極電極35の膨張についてもケース21内で弾性部材50の弾性変形により相殺することができる。そのため、負極電極35の膨張量を考慮しない分だけ拘束荷重を比較的小さくすることができ、弾性部材50の厚みを小さくできるため、電池モジュール10に占める弾性部材50の割合を小さくすることができる。   (6) In this embodiment that employs a negative electrode active material containing an element that can be alloyed with Li, such as silicon or tin, or a compound of those elements, when only another negative electrode active material such as graphite is employed As compared with the above, the amount of expansion and contraction of the negative electrode 35 accompanying charge / discharge increases. If the restraint load is set large in consideration of the expansion amount of the negative electrode 35, it is necessary to increase the thickness of the elastic member 50 in accordance with the restraint load. However, in the above embodiment, by providing the elastic member 50 in the case 21, the expansion of the negative electrode 35 can be offset by the elastic deformation of the elastic member 50 in the case 21. For this reason, the restraining load can be made relatively small so as not to consider the expansion amount of the negative electrode 35, and the thickness of the elastic member 50 can be reduced. Therefore, the proportion of the elastic member 50 in the battery module 10 can be reduced. .

なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。   In addition, the said embodiment can be changed and implemented as follows. The above embodiment and the following modification examples can be implemented in combination with each other within a technically consistent range.

○ 第1電池セル20a及び第2電池セル20bは、並設方向の一部において複数の第1電池セル20aが連続するように位置していてもよい。また、第1電池セル20a及び第2電池セル20bは、並設方向の一部において第2電池セル20bが連続するように位置していてもよい。   (Circle) the 1st battery cell 20a and the 2nd battery cell 20b may be located so that the some 1st battery cell 20a may continue in a part of juxtaposition direction. Moreover, the 1st battery cell 20a and the 2nd battery cell 20b may be located so that the 2nd battery cell 20b may continue in a part of parallel arrangement direction.

○ 図7に示すように、同一の電池セル120において、電極組立体30の端部30aとケース本体22の第1長側壁22bとの間と、電極組立体30の端部30aとは反対側の端部30bとケース本体22の第2長側壁22cとの間の双方に、弾性部材50を設けるようにしてもよい。なお、この形態における電池セル120では、ケース21内に2つの弾性部材50が設けられることになる。そのため、電池セル120における各弾性部材50の厚みは、上記実施形態における第1電池セル20aや第2電池セル20bに設けられる弾性部材50の厚みの半分程度等に適宜調整する。   As shown in FIG. 7, in the same battery cell 120, between the end 30 a of the electrode assembly 30 and the first long side wall 22 b of the case body 22, and on the side opposite to the end 30 a of the electrode assembly 30. The elastic member 50 may be provided on both the end 30b of the case and the second long side wall 22c of the case body 22. In the battery cell 120 in this embodiment, two elastic members 50 are provided in the case 21. Therefore, the thickness of each elastic member 50 in the battery cell 120 is appropriately adjusted to about half the thickness of the elastic member 50 provided in the first battery cell 20a or the second battery cell 20b in the above embodiment.

○ 図8に示すように、電池セル220は、並設方向に並んだ第1電極組立体230及び第2電極組立体231を電極組立体30として有するものであってもよい。第1電極組立体230及び第2電極組立体231においては、それぞれの正極電極31の正極タブ34が同一の正極端子25と電気的に接続されているとともに、それぞれの負極電極35の負極タブ38が同一の負極端子26と電気的に接続されている。そして、電池セル220では、並設方向において第1電極組立体230と第2電極組立体231との間に弾性部材50を設けてもよい。この形態の電池セル220では、第1電極組立体230とケース本体22の第1長側壁22bとの間や、第2電極組立体231とケース本体22の第2長側壁22cとの間には、弾性部材50が設けられない。そのため、これら第1電極組立体230や第2電極組立体231からケース本体22への放熱がしやすくなる。したがって、電池セル220の放熱性を向上させることができる。   As shown in FIG. 8, the battery cell 220 may include a first electrode assembly 230 and a second electrode assembly 231 arranged in the juxtaposed direction as the electrode assembly 30. In the first electrode assembly 230 and the second electrode assembly 231, the positive electrode tab 34 of each positive electrode 31 is electrically connected to the same positive electrode terminal 25 and the negative electrode tab 38 of each negative electrode 35. Are electrically connected to the same negative terminal 26. In the battery cell 220, the elastic member 50 may be provided between the first electrode assembly 230 and the second electrode assembly 231 in the juxtaposed direction. In the battery cell 220 of this embodiment, between the first electrode assembly 230 and the first long side wall 22b of the case body 22, or between the second electrode assembly 231 and the second long side wall 22c of the case body 22. The elastic member 50 is not provided. Therefore, heat can be easily radiated from the first electrode assembly 230 and the second electrode assembly 231 to the case body 22. Therefore, the heat dissipation of the battery cell 220 can be improved.

○ 第1電池セル20a、第2電池セル20b、電池セル120、及び電池セル220のうち、1種類の電池セル20のみで電池体11を構成してもよい。第1電池セル20a、第2電池セル20b、電池セル120、及び電池セル220のうち、2種類以上の電池セル20を組み合わせて電池体11を構成してもよい。   The battery body 11 may be configured by only one type of battery cell 20 among the first battery cell 20a, the second battery cell 20b, the battery cell 120, and the battery cell 220. You may comprise the battery body 11 combining 2 or more types of battery cells 20 among the 1st battery cell 20a, the 2nd battery cell 20b, the battery cell 120, and the battery cell 220. FIG.

○ 中央部51の大きさは適宜変更可能である。具体的には、弾性部材50の上記長さL3に対して中央部51の上記長さL5が占める割合を、12〜25%の範囲内で変更可能である。弾性部材50の上記長さL3に対して中央部51の上記長さL6が占める割合を、12〜25%の範囲内で変更可能である。弾性部材50の上記長さL4に対して中央部51の上記長さL7が占める割合を、10〜18%の範囲内で変更可能である。弾性部材50の上記長さL4に対して中央部51の上記長さL8が占める割合を、10〜18%の範囲内で変更可能である。   ○ The size of the central portion 51 can be changed as appropriate. Specifically, the ratio of the length L5 of the central portion 51 to the length L3 of the elastic member 50 can be changed within a range of 12 to 25%. The ratio of the length L6 of the central portion 51 to the length L3 of the elastic member 50 can be changed within a range of 12 to 25%. The ratio of the length L7 of the central portion 51 to the length L4 of the elastic member 50 can be changed within a range of 10 to 18%. The ratio of the length L8 of the central portion 51 to the length L4 of the elastic member 50 can be changed within a range of 10 to 18%.

○ 弾性部材50の中央部51は、孔ではなく、厚みが中央部51以外の部分の厚みよりも小さい薄肉状であってもよい。
○ 電池体11を構成する全ての電池セル20の弾性部材50のうち、一部または全ての弾性部材50で中央部51の形成を省略してもよい。
The central part 51 of the elastic member 50 may not be a hole but may have a thin shape whose thickness is smaller than the thickness of a part other than the central part 51.
The formation of the central portion 51 may be omitted in some or all of the elastic members 50 of all the battery cells 20 constituting the battery body 11.

○ 弾性部材50は電極組立体30に接着していなくてもよい。例えば、弾性部材50はケース本体22の第1長側壁22bや第2長側壁22cの内壁に接着していてもよい。
○ 電池モジュール10の形状変更等により、電極組立体30に作用させるのに適切な面圧Pが0.1〜3.5Mpaからずれる場合には、その面圧Pに応じて弾性部材50の厚みを適宜変更可能である。また、弾性部材50は、荷重の作用方向の最大圧縮率C3が25〜55%であるものに限らない。
The elastic member 50 may not be bonded to the electrode assembly 30. For example, the elastic member 50 may be bonded to the inner walls of the first long side wall 22b and the second long side wall 22c of the case body 22.
○ When the surface pressure P appropriate for acting on the electrode assembly 30 is deviated from 0.1 to 3.5 Mpa due to the shape change of the battery module 10 or the like, the thickness of the elastic member 50 according to the surface pressure P Can be appropriately changed. Moreover, the elastic member 50 is not restricted to the thing whose maximum compression rate C3 of the acting direction of a load is 25 to 55%.

○ 弾性部材50は、ポリプロピレンやポリエチレン等、プリウレタン用ポリオール以外の材料からなるものであってもよい。
○ 負極活物質層37は、黒鉛等のカーボン、金属化合物、及びホウ素添加炭素等、珪素や錫のようなLiと合金化反応可能な元素、またはそれらの元素の化合物以外の負極活物質を含んでもよい。
The elastic member 50 may be made of a material other than a polyol for pre-urethane, such as polypropylene or polyethylene.
The negative electrode active material layer 37 includes a negative electrode active material other than carbon, such as graphite, a metal compound, boron-added carbon, or the like, an element capable of alloying with Li, such as silicon or tin, or a compound of these elements. But you can.

○ 負極電極35の負極金属箔36の両面においては、負極活物質層37が形成されていない部分があってもよい。
○ 正極電極31の正極金属箔32の両面においては、正極活物質層33が形成されていない部分があってもよい。
On both sides of the negative electrode metal foil 36 of the negative electrode 35, there may be a portion where the negative electrode active material layer 37 is not formed.
O On both surfaces of the positive electrode metal foil 32 of the positive electrode 31, there may be a portion where the positive electrode active material layer 33 is not formed.

○ 弾性部材50は、負極電極35と同じ大きさ等、正極電極31より大きくてもよいし、正極電極31より小さくてもよい。なお、弾性部材50の全体(弾性部材50に中央部51が形成される場合は中央部51の形成部分を含む弾性部材50の全体)によって、正極電極31の正極活物質層33の80%以上を覆うことができるように、弾性部材50の大きさを設定することが好ましい。   The elastic member 50 may be larger than the positive electrode 31 such as the same size as the negative electrode 35 or may be smaller than the positive electrode 31. 80% or more of the positive electrode active material layer 33 of the positive electrode 31 by the entire elastic member 50 (when the central portion 51 is formed on the elastic member 50, the entire elastic member 50 including the portion where the central portion 51 is formed). It is preferable to set the size of the elastic member 50 so that it can be covered.

○ 弾性部材50は、ばね状等、板状以外の形状であってもよい。
○ セパレータ39は負極電極35より一回り大きく形成してもよい。
○ 電池ホルダ40を省略してもよい。
The elastic member 50 may have a shape other than a plate shape such as a spring shape.
The separator 39 may be formed slightly larger than the negative electrode 35.
○ The battery holder 40 may be omitted.

○ 電池セル20はリチウムイオン電池に限らず、ニッケル水素電池や電気二重層キャパシタなどであってもよい。   The battery cell 20 is not limited to a lithium ion battery but may be a nickel metal hydride battery or an electric double layer capacitor.

B1…ボルト、N1…ナット、10…電池モジュール、11…電池体、20,120,220…電池セル、20a…第1電池セル、20b…第2電池セル、21…ケース、30…電極組立体、31…正極電極、35…負極電極、39…セパレータ、45…エンドプレート、50…弾性部材、51…中央部、230…第1電極組立体、231…第2電極組立体。   B1 ... bolt, N1 ... nut, 10 ... battery module, 11 ... battery body, 20, 120, 220 ... battery cell, 20a ... first battery cell, 20b ... second battery cell, 21 ... case, 30 ... electrode assembly , 31 ... positive electrode, 35 ... negative electrode, 39 ... separator, 45 ... end plate, 50 ... elastic member, 51 ... central part, 230 ... first electrode assembly, 231 ... second electrode assembly.

Claims (7)

正極電極と負極電極とを絶縁して積層した電極組立体がケースに収容された電池セルと、
複数の前記電池セルが前記正極電極及び前記負極電極の積層方向に並設された電池体と、
前記電池セルの並設方向の両側から前記電池体を拘束した拘束部材と、
前記ケース内にあって、前記電池セルの並設方向において前記電極組立体に並設された弾性部材と、を備える電池モジュール。
A battery cell in which an electrode assembly in which a positive electrode and a negative electrode are insulated and stacked is housed in a case;
A battery body in which a plurality of the battery cells are arranged in parallel in the stacking direction of the positive electrode and the negative electrode,
A restraining member that restrains the battery body from both sides of the battery cells in the juxtaposed direction;
A battery module, comprising: an elastic member provided in the case and arranged in parallel with the electrode assembly in a direction in which the battery cells are arranged in parallel.
複数の前記電池セルのうちで少なくとも1つは、前記電極組立体と前記ケースとの間に前記弾性部材が設けられている請求項1に記載の電池モジュール。   The battery module according to claim 1, wherein at least one of the plurality of battery cells is provided with the elastic member between the electrode assembly and the case. 複数の前記電池セルは、前記電池セルの並設方向において、前記電極組立体の一端側に前記弾性部材が設けられた第1電池セルと、前記電極組立体の他端側に前記弾性部材が設けられた第2電池セルと、を少なくとも1つずつ含み、
前記第1電池セル及び前記第2電池セルは、前記電池セルの並設方向において互いの前記弾性部材の間に互いの前記電極組立体が位置するように並設している請求項2に記載の電池モジュール。
The plurality of battery cells include a first battery cell in which the elastic member is provided on one end side of the electrode assembly and an elastic member on the other end side of the electrode assembly in the parallel arrangement direction of the battery cells. Including at least one second battery cell provided,
The said 1st battery cell and the said 2nd battery cell are arranged in parallel so that the said electrode assembly may mutually be located between the said elastic members in the arrangement direction of the said battery cell. Battery module.
前記弾性部材は、前記電極組立体に接着している請求項2又は請求項3に記載の電池モジュール。   The battery module according to claim 2, wherein the elastic member is bonded to the electrode assembly. 複数の前記電池セルのうちで少なくとも1つの電池セルは、前記電極組立体として、前記電池セルの並設方向に並んだ第1電極組立体及び第2電極組立体を有し、
前記弾性部材は、前記電池セルの並設方向において、前記第1電極組立体と前記第2電極組立体との間に設けられている請求項1に記載の電池モジュール。
At least one battery cell among the plurality of battery cells has, as the electrode assembly, a first electrode assembly and a second electrode assembly arranged in a parallel arrangement direction of the battery cells,
The battery module according to claim 1, wherein the elastic member is provided between the first electrode assembly and the second electrode assembly in a direction in which the battery cells are arranged side by side.
前記弾性部材は、0.1〜3.5Mpaの荷重が作用したときの荷重の作用方向の最大圧縮率が25〜55%である請求項1〜請求項5のいずれか一項に記載の電池モジュール。   The battery according to any one of claims 1 to 5, wherein the elastic member has a maximum compressibility of 25 to 55% in a direction in which a load acts when a load of 0.1 to 3.5 Mpa is applied. module. 複数の前記電池セルのうちで少なくとも1つの前記弾性部材は、板状であるとともに、前記電池セルの並設方向における厚みが周りよりも小さい中央部を備えている請求項1〜請求項6のいずれか一項に記載の電池モジュール。
The at least one elastic member among the plurality of battery cells is plate-shaped, and includes a central portion in which the thickness in the juxtaposed direction of the battery cells is smaller than the surroundings. The battery module as described in any one.
JP2018109453A 2018-06-07 2018-06-07 Battery module Pending JP2019212554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018109453A JP2019212554A (en) 2018-06-07 2018-06-07 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018109453A JP2019212554A (en) 2018-06-07 2018-06-07 Battery module

Publications (1)

Publication Number Publication Date
JP2019212554A true JP2019212554A (en) 2019-12-12

Family

ID=68846974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018109453A Pending JP2019212554A (en) 2018-06-07 2018-06-07 Battery module

Country Status (1)

Country Link
JP (1) JP2019212554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022074125A (en) * 2020-10-30 2022-05-17 三星エスディアイ株式会社 Electrode structure, bipolar all-solid-state secondary battery including electrode structure, and manufacturing method of electrode structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022074125A (en) * 2020-10-30 2022-05-17 三星エスディアイ株式会社 Electrode structure, bipolar all-solid-state secondary battery including electrode structure, and manufacturing method of electrode structure
JP7297845B2 (en) 2020-10-30 2023-06-26 三星エスディアイ株式会社 ELECTRODE STRUCTURE, BIPOLAR ALL-SOLID-STATE SECONDARY BATTERY INCLUDING SAME, AND METHOD FOR MANUFACTURING SAME ELECTRODE STRUCTURE

Similar Documents

Publication Publication Date Title
US9431674B2 (en) Balanced stepped electrode assembly, and battery cell and device comprising the same
EP2750239B1 (en) Stepped electrode assembly and battery cell comprising same
KR101530803B1 (en) Secondary battery
JP7024735B2 (en) Power storage device
KR20080009350A (en) Secondary battery having improved capacitance and safety
EP2597704A2 (en) Secondary battery having a differential lead structure
JP6719598B2 (en) Battery cell with bus bar
US10003109B2 (en) Secondary battery
JP2017152338A (en) Battery module
US10991985B2 (en) Secondary battery
JP2019212554A (en) Battery module
JP2017076476A (en) Power storage device
US20110177378A1 (en) Electrode assemblage and rechargeable battery using the same
JP6855770B2 (en) Battery module
JP6464603B2 (en) Battery module
US9437898B2 (en) Secondary battery including plurality of electrode assemblies
CN112119524A (en) Electrode assembly
US10586953B2 (en) High-capacity stacked-electrode metal-ion accumulator capable of delivering high power
JP6221856B2 (en) Power storage device and method for manufacturing power storage device
KR20190078221A (en) Lithium rechargeable battery
JP7439034B2 (en) battery stack
JP2017134953A (en) Assembled battery
KR20200026459A (en) Secondary battery and batterypackage therewith the secondary battery and device using the secondary battery
JP2016091718A (en) Power storage device and power storage module
CN116508187A (en) Electrode tab, electrode assembly, and secondary battery including the same