JP2016091718A - Power storage device and power storage module - Google Patents

Power storage device and power storage module Download PDF

Info

Publication number
JP2016091718A
JP2016091718A JP2014223203A JP2014223203A JP2016091718A JP 2016091718 A JP2016091718 A JP 2016091718A JP 2014223203 A JP2014223203 A JP 2014223203A JP 2014223203 A JP2014223203 A JP 2014223203A JP 2016091718 A JP2016091718 A JP 2016091718A
Authority
JP
Japan
Prior art keywords
separator
power storage
thickness direction
storage device
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014223203A
Other languages
Japanese (ja)
Inventor
厚志 南形
Atsushi MINAGATA
厚志 南形
泰有 秋山
Yasunari Akiyama
泰有 秋山
元章 奥田
Motoaki Okuda
元章 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014223203A priority Critical patent/JP2016091718A/en
Publication of JP2016091718A publication Critical patent/JP2016091718A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device and the like capable of suppressing deterioration in change and discharge characteristics even when a charge and discharge cycle is repeated.SOLUTION: The power storage device comprises a positive electrode, a negative electrode, and a separator 23 having a hole 23a arranged between the positive electrode and the negative electrode. At a cross section in a thickness direction of the separator 23, a diameter of the hole 23a in the thickness direction (a Y-direction) is larger than that in a direction orthogonal to the thickness direction.SELECTED DRAWING: Figure 3

Description

本発明は、蓄電装置、及び、蓄電モジュールに関する。   The present invention relates to a power storage device and a power storage module.

従来より、リチウムイオン二次電池等の電極を有する種々の蓄電装置が知られている。   Conventionally, various power storage devices having electrodes such as lithium ion secondary batteries are known.

特開2013−211190号公報JP 2013-211190 A

充放電サイクルを繰り返すことによって電極の厚みは徐々に増えていく。蓄電装置が金属製の容器などに収容されている場合、及び、蓄電装置の厚みが拘束部材などに拘束されている場合など、電極及びセパレータを有する電極組立体の厚みが制限されている場合、充放電サイクルの経過に伴って電極の厚みが増えると、電極に比べて相対的に柔らかいセパレータが厚み方向に圧縮される。したがって、セパレータの空孔の断面積が大幅に縮小して、リチウムイオン等のイオンの移動抵抗が増え、電池の充放電性能が劣化する場合がある。   By repeating the charge / discharge cycle, the thickness of the electrode gradually increases. When the thickness of the electrode assembly including the electrode and the separator is limited, such as when the power storage device is housed in a metal container or the like, and when the thickness of the power storage device is constrained by a restraining member or the like, When the thickness of the electrode increases with the progress of the charge / discharge cycle, the relatively soft separator is compressed in the thickness direction as compared with the electrode. Therefore, the cross-sectional area of the pores of the separator is significantly reduced, and the resistance to movement of ions such as lithium ions is increased, which may deteriorate the charge / discharge performance of the battery.

本発明は上記課題に鑑みてなされたものであり、充放電サイクルを繰り返しても充放電特性の劣化を抑制できる蓄電装置の提供を目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a power storage device that can suppress deterioration of charge / discharge characteristics even when charge / discharge cycles are repeated.

本発明に係る蓄電装置は、正極、負極、及び、前記正極及び前記負極の間に配置された空孔を有するセパレータを備え、
前記セパレータの厚み方向に沿った断面において、前記厚み方向における前記空孔の径が、前記厚み方向と直交する方向における前記空孔の径よりも大きい。
A power storage device according to the present invention includes a positive electrode, a negative electrode, and a separator having a void disposed between the positive electrode and the negative electrode,
In the cross section along the thickness direction of the separator, the diameter of the hole in the thickness direction is larger than the diameter of the hole in a direction orthogonal to the thickness direction.

本発明によれば、正極、負極、及びセパレータを含む電極組立体の厚みの増加が制限される場合に、充放電サイクルの経過に伴って電極が厚くなると、セパレータが厚み方向に圧縮される。しかしながら、空孔の断面が上記の構造を有するので、セパレータが厚み方向につぶれた場合でも、厚み方向に垂直な断面における空孔の径が変化しにくい。従って、イオンの移動抵抗の低下が抑制される。   According to the present invention, when the increase in the thickness of the electrode assembly including the positive electrode, the negative electrode, and the separator is limited, the separator is compressed in the thickness direction when the electrode becomes thicker as the charge / discharge cycle elapses. However, since the cross section of the hole has the above-described structure, even when the separator is crushed in the thickness direction, the diameter of the hole in the cross section perpendicular to the thickness direction is difficult to change. Therefore, a decrease in ion movement resistance is suppressed.

ここで、前記空孔は、前記セパレータの厚み方向に直線状に貫通していることができる。   Here, the holes may penetrate linearly in the thickness direction of the separator.

本発明に係る蓄電モジュールは、上記の蓄電装置と、
前記正極、前記負極、及び、前記セパレータの合計厚みを制限する拘束部材と、を備える。
The power storage module according to the present invention includes the power storage device described above,
A restraining member that limits a total thickness of the positive electrode, the negative electrode, and the separator.

本発明によれば、充放電サイクルを繰り返しても充放電特性の劣化を抑制できる蓄電装置等が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the electrical storage apparatus etc. which can suppress deterioration of a charging / discharging characteristic even if a charging / discharging cycle is repeated are provided.

図1は、本発明の実施形態に係る蓄電装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a power storage device according to an embodiment of the present invention. 図2は、図1のII−II断面図である。2 is a cross-sectional view taken along the line II-II in FIG. 図3は、図2のセパレータの拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the separator of FIG. 図4は、図1の蓄電装置を備える蓄電モジュールの概略構成図である。4 is a schematic configuration diagram of a power storage module including the power storage device of FIG.

以下、図面を参照しながら、本発明に係る蓄電装置の一例であるリチウムイオン二次電池の好適な実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of a lithium ion secondary battery which is an example of a power storage device according to the present invention will be described in detail with reference to the drawings.

リチウムイオン二次電池(蓄電装置)11は、例えば図1及び図2に示すように、例えば略直方体形状をなす中空のケース12と、ケース12内に収容された電極組立体13とを備えている。ケース12は、例えばアルミニウム等の金属によって形成され、ケース12の内部には、例えば有機溶媒系の電解液が注入されている。ケース12の頂面には、図2に示すように、正極端子15と負極端子16とが互いに離間して配置されている。正極端子15は、絶縁部材17を介してケース12の頂面における幅方向の一方側に固定され、負極端子16は、絶縁部材18を介してケース12の頂面における幅方向の他方側に固定されている。   A lithium ion secondary battery (power storage device) 11 includes, for example, a hollow case 12 having a substantially rectangular parallelepiped shape, and an electrode assembly 13 accommodated in the case 12, as shown in FIGS. Yes. The case 12 is made of, for example, a metal such as aluminum, and an organic solvent electrolyte is injected into the case 12, for example. As shown in FIG. 2, the positive terminal 15 and the negative terminal 16 are disposed on the top surface of the case 12 so as to be separated from each other. The positive electrode terminal 15 is fixed to one side in the width direction on the top surface of the case 12 via the insulating member 17, and the negative electrode terminal 16 is fixed to the other side in the width direction on the top surface of the case 12 via the insulating member 18. Has been.

電極組立体13は、図2に示すように、正極21と、負極22と、正極21と負極22との間に配置されたセパレータ23を有する。正極21と負極22とがセパレータ23を介して交互に積層されている。電極組立体13の厚み方向の両端は、ケースの両側面12aと接触している。   As illustrated in FIG. 2, the electrode assembly 13 includes a positive electrode 21, a negative electrode 22, and a separator 23 disposed between the positive electrode 21 and the negative electrode 22. The positive electrodes 21 and the negative electrodes 22 are alternately stacked via the separators 23. Both ends in the thickness direction of the electrode assembly 13 are in contact with both side surfaces 12a of the case.

正極21は、例えばアルミニウム箔からなる金属箔21aと、金属箔21aの両面に形成された正極活物質層21bとを有している。正極活物質層21bは、正極活物質とバインダとを含んで形成されている。正極活物質としては、例えばリチウム含有複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物は、リチウム以外に、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つを含むことができる。また、正極21の上縁部には、正極端子15の位置に対応してタブ21cが形成されている。タブ21cは、正極21の上縁部から上方に延び、導電部材24を介して正極端子15に接続されている。   The positive electrode 21 includes a metal foil 21a made of, for example, aluminum foil, and a positive electrode active material layer 21b formed on both surfaces of the metal foil 21a. The positive electrode active material layer 21b is formed including a positive electrode active material and a binder. Examples of the positive electrode active material include lithium-containing composite oxide, metallic lithium, and sulfur. The composite oxide can contain, for example, at least one of manganese, nickel, cobalt, and aluminum in addition to lithium. A tab 21 c is formed on the upper edge portion of the positive electrode 21 corresponding to the position of the positive electrode terminal 15. The tab 21 c extends upward from the upper edge portion of the positive electrode 21 and is connected to the positive electrode terminal 15 via the conductive member 24.

一方、負極22は、例えば銅箔からなる金属箔22aと、金属箔22aの両面に形成された負極活物質層22bとを有している。負極活物質層22bは、負極活物質とバインダとを含んで形成されている。負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、シリコン、SiO(0.5≦x≦1.5)等の酸化物、ホウ素添加炭素等が挙げられる。特に、Si及びSiOは、サイクル経過による膨張が大きい。また、負極22の上縁部には、負極端子16の位置に対応してタブ22cが形成されている。タブ22cは、負極22の上縁部から上方に延び、導電部材25を介して負極端子16に接続されている。 On the other hand, the negative electrode 22 has, for example, a metal foil 22a made of copper foil and a negative electrode active material layer 22b formed on both surfaces of the metal foil 22a. The negative electrode active material layer 22b is formed including a negative electrode active material and a binder. Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, silicon, SiO x (0.5 ≦ x ≦ 1.5) and the like, and boron-added carbon. In particular, Si and SiO x have a large expansion due to the cycle. A tab 22 c is formed at the upper edge of the negative electrode 22 in correspondence with the position of the negative electrode terminal 16. The tab 22 c extends upward from the upper edge portion of the negative electrode 22, and is connected to the negative electrode terminal 16 through the conductive member 25.

セパレータ23は、図3に示すように、空孔23aを有する。セパレータ23の形成材料の例は、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂などの樹脂である。   As shown in FIG. 3, the separator 23 has holes 23a. Examples of the material for forming the separator 23 are resins such as polyolefin resins such as polyethylene (PE) and polypropylene (PP), and polyester resins such as polyethylene terephthalate (PET).

本実施形態において、セパレータの厚み方向(Y方向)に沿う断面において、厚み方向(Y方向)における空孔の径が、厚み方向(Y方向)と直交する方向(X方向)における径よりも大きい。特に、本実施形態のセパレータ23は、厚み方向に直線状に貫通する空孔23aを有する。空孔23aのX方向の径は、例えば、10〜50nmであることができる。また、セパレータの厚みは、例えば、10〜30μmとすることができる。空孔23aのX方向におけるピッチ(空孔23aの軸の間隔)は、例えば、10〜50nmとすることができる。
このようなセパレータは、樹脂シートに、針又はレーザビームで貫通孔を開けることにより容易に形成できる。
In the present embodiment, in the cross section along the thickness direction (Y direction) of the separator, the diameter of the pores in the thickness direction (Y direction) is larger than the diameter in the direction (X direction) orthogonal to the thickness direction (Y direction). . In particular, the separator 23 of the present embodiment has holes 23a penetrating linearly in the thickness direction. The diameter of the hole 23a in the X direction can be, for example, 10 to 50 nm. Moreover, the thickness of a separator can be 10-30 micrometers, for example. A pitch in the X direction of the air holes 23a (a distance between the axes of the air holes 23a) can be set to, for example, 10 to 50 nm.
Such a separator can be easily formed by opening a through hole in a resin sheet with a needle or a laser beam.

続いて本実施形態に係るリチウムイオン二次電池11の作用を説明する。通常、ケース12によって、正極、負極、及びセパレータ23を含む電極組立体の厚みの増加は制限される。この場合、充放電サイクルの経過に伴い、電極(正極及び/又は負極)の厚みが増加すると、最も柔らかい部材であるセパレータ23が厚み方向に圧縮されることになる。しかしながら、本実施形態では、セパレータ23の空孔23aの断面が上記の構造を有するので、セパレータ23の厚みが圧縮された場合でも、厚み方向に垂直な断面における空孔の径(X方向の径)が変化しにくい。従って、セパレータを介したイオン等の移動抵抗の低下が抑制される。したがって、サイクル特性の劣化を抑制できる。   Next, the operation of the lithium ion secondary battery 11 according to this embodiment will be described. In general, the case 12 limits the increase in the thickness of the electrode assembly including the positive electrode, the negative electrode, and the separator 23. In this case, when the thickness of the electrode (positive electrode and / or negative electrode) increases with the progress of the charge / discharge cycle, the separator 23 which is the softest member is compressed in the thickness direction. However, in this embodiment, since the cross section of the hole 23a of the separator 23 has the above structure, even when the thickness of the separator 23 is compressed, the diameter of the hole in the cross section perpendicular to the thickness direction (diameter in the X direction). ) Is difficult to change. Accordingly, a decrease in movement resistance of ions and the like through the separator is suppressed. Therefore, deterioration of cycle characteristics can be suppressed.

続いて、上記リチウムイオン二次電池11を採用した電池モジュール(蓄電モジュール)について図4を参照して説明する。   Next, a battery module (power storage module) employing the lithium ion secondary battery 11 will be described with reference to FIG.

図4は、本発明に係る電池モジュール1の一実施形態を示す図である。同図に示すように、電池モジュール1は、複数のリチウムイオン二次電池11を配列してなる配列体2と、配列体2に対してリチウムイオン二次電池11の配列方向に拘束荷重を付加する拘束部材3と、を備えている。   FIG. 4 is a diagram showing an embodiment of the battery module 1 according to the present invention. As shown in the figure, the battery module 1 includes an array body 2 in which a plurality of lithium ion secondary batteries 11 are arrayed, and a binding load is applied to the array body 2 in the array direction of the lithium ion secondary batteries 11. The restraining member 3 to be provided.

配列体2では、伝熱プレート5を間に介して、複数のリチウムイオン二次電池11が配列されている。これらのリチウムイオン二次電池11は、互いにその電極組立体の厚み方向に隣接して配列されている。   In the array body 2, a plurality of lithium ion secondary batteries 11 are arrayed with the heat transfer plate 5 interposed therebetween. These lithium ion secondary batteries 11 are arranged adjacent to each other in the thickness direction of the electrode assembly.

拘束部材3は、例えば一対のエンドプレート31と、エンドプレート31同士を締結する締結部材32とを備えている。エンドプレート31は、例えばリチウムイオン二次電池11を配列方向から見た場合の面積よりも大きい面積を有する略矩形の板状をなしており、エンドプレート31の外縁部分がリチウムイオン二次電池11の外縁部分よりも外側に張り出した状態で、配列体2及び弾性体4の配列方向の両端にそれぞれ配置されている。   The restraining member 3 includes, for example, a pair of end plates 31 and a fastening member 32 that fastens the end plates 31 together. The end plate 31 has, for example, a substantially rectangular plate shape having an area larger than that when the lithium ion secondary battery 11 is viewed from the arrangement direction, and the outer edge portion of the end plate 31 is the lithium ion secondary battery 11. Are arranged at both ends of the array body 2 and the elastic body 4 in the array direction in a state of projecting outward from the outer edge portion of each.

締結部材32は、例えば長尺のボルト33と、ボルト33に螺合されるナット34とによって構成されている。ボルト33は、例えばエンドプレート31の外縁部分において、配列体2の四隅に対応する位置でエンドプレート31の貫通孔に挿通されている。各ボルト33の両端にエンドプレート31の外側からナット34が螺合されることで、リチウムイオン二次電池11、及び伝熱プレート5が一対のエンドプレート31に挟持されてユニット化されると共に、各リチウムイオン二次電池11に対して、その電極組立体の厚み方向に拘束荷重が付加される。   The fastening member 32 includes, for example, a long bolt 33 and a nut 34 that is screwed into the bolt 33. The bolts 33 are inserted into the through holes of the end plate 31 at positions corresponding to the four corners of the array 2 at the outer edge portion of the end plate 31, for example. The nut 34 is screwed into both ends of each bolt 33 from the outside of the end plate 31, so that the lithium ion secondary battery 11 and the heat transfer plate 5 are sandwiched between the pair of end plates 31 and unitized. A restraining load is applied to each lithium ion secondary battery 11 in the thickness direction of the electrode assembly.

この電池モジュール1では、拘束部材3によって各リチウムイオン二次電池11、即ち、各電極組立体13の厚み方向の膨張が厳しく規制されている。したがって、サイクルの経過に伴って電極が膨張すると、セパレータが圧縮されやすい。しかしながら、上述したように、本実施形態のセパレータは厚み方向に圧縮されても、イオンの通過底孔が増加しにくいため、サイクル特性を悪化させにくい。   In this battery module 1, expansion of each lithium ion secondary battery 11, that is, each electrode assembly 13 in the thickness direction is strictly regulated by the restraining member 3. Therefore, when the electrode expands as the cycle progresses, the separator is easily compressed. However, as described above, even if the separator of the present embodiment is compressed in the thickness direction, the passage bottom hole of ions is difficult to increase, so that the cycle characteristics are not easily deteriorated.

本発明は、上記実施形態に限られるものではない。例えば上記実施形態では、セパレータの空孔がセパレータの厚み方向に直線状に貫通しているが、セパレータの厚み方向に沿った断面において、その厚み方向における空孔の径が、厚み方向と直交する方向における空孔の径よりも大きい部分を有していれば、非直線状に貫通していても実施は可能である。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the pores of the separator linearly penetrate in the thickness direction of the separator, but the diameter of the pores in the thickness direction is orthogonal to the thickness direction in the cross section along the thickness direction of the separator. If it has a part larger than the diameter of the hole in the direction, it can be implemented even if it penetrates non-linearly.

また、蓄電装置もリチウムイオン二次電池に限定されず、正極と負極との間が上述のセパレータで離間されていれば良く、例えば、電気二重層キャパシタでも良い。   Further, the power storage device is not limited to the lithium ion secondary battery, and it is sufficient that the positive electrode and the negative electrode are separated from each other by the separator described above. For example, an electric double layer capacitor may be used.

また、電極組立体が、正極、負極、セパレータ以外に、電極保護層や、釘刺し時の短絡用の電極などを含んでいてもよい。これらの場合でも、ケース及び/又は拘束部材が電極組立体の厚みを制限する場合、本発明の効果を奏しうる。   In addition to the positive electrode, the negative electrode, and the separator, the electrode assembly may include an electrode protective layer, an electrode for short-circuiting during nail penetration, and the like. Even in these cases, when the case and / or the restraining member limits the thickness of the electrode assembly, the effects of the present invention can be obtained.

また、拘束部材の構造も少なくとも、正極、負極、及び、セパレータの合計厚みを制限するものであれば上記構造に限定されるものではない。   Further, the structure of the restraining member is not limited to the above structure as long as it limits at least the total thickness of the positive electrode, the negative electrode, and the separator.

1…電池モジュール(蓄電モジュール)、2…配列体、3…拘束部材、4…弾性体、11…リチウムイオン二次電池(蓄電装置)、12…ケース。   DESCRIPTION OF SYMBOLS 1 ... Battery module (electric storage module), 2 ... Array, 3 ... Restraining member, 4 ... Elastic body, 11 ... Lithium ion secondary battery (electric storage apparatus), 12 ... Case.

Claims (3)

正極、負極、及び、前記正極及び前記負極の間に配置された空孔を有するセパレータを備え、
前記セパレータの厚み方向に沿った断面において、前記厚み方向における前記空孔の径が、前記厚み方向と直交する方向における前記空孔の径よりも大きい、蓄電装置。
A positive electrode, a negative electrode, and a separator having pores disposed between the positive electrode and the negative electrode;
A power storage device in which a diameter of the hole in the thickness direction is larger than a diameter of the hole in a direction orthogonal to the thickness direction in a cross section along the thickness direction of the separator.
前記空孔は、前記セパレータの厚み方向に直線状に貫通している、請求項1記載の蓄電装置。   The power storage device according to claim 1, wherein the holes penetrate linearly in the thickness direction of the separator. 請求項1又は2記載の蓄電装置と、
前記正極、前記負極、及び、前記セパレータの合計厚みを制限する拘束部材と、を備える、蓄電モジュール。
The power storage device according to claim 1 or 2,
An electricity storage module comprising: the positive electrode, the negative electrode, and a restraining member that limits a total thickness of the separator.
JP2014223203A 2014-10-31 2014-10-31 Power storage device and power storage module Pending JP2016091718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223203A JP2016091718A (en) 2014-10-31 2014-10-31 Power storage device and power storage module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223203A JP2016091718A (en) 2014-10-31 2014-10-31 Power storage device and power storage module

Publications (1)

Publication Number Publication Date
JP2016091718A true JP2016091718A (en) 2016-05-23

Family

ID=56019520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223203A Pending JP2016091718A (en) 2014-10-31 2014-10-31 Power storage device and power storage module

Country Status (1)

Country Link
JP (1) JP2016091718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142645A1 (en) * 2018-01-17 2021-01-07 パナソニックIpマネジメント株式会社 Power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190294A (en) * 2000-12-22 2002-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell
JP2008108457A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Battery pack, and its manufacturing method
JP2012019006A (en) * 2010-07-07 2012-01-26 Panasonic Corp Separator and capacitor using the same
JP2013211158A (en) * 2012-03-30 2013-10-10 Tdk Corp Multilayer separator and lithium ion secondary battery using the same
JP2014182962A (en) * 2013-03-19 2014-09-29 Sony Corp Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190294A (en) * 2000-12-22 2002-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell
JP2008108457A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Battery pack, and its manufacturing method
JP2012019006A (en) * 2010-07-07 2012-01-26 Panasonic Corp Separator and capacitor using the same
JP2013211158A (en) * 2012-03-30 2013-10-10 Tdk Corp Multilayer separator and lithium ion secondary battery using the same
JP2014182962A (en) * 2013-03-19 2014-09-29 Sony Corp Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142645A1 (en) * 2018-01-17 2021-01-07 パナソニックIpマネジメント株式会社 Power storage device
US11450917B2 (en) 2018-01-17 2022-09-20 Panasonic Intellectual Property Management Co., Ltd. Power storage device
JP7174923B2 (en) 2018-01-17 2022-11-18 パナソニックIpマネジメント株式会社 power storage device

Similar Documents

Publication Publication Date Title
EP3151307B1 (en) Battery module and battery pack comprising same
EP2752916B1 (en) Electrode assembly and secondary battery using same
KR101155920B1 (en) Electrode assembly and rechargeable battery using thereof
JP6491428B2 (en) Secondary battery
JP6442907B2 (en) Battery module
JP6268855B2 (en) Power storage device and power storage module
US20160172636A1 (en) Insertion guide device for film armored battery
US8652679B2 (en) Rechargeable battery
JP5633032B2 (en) Secondary battery
WO2016151972A1 (en) Battery module
KR101653320B1 (en) Jelly-Roll Type Electrode Assembly of Low Resistance And Secondary Battery Comprising the Same
JP6260266B2 (en) Secondary battery
US10991985B2 (en) Secondary battery
WO2016152189A1 (en) Battery module
US9711777B2 (en) Rechargeable battery
US8999560B2 (en) Prismatic type secondary battery including insulation tube
JP5633621B1 (en) Power storage module
JP2014154486A (en) Power storage device
JP2016091718A (en) Power storage device and power storage module
KR102278993B1 (en) Electrode assembly
JP6507803B2 (en) Battery module
JP2012190587A (en) Secondary battery
US9012059B2 (en) Secondary battery
JP5590110B2 (en) Power storage device
KR102398572B1 (en) Secondary cylinderical battery having piezoelectric element and thermoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305